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1 INTRODUCTION 

Imagine yourself in a foreign pub with a lot of different brands of beer that 
are unknown to you. Which beer should you choose? If you have no advice 
to aid you in your decision you have to rely on the visual cues of the bottles 
and your own experience of beers. This is a hard (and important!) problem 
and there is no decision strategy that is certain to be a priori best. 

When we compare two bottles of beer there are some different principles 
that could be used. Each bottle has features such as brand name, size, shape, 
color of bottle, kind of beer, labels, price etc. and they can all be used to 
make a decision. One could use a small set of important features and pick the 
first beer that at least fulfills one item from this list of desired features (one 
reason decision making). A more effortful approach is to sum up all positive 
features for each bottle, weighted by the importance of each feature. A 
decision maker that uses these strategies needs to know which features are 
important and which are not (weighted linear strategy). A third strategy is to 
use the features of each bottle to access memories of similar past bottle of 
beers, which you remember as good or bad (exemplar or case-based 
strategy). Under the assumption that the features of a bottle of beer are not 
random but informative, it is likely that similar bottles will have similar 
contents. This thesis investigates under what circumstances people use 
decision strategies like these, for decisions that are based upon estimates, 
which in turn are inferred from properties (cues) of a decision alternative. 
For example, if you are asked about the population size of Heidelberg, you 
might know that Heidelberg has a university and some other facts that can 
help you guess its size. 

One theme in this thesis is similarity-based reasoning that uses as many 
cues to make inferences. Similarity-based estimates are assumed to be 
inferences from similar instances in memory. If you happen to know that 
Regensburg has about 125 000 inhabitants and that this city is similar to 
Heidelberg then you can guess that Heidelberg has about the same 
population size. One reason decision making is a parallel theme in this 
thesis. It is different from similarity-based reasoning because many cues are 
never even considered. If you know that there is a university in Heidelberg 
but not in Reutlingen you can guess that Heidelberg is larger than 
Reutlingen, and hope that the university cue is more important than other 



2

facts you knew about these cities. One reason decision making works well 
when some cues are much better predictors than other cues. Under such 
circumstances it is possible to be both accurate and very efficient, but only if 
we are able to tell which cue is important and which is not. Both similarity 
based and one reason decision making can be seen as strategies that avoid 
the complexities of using a weighted linear strategy. 

Cognitive psychology is the science of human information processing. 
Thus, our understanding of the processes of decision making cannot be 
complete without knowing the structure of the information (decision 
environments). For example, if humans adapt their strategies when they 
make repeated decisions and learn what works well we need to know which 
strategies cope well with certain kinds of information in order to develop 
better theories of such processes. Computational modeling of process models 
is an invaluable tool to explore how different decision strategies can cope 
with different information structures. Furthermore computer simulations 
provide detailed predictions from process models that would be impossible 
to derive analytically or by informal reflection on the models. This thesis 
uses computational modeling as the main tool to better understand human 
decision making.

The purpose of this thesis is to explore exemplar models as decision 
strategies in situations of uncertainty. Exemplars are stored instances of 
experiences that can be retrieved from memory and used as information for 
decisions later in life. A new theory of judgment and decision making, 
PROBabilities from Exemplars (PROBEX), is presented in Study I (Juslin & 
Persson, 2002). Furthermore, it is investigated whether PROBEX can behave 
as humans do in a probability judgment and decision making task. Study II 
(Persson & Juslin, 2000) is a theoretical investigation of the efficiency and 
robustness of PROBEX compared to other strategies in situations with 
minimal knowledge. Finally, Study III (Persson, 2003) uses PROBEX and 
the one reason strategy Take The Best (TTB) to predict accuracy and 
response times in an experiment with two very different decision 
environments. One where one reason decision making is enough for optimal 
decisions and one where exemplar based strategies is the only possible way 
to make optimal decisions. 
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2 Bounded Rationality and Decision Making 

This section will present and discuss bounded rationality (Simon, 1982) as 
the underlying theoretical concept of this thesis. Research on bounded 
rationality can be seen as the study of a) cognitive processes with limited 
capacity and b) the information structures of the environments of the 
organism. The main point is that most decision making research has focused 
on the cognitive limitation part of bounded rationality and neglected the 
environment in favor of the construct of subjective utility. The implications 
are that the eternal question of whether human decisions are rational has 
been thoroughly examined on side issues as coherence and weak forms of 
correspondence rather than the more “down to earth” ecological rationality1

(a stronger form of correspondence): Does the decision process work well in 
the environment it was meant for? 

A methodological reminder is also raised that in order to use bounded 
rationality as Simon intended, it is necessary to use process models of 
decisions processes studied in conjunction with models of the information in 
possible environments (cue structures).

2.1 Bounded Rationality 
Herbert Simon developed the idea of bounded rationality in the mid-1950s, 
as a reaction to the use of subjective expected utility in economical theories 
of decision making (Augier, 2001; Simon, 1992). He thought that the mental 
representations and processes had to be different from the assumptions of 
classical rationality, where the agent knows the exact information that is 
needed to compute, in principle, any interesting utility. His basic idea is that 
the organism is adapted to an environment in the sense that, the cognitive 
capacity of the organism is sufficiently advanced to let the organism survive 
in the environment it lives in. It does not matter much if the organism 
violates the norms or rationality as long as it finds enough food and can 

1 Coherence and correspondence (Hammond, 2000) are defined and discussed later, but note 
that weak and strong correspondence are terms introduced in this thesis to make finer 
distinctions out of a confusing concept. 
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avoid danger, that is, the organism is “satisficing” rather than maximizing 
utility. 

In order to develop a psychological theory of an organism that satisfices 
we need to know the basic perceptual and cognitive abilities the organism 
has and the limitations of these. In order to understand how the mechanisms 
can be used in a boundedly rational way, we also need to understand the 
nature of the environment that the organism lives in, for example how is the 
food distributed in the environment? Is the food easy to detect? Are there 
clues to where food can be found? Is it necessary to remember where the 
food was found? Simon likened this kind of analysis to a pair of scissors. 
One blade consists of the cognitive mechanisms of the organism and the 
other blade of how the environment is structured. Without full knowledge of 
both blades it is not possible to understand the behavior of the organism. 

2.1.1 The neglect of bounded rationality in decision making 
Simon developed his initial ideas of bounded rationality in the context of 
economic decision making in large organizations, and it was these ideas that 
gave him the Nobel prize in Economics2, but the influence on the field of 
behavioral decision making has largely been indirect. Simon himself 
concentrated on the psychology of problem solving, and became known as 
one of the founding fathers of cognitive science because of his contributions. 

It is interesting to read Simon’s paper on bounded rationality in 
Psychological Review (1956). What he does is to mathematically model how 
a rat could search for food and survive in a world where food was scattered 
randomly. Although a thought experiment, the example given is a complete 
process model of the behavior of the rat, as well as a model of the 
environment of the rat. I believe that both the first blade of Simon’s scissors, 
modeling the capacities of the organism, and the second blade, the analysis 
of the environment, has been neglected in decision research. Rather than 
modelling decision processes, researchers have continued to use subjective 
expected utility as a norm, explaining deviations by cognitive limitations 
rather than providing explicit process models for the mechanisms. 

Neglecting the analysis of the environment is more forgivable, because it 
may seem to demand divine intellectual capacity that no mortal researcher is 
capable of (but see, Anderson & Schooler, 1991, for an account of the 
relationship between memory and environment). Todd and Gigerenzer 
(1999) suggest that other fields such as ecology and statistics can be a source 
of inspiration. 

2 The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel is the correct 
name for this prize which should not be confused with the Nobel prizes in Physics, 
Chemistry, Medicine, Literature and Peace. 
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2.1.2 Two possible new directions in decision research 
The most important reason why bounded rationality has not made much 
impact in the field (as it was originally intended) was that cognitive 
psychology was still in its infancy when Simon proposed bounded 
rationality. There was no thorough understanding of mental processes that 
could become the basis for a general theory of boundedly rational behavior. I 
will mention two areas of modern research that may contribute to such 
theories. The first area is theories of emotions, which cannot be neglected in 
decision making. The second is theories of exemplar based categorization 
that can be an inspiration for new theories of decision making. Emotions will 
be discussed briefly here and exemplar based decision making is the main 
theme throughout this thesis. 

Emotion has often been depicted as the opposite of rational thought in 
philosophy (Damasio, 1998) and largely ignored during the cognitive 
revolution in the second half of the 20th century (LeDeux, 2000). Not 
surprisingly emotion has been neglected in decision making as a 
consequence of the preoccupation with classical rationality as the measure of 
human reasoning ability. Within neuroscience, however, there has been a 
dramatic increase in our knowledge about how emotional processes is 
involved in memory, learning and decision making (Dolan, 2002). The 
somatic marker hypothesis of Damasio for examples states that alternative 
options that are reflected upon engages the emotional systems throughout the 
brain and body which make us feel uneasy about bad options and feel 
positively about good options. The slow emotional system integrates these 
feelings over time and helps us to choose a good alternative.  

Even traditional decision research has begun to incorporate emotion in 
models. Decision affect theory (Mellers, 2000; Mellers, Schwartz, & Ritov, 
1999) is a theory of judged pleasure in monetary gambles, where subjective 
expected pleasure rather than subjective expected utility determines choice. 

It is thus not surprising that Hanoch (2002) has proposed that emotion is 
an integral part of bounded rationality. The most fascinating aspect of the 
latest insights of neuropsychology, is perhaps that brain damage to critical 
areas of emotional processing such as the orbital cortex severely handicaps 
the ability to handle important decisions in everyday life. Thus, it seems as if 
emotion is necessary for normal reasoning, contrary to what philosophers 
once believed. 

2.1.3 Three ways of constraining bounded rationality 
If we step back and examine bounded rationality in a wider perspective, a 
salient feature of the theory is that it is very general. If we ever meet 
intelligent life from other planets, it would be reasonable to develop 
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psychological theories for such species consistent with bounded rationality. 
In order to formulate down to earth theories of bounded rationality, there has 
to be some constraints. Today there are two schools of bounded rationality 
that constrain their theories in an abstract fashion without touching the 
messy details of basic processes of perception and cognition. After a short 
introduction of these schools a third alternative is presented. 

Figure 1. The big oval represents the set of all possible theories of boundedly 
rational decision making between empirically supported theories of cognition and 
the ideals of classical rationality (that cannot be true theories of high level 
cognition). The school of heuristics and biases has shown that people violate 
classical rationality in numerous empirical experiments, and has then drawn the 
conclusion that we use heuristics for decision making. The arrows pointing down 
shows that falsifying classic rationality drives this school towards cognitive theories 
but they have trouble going beyond vague verbal theories. The arrows pointing 
upwards represent the main idea behind this thesis: to simply start with process 
models of cognition and applying them to decision making. The thin vertical oval 
represents the models in the adaptive toolbox. These models have contact with 
cognition and are sometimes surprisingly close to optimal performance. The 

Classical Rationality
(impossible theories)

Cognition, Perception, Emotion etc.
(possible theories)



7

problem is that the set of models that belong to the toolbox might be too narrowly 
defined. 

The school of “heuristics and biases” (Tversky & Kahneman, 1974) presents 
itself as a theory of bounded rationality, and the constraint on theories of 
human decision making comes from comparing human decisions and 
judgments to norms of rationality. Thus, the overarching goal of this huge 
literature is to show that human decision making cannot be modeled 
descriptively with theories such as subjective expected utility and as such 
this research program has been very successful. This is depicted with the 
downward arrows in Figure 1. The connection to bounded rationality comes 
from the idea that we use error prone cognitive mechanisms that are simple 
and work well most of the time. Heuristics are mental shortcuts to easy 
decisions such as, for example, availability and representativeness (Tversky 
& Kahneman, 1974). Biases are systematic deviations in our ability to make 
judgments such as belief bias and overconfidence, to name a few. As a 
theory of bounded rationality it is very heavy on the blade of limited 
cognition. The blade of the environment has been replaced with rational 
norms applied to formal problems of logic and probability. As pointed out by 
Lopes (1992), proponents of the heuristics and biases approach gives only 
‘an honorific nod to a distinguished figure than it is an acknowledgement of 
significant intellectual debt’ (p. 232) when Simon’s views of bounded 
rationality is cited. The reference is made but the concept of bounded 
rationality in not important to the heuristics and biases school of thought. 

The other school constrains its version of bounded rationality as much as 
possible. The “adaptive toolbox” (Gigerenzer & Todd, 1999) is a research 
program where process models are assembled from a small set of heuristic 
building blocks, such as heuristic principles for guiding search, stopping 
search and making decisions. The result is a set of “fast and frugal 
heuristics”, where each heuristic is adapted to an environment with a 
particular distribution of information. These fast and frugal heuristics have 
been compared to statistical methods such as multiple regression and 
Bayesian networks in computer simulations and compete surprisingly well 
with them (Gigerenzer & Goldstein, 1996; Gigerenzer & Todd, 1999). For 
some data sets they are even better than complex methods. They are fast 
because they require very little computation and frugal because they do not 
look at all the given information. In theory these new heuristics seems to be 
perfect candidates for a detailed theory of bounded rationality and as a side 
effect they revive the hope that humans are surprisingly rational after all. 
This school is depicted as a thin vertical oval in Figure 1, reaching from 
simple processes towards rationality although narrowly defined such 
processes. 
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The third alternative to constrain new theories is to look for successful 
theories from other fields in cognitive science such as exemplar or 
connectionist models (Chater, 2000; Juslin & Persson, 2002) and adapt them 
to decision making tasks. This approach may help us one step further 
towards unification of cognitive microtheories (A. Newell, 1992). This thesis 
concentrates on exemplar theories, but theories of emotion and any other 
kind of brain process could of course also become a part of this alternative 
vision of bounded rationality. This idea is shown with the upward arrows in 
Figure 1. Classical rationality as applied to higher cognitive processes has to 
be impossible, but this does not exclude that the brain computes optimally on 
the neural level. This is why the oval in Figure 1 overlaps with the box 
containing “impossible” theories. As long as a process can take advantage of 
the massively parallel computing power on the neural level, there is no upper 
limit to the performance of the process. 

Proponents of the heuristics and biases tradition and the adaptive toolbox, 
would probably argue that they do hang on to the developments in cognitive 
theory, but there are some shortcomings that are unavoidable within each of 
these schools. Tversky and Kahneman (1983), for example, write of 
similarity based reasoning in support for the representativeness heuristic in a 
way which proves that they were well versed in the literature of the time, and 
Tversky was a leading expert in similarity judgment with the contrast model 
(Tversky, 1977). But there is no formal connection between cognitive 
models and representativeness and nor could it be, because all the heuristics 
of this school are verbal theories (Gigerenzer, 1996). Thus the theories of 
heuristics and biases deteriorate into a theory of bounded performance, 
rather than a theory of bounded psychological mechanisms.  

The adaptive toolbox is in a much better position because the theory is 
based upon process models and includes references to basic processes as a 
prerequisite to fast and frugal heuristics. The recognition heuristic (Goldstein 
& Gigerenzer, 2002) utilizes the parallel processing of perceptual systems to 
make surprisingly accurate inferences in a variety of situations. Germans are 
better than Americans to judge the relative sizes of cities in USA, because 
they only recognize the largest cities while Americans cannot use this 
information since they recognize small cities as well as large cities. 

But there is a fundamental problem caused by the separation of fast and 
frugal heuristics from the rest of cognition and perception. For example, the 
recognition cue is seen as a simple binary variable, which make it possible to 
separate the process of recognition from the simple binary decision that 
follows. But, there is a possibility that such decisions are not as simple. In 
Study I decision makers was modeled to not know cues as a function of how 
well cities were recognized. This lack of knowledge influenced the 
similarities between cities such that partial recognition (“I know little about 
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this city, but a little bit more about that city”) could be used to make graded 
similarity judgments. The decision making process then cannot be seen as 
independent from the recognition process. Another problem is that the 
decision process itself is supposed to be serial. The adaptive toolbox only 
includes processes that consist of a search rule, a stopping rule, and a 
decision rule. This is perhaps enough to study decision making in static and 
isolated situations. But it will be very difficult to explain the power law of 
automatisation (when a task is performed faster and faster if it is repeated) 
with fast and frugal heuristics, whereas the assumptions of parallel 
processing of multiple representations has been a successful way of 
modeling this phenomenon in categorization tasks (Logan, 1988; Nosofsky 
& Palmeri, 1997). In such models learning increases the amount of memory 
traces that can be activated which imply faster response times. Another 
example is Lamberts (2000) who models perceptual categorization with 
parallel independent feature detection processes that determine the time it 
takes to categorize an object. 

2.2 The Role of Rationality 
There are two major views of rationality that cause confusion in regard to the 
issue of human rationality: coherence and correspondence (Hammond, 
2000).  

Coherence is when the action and thoughts of an agent conforms to logic 
and is consistent with norms of probability and utility. Strictly speaking 
coherence in it self, is only a state of the organism with no contradictions. 
The “rationality” then has to come from some definition of optimality 
relating to the outside world that can tell apart good actions from bad. A 
paranoid person may be perfectly coherent in thoughts and actions but is 
nethertheless judged irrational by the society. In order to make a strictly 
coherent trade off between immediate rewards and learning in a changing 
environment one must build a complex model of the entire environment. 
Understanding rational behavior in terms of coherence thus rapidly becomes 
exceedingly complex and the decision maker has to utilize a demon of 
unbounded rationality (Gigerenzer & Todd, 1999) in order to compute 
decisions coherently. 

Correspondence defines rationality as when the thoughts and actions of an 
agent correspond to properties of the environment or work well in a given 
environment. It is thus not necessary to be completely coherent as long as 
the results are good. I will here make a distinction between weak and strong 
correspondence. Weak correspondence is coherency “in disguise” where for 
example the decision maker is potentially rational only if a mental 
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representation (such as a judgment of a numerical quantity) is close to the 
objective value in the external world. Strong correspondence on the other 
hand requires that the actions that follow from whatever mental 
representations are used work well in the given environment. For example an 
individual who goes to an auction with a limited amount of money, and is 
very uncertain about the real value of items for sale might use the simple 
strategy to only bid as long as the price is much lower than the uncertain 
estimate. With some luck there will be some item that can be bought at the 
low price. In most cases the “luck” was simply that the estimate was too 
high, but then the low price is close to the real value so it is not a loss. 
Occasionally this strategy would probably buy something at a really good 
price. This strategy is an example of strong correspondence, where the 
highest bids will be lower or close to the correct value despite the absence of 
weak correspondence.  

The main point here is that it is not meaningful to ask people to give 
estimates of numbers they might not actually use in the task of study. 

The heuristics and biases approach uses rationality defined as the 
coherence of beliefs and preferences in order to develop diagnostics for 
judgmental heuristics (Kahneman, 2000). Kahneman and Tversky (1996) 
also emphasize that they have studied the correspondence between for 
example estimates of numerical quantities with the objective numbers. But 
does it matter if the estimates deviate from the objective numbers, as 
discussed above in terms of weak correspondence? Lopes (1991) argues in 
other words that there is a problem of generalizability from the use of simple 
pencil and paper problems in the heuristics and bias tradition. It seems to be 
taken for granted that strong correspondence follows if and only if weak 
correspondence is a property of human decision making, and with that logic 
it is enough to demonstrate human irrationality by showing the violation of 
weak correspondence. The strong point of ecological rationality is that 
strong correspondence is possible without weak correspondence, as long as 
the decision process is adapted to the environment. 

2.2.1 Ecological rationality 
The strategies of all organisms have all evolved in highly complex 
environments. A psychological mechanism is ecologically rational if there is 
an environment where this mechanism is efficient and accurate. The 
assumption behind the adaptive toolbox is that it contains many specialized 
tools, and that each tool is rational in a narrow domain. If there is a tool we 
can use we will be rational, but if there is no tool we will not do well. 

Ecological rationality is thus equivalent with strong correspondence with 
the addition that increasing specialization is necessary to gain high 
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performance. A theory such as subjective expected utility is in contrast as 
general as a theory can be and an organism using it is inefficient (Simon, 
1992). The heuristics and bias tradition clearly demonstrate that this also is 
the case. But since they are preoccupied by testing a theory that cannot be 
true, this research cannot give us any insights whether we are rational in the 
ecological sense. In defence of the heuristics and biases tradition it is fair to 
point out that the heuristics such as representativeness and availability could 
be examples of ecological rationality but the problem is that these heuristics 
are too vague to give detailed predictions and, as Gigerenzer (1996) 
emphatically claims, we need process models to do so. 

2.3 No Process Models of Decision Making 
Recently several process models of decision making have been proposed so 
the following critique of the field is a historical account (see Dougherty, 
Gettys, & Ogden, 1999, for a similar discussion).  

The statement that there are no process models of decision making is 
provocative considering that there are plenty of simple decisions rules that 
each could be seen as a simple process model (Montgomery & Svenson, 
1976 lists 13 different decision rules) and numerous theories of decision 
processes (e.g.) Beach & Mitchell, 1987; Klein, Calderwood, & Macgregor 
1989; Montgomery, 1989; Svenson, 1992; Svenson, 1996). The statement is 
only true if “process model” is defined strictly as follows. A process model 
should be a) implemented as a computational model and b) is used to predict 
human decision behavior from c) the cue structure of the task. There are a lot 
of theories of decision processes, but with the given definition few of them 
would qualify as process models of the decision process. One exception is 
Huber (1994) who points out that decision making could benefit from 
computer simulations of process models and provides the Chunking-By-
Similarity model as an example. In a review of decision making research 
from a process tracing perspective Svenson (1996) also mentions that 
cognitive modeling would be a valuable contribution to the field of decision 
making.

The complex developments in decision research are better explained 
elsewhere (Goldstein & Hogarth, 1997; Hastie, 2001; Svensson, 1996) but as 
a crude simplification researchers in decision making have mainly used two 
different methods to study decision behavior. The most common method is 
to collect data about the actual decisions made, and then compare them to 
the norms of classical rationality such as maximizing subjective utility. In 
this paradigm the subjective utility is either provided explicitly in the task 
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(Payne, Bettman, & Johnson, 1993) or are assessed from the subjects before 
they make the decisions (Klein, 1983). 

The second and less common alternative is to directly study the decision 
process with process tracing methods such as verbal protocols or information 
boards (Svensson, 1996; Harte, Westenberg, & van Someren, 1994). This 
school cares less about which decisions are made, instead it asks questions 
about which strategies are used and how different contingencies affect the 
decision process. Researchers using process tracing methods are interested in 
decision making on a very general level with a lot of alternatives to choose 
from, many conflicting goals, and naturalistic decision problems. For 
example the Differentiation and Consolidation theory (Svenson, 1992; 
Svenson, 1996) has four different levels of decisions, 7 decision rules and 
incorporate both pre- and post decision processes. Developing a process 
model that can handle this complexity is not feasible. In this thesis each 
process model covers one decision strategy only and there are many 
strategies that are ignored. There are, for example, strategies that eliminate 
alternatives as a first step, but these strategies are left out because this thesis 
is limited to decisions with two alternatives, or judgments of one object.  

Image theory (Beach & Mitchell, 1987) and recognition-primed decision 
making (Klein et al., 1989) are interesting because they seem to be 
consistent with exemplar models although originally intended as descriptive 
models of decision making. Image theory is a very general theory but if 
exemplar retrieval can be seen as one kind of image representation it may fit 
into this framework. Recognition-primed decisions theory describe situations 
where experts immediately retrieve a solution from memory and never 
consider any alternatives (Lipshitz, Klein, Orasanu, & Salas, 2001). This is 
clearly equivalent to what exemplar models would predict of experts. 

Payne et al. (1993) are closest to the definition of process models above. 
They use process tracing methods and monte carlo simulations of different 
decision strategies, but they also stick to subjective utilities using a weighted 
additive decision strategy (WADD) as the optimal way of integrating cues. 
When they test these strategies in different task environments they 
manipulate the situations (for example adding more alternatives) rather than 
the nature of the information structure. In their experiments WADD will 
always give the optimal decisions as the optimal linear utility weights are 
given to the participants. But as is demonstrated in study III it is easy to 
create a task where the relationship between the given cues and what is 
considered the best choice is nonlinear. In principle it then follows that the 
cue structure of the environment is an important factor for the decision 
maker that cannot be ignored. 
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2.3.1 Two kinds of process models 
Linear models have permeated judgment and decision research (see Doherty 
& Brehmer, 1997, for a review and discussion of the role of linear 
regression), because as a first approximation of any kind of data they are 
very general tools. As a consequence it is very difficult to show that a 
process model is better than a linear model (Einhorn, Kleinmuntz, & 
Kleinmuntz, 1979). Recently though, several new process models of 
decision making have been proposed: Minerva-DM (Dougherty et al., 1999) 
and PROBEX (Juslin & Persson, 2002) are both exemplar based models, 
whereas TTB (Gigerenzer & Goldstein, 1996) is based on a lexiographic 
rule. Minerva-DM is a memory model and as it does not use the features of 
objects to represent the exemplars it cannot capture the cue structures of the 
environments. Instead the focus is on how the assumption of multiple 
memory traces affects likelihood judgments. As a process model of decision 
making the rationale behind Minerva-DM is parallel to PROBEX but as a 
model of bounded rationality it fails because it neglects the impact of the 
environment. 

Exemplar models of categorization have been very successful (see section 
3). Despite this, Smith and Minda (1998) have recently advocated the old 
idea of prototypes as a fundamental form of representation that is more 
important than exemplars. New studies, however, concerning the early 
learning process of categorization shows that only exemplar models can 
explain data late in learning and that there are shifts from simpler rule based 
representations (rather than prototypes) towards exemplars (Johansen & 
Palmeri, 2002). SUSTAIN, is a neural network that builds simple 
representations as a first assumption and then adds more clusters of neurons 
as needed when errors are made. Hence, categories that can be described 
with rules, prototypes or exemplars, are all different aspects of the same 
learning and categorization process using a unitary but flexible form of 
representation (Love, Medin, & Gureckis, in press). It is mentioned here to 
show the full potential of this type of process model. Automaticity, the 
phenomenon that experience speeds up performance of tasks that are already 
learned to perfection, is also a strong point of exemplar theory. The simple 
explanation is that over-learning of multiple exemplars provide relevant 
information to automatic tasks faster, since many exemplars increases the 
chance that a relevant exemplar is activated early. Exemplar theory may thus 
potentially explain the use of simple representations in decision making, the 
learning process and the automatization of the decision task in a coherent 
theoretical framework that is implementable in a neural substrate. 

Fast and frugal heuristics are examples of both bounded and ecological 
rationality, since they are not only fast and frugal, but also specific strategies 
adapted to particular kinds of ecology. A typical example of a fast and frugal 
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decision strategy is the Take The Best (TTB) algorithm (Gigerenzer & 
Goldstein, 1996). TTB is an algorithm that searches for cues in a particular 
order and applies the first cue it can use. Figure 2 provides a simple example 
with four cues where it searches three cues and ignores the last cue. Take as 
an example the task of judging which out of two German cities has the 
largest population. There is a lot of cues that can differentiate these cities 
such as if they are in former East Germany, whether they have an 
international airport, a football team in Bundesliga and so on. If one of these 
cues is true for one city but not for the other, then the probability that the 
former city is the largest is greater than chance. This probability, as defined 
for all pairs of relevant German cities, is the cue validity for that particular 
cue. TTB searches the cues in the order of decreasing cue validities. That is, 
TTB searches the best cue first then it searches the second best and so forth 
until a cue is found that differentiates the cities. If for example the 
differentiating cue has the cue validity .7, then the decisions will be correct 
in 70% of those cases assuming that random pairs of German cities are 
chosen. Some cues, as “the city is a capital in the country”, can have a 
perfect cue validity of 1.0, but if the cue only is true for one single city, it 
cannot be used very often, because the cue is false for both cities in almost 
every possible pair.  

TTB is fast because it only spends time on retrieving and comparing a 
few cues for each decision. It is very rare that it has to search all cues. TTB 
is also frugal in the sense that it does not assume any complex computations 
or complex representation in the moment of decision making. A problem 
though, as will be discussed later, is where the cue validities come from, 
because even if the definition of cue validity is computationally simple is it 
not as fast and frugal as the decision part of the algorithm. Despite the hinted 
drawbacks though, TTB does have a solid merit. It can compete evenly with 
complex algorithms such as multiple linear regression and even Bayesian 
networks in terms of accuracy (Gigerenzer & Goldstein, 1996; Martignon & 
Laskey, 1999). 

In summary both kinds of process models are good candidates of bounded 
rationality. The main difference may be that exemplar strategies are more 
general strategies while TTB is a more specialized strategy. Control of the 
cue structures then may be crucial, to see which of these decision strategies 
that best explain human decision making. It also important to differentiate 
these modes of decision making from linear weighting strategies that may 
confound the results. 
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Figure 2. Take The Best compares two objects with binary cues and make a 
judgment of which of these object has the highest value on an unknown feature, the 
criterion. In this example there are four cues A, B, C and D. TTB searches these in 
the “best” order. It first compares cue C, which has the highest cue validity. The cue 
validity is the probability that a correct choice can be based upon the cue on its own. 
Since both cues C and A are similar for the object 1 and 2, a decision is not made 
until cue B is compared. Note that cue D is ignored. In most cases TTB will make 
the decision searching only the first or second cue and ignore all other cues. 
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2.4 General Aim 
The aim of this thesis is to develop and empirically test a new theory of 
decision making. It is based upon exemplar models of categorization, which 
at the computational level is different from what has been common in 
decision making. A secondary aim is to compare this new theory with the 
ideas of “The Adaptive Toolbox” (Gigerenzer & Todd, 1999). From the 
point of bounded rationality it is expected that human decision making is 
ecologically rational, and uses several decision strategies that suits different 
situations. The new theory is presented next and then the studies follow. 
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3 PROBEX

PROBEX is based on the generalized context model3 (Nosofsky, 1986), and 
also incorporates some stochastic noise components from the combined error 
model (Juslin, Olsson, & Björkman, 1997; Juslin, Wennerholm, & Winman, 
1999). It is both a model of inference making and the subjective probability 
that each elicited inference is correct. It has no explicit bias parameters. Any 
kind of bias has to come from the structure of the model itself, in interaction 
with the information that is given. 

The first exemplar model was the context model proposed by Medin and 
Schaffer (1978), later extended into the Generalized Context Model by 
Nosofsky (1986). Exemplar models have been applied successfully to a 
range of different tasks such as, for example, memory (Hintzman, 1988), 
attention (Logan, 2002), categorization (Lamberts, 2000; Medin & Schaffer, 
1978; Nosofsky, 1986; Nosofsky and Palmeri, 1997; Kruschke, 1992; 
Storms, De Boeck, & Ruts, 2000), automatisation (Logan, 1988), social 
cognition (Smith & Zarate, 1992) and language (Daelemans, 1995). 

The principles behind PROBEX are not new. In artificial intelligence and 
similar disciplines it would belong to a class of algorithms using memory 
based reasoning. These algorithms are based on stored experiences or any 
kind of raw data. Examples of the tasks involved range from classification of 
news articles to robotics (Kasif et al., 1998). Lazy algorithms as defined by 
Aha (1997), is a term that captures memory-based reasoning that fulfils the 
following criteria for lazy information processing: First, stored data is not 
processed until a request for information is received. Next, the result of the 
request is based on a combination of stored data. Finally, the request and the 
result are discarded. PROBEX is a true Lazy algorithm since it only uses 
stored training exemplars for inferences. It uses locally weighted regression 
as the method of inference, but since it is a cognitive model it also has 
stochastic elements that capture the random aspects of any psychologically 
plausible decision process. 

The purpose of PROBEX is to show that lazy algorithms in general and 
exemplar-based models in particular can be good examples of bounded 

3 The most important difference to GCM is that PROBEX does not use attention weights on 
each separate dimension. Instead it only has one similarity parameter s. 
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rationality as discussed above. Furthermore PROBEX is supposed to show 
ecological rationality in competition with other algorithms as in Study I and 
II, and match human performance in their ability to make decisions, 
estimates, and subjective probability judgements, as presented in Study I. An 
empirical test of PROBEX in a decision task with learning is presented in 
Study III. 

3.1 The Model 
A formal presentation of the model is given in Study I and II, and the 
following description should be enough to understand the principles behind 
the model. Figure 3 provides a schematic overview of the model without 
going into details. 

Figure 3. A simplified overview of PROBEX. To the right an object with a number 
of features is presented and this object is compared to all stored exemplars in 
memory. One of the most similar exemplars is activated and retrieved from memory. 
Any useful information retrieved is used to make an estimate for the object. This 
procedure is repeated until the estimate do not change, and then the process 
terminates. 
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The exemplars are represented as vectors of numbers, or as points in a 
multidimensional psychological feature space. One dimension or feature of 
these vectors, the criterion, is always special in all the examples given in this 
thesis. The criterion is the feature the algorithms are supposed to infer. The 
inference task can be to estimate the criterion for a new object, or to estimate 
this value when it is unknown for a stored exemplar. The model could in 
principle make inferences for any feature, but for simplicity and clarity the 
distinction between criterion and features is made. Given a task concerning 
an object with an unknown or hidden criterion, the model makes an 
inference of the most likely value, based on the exemplars in long term 
memory. 

The estimation process is based on serial sampling of exemplars where 
the order is probabilistically decided. The sampling probability for any 
exemplar is proportional to the similarity between that exemplar and the 
object in question. The similarity is a non-linear function of the city block 
distance metric between the compared exemplars in multi-dimensional 
space, and for binary features it can be easily computed as the similarity 
constant s raised to the power of the number of differing cues. 

Every time an exemplar is sampled a tentative prediction is made, 
calculated as the average of the criterion of all sampled exemplars so far, 
weighted with the similarities of those exemplars. Without this weighting, 
the estimate would simply become the mean of those exemplars that are 
sampled, no matter which features the object has. 

Any serial process needs a stopping rule and in this model the rule is 
rather simple. If the relative change in two successive tentative estimates do 
not change more than a certain proportion k of the current estimate the 
process stops and the last estimate is elicited as the overt response. The 
principle behind the rule is to avoid retrieving more exemplars than 
necessary, without using any complex statistical analysis of the sampling 
process.

If the task is to assess the probability that a statement is true, such as 
estimating if the value of a painting is higher than the given price, then the 
process is the same, in the sense that the sampling procedure is similar. The 
difference is that the similarities are summed for each exemplar sampled that 
satisfies (value>price). When the process terminates as detailed above, the 
overt subjective probability response is calculated as the final sum of such 
similarities divided by the total sum of all sampled exemplar similarities. 

The response time is modeled as proportional to the number of samples. 



20

3.2 The Parameters 
As with most process models some quantitative aspects are unknown and 
four parameters are necessary in PROBEX. There are two for the main 
estimation process and two more for the subjective estimate of probability. 

The similarity parameter s decides the degree of nonlinearity of the 
similarity measure. It is in the range from 0 to 1. Small values of s means 
that only the most similar exemplars have a high probability of being 
sampled and since the weights in the calculations are the similarities, very 
dissimilar exemplars will not contribute much to the estimates even if they 
are sampled. A high value of s makes the algorithm sloppy in the sense that 
all exemplars are perceived as similar to the object in question. 

The stopping rule is governed by the threshold of the minimum allowed 
change in the estimate k. High k means speedy inferences with few sampled 
exemplars and k close to 0 means that PROBEX carefully samples most or 
even all exemplars. 

The subjective probability estimate needs to incorporate the fact that 
nothing can be judged with certainty if none or few exemplars are sampled. 
Thus a dampening mechanism controlled by the parameter  is added to the 
ratio between summed positive similarities and the sum of all sampled 
similarities (Andersson, 1990; Nosofsky, Kruschke, & McKinley, 1992). In 
the case where no exemplars are sampled this addition to the equation makes 
the subjective probability 0.5 default for pure guessing. Without this 
modification the model would predict severe overconfidence with increasing 
ignorance. Nobody is perfect and a normally distributed response error 
(Juslin et al., 1997; Juslin et al., 1999) is added to the subjective probability 
as controlled by a response error variance parameter. The resulting 
probability is truncated to the nearest valid response if it is below 0 or above 
1.

3.3 What is new? Assumptions and Additions 
PROBEX is not a model of perceptual categorization and classification 
(Lamberts, 2000; Nosofsky & Palmeri, 1997; Palmeri & Flanery, 2002), and 
differs from such models in three respects. First, it does not assume learned 
categories, thus it can model inferences from the learned exemplars without 
previous training. 

Secondly, it deals with general knowledge tasks, where semantic 
knowledge is accessed in memory, rather than learned representations of 
perceptual stimuli. The most important implication of this is that the 
timescale of the response time predictions is likely to be different compared 
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to models for perceptual categorization, since perceptual activation of 
exemplars is much faster than semantic activation. The tip of the tongue 
phenomenon is an extreme example of this, where recognition is virtually 
instant, but recall may take an eternity. The sampling process is assumed 
serial and not parallel which is quite unorthodox for an exemplar model.but 
the Exemplar Based Random Walk (EBRW) model (Nosofsky & Palmeri, 
1997) also uses serial sampling. 

The third distinguishing property of PROBEX is that it is not assumed 
that multiple exemplars of the same external object are stored. Thus the 
criticism against the idea of exemplars as a completely unrealistic waste of 
memory does not hold for PROBEX. The representations needed for 
PROBEX are simply those memory fragments that happen to be stored in 
long term memory; a very attractive property of a model of bounded 
rationality. In sum: Neither complete encoding and storage, nor exhaustive 
retrieval is presumed by PROBEX. Most, if not all, of the assumptions of 
PROBEX are the same as those made by Smith and Zarate (1992) who 
extended exemplar theory to social judgments. 

3.4 Psychological Plausibility 
Gigerenzer and Todd (1999) have argued that their algorithms are frugal in 
the sense that they do not need any complex computations at the moment of 
decisions. Compared to PROBEX this is a good point, but there is another 
side of the coin: the need for precomputed abstractions. 

First, algorithms such as Take The Best must know the best order that the 
cues should be searched, which means that some sort of calculations or 
inference has to be made in advance. PROBEX, on the other hand, does not 
need any representations computed in advance, it just stores exemplars. 
Second, those algorithms that need some special representation to work 
properly has to know the task in advance, or will be forced to compute those 
representations from memory in novel situations. As emphasized in Study II, 
the third advantage of PROBEX is that the learning and use of cue directions 
is an automatic benefit of the similarity comparison process. A cue sorting 
algorithm like Take The Best, does not integrate scarce information well and 
need more exemplars than PROBEX in order to work well. 

The arguments above derive from the fact that PROBEX is a Lazy 
algorithm. As such, PROBEX is rather unsophisticated compared to state of 
the art Lazy algorithms in the field of artificial intelligence. The main 
strength of PROBEX is that it captures the essentials of what might be 
psychologically plausible, within the memory learning paradigm and 
bounded rationality. 
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3.5 Serial vs. Parallel 
Implemented on a serial computer PROBEX is very slow, because it has to 
serially simulate the properties of a parallel associative long term memory. 
The sampling process though is assumed to be serial and in terms of speed 
PROBEX operates with the basic units of time it takes to retrieve each 
exemplar. Take The Best scans cues of one or two exemplars in a particular 
order that has to be fetched from memory. It is hard to compare the timing of 
these different kinds of mental operations, as it is like comparing apples with 
oranges.

3.6 Nonlinearity
An area where PROBEX clearly shines is when it is applied to non-linear 
data, because exemplars models can in principle model any kind of function 
(Rachlin, Kasif, Salzberg, & Aha, 1994) given an infinite source of 
exemplars and a suitable similarity parameter. This theoretical state of 
perfect knowledge is of course not within the reach of PROBEX which aims 
at psychological plausibility. But it can learn exceptions to otherwise linear 
data, and it can handle the classical “exclusive or”-problem (Klemm, 
Bornholdt, & Schuster, 2000). Linear models and cue sorting algorithms 
cannot manage these problems without some transformation of the cue 
patterns, which may in the end amount to using an exemplar based mapping 
of patterns! 
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4 STUDIES

4.1 Study I 
The purpose of this study was to investigate the ecological rationality of the 
new model PROBEX with computer simulations, and then to assess its 
psychological plausibility by comparison to empirical data.  

Figure 4. Simulation results from the German city population task. Minimalist 
PROBEX is a version of PROBEX that samples only one exemplar. RIDGE and 
MULREG are two types of multiple linear regression. 

PROBEX is compared to other decision algorithms in the German city 
population task, or simply put: “Which out of city A and B is the largest?” 
The problem is how to make the best guess given a random amount of 
information about the cities in the country. The data set used is the 83 largest 
cities in Germany, which was the original data set first studied by Gigerenzer 
and Goldstein (1996). The given cues (9 in all) are only loosely connected to 
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the population of the cities such as “Does the city have a university?”, or 
“Does it have a football team in Bundesliga?” and so on. The chosen cues 
should capture some everyday realistic facts that can safely be assumed to be 
available for arbitrary general knowledge estimation tasks. 

4.1.1 Simulation results: the ecological rationality of PROBEX 
In order to test the algorithms as severely as possible, the data set with 
German cities was divided randomly into a training set with known city sizes 
and a test set with no known sizes. The algorithms were allowed to use the 
training set as exemplars, or as data to calculate optimal weights, cue 
validities, correlations or whatever was required. Every possible pair of 
cities from the remaining test set was used to test the algorithms on the pair-
comparison task. The measure of accuracy was the proportion of correct 
answers as a function of the number of cities in the training set. 

The results are shown in Figure 4 and it is easy to see that for each 
training set size PROBEX achieves better than or equally to all other 
algorithms. There is no need for significance testing because each data point 
in the graph is based on 1000 randomly drawn training sets, which is enough 
to eliminate the variance of the estimated means to what is barely visible. 

The pair-comparison task was used to compare PROBEX with Take The 
Best which cannot make predictions directly about the criterion (population). 
Further simulations examined algorithms that make quantitative predictions 
and the results are shown in Figure 5 where the mean absolute deviation of 
the predicted city sizes is plotted for each training set size and algorithm. 
These results are not as clear cut as in Figure 4 but overall it is clear that 
PROBEX is the “winner” again. 

In the competitive simulations described above all algorithms were 
allowed to use all information in the training set which is not plausible. In 
the next simulation the accuracy of PROBEX was explored with different 
parameters (see study one for details). The main results is that if the stop rule 
is disabled with k=0 then the similarity parameter s is not important. But if 
only a few exemplars are sampled, a low value for s is important in order to 
maximize the chance that relevant exemplars are indeed sampled. Is it then 
possible to always use a very small value of the s parameter? Perhaps, but 
there is a limit to how small s can become because numerically computed 
similarities will become almost infinitely close to zero for decreasing values 
of s, and if some neural noise is added then the ability to discriminate 
between exemplars is lost. Thus, s has to be chosen such that the magnitude 
of the similarities is larger than the noise in the system. 
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Figure 5. Mean absolute deviation of predicted city sizes as a function training set 
size. Low numbers are better. QUICKEST is an estimation algorithm similar to Take 
The Best. It assumes that the city to be judged is small, but increases this estimate 
for every positive cue it finds and stops as soon as a negative cue is found. 

In conclusion it has been shown that the model is robust and can compete in 
accuracy with a wide range of algorithms and the similarity driven inference 
does not need a very specific or clever selection of parameters in order to 
work. A parameter combination of a high value of k and a robust low s
should be fast and frugal and still fairly accurate. 
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Figure 6. (A) Mean point estimates of German city-populations by 40 particpants 
plotted against the predictions by PROBEX. (B) Participant’s mean estimates 
plotted against the true values (human achievement). (C) PROBEX’ estimates 
plotted against the true values (PROBEX achievement). (D) The observed solution 
probabilities plotted against the predictions by PROBEX. 

4.1.2 Empirical results: the psychological validity of PROBEX 
The simulations showed that the algorithm is indeed very good in principle. 
The remaining question is if the model has the same properties as human 
performance. As a test of human performance, 40 participants were given the 
hard task of guessing the size of 40 German cities and provide confidence 
judgments of these estimates in three different response formats: half-range, 
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full-range and interval format (Juslin et al., 1999). Confidence judgments are 
only mentioned in this summary when necessary, but see study I for 
definitions and results. 

Then the parameters of PROBEX were fitted to the human data. The 
procedure was to minimize the sum of the normalized root mean square 
deviations (RMSD) of all dependent variables. There were 8 dependent 
variables, 4 for the full-range and the same 4 for the half-range condition. 
Further details are given in the Appendix of Study I. The dependent 
variables were the point estimates of each city, the proportion correct for 
each city, the calibration curve and the confidence judgment distribution. 

In terms of what humans seems to do, assuming PROBEX is a proper 
model thereof, the fitted parameters can be described verbally as follows: 
We use as few exemplars as possible and we are picky in the sense that only 
the most similar exemplars are retrieved. These are the parameters that 
define “fast and frugal” use. Our ability to make subjective probability 
judgments are influenced a lot by the response error and the dampening 
factor plays a large role because little information is provided about the 
criterion when few exemplars are retrieved. 

How well does the model fit data? Figure 6 give an overview for the 
population estimates. There are 3 possible ways to plot the population 
estimates of the participants, predicted population estimates of the model and 
the real populations of the German cities. These plots are shown in Figure 
6A, 6B and 6C. The data for the half-range and full-range format conditions 
has been merged into one data set in this figure, since the estimates do not 
differ much depending on the response format of the subjective probability 
responses. All the correlations are very high and there is nothing peculiar to 
report. The model work sufficiently. 

The plot between the predicted and observed solution probabilities 
(proportion correct) in Figure 6D is more interesting. The question is 
whether the model makes the same mistakes as humans. All the points in the 
lower half of the plot are misleading items to the participants since they on 
average guesses the size relative the criterion worse than chance. The model 
is fooled by half of these items as a result of the cue structure of the data set. 
The surprising thing is that there is no city that PROBEX predicts as 
misleading which people do not also predict as misleading (the upper left 
quadrant is empty). The model seems to capture some misleading aspects of 
the cities but not everything. 

The empirical results are promising and it is safe to conclude that the 
model can predict behavior that capture the main features of human behavior 
even without a detailed modeling of the specific cues that people use (i.e. 
there is no guarantee that the participants use the exact 9 cues used in the 
simulation). 
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4.1.3 Conclusions
PROBEX is accurate and robust, and as discussed in the presentation of the 
model it is efficient with the assumptions of similarity based parallel 
activation of exemplars. The parameter fit of the model to data shows that 
two sampled exemplars are enough to reach the accuracy of the participants 
and to capture the main structure of all dependent variables. The parameters 
are psychologically plausible as well as ecologically rational. As a model of 
bounded rationality it has passed a first preliminary test. 

4.2 Study II 
PROBEX outperformed the other algorithms in the traditional German city 
task in Study I. The enquiry here is expanded beyond robustness, efficiency 
and accuracy, in order to assess what happens when there is very little known 
about the environment? First it is investigated what an algorithm has to do to 
perform well under such circumstances and which algorithms do that. 
Second, the algorithms are tested with a cue structure where algorithms that 
perform well with little information often fail when much is known. Finally, 
a simple demonstration with an evolutionary perspective shows why it is 
important to perform well with little information. 

A good decision strategy should be useful in states of limited knowledge, 
that is, when there is perhaps as few as only two exemplars available to 
generalize from. One major problem in prediction from very few exemplars 
is to assess the direction of each cue. Are high values of the cues correlated 
with high or low values of the target variable? The ability to detect the 
directions of cues was tested more thoroughly in this study, by adding two 
algorithms based on Dawes Rule that illustrate the importance of knowing 
the directions of cues. Dawes rule is very simple: count the number of cues 
in each exemplar that has a positive correlation with the criterion and pick 
the exemplar with the highest number as having the largest value on the 
criterion dimension. The first version of the rule, named A Priori Dawes 
rule, does not estimate the directions of the cues but is given the true 
directions a priori. This version is given as a reference to what can be 
achieved in theory by an algorithm that only uses the directions of the cues. 
The second version has to calculate the directions or guess them from 
ordinary correlations between each cue and the target variable. 

When there are only two exemplars Dawes Rule is optimal, since the cue 
direction is the only information given by two exemplars. As an example, if 
Xbig=[1010] and Ysmall=[0110], then we have a best guess of the cue direction 
for cue number one and two, but for the third and fourth the cues are the 
same and contain no information. It is not possible to tell which cue 
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directions are stronger with only two exemplars, but the cue directions can 
be expected to be correct more often than chance predicts if the cues and the 
criterion are correlated. 

4.2.1 Simulation 1: accuracy and cue direction 
This was a replication of the simulation in Study I with some additional 
algorithms, and the results did not change the conclusions drawn in Study I.  
The interesting thing to note is that the Godlike perspective on cue directions 
implemented by A Priori Dawes rule is very effective in this task. It even 
performs better than the best asymptotic levels of the other algorithms. This 
is probably because it never overfits parameters from the training set that 
later do not generalize to the test set. PROBEX, ridge regression and Dawes 
rule perform optimally with two exemplars in the training set, simply 
because they do integrate all the scarce information about cue directions 
without losses. Ordering the cues, as Take The Best and QUICKEST do, and 
then not using all of them does not work well.  

The success of PROBEX is a consequence of the fact that PROBEX and 
Dawes rule is equivalent in the differentiation task. When the estimates are 
computed with two exemplars in the training set, it is easy to show that the 
rank order of the predicted populations of the test set exemplars necessarily 
is the same for PROBEX as those given by Dawes rule. 

The results confirm that knowing the directions of cues in this task is very 
important and that it is only PROBEX, Dawes rule and ridge regression that 
do this for two known exemplars. 

4.2.2 Simulation 2: cue direction in a noncompensatory cue 
structure

Is the cue direction always as important as it seems to be in the German city 
population task? In order to test this an artificial data set was created. A 
linear structure was chosen where the optimal weights have the same 
structure as that of binary numbers. The advantage of this noncompensatory 
(each cue is always worth more than all cues with lesser weights combined) 
cue structure is that it allows Take The Best to asymptotically reach 100% 
performance. This data set can test the limitations of any algorithm that 
relies on detecting cue directions only, and also put PROBEX to the hardest 
test imaginable because it should not be able to handle linear data well with 
few training instances since it has no explicit mechanism for extrapolation. 
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Linear models fit linear data perfectly if they are given enough linearly 
independent data points. 

The results shown in Figure 2 in Study II, shows that the regression 
models easily reach 100% performance, but with only two exemplars 
PROBEX is of course optimal. Take The Best does reach asymptotic 
performance, but not very fast. Further it needs 7 exemplars to beat 
PROBEX and is never as superior as PROBEX is for few training 
exemplars. A Priori Dawes rule performs a little better in absolute numbers 
than in the German City task, but here it has reached some kind of 
theoretical ceiling of about 77.5% because it cannot differentiate between the 
importance of cues. 

The implications of this simulation is that knowing the direction of cues is 
the single most important factor up to 6 exemplars even in this test. Further 
PROBEX does manage to compete with the traditional competitors from the 
adaptive toolbox even on their own playing field, because it is not limited to 
detecting the directions of cues as Dawes rule is. 

4.2.3 Simulation 3: evolution and robustness 
This was a rather crude but still illustrative computer simulation of why 
good performance with little experience might be crucially important from 
an evolutionary point of view. The idea is that if you die as a beginner you 
will never become an expert. In Figure 3 of Study II the population 
development is shown for two environments with two competing species in 
each. Early Learner is the winning species in both cases. It has an accuracy 
development as a function of increasing experience similar to that of 
PROBEX. It wins even in the case where the competing species Late Fast 
Learner on average is as good as Early Learner, because the population loss 
in the first half of every generation is too large to be compensated for later. 

The conclusion is that as a genetic adaptation over long term, PROBEX is 
a more likely candidate to survive. Still the term adaptive may imply that a 
decision strategy is an adaptation acquired during a lifetime rather than an 
inborn ability. The question that follows is then which strategies can be 
learned easily by the generic learning mechanisms given by our genes. Thus, 
PROBEX does not need to have a genetic origin. If humans are born with the 
ability to choose between similarity based reasoning and cue based search as 
TTB then it is likely that similarity based reasoning is chosen because it 
gives fairly good results early in most of the new tasks a human faces during 
development. Thus, the evolution of these strategies does not have to take 
place over hundreds of generations, but over hundreds of new tasks in the 
environment.  
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4.2.4 Conclusions
The findings here support the idea that PROBEX is a very flexible all 
purpose tool that performs well even in unfavorable environments, and with 
very little knowledge. It was also shown that if a selection of strategies is 
based on beginner performance then PROBEX could be favored even in 
circumstances where it is not the best choice for expert performance. 

4.3 Study III 
Distinguishing similarity-based processes from rule-based processes is 
difficult. Furthermore there are good reasons to believe that humans are 
capable of both kinds of reasoning (Hahn & Chater, 1998; Sloman & Rips, 
1998). The experiments in Study III aimed to separate these processes by 
manipulating the cue structure of environments provided in a laboratory 
experiment with artificial stimuli. The cue structures were designed to favor 
two process models of decision making: Take The Best and SIMPLEX4,
where SIMPLEX is a simple nearest neighbor version of PROBEX. These 
processes in conjunction with the cue structures are sufficient to predict 
response times and thus corroborate the use of one reason decision making 
(TTB) and exemplar-based decision making (SIMPLEX). 

There has been little evidence for Take The Best so far. Bröder (2000) 
found that TTB was used more when the cost of examining cues was 
increased, but the rate of use was nonetheless limited. These results have 
been replicated with a process monitoring approach (B. Newell & Shanks, 
2003) using six or two cues (B. Newell, Weston, & Shanks, 2003) and it was 
again found that only a minority of the participants was consistent with the 
predictions of TTB. Juslin, Jones, Olsson and Winman (in press) 
investigated a multiple cue categorization task (could also be seen as a 
decision making task) and found little support for a strategy similar to TTB. 
One aim of this study was to test if TTB could be used at all. 

In Study I and II the given stimuli were names of cities and the 
presentation of a stimuli was assumed to initiate covert processes using 
representations acquired from real life experience. It is close to impossible to 
test specific predictions from process models under such circumstances. 
Study III was thus designed as a repeated deterministic decision task with 
feedback on the criterion, where participants started with no knowledge. 

The computerized task in Study III was to sell vacuum cleaners as a 
traveling salesman. Participants had to select one out of two alternative cities 
to travel to every day. Information for the decision was four binary cues 

4 Note that there is an unrelated linear programming algorithm also called SIMPLEX. 
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given for both cities. Feedback on the criterion was the number of vacuum 
cleaners sold in each city. The cue labels was randomized for each 
participant to eliminate any effect of prior real world experience. The 
participants were presented with 240 trials (or 224 trials, see the Procedure 
section of Experiment 1 in Study III for an explanation) of this pair-
comparison task. There were 16 different cue patterns (cities) and the 
criterion associated with each cue pattern defined the cue structure. The 
dependent variables were the decisions made on each trial as well as the 
response time. All pairs of cue patterns were presented twice, once in the 
first half (Block 1) and once in the second half (Block 2). 

4.3.1 Experiment 1: Cue structure and cue presentation format 
If decision makers are truly adaptive they should quickly learn any cue 
structure and show signs typical for the appropriate process. Two cue 
structures were designed to favor TTB and SIMPLEX respectively. TTB 
belongs to the class of lexicographical strategies. Such strategies are used 
when a list of words is sorted in alphabetical order and to quickly pick out 
the largest of several numbers. With binary cues it is natural to use binary 
numbers such that for example “1111” is worth 8+4+2+1= 15, where 15 is 
the criterion. This cue structure (TTB-Friendly) is noncompensatory, that is, 
if a cue is true then the cues less important than this cue cannot be worth 
more. 1 is less than 2, 2+1 is less than 4, and 4+2+1 is less than 8. 
Participants need only discover the correct order to compare the cues for the 
alternatives in a pair-comparison task in order to be 100% accurate with this 
cue structure. TTB does not make estimates of the criteria of the alternatives, 
it simply makes an inference about which alternative is most likely to have 
the largest criterion. SIMPLEX on the other hand estimates each alternative 
independently by retrieving the criterion from a single exemplar stored in 
memory that is most similar to the alternative, and decides on the alternative 
with the highest estimate. Using memory like this allows SIMPLEX to 
handle difficult cue structures, such as those with a nonlinear relationship 
between cues and criterion. The EX-Friendly cue structure was designed to 
be “unfriendly” against linear strategies such as TTB and any other linear 
strategy but friendly to SIMPLEX. The 16 cue patterns were assigned to 8 
arbitrary criterion values. The important point to note was that the pair of 
cue patterns attached to each criterion was the inverse of each other. Such 
pairs could be “1100, 0011”, “0100, 1011”, “0000, 1111” etc. TTB fails 
miserably with this cue structure since it can only make correct decisions for 
one pattern in each pair. Consistent use of TTB with this cue structure 
predicts a proportion correct of .5 over all pairs of cities in the experiment. 
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Which sequence of binary cues is easiest to remember, “GHHG” or 
“Cheap beer/No Airport/Poor cultural life/Bicycle-friendly”? These cue 
presentation formats were used in Experiment 1 and were named Letter and 
Text respectively. The former is abstract and hard to assign a meaning, yet it 
is very compact and easily encoded. The latter sequence may help your 
imagination to visualize a city, but processing the information is more 
difficult. It is not easy to see that the first and last cues are both positive 
while the second and third cues are negative. An exemplar strategy that 
relies on holistic processing of all cues may depend upon the format of the 
cues. Most support for exemplar based models comes from perceptual 
categorization (Lamberts, 2000; Nosofsky, 1987; Palmeri & Flanery, 2002), 
and it is possible that there will be no exemplar effects if cues cannot easily 
be processed holistically with the perceptual system. 

A strong interpretation of bounded rationality is that humans have the 
resources to handle any cue structure given a reasonable amount of 
experience with it. Will participants adapt to the two cue structures: the 
noncompensatory TTB-Friendly and nonlinear EX-Friendly? But if they do, 
will they then use the appropriate strategies TTB and SIMPLEX? In the case 
of the EX-Friendly condition good performance is enough to assume an 
exemplar based strategy since no other strategy will do well. It is difficult to 
draw any conclusions from accuracy in a task using The TTB-Friendly cue 
structure because any linear weighted and exemplar strategy can be accurate 
with this cue structure. The solution to this dilemma is that TTB predicts 
large differences in response times for different trials. A linear weighted cue 
strategy or exemplar strategy will integrate all cues with few systematic 
differences in response times. TTB searches cues one at a time and stops at 
the first cue that allows a decision, which predicts a linear relationship 
between the number of cues searched and response time. SIMPLEX allows 
for the weaker prediction that decisions where one or both alternatives is 
recognized should be slightly faster as the criterion can be retrieved directly 
from memory. 

A two by two factorial design was used with 10 participants in four 
groups: TTB-Friendly/Text, TTB-Friendly/Letter, EX-Friendly/Text, and 
EX-Friendly/Letter. 

Accuracy
Performance in Block 2 (the last half of all trials) ranged from excellent to 
almost random between the groups. The accuracy in the TTB-Friendly/Text 
group was close to perfect, while the EX-Friendly/Text group was just 
slightly better than random. The logic of the experiment seems to rule out 
exemplar based decision making when the cues of the alternatives are 
presented as text. In this light the results from the groups where the Letter 
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cue format was used almost turned the conclusions upside down. Participants 
in the TTB-Friendly/Letter and the EX-Friendly/Letter groups spread out 
through the whole spectrum of random to perfect accuracy. On average both 
groups ended up halfway between random and perfect accuracy. Assuming 
that the participants used TTB and exemplars as expected the conclusions is 
that TTB is easy to use with the Text format, but is harder to use with Letter 
format. Exemplars could be used with the Letter format but otherwise not.  

Model fits of TTB and SIMPLEX 
TTB and SIMPLEX have no free parameters, but they do have a parameter
space. The strategies use a representation of the task: TTB needs a cue order 
to search the cues and SIMPLEX needs a set of learned exemplars and their 
criteria. The models can be fitted to data by selecting the representation that 
best explains data. If the participants reach optimal performance it could be 
assumed that they used either the optimal cue order, or learned all 16 
exemplars. The problem is that both models would predict optimal 
performance and hence accuracy alone would not be able to tell the models 
apart. Another complication is that many participants did not do very well 
and we want to know if this is because they used the wrong strategy or 
simply were confused.  

The models were fitted to individual participants using decision data from 
Block 2. That is, the models had to make decisions for every trial as the 
participants did. Every possible representation for the respective model was 
tried and the representation that best duplicated the decisions of the 
participant was selected. The fitting procedure of SIMPLEX was 
complicated because it was found that it overfitted the data such that it 
included many more exemplars than necessary. This was corrected by also 
fitting the proportion correct answers. One might think that fitting decisions 
and proportion correct should be equivalent, but this is not true, since the 
fitting procedure can overfit to those responses that were more or less 
random. In the case of SIMPLEX this systematically seems to add many 
wrong exemplars to the final fitted representation. 

The individually fitted models were then used to predict systematic 
patterns in the response time data. If it is possible to explain some of the 
variation in the response times using the representations deduced from the 
decisions then the models have at least explanatory validity to some degree. 
Fitting the models to response time data directly would be harder to interpret 
since these models would probably fit any data to some extent. Model fitting 
has recently been criticized (Roberts & Pashler, 2000) and the solution 
proposed by Pitt, Myung and Zhang (2002) is very complicated. 
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The strong point of this procedure was that the response times were not 
included in the fitting procedure, and the conclusions were made from how 
well the fitted models could predict the response times. 

TTB predicts that a decision is fast when it is made from the best cue (the 
first cue in the cue order) and that decisions spend increasingly more time 
when more cues are searched. This linear relationship was found with the 
TTB-Friendly/Text condition (see Figure 7) and for the TTB-Friendly/Letter 
as well. The only deviation is that on those rare occasions where a decision 
has to be made from the fourth cue decisions seem to be faster than 
expected.

Figure 7. Means of the individually z-transformed response times broken down into 
groups, as predicted by fitting TTB to each participant. Error bars are 95% 
confidence intervals for the means. The data is from ten participants in the condition 
with a TTB-friendly cue structure and the Text presentation format. TTB predicts a 
linear pattern and the results are very close to that within the error of measurement. 

SIMPLEX predicts that decisions are faster when one or two criterions can 
be estimated by direct retrieval from memory. That is, if the exemplars on 
the computer screen match exemplars in memory the participant should 
respond faster. A problem with this prediction is that it will only work well 
when participants have not yet learned all 16 exemplars. Fortunately most 
participants did not reach optimal performance with the EX-Friendly cue 
structure, and the problem was rather that many probably did not use any 
successful strategy at all. Comparing human response time data with the 
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predictions of SIMPLEX showed an effect at the group level for the EX-
Friendly/Letter group as expected but also unexpectedly in the TTB-
Friendly/Letter group. The paradox that both TTB and SIMPLEX explained 
variance for the TTB-Friendly/Letter group was resolved by splitting the 
group in two. It was then found that the half with the best performers used 
TTB and the other half was best explained with SIMPLEX. The Letter 
presentation format may have induced exemplar use unexpectedly with the 
TTB-Friendly cue structure and then further learning did not occur for 
unknown reasons. 

4.3.2 Experiment 2: single object training and accuracy 
Experiment 1 showed that participants were not able to adapt to the 
environment when exemplars from the EX-Friendly cue structure was 
presented with the Text format. In Study 1 and 2 the task was assumed to 
involve covert mental operation on all cues involved and one explanation to 
why exemplars was not used is that they need to be prelearned. Experiment 2 
was designed to give the participants a chance to learn as much as possible 
about the environment prior to the pair-comparison task.  

A single object estimation task was added as a training phase before the 
pair-comparison task for the experiment groups. The single object estimation 
task was simply to guess the number of sold vacuum cleaners for a city. A 
matrix of numbers in boxes were provided beneath the city and the 
participant simply had to click a box with a number and then feedback was 
given. The box turned green if it was the correct number. Otherwise the box 
turned red and the box with the correct number turned green. All 16 
exemplars were shown 13 times for a total of 208 trials. The controls had no 
training before the pair-comparison task and were also used to replicate the 
Text conditions of Experiment 1. There were four groups with 10 
participants each: TTB-Friendly/No Training, TTB-Friendly/Training, EX-
Friendly/No Training and EX-Friendly/Training. All groups used the Text 
presentation format. 

The predictions were that single object training would increase accuracy 
with the EX-Friendly cue structure and that accuracy would decrease with 
training with the TTB-Friendly cue structure. The latter hypothesis relied on 
the assumption that exemplars would be used during single object training 
and the use of TTB in the pair-comparison task should then be blocked or 
delayed. 

Accuracy
The TTB-Friendly/Training group was better in Block 1 compared to the 
TTB-Friendly/No training group. But there was almost no improvement 
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from Block 1 to Block 2. Thus training had an effect but it did not make the 
difficult pair-comparison task simpler. 

The prediction that single object training would be detrimental to 
accuracy with the TTB-Friendly cue structure had no support. The accuracy 
was even closer to optimal behavior and TTB explained even more of the 
variance for the response times. Note however that the increases in accuracy 
and explained variance were not significant since the means were both very 
close to the theoretical maximum. 

Model fits of TTB and SIMPLEX 
TTB was again found to explain response time data. Accuracy was overall 
for the EX-Friendly cue structure compared to Experiment 1 higher, but 
SIMPLEX was not able to explain any significant amount of variance for the 
response times. 

4.3.3 Conclusions
TTB was used easily in the Text condition, whereas exemplar based decision 
making required the Letter presentation format. This result does not support 
that humans are boundedly rational in a strong sense, such that we quickly 
will adapt to any decision environment no matter how the information is 
presented. We are perhaps not equipped with numerous specialized 
psychological mechanisms, but rather with a limited number of general 
mechanisms that strike a balance between accuracy and complexity. The 
results tentatively support that we have at least two different modes of 
decision making that work well under certain circumstances, but that there 
are situations where both modes of decision making have trouble. 

This study used a very simple exemplar model, SIMPLEX for many 
reasons as detailed in Study III. The main reason was that the simple model 
would predict in most cases predict the same decisions as PROBEX for the 
cue structures used in the experiments. As a consequence all empirical 
conclusions about exemplar based reasoning hold are valid for the 
assumption of exemplar representation. Similarity based reasoning is not 
tested at all in these experiments, except that the response times predicted by 
SIMPLEX are based on that direct retrieval of an identical exemplar is 
assumed to be faster than retrieving a similar exemplar. 

These results are also the first where most participants used TTB with 
good accuracy, without any incitement such as time pressure or a cost 
attached to investigating each feature. 
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5 DISCUSSION

This summary has argued that decision theories of bounded rationality 
should incorporate basic theories of cognition and perception, and that it is 
crucial to consider the information structures of the environments. The idea 
of bounded rationality is old, but has had little impact on theories of decision 
making.

This thesis presented PROBEX which is a boundedly rational process 
model of inference and probability judgment. This model was based upon 
very successful exemplar based models for perceptual categorization (Medin 
& Schaffer, 1978; Nosofsky, 1986). It was shown in computer simulations 
that PROBEX is very competitive compared to other decision strategies 
(Study I, II) with almost no knowledge as well as with unlimited knowledge. 
It was fitted to human data from a general knowledge task and was able to fit 
the point estimates, decision and probability assessments with parameters 
that indicated that the effort was both ecologically rational and 
psychologically plausible (Study I). It was also shown that it theoretically is 
more important to make good decisions early in learning than later from an 
evolutionary point of view (Study II). 

A simplified version of PROBEX, SIMPLEX, was used along with Take 
The Best (Gigerenzer & Goldstein, 1996) to design two cue structures used 
to evaluate whether decision makers would adapt to these cue structures. It 
was found that participants easily adopted TTB in a noncompensatory 
environment if the cues were presented with text labels and that SIMPLEX 
could be used in a difficult nonlinear environment when cues were easily 
processed as short strings of letters (Study III). 

These results support the idea of ecological rationality, that is, efficient 
and accurate human decision making, as long as the information is structured 
and presented in a way suitable for some decision mechanism. 

This thesis covered tasks where two objects are compared and one is 
selected on the basis of an unknown feature, the criterion. Decision making 
is much more complex and can be applied to, for example, foreign policy 
(Redd, 2002) as well as to the selection of a new toothbrush at the 
supermarket, but hopefully knowledge of basic decision processes should 
generalize as building blocks to theories of more complex decision 
situations.
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5.1 Process Models of Decision Making 
Process models are important in the categorization literature. The 
Generalized Context Model (Nosofsky, 1986), neural networks (Kruschke, 
1992), decision bound theory (Ashby, Alfonso-Reese, Turken & Waldron, 
1998), prototype models (Smith & Minda, 1998) to name a few all 
contribute to a healthy exchange of scientific ideas. 

However, the study of processes in decision making has not stressed 
computational modeling. Payne et al. (1993) did examine possible tradeoffs 
between accuracy and effort for several decision strategies with computer 
simulations, but they have not used computational modeling to derive and 
test hypothesis as is customary in the categorization literature. The Adaptive 
Toolbox project (Gigerenzer & Todd, 1999) recently launched an initiative 
to investigate models of bounded rationality and it is only through empirical 
studies using computational modeling that these well defined models of 
decision making can be corroborated. PROBEX could be seen as a tool that 
also belongs to the adaptive toolbox and there are now a small set of 
psychologically plausible theories of decision making ripe for empirical 
investigation.

Study I and II were mostly theoretical, although PROBEX was shown to 
be consistent with human behavior by fitting it to decision data. Study III 
was an attempt to make predictions from TTB and a simplified version of 
PROBEX and test these predictions empirically. Model fits that predicited 
response times was used to investigate the data to find traces of the 
processing required for exemplar based and one reason decision making. 

The first premise of this discussion is that process modeling is relevant to 
decision making as it is evidently relevant to categorization. But is it obvious 
that this is the case? Categorization processes could be fundamental to the 
human mind, whereas decision making is contingent (Payne et al., 1993) on 
situations to the extent that decision strategies are not predictable processes. 
If important brain systems are involved in decision making then it should be 
possible to model decision making when carefully chosen cue structures are 
used. The second premise is that the idea of bounded rationality can increase 
the power of theory development and empirical research by the study of cue 
structures.

5.1.1 Conclusions for exemplar-based decision making 
There is a strict match when cues of a probe are identical to the cues of a 
mental representation. Hahn and Chater (1998) distinguish between partial 
and strict matching of cues to separate similarity-based processes from 
memory processes. PROBEX is a prime example of a similarity-based 
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process, whereas SIMPLEX is more inclined towards a memory process 
where similarity based retrieval is used only when direct retrieval is 
impossible. 

Study I gave support for similarity-based reasoning by fitting PROBEX to 
human decision data, but, of course, it cannot be ruled out that some other 
model would explain this data better. Only the names of the cities were 
given to participants. The support for similarity-based reasoning comes from 
the assumption that the cue structure used in the model was a good 
approximation of the cue structure used by the participants. 

Study III supported exemplar-based decision making but cannot be seen 
as a test of similarity-based decision making, but it did support the use of 
exemplars when the alternatives were presented as easily encoded strings of 
letters.

The empirical support for exemplar based decision making has only 
recently begun to assemble (Dougherty et al., 1999; Juslin et al., in press; 
Juslin, Nilsson & Olsson, 2001; Juslin, Olsson & Olsson, 2003; Sieck & 
Yates, 2001), but it is clear that this fresh approach to decision making is 
making progress. 

There is an omission in PROBEX and a problem for lazy algorithms in 
general that should be addressed in conjunction with the results of study III. 
It is common in most exemplar based models to have attention parameters 
for each feature/dimension. This was not included in the original model 
because it was supposed that the model would foremost apply to tests of 
general knowledge without prior training (most people have never compared 
the size of German cities). Lazy algorithms suffer from the “dimensionality 
curse” which is a problem when large data sets are used and most 
dimensions are not informative at all to the task at hand (Aha, 1997; Hahn & 
Chater, 1998). There is no computationally simple way to know which 
dimensions should be attended to or not. A human might use common sense 
to do so, but common sense seems not to be a natural part of an automatic 
process such as exemplar retrieval. In study III most participants failed to 
learn the EX-Friendly cue structure with the Text presentation format in 
Experiment 1, and the training in Experiment 2 did not help much. A 
possible explanation is that we avoid encoding exemplars because of the 
dimensionality curse, until we know for sure which features are worth 
attending to. This seems to be consistent with the representational shift from 
simple rules to exemplar use later in training that Johansen and Palmeri 
(2002) found in a number of categorization experiments. An important issue 
in the future is to understand when and how exemplars are learned. 
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5.1.2 Conclusions for one reason decision making 
An abstraction represents a class of objects rather than an instance of a class. 
A simple example is when the abstraction only uses a few cues and ignores 
other cues. Hahn and Chater (1998) define rule based decision making as 
processes where cues are strictly matched to abstractions, and TTB fits this 
definition when it makes the decision. The abstraction of one cue is strictly 
matched. But TTB is also a serial search process and compared to ordinary 
rules this implies strong predictions about response times. Study III found 
clear evidence of such response time patterns when the processing of cues 
required effort. In the condition where cues were presented as short strings 
of letters rather than text labels, many participants failed to adapt to the task. 

The obvious objection to these otherwise strong results is that the cue 
structure itself reinforced the use of TTB. It is possible that using a 
probabilistic task rather than a deterministic task would be much harder. 

There might also be other models that can predict these response times as 
well as TTB does. To my knowledge there is no such model. For example 
other categorization models as EBRW (Nosofsky & Palmeri, 1997) and 
EGCM-RT (Lamberts, 2000) categorize each object in a pair comparison 
independently, while the response times patterns of TTB comes from 
searching both objects simultanously making an intricate pattern that cannot 
be emulated by summing up two independent response times. 

5.1.3 Adapted to adapt 
Evolutionary psychology (Cosmides & Tooby, 1994) states that cognition is 
highly modular and that the modules are adapted to specific tasks. An 
alternative view is that the human mind evolved to adapt to environments 
during the course of a lifetime. The implication is that evolution provided the 
human mind with either hardwired decision strategies or low level 
mechanisms that adapts to decision tasks during a lifetime. 

The experiments in Study III showed huge variations between subjects. 
This is more consistent with the idea that decision makers learn strategies. 
But is there then any use for process models of decision making? Even if 
there are no evolutionary evolved modules or strategies for decision making, 
process models can still be used to understand how different cue structures 
may be handled. 

Decision making may also gain benefits from process models by directly 
modeling learning. SUSTAIN (Love et al., in press) is a neural network 
model of categorization that is neither rule-based nor similarity-based within 
the process taxonomy of Hahn and Chater (1998). It is a frugal learning 
model to borrow a term from the adaptive toolbox, since it starts out with as 
few clusters of neurons as possible and then add new clusters when it is 
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unable to solve problems correctly. SUSTAIN has been used to correctly 
predict the difficulty of common cue structures used in the categorization 
literature. A process model applied to learning opens up new possibilities. 
Clapper and Bower (2002) showed that the sequencing of training instances 
in unsupervised categorization had a strong effect on the learning rate, and 
with SUSTAIN it could be possible to make testable predictions from the 
sequencing of training exemplars. The sequences in Study III were 
randomized for each participant, which do not reflect reality. If the cues of 
the environment have structure, then the sequence of real world trials are 
likely to be ordered rather than random. 

5.2 Final Remarks 
Bounded rationality is easy to misinterpret as irrationality, but given the 
complexities of the world a simple strategy may be perfectly rational 
because it is not possible to do better given the constraints of our mental 
capacities. The implication is not that humans always are rational (human 
rationality has been hotly debated many times (e.g. Cohen, 1981; 
Jungermann, 1983; Stanovich & West, 2000), but simply that in some 
situations we are able to make good decisions. This dissertation is an 
example of how formal modeling perhaps is a necessary tool in order to 
make real progress in empirical psychology. In the case of decision making 
the results here hint that time is ripe to unify decision making theory and 
recent advances in cognitive psychology. Yet, the ideas presented here are to 
a great extent still only ideas so far. The perhaps most important idea is to 
incorporate the cue structures of the environment into experimental design, 
but study III only used two highly artificial cue structures that are unlikely to 
be found outside the laboratory. Yet, this technique covered a much wider 
range of possible cue structures than is typical in similar experiments. 
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