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ABSTRACT 
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New effective experimental techniques in medicinal chemistry and pharmacology have 
resulted in a vast increase in the number of pharmacologically interesting compounds. 
However, the number of new drugs undergoing clinical trial has not augmented at the same 
pace, which in part has been attributed to poor absorption of the compounds. 

The main objective of this thesis was to investigate whether computer-based models 
devised from calculated molecular descriptors can be used to predict aqueous drug solubility, 
an important property influencing the absorption process. For this purpose, both experimental 
and computational studies were performed. A new small-scale shake flask method for 
experimental solubility determination of crystalline compounds was devised. This method 
was used to experimentally determine solubility values used for the computational model 
development and to investigate the pH-dependent solubility of drugs. In the computer-based 
studies, rapidly calculated molecular descriptors were used to predict aqueous solubility and 
the melting point, a solid state characteristic of importance for the solubility. To predict the 
absorption process, drug permeability across the intestinal epithelium was also modeled.  

The results show that high quality solubility data of crystalline compounds can be obtained 
by the small-scale shake flask method in a microtiter plate format. The experimentally 
determined pH-dependent solubility profiles deviated largely from the profiles predicted by a 
traditionally used relationship, highlighting the risk of data extrapolation. The in silico
solubility models identified the non-polar surface area and partitioned total surface areas as 
potential new molecular descriptors for solubility. General solubility models of high accuracy 
were obtained when combining the surface area descriptors with descriptors for electron 
distribution, connectivity, flexibility and polarity. The used descriptors proved to be related to 
the solvation of the molecule rather than to solid state properties. The surface area descriptors 
were also valid for permeability predictions, and the use of the solubility and permeability 
models in concert resulted in an excellent theoretical absorption classification. To summarize, 
the experimental and computational models devised in this thesis are improved absorption 
screening tools applicable to the lead optimization in the drug discovery process.  
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To my family 



The whole is simpler than the sum of its parts. 

             W. J. Gibbs 

Gå upp och pröva dina vingar, 

Och känn hur underbart det är 

Där ovan molnen du dig svingar 

Och fröjdas åt att vingarna bär 

Se på fåglarna som svävar i det blå 

Det är deras väg vi gå 

Gå upp och pröva dina vingar 

Och snart är hela jorden din! 

        L. Dahlquist
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1. PAPERS DISCUSSED 

This thesis is based on the following papers, which will be referred to by the Roman 
numerals assigned below: 

I. Bergström C.A.S., Norinder U., Luthman K. and Artursson P.  
Experimental and computational screening models for prediction of aqueous 
drug solubility.
Pharmaceutical Research, 19:2, 182-188, 2002. 

II. Bergström C.A.S., Strafford M., Lazorova L., Avdeef A., Luthman K. and 
Artursson P.
Absorption classification of oral drugs based on molecular surface properties.  
Journal of Medicinal Chemistry, 46:4, 558-570, 2003. 

III. Bergström C.A.S., Wassvik, C.M., Norinder U., Luthman K, Artursson P. 
Global and local computational models for aqueous solubility prediction of 
drug-like molecules. Submitted. 

IV. Bergström C.A.S., Norinder U., Luthman K. and Artursson P.  
Molecular descriptors influencing melting point and their role in classification of 
solid drugs.
Journal of Chemical Information and Computer Sciences, 43, 1177-1185, 2003. 

V. Bergström C.A.S., Luthman K and Artursson P.  
Accuracy of calculated pH-dependent aqueous drug solubility. Submitted.  

Reprints were made with the permission of the journals. 
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2. ABBREVIATIONS AND SYMBOLS

ADMET absorption, distribution, metabolism, elimination/excretion, toxicity 
BCS biopharmaceutics classification system 
Caco-2 adenocarcinoma cell line derived from human colon 
CC combinatorial chemistry 
ClogP   calculated partition coefficient between octanol and water 
CD candidate drug 
DMSO dimethylsulphoxide 
DSC differential scanning calorimetry 
FA fraction of the dose absorbed 
FDA Food and Drug Administration 
GI gastrointestinal tract
HH Henderson-Hasselbalch equation 
HTS high throughput screening 
logPoct partition coefficient between octanol and water 
LSER linear solvation energy relationship 
MLR multiple   regression 
MTS medium throughput screening 
NN neural networks 
NPSA non-polar surface area 
Papp apparent permeability coefficient 
PCA principal component analysis 
PK/PD pharmacokinetics/pharmacodynamics 
PLS partial least square projection to latent structures 
PSA polar surface area 
PTSA partitioned total surface area 
Q2 cross-validated coefficient of determination 
QSAR quantitative structure-activity relationship 
QSPR quantitative structure-property relationship 
R2 coefficient of determination  
RMSEtr root-mean square error of the training set 
RMSEte root-mean square error of the test set 
S0 intrinsic solubility 
SA surface area 
SSF small-scale shake flask  

linear
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3. INTRODUCTION

Throughout the last decade, new rapid experimental techniques have resulted in the 
production of a large number of pharmacologically interesting compounds. The 
tremendous amount of data generated makes rationalization and prioritization more 
important in order to identify compounds with favorable developability characteristics. 
In this thesis, models for the prediction of intestinal drug absorption, one of the major 
factors influencing drug developability, will be discussed. The work has been focused 
on the development of computational (in silico) and experimental (in vitro) models for 
the prediction of aqueous drug solubility, which is considered to be one of the rate 
limiting steps to absorption of orally administered drugs.  

3.1. The Drug Discovery Setting; From Lead Structure to
       Candidate Drug 

The ability to identify and validate target proteins for drug treatment has recently been 
improved by the use of genomics, proteomics and bioinformatics.1-3 When the target has 
been identified, the search for a lead structure starts, i.e., for a compound that binds to 
the target and exerts an acceptable therapeutic effect. After finding such a structure, the 
lead optimization process is initiated. Combinatorial chemistry (CC) and high 
throughput screening (HTS) are used to synthesize and test new compounds and to 
optimize them with regard to increased potency.4-9 The lead optimization is performed 
in cycles and, in the end, the resulting compounds with the highest potency might be 
structurally quite different from the starting structure. Until recently, the lead 
optimization and the screening for developability were performed in serial (Figure 1).  

Figure 1. From lead structure to candidate drug. Drug discovery and development have traditionally 
been performed in serial rather than in parallel, resulting in the evaluation of developability late in the 
drug discovery process.  
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Hence, the lead structures were primary optimized for the pharmacological effect, and 
not until the end of the lead optimization process important developability properties, 
e.g. solubility, permeability and toxicity, were evaluated. After these determinations, a 
few candidate drugs (CDs) were selected for further development. 

Contrary to expectation, the increased number of new structures generated each year has 
not resulted in a corresponding increase of drugs undergoing clinical trial. In part this 
has been attributed to poor pharmacokinetic (PK) properties of the CDs, and as much as 
40% of the attrition rate of CDs has been related to poor PK profiles.10 Thus, reliable 
screening filters for factors such as absorption, distribution, metabolism, 
elimination/excretion and toxicity (ADMET) are highly desired.11-13 Ideally, these 
screens should be computer-based to allow ADMET analysis of computationally 
designed drug-like molecules prior to the chemical synthesis. In this mode, only 
structures predicted to have acceptable potency and developability are selected for 
synthesis (Figure 2). This results in knowledge-based synthesis of fewer compounds 
with improved PK properties.14 After the synthesis of such prioritized compound 
libraries, the potency and the developability of the compounds are determined 
experimentally in parallel. Thus, methods for rapid and reliable experimental methods 
for screening of these important properties are warranted.

Figure 2. Knowledge-based, parallel drug discovery setting. Computational prioritization of a virtual 
library is followed by chemical synthesis. In silico and in vitro pharmacological and ADMET screening 
are performed simultaneously. 
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3.2. Intestinal Drug Absorption 

Drug administration via the oral route is the most convenient for patients. Thus, 
intestinal absorption is one of the first molecular properties to be studied for new 
chemical entities to estimate the developability of an oral dosage form. The extent to 
which a drug will be absorbed, i.e., transported from the intestinal fluid across the 
mucosal membrane,15 is dependent on the physicochemical properties of the compound, 
the pharmaceutical dosage form and physiological factors.16 A prerequisite for drug 
absorption is that the drug dissolves in the intestinal fluid (Figure 3). However, the 
dissolved compound can be subjected to processes that lower the fraction of the dose 
absorbed (FA) by, e.g., enzymatic and/or chemical degradation in the intestinal fluid 
and formation of complexes or micelles with proteins, ions and/or food residues. In fact, 
only the unbound molecules will diffuse to the intestinal wall, permeate the enterocytes 
and eventually reach the systemic circulation.  

3.2.1. Mechanisms of Intestinal Solubility 

The intestinal solubility of a compound is dependent on the physicochemical properties 
of the molecule, the location in the gastrointestinal (GI) tract, the GI physiology and the 
dosage form. The close relationship between drug dissolution and drug solubility can be 
illustrated by the Noyes-Whitney equation (adjusted for sink condition)17:

h
DA(Cs)

dt
dm    Eq. 1 

where, dm/dt is the dissolution rate, Cs is the maximum amount of drug that can be 
dissolved in the fluid, i.e. the maximum solubility of the compound in the dissolution 
medium, A is the surface area of the undissolved compact, D is the diffusion coefficient 
in the intestinal fluid and h is the height of the diffusion layer adjacent to the solid 
compact.  

Figure 3. Drug dissolution followed by intestinal wall permeation. The dissolution 
of the drug is dependent on the solubility of the drug molecules in the intestinal fluid, 
and is a prerequisite for permeation of the enterocytes. The compound can passively 
diffuse para- or transcellularly, or be subjected to active transport/efflux. 

Solvent

Solid
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Physicochemical properties such as size, lipophilicity and charge will influence the 
aqueous solubility and thereby the dissolution rate. Firstly, in order to incorporate the 
drug molecule, the tight water structure has to open up and form a large enough cavity 
for the solute (Figure 3). Thus, the larger the cavity that has to be formed, the more the 
energy required.18 Secondly, large molecules often are more lipophilic than smaller 
ones. In agreement with the “like-dissolve-like” theory, the solubility of lipophilic 
compounds will generally be poorer in the water-based intestinal fluid than the 
solubility of hydrophilic compounds.19-21 Thirdly, for proteolytic compounds, the 
solubility increases with increased ionization, as described by the Hendersson-
Hasselbalch (HH) equation (exemplified for a weak base):22

0

0tot
a S

SS
logpHpK    Eq. 2 

where pKa is the dissociation constant of the solute, Stot is the solubility at the specific 
pH used for the calculation and S0 is the intrinsic solubility. Hence, the GI pH-gradient, 
which varies from pH 1 in the stomach up to pH 8 in the distal ileum,16,23 will result in 
charged compounds with increased solubility. An exception to this rule is zwitterionic 
compounds, which can display a positive and a negative charge within this pH-gradient. 
At the pH-value corresponding to the isoelectric point of the compound, the net charge 
of the compound is zero resulting in the lowest, i.e. the intrinsic, solubility. 

The ionic strength of the intestinal fluid is dependent on the food and fluid intake as 
well as the absorption and secretion of fluid within the intestine.16 In general, the 
solubility decreases with increased ionic strength due to the salting-out effect and/or the 
common ion effect.23-28 The salting-out effect occurs when electrolytes in the solution 
compete with the drug molecules for interactions with water; with higher concentrations 
of electrolytes present in the water, more water molecules will be “occupied”. The 
common ion effect occurs when ionic complexes with no net charge are formed 
between electrolytes and the ionized drug molecules, which can result in precipitation. 
However, additives such as electrolytes may also improve drug solubility by salting-in 
effects. These can arise from specific interactions between the compound and the 
electrolytes29-31 or from the formation of solvent cavities with the capacity to 
incorporate drug molecules.32 The intake of food may cause a salting-out effect, but the 
dissolution rate and the solubility may also decrease because of an increased viscosity.33

Furthermore, food induces the secretion of bile salts, which are surfactants secreted by 
the gall bladder. These surfactants often improve the solubility of poorly soluble 
compounds and wetting has been attributed as the most important mechanism of bile 
salt solubilization.33-35 However, drug molecules can also be incorporated within 
micelles formed at higher bile salt concentrations, which further improves the solubility 
of the drug.33,36-39
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Solubility problems can be pharmaceutically treated by optimizing the compound 
and/or the dosage form. For instance, the solubility of the compound can be improved 
by salt formation40-42 or by synthesis of a more soluble prodrug.43-46 The apparent 
solubility of the dosage form can be improved by micronization of the material in order 
to increase the surface area that will be in contact with the intestinal fluid.47,48 This 
processing of material can also result in solid state disorder of amorphous character, 
which has higher solubility than the crystalline compound.49 Excipients such as 
cyclodextrines50,51 and disintegrating agents can further increase the solubility.52,53

3.2.2. Mechanisms of Intestinal Membrane Permeation 

As with solubility, the rate and extent of intestinal membrane permeation is dependent 
on both physicochemical properties of the compound and physiological factors. Drugs 
are mainly absorbed in the small intestine owing to its much larger surface area and 
because the epithelium is less tight than in the colon.16 The intestine is lined with 
enterocytes. These are polarized cells, with the apical membrane facing the intestinal 
lumen being separated from the basolateral membrane facing the sub-epithelial tissues 
by tight junctions. The apical and basolateral membranes have different phospholipid 
and protein compositions and therefore also different permeability properties.16

The drug molecules can either passively diffuse through the intestinal wall, or utilize 
active transport mechanisms (Figure 3). Passively absorbed compounds will diffuse 
through the cells (transcellularly) or in between the cells (paracellularly); which 
pathway is used is dependent on the physicochemical properties of the drug. The pH-
partition theory suggests that only the un-ionized form of drugs permeate the intestinal 
epithelium,54 but highly ionized compounds have been reported as exceptions to this 
rule.55 Hydrophilic and/or charged compounds, which cannot easily permeate the 
lipophilic cell membrane, may diffuse through the aqueous pores. However, the limited 
surface area of the pores together with the size restriction by the tight junctions,16,56,57

limits the contribution of this pathway significantly. To diffuse transcellularly, a 
reasonable balance between hydrophobicity and hydrophilicity of the compound is 
important, since the compound diffuses both through lipophilic membranes and the 
aqueous cytoplasm.58 Although the transport by the transcellular route can be regarded 
as a rather complex process, the majority of drug-like compounds utilizes this pathway.

Actively transported compounds permeate the membrane by binding to a membrane 
protein. This transport is energy dependent, site-specific, substrate-specific and 
saturable.59 Thus, concentration dependent absorption can occur in vivo after 
administration of actively transported compounds, resulting in non-linear dose-response 
relationships. The carrier-mediated route can be useful for compounds with structural 
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features restricting transcellular absorption and, lately, compounds with poor passive 
permeability have been designed to target e.g. the PepT1 transporter,60,61 and nucleoside 
carriers62 in order to increase the FA. However, membrane proteins can also actively 
secrete, i.e efflux drugs, a process resulting in a reduced FA. It has been proposed that 
efflux proteins cooperate to a large extent with metabolizing enzymes present in the 
cytoplasm, which could further limit the uptake of drug molecules.63-67 However, the 
clinical importance of this cooperation on FA has been questioned.68

3.3. In Vitro Screening for Drug Absorption 

The drug permeability over the intestinal lumen has previously been regarded as the 
major factor influencing the total amount of drug absorbed. However, hits identified by 
CC and HTS are usually large and lipophilic compounds, since an increased 
hydrophobicity generally results in an increased potency by non-specific binding to the 
target protein. Such physicochemical properties result in poor aqueous solubility, which 
stresses that not only drug permeability, but also the aqueous drug solubility needs to be 
analyzed to estimate the FA.69 Experimental in vitro analysis of these properties allows 
rapid and qualitative estimations of the drug absorption in vivo, but in vitro methods can 
also be applied to mechanistically study the solubility and transport processes. 

3.3.1. Solubility Measurements 

Lead compounds are often delivered from the medicinal chemists as 
dimethylsulphoxide (DMSO) solutions and therefore high throughput ADMET 
screening based on DMSO solutions is requested. The turbidimetric method measures 
solubility by aqueous titration of a DMSO solution of the compound.70-72 The solubility 
is determined as the value when precipitation occurs, suggesting that the aqueous 
solution has become oversaturated and the maximum solubility has been reached. The 
method results in qualitative solubility values, i.e. the classification of substances as 
“poorly” and “highly” soluble rather than measurements of absolute values. This 
together with the possibility to automate the method makes it applicable for solubility 
estimations of a large number of compounds.  

The potentiometric technique determines the solubility of proteolytes from a pH 
titration of a drug suspension into a clear solution.23,73-76 Excess material is present 
during the titration and an apparent pKa (pKa

app) is determined under condition of 
precipitation. The obtained difference between the pKa values in solution and 
precipitation (  pKa) is used to calculate the intrinsic solubility (S0), i.e. the solubility of 
the uncharged species, according to Eq. 3 
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log S0 = log(C/2)-  pKa     Eq. 3 

where C is the concentration. The method results in quantitative solubility values, i.e. 
solubility values of high accuracy. The titration is rather time consuming and therefore 
suitable in the interface of drug discovery and drug development, when fewer 
compounds are analyzed. 

The method traditionally used for quantitative solubility determinations is the shake 
flask method,77 in which the intrinsic solubility is determined after the equilibrium 
between the dissolved and undissolved compound has been reached. This method 
allows the determination of solubility values of highest possible quality. However, there 
are many factors influencing the measured solubility. The influence of ionic strength 
and pH has already been discussed (Section 3.2.1.). Solubility is affected by the 
temperature and, therefore, the solubility of a series of compounds should be performed 
at a specific temperature. Moreover, the solubility is determined when equilibrium 
between the dissolved compound and the suspension is reached, making the time-scale 
important. The separation of solid from the solution by either filtration or centrifugation 
may further influence the final solubility value. Spectrometry and HPLC are commonly 
used for analysis, but use of electrical stream sensing has also been reported in the 
literature.78,79 Therefore, to allow a correct comparison of solubility values there is a 
need for standardization of the experimental setting. Solubility determinations by shake 
flask are time consuming and labor intensive, making them suitable for application in 
the drug development setting when an exact solubility value for the CD is required. 

To summarize, solubility determinations are performed either in a screening mode or in 
experimentally more demanding settings, making the methods applicable at different 
stages of the drug discovery and development process. Moreover, the solubility data 
obtained are of different levels of accuracy, which should be carefully considered when 
solubility data are selected for in silico model development. 

3.3.2. Permeability Measurements 

The complexity of in vitro models used for the estimation of drug permeability varies 
greatly, from simple partition systems allowing automatized screening to more 
advanced and labor demanding physiological models. Physicochemical characterization 
used for estimation of passive diffusion through cell membranes, such as the 
lipophilicity coefficient obtained from octanol-water partitioning (logPoct),80-82 logP
(logPoct-logPcyclohexane/water)83,84 and artificial membranes85-87 are qualitative methods that 
rather describe distribution into a lipophilic environment than permeability through a 
membrane. In order to obtain quantitative permeability values, epithelial cell 
monolayers can be used. The most commonly used epithelial cell line for intestinal 
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permeability screening is Caco-2.88,89 This cell line originates from the human colon and 
forms enterocyte-like monolayers under standardized conditions. Caco-2 cell 
monolayers display active transporter proteins and under certain conditions 
metabolizing enzymes such as CYP3A4,90 making Caco-2 cells useful in the screening 
for active transport/efflux91 and enterocytic metabolism.90 The Caco-2 cell monolayer is 
tighter than the small intestine, and hence the paracellular transport is underestimated by 
the use of this system. The leakier 2/4/A1 cells have been suggested for screening for 
paracellular transport.92-94

As for solubility the in vitro methods for permeability determinations are of different 
complexity making them useful at different stages of the discovery process. 
Physicochemically based methods producing qualitative data are useful in early drug 
discovery when rough estimations of permeability for a large number of compounds are 
wanted. The more sophisticated cell lines which generate quantitative data are 
applicable later in the drug discovery process, when highly accurate data for a smaller 
number of compounds are required.  

3.4. In Silico Screening for Drug Absorption 

In the last few years the number of publications on in silico prediction of absorption has 
increased significantly (Figure 4). The potential of computational models is obvious 
since the use of virtual tools for prediction of drug absorption would allow new 
compounds to be evaluated prior to synthesis. 

Figure 4. Number of publications on in silico absorption predictions.
Black and white bars show the number of publications on permeability and
solubility predictions, respectively, from the year of 1996 and
onwards. The PubMed search was performed in July 2003.
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The experimental input data must be of high quality to build computational models of 
high accuracy. Moreover, the models should be based on drug-like molecules, since 
drug molecules often contain a larger variety of functional groups. Virtual filters for 
drug-likeness can provide a guide for the selection of the dataset for the model 
development.70,95-99 One example of a drug-likeness filter is the ChemGPS 
methodology.96,98,100 This method has defined the chemical space of drugs through 
multivariate data analysis of physicochemical properties of drugs and non-drugs. The 
Lipinski rule-of-five is an example of a non-complex, easy-to-use filter for drug-
likeness in terms of their developability characteristics.70 The rule-of-five states that 
compounds with a molecular weight of less than 500, a logPoct value of less than five, 
fewer than five hydrogen bond donors and ten hydrogen bond acceptors will probably 
be absorbed after oral administration. It is likely that the intestinal absorption will be 
poor if two or more of these cut-off values are violated. Pickett and coworkers have 
shown that drug-like libraries with good absorption characteristics can be designed by 
use of molecular weight, the calculated logPoct (ClogP) and the polar surface area 
(PSA). 101 To conclude, tools for drug-likeness should be considered in the selection of 
the datasets used in the generation of ADMET models applicable in the drug 
discovery process. 

3.4.1. Computational Calculation of Molecular Descriptors 

Ideally, the descriptors used for model development should be rapid to calculate and 
easy to interpret. Descriptors can be classified as one-, two- or three-dimensional (1D, 
2D and 3D, respectively), depending on the representation needed for the calculation 
(Table 1). Simplistically, the time needed for the calculation of properties increases with 
the increase in dimension, with quantum mechanics calculations based on the wave 
function obtained from the 3D structure being the more time consuming (see below). 
However, the speed of calculation of descriptors based on the 3D representation has 
increased through the marketing of software for 2D to 3D conversion.102,103

The simplest descriptors are calculated from a 1D representation of the compound. 
Typical 1D properties are atom counts and molecular weight. Computational languages 
describing the bond order of atoms can be used for the calculation of 2D descriptors.104

Typically, the 2D descriptors are related to the size, flexibility/rigidity, electron 
distribution, hydrophilicity and lipophilicity.105-107 Several of the properties are 
calculated from the group contribution approach, which is based on data from large sets 
of compounds that have been experimentally determined for the response parameter of 
interest.108-110 The calculation of such 2D properties is largely dependent on the size of 
the experimental database, and calculations of compounds with fragments missing in 
the database can give erroneous results. While lipophilicity and hydrogen bond strength 
are descriptors that can be rather easily interpreted, electrotopological and 
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electrogeometrical descriptors might be more difficult to understand. However, they 
contain information on the electron distribution of the structural features comprising the 
drug molecule.  

Table 1. Examples of descriptors calculated from different 
representations of the molecule. 

Typical Representation Typical Descriptors  
 1D C8H10N5O3 Molecular weight 

Atom counts 
 2D Fragment counts 

Topological indices 
Connectivity
Flexibility

 3D 

Wave function 

Molecular surface 
areas
Molecular volume 
Interaction energies 

Valence properties 

The molecule has to be converted to its 3D structure if information associated with the 
conformation of the molecule is needed. Molecular mechanics and/or molecular 
dynamics calculations are used to investigate the conformational space of the molecule 
and to identify low energy conformers. Typical descriptors calculated from the 3D 
structure are properties related to the molecular surface area, i.e. the PSA,111 non-polar 
surface area (NPSA)112 and partitioned total surface areas (PTSAs),113 and the volume. 
The PSA is commonly defined as the surface area occupied by oxygen atoms, nitrogen 
atoms and hydrogen atoms bound to these heteroatoms,111,114 but also sulfur atoms and 
phosphorus atoms have been defined as polar.115,116 The NPSA is defined as the total 
surface area minus PSA.112 PTSA is the calculated surface area occupied by each type 
of atom.113 Other descriptors obtained from the 3D representation of the molecule are 
hydrophobicity/hydrophilicity balance, amphiphilic moments and critical packing 
parameters, which can be calculated on the basis of molecular interaction fields.117 More 
advanced descriptors related to the distribution of valence electrons can be calculated 
after conversion of the 3D structure into its wave function by the use of quantum 
mechanics calculations.118,119 Unfortunately, the quantum mechanical calculation for a 
single structure can take hours, making such descriptors unsuitable in the screening of 
large chemical libraries.  
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3.4.2. Model Development 

The establishment of absorption models can be considered to have two aims: firstly, 
there is a need for tools facilitating the rapid estimation of the developability of lead 
compounds.120 Secondly, information on the impact of structural features on 
developability is wanted to guide medicinal chemists in the drug design process 
(Figure 2). The estimations can be qualitative with the resulting classification being 
“high/intermediate/poor” and “yes-no” answers, or quantitative, resulting in predictions 
of higher accuracy. The lack of large drug-like datasets with solubility and permeability 
values of high quality has resulted in models developed from large series of non drug-
like molecules121-126 or from small series on drug-like molecules.113,127-129 The large 
datasets are compiled of data generated in different laboratories using different 
techniques, reducing the quality of the data.130-132

The simplest models for prediction are based on the correlations between two 
properties. Correlations to solubility and permeability have been obtained from linear 
and non-linear regression; for instance logPoct has been linearly correlated to 
solubility,133 while PSA has been correlated to permeability by sigmoidal regression.134

These models are transparent for the user, but fail to predict drug-like datasets with 
broad structural diversity. 

Predictive solubility and permeability models have been devised by use of multivariate 
statistics. Multivariate statistics are defined as methods that examine multiple variables 
simultaneously, and hence, models built from several descriptors are regarded as 
multivariate.135 These models can be obtained from multiple linear or non-linear 
regression (MLR and MNLR, respectively) of the variables. MLR and MNLR require 
stepwise regression, mathematical independence of the x-variables and a larger number 
of observations than the number of variables. More advanced treatment is provided by 
techniques using the projection of latent variables, such as principal component analysis 
(PCA)136 and partial least square projection to latent structures (PLS).137 These methods 
are suitable when handling datasets with few observations and many variables. 
Moreover, PCA and PLS methods can use correlated variables and data matrices with 
missing values in the model development. PCA summarizes the variation in the x-space, 
gives an overview of the data, and reveals groups of observations, trends and outliers.136

PLS, in contrast, is used for prediction of response parameters and relates two data 
matrices to each other by a linear multivariate model using latent structures.137 Recently, 
non-linear PLS was introduced for quantitative structure-property relationships 
(QSPR),138 but its usefulness in the drug discovery process remains to be shown. All of 
the above mentioned techniques are rather transparent for the user, revealing the 
influence and importance of each variable included in the prediction.  
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Less transparent models are obtained from neural networks (NN). The NN mimick the 
way neurons are connected to each other within the brain. In each layer, information 
obtained from several neurons is compressed and further transmitted by a new neuron 
into the next layer.139 Thus, the neural network models are generally viewed as black 
boxes, since the influence of each input variable cannot be revealed. A significant pitfall 
of NN is the ease by which the system is over-trained. This results in models which are 
specific for the datasets used in the development, with little or no capacity to accurately 
predict new data.139 However, NN have gained much attention as prediction tools for 
PK properties lately, and models with high accuracy have been developed for the 
prediction of solubility140 and absorption.141,142

Figure 5. Flow chart of model development. The example given is 
applied in Papers I-IV.

Irrespective of the statistical tool used for model development, the validity of the model 
will be dependent on the dataset used, i.e. the training set (Figure 5). The requirement of 
a large and structurally diverse database for the development of global models with 
general applicability may initiate the generation of models applicable to a smaller 
volume of the drug-like space. Cross-validation of the model, i.e. iteratively keeping a 
portion of the training set out of the model development, is one way to avoid over-fitted 
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models.143 Moreover, the external predictivity of models can be assessed by prediction 
of datasets that have not been involved in the model development, i.e. test sets. The use 
of test sets indicates to what extent new structures are correctly predicted.143

3.4.3. Solubility Models 

Solubility is a thermodynamic process dependent on the enthalpy and entropy of 
mixing. Studies have suggested that the entropy effect on solubility is constant for rigid 
organic molecules.144 However, aqueous solubility has been predicted from both 
enthalpy related145 and entropy related descriptors.21,144,146,147 The linear solvation 
energy relationship (LSER) is an extension of Hildebrand’s and Scatchard’s work on 
the enthalpy related solubility parameters19,20,145 and considers solubility as a function of 
volume, dipolarity and hydrogen bonding capacity.18,148 LSERs have been used in the 
prediction of blood solubility and distribution to tissues, such as the brain, lung, muscle, 
kidney and fat,149 and has been widely accepted for aqueous solubility prediction.150,151

Recently, an amended LSER for solubility prediction was presented by Abraham and 
coworkers.152,153 The non drug-like training set was predicted with good accuracy from 
descriptors of solute hydrogen bond acidity/basicity, molar refraction describing 
dispersion forces, solute polarizability and solute volume. 

In the late 60’s Hansch and coworkers reported a linear correlation between logPoct and 
solubility (R2=0.87) for liquids.133 Yalkowsky and coworkers combined logPoct with a 
solid state characteristic, i.e. the melting point, which successfully predicted the 
solubility of solids.130,144,146,154-156 Unfortunately, the melting point has to be 
experimentally determined, and hence, chemical synthesis is required. However, 
Meylan and collaborators investigated several approaches to predict the solubility of a 
diverse, but non drug-like, dataset of 1450 substances.122 This study suggested that 
lipophilicity and a size descriptor alone can predict solubility with the same accuracy as 
if the melting point was to be included. McFarland and coworkers used the lipophilicity 
and hydrogen bond charges to predict a series of 22 crystalline drugs with high accuracy 
(R2=0.88).129 The hydrogen bond charges have also been used to predict the solubility 
from a similarity index approach.157,158

Molecular surface area descriptors have proven important in solubility predictions of 
liquids in liquids.159 Recently, Jorgensen and Duffy presented a solubility model 
applicable to solids (R2=0.88) based on descriptors of surface area and hydrogen bonds 
obtained from molecular modeling of molecules in an aqueous environment.160,161

Solubility models of equal accuracy have been obtained from descriptors of 
electrotopology/geometry and flexibility when treated with MLR162, PLS163 and/or 
NN.121,123,125-127,162,164-168 However, the majority of these datasets are non drug-like and 
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several of the models are based on chemicals such as pesticides, alcohols and aliphatic 
hydrocarbons, which are located in a different part of the chemical space than that of 
drugs. Hence, the applicability of these models in the drug discovery process is unclear.

3.4.4. Permeability Models

Permeability models are generally models of transcellular passive transport, and 
descriptors of lipophilicity, hydrophilicity and molecular size have proven to be 
important. The logPoct descriptor is an important predictor of membrane permeability 
(Section 3.2.2.), and hence, the ClogP descriptor is incorporated into a large number of 
the models developed. For less complex datasets, ClogP, PSA and hydrogen bond 
counts have each been used as a single predictor of permeability.84,111,128,134,169-172

However, logPoct can be regarded as a composed property, largely dependent on both 
the size and the hydrophilicity of the compound.173 Indeed, the use of molecular weight 
and hydrogen bond descriptors have been shown to predict permeability.101,174

The introduction of datasets with large structural diversity in model development has 
highlighted the need for several descriptors and multivariate data analysis to obtain 
good models. For instance, the introduction of larger and more flexible structures 
showed that PTSAs and descriptors related to the flexibility of the molecule are also 
useful in permeability predictions.113,175

Electrotopological indices have resulted in permeability models of good accuracy when 
treated with PLS.176,177 Other descriptors applicable for permeability predictions are the 
solubility descriptors, the amended LSER descriptors and hydrogen bond charges (see 
Section 3.4.3.).153,158,161 Descriptors such as ClogP, polarizability, polarity, the strength 
of the Lewis base and the Lewis acid, and the number and strength of hydrogen bond 
donors or acceptors obtained from quantum mechanics have been correlated to 
permeability.113,118,119,178 These descriptors gave good results (R2>0.79), even though 
less complex and more rapidly calculated descriptors of PTSAs were more accurate 
(R2=0.85). Thus, since quantum mechanics descriptors are not outperforming more 
rapidly calculated descriptors with respect to accuracy of the permeability prediction, 
they are of limited use in the drug discovery setting until the calculations become faster. 

To conclude, models using different descriptors and statistical tools for the prediction of 
solubility and permeability have been developed. Unfortunately, the majority of the 
models are based on datasets compiled of non drug-like molecules, which may restrict 
their usability in drug discovery. Moreover, the limited number of experimental data 
available and the interlaboratorial variability of such data further confine the possibility 
to devise good models of drug absorption. Thus, in order to improve the prediction of 
intestinal absorption, there is a need to further expand the experimental database 



23

available for model training.11 Furthermore, several models of intestinal absorption are 
based on FA,141,179 which is a composed measure affected by for example solubility and 
permeability. Simultaneous prediction of solubility and permeability would give 
information on the relative importance of each property on absorption and result in 
amended absorption models. 
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4. AIMS OF THE THESIS 

The general aim of the thesis was to develop new protocols for prediction of intestinal 
drug solubility and absorption. In the first part of the thesis, screening approaches for 
the prediction of solubility and permeability were studied (Papers I-III). In the second 
part an analysis of the melting point, a commonly used solid state characteristic 
included in computational solubility predictions, and the pH-dependent solubility were 
performed (Papers IV and V, respectively). The specific aims were the following; 

to devise a small-scale experimental method for generation of high quality 
solubility data  

to develop in silico models for aqueous drug solubility based on calculated 
molecular descriptors 

to devise computational protocols applicable to the prediction of aqueous drug 
solubility and intestinal drug permeability in an effort to predict the absorption 
of orally administered drugs 

to investigate molecular descriptors influencing the solid state and to evaluate to 
what extent the solid state needs to be incorporated in in silico solubility models 

to analyze the accuracy of calculated pH-dependent solubility of drug molecules 
and to evaluate the effect of extrapolation of solubility data from one pH-value 
to another.
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5. METHODS 

5.1. Investigated Drugs 

The selection criteria for the compounds investigated in the different studies were that: 
a) the drugs should be structurally, physicochemically and therapeutically diverse; b)
the compounds should be stable at the pH used for the solubility and permeability 
determinations; c) it should be possible to analyze the conformational preferences of the 
molecules using molecular mechanics calculations; d) the compounds should not 
display polymorphism or pseudopolymorphism, e) the compounds included in the 
permeability study should mainly be passively transported through the Caco-2 cell 
monolayers or display a concentration-independent absorption in vivo, and f) the 
melting point data used for computational prediction of the solid state should be 
determined for the pure compound, i.e. no salt forms were included in this study. 

5.2. Differential Scanning Calorimetry (DSC) 

The solid state characterization described in Paper I and V was performed with a 
Mettler DSC 20 TC10A/15 (Switzerland) and a DSC 220C (Seiko, Japan), respectively. 
The samples were kept in aluminium pans and heated at a rate of 10 C/minute in the 
interval 25-350 C. The equipment utilized in Paper V kept the samples in an 
atmosphere of nitrogen to avoid oxidation taking place during the experiment.  

5.3. Solubility Determinations 

The experimental solubility values were obtained by the small-scale shake flask (SSF) 
method (Papers I and V) or by potentiometric titration (Paper II). The SSF method used 
volumes of 50-1,000 µL solvent to determine the solubility value of the drugs. Each 
drug was added in excess and the test tubes were placed on a plate shaker (300 rpm) at 
room temperature (22.5±1ºC). The pH of each drug suspension was adjusted to a value 
of at least 1 pH unit below or above the pKa for acids and bases, respectively. This 
allowed the solubilities of uncharged compounds to be determined. The pH of 
ampholyte suspensions was adjusted to the isoelectric point of the compound in order to 
determine the solubilities of the zwitterionic species. In the pH-dependent solubility 
study (Paper V), additional solubility determinations within the pH-range 2-12 were 
performed to obtain the complete pH-solubility curve. Several end-points were 
investigated for the solubility determinations (Paper I) in order to study the time-range 
needed for the solubility experiment. The samples taken from the suspensions were 
centrifuged in an Eppendorf centrifuge at 23,000 g for 15 minutes to separate the solid 
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material from the solution and the supernatant was analyzed with HPLC (Figure 6). 
Poorly soluble compounds showing no detectable solubility using the SSF method and 
HPLC analysis, were studied using methanol as cosolvent. The solubility was measured 
at different concentrations of methanol in water and the aqueous solubility (0% w/w 
methanol) was extrapolated by linear regression.156,180

Figure 6. Method setting for the SSF solubility measurements.
Suspensions were shaken for 24 -72 h at room temperature, thereafter 
they were ultracentrifuged and the supernatant was analyzed for solute 
concentration using HPLC. 

In Paper V, pH-dependent solubility plots were drawn using the mean values with 
standard deviations. The range of the solubility was obtained from the solubilitymax and 
solubilitymin calculated using the following sigmoidal function:
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where Stot is the solubility at a specific pH, Smax is the solubility for the completely 
ionized compound, Smin is the intrinsic solubility, pH50% is the pH value at 50% of the 
solubility range and  is the slope factor. The equation was fitted to the solubility values 
by minimizing the sum of squared residuals. Experimentally determined values within 
20-80% of the range of Smin and Smax were used to obtain the slope of the linear part of 
the pH-dependent solubility curve. A prediction of the pH-solubility profiles was 
obtained from the intrinsic solubility value of the compounds using the Henderson-
Hasselbalch equation (see Eq. 2). 

Solubility determinations at 25 and 37ºC (Paper II) were performed with the 
potentiometric technique as implemented in the pSOL apparatus (pION inc., Boston, 
MA).73-75 Prior to the solubility experiment the pKa  was measured, which was used to 
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pH titration of a suspension of the drug into a clear solution. The compounds were 
titrated in volumes of 1.7–17.0 ml and stirred with a magnetic stirrer.  

5.4. Cell Culture 

Caco-2 cells obtained from American Tissue Collection, Rockville, MD, USA, were 
maintained in an atmosphere of 90% air and 10% CO2, as described previously.89 For 
transport experiments, 5 105 cells of passage number 94–100 were seeded on 
polycarbonate filter inserts (12 mm diameter; pore size 0.4 m; Costar) and allowed to 
grow and differentiate for 21–35 days before the cell culture monolayers were used for 
transport experiments. 

5.5. Transport Studies 

The intestinal permeability of the compounds was determined from transport rates 
across Caco-2 cell monolayers.82,89 In general, the drugs were dissolved in Hank’s 
Balanced Salt Solution (HBSS) containing 25 mM HEPES at pH 7.4. The amount of 
compound added to the transport buffer depended on the solubility of the compound, its 
expected permeability, the presence of saturable active transport mechanisms, and the 
HPLC detection limit for the compound. Transport studies were initiated by incubating 
the monolayers in HBSS, pH 7.4, at 37 C for 20 minutes in a humidified atmosphere. 
Filter inserts with Caco-2 cells were stirred at 500 rpm during the transport experiments 
to obtain data that were unbiased by the aqueous boundary layer.113 Permeability 
coefficients were determined both in the apical to basolateral direction and in the
basolateral to apical direction (pH 7.4 in both chambers) in order to determine the 
possible involvement of active transport mechanisms or efflux. Monolayer permeability 
to the paracellular marker [14C]-mannitol was routinely used to investigate the integrity 
of the monolayers under the experimental conditions.

In general, the transport studies were performed under sink conditions and the apparent 
permeability coefficients (Papp ) were calculated from 

0
app CA

1
t
QP    Eq. 5  

where Q/ t is the steady-state flux (mol/s), C0 is the initial concentration in the donor 
chamber at each time interval (mol/mL), and A is the surface area of the filter (cm2). For 
rapidly transported compounds where sink conditions could not be maintained for the 
full duration of the experiments, Papp was calculated as described previously55 from 
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where CR(t) is the time-dependent drug concentration in the receiver compartment, M is 
the amount of drug in the system, VD and VR are the volumes of the donor and receiver 
compartment, respectively, and t is the time from the start of the interval. Papp was 
obtained from nonlinear regression, minimizing the sum of squared residuals ( (CR,i,obs–
CR,i,calc)2), where CR,i,obs is the observed receiver concentration at the end of the interval 
and CR,i,calc is the corresponding concentration calculated according to Eq. 6.  

5.6. Analytical Methods  

Reversed-phase HPLC was used to determine the drug concentration of the solubility 
samples in Papers I and V, and the amount of drug transported through the Caco-2 cell 
monolayers in Paper II. In Paper I an isocratic HPLC system was used, and methods 
were developed for each specific drug that was analyzed. The sample analysis 
performed in Papers II and V used an HPLC gradient; the same method was applied for 
all compounds.  

Radioactive samples (Paper II) were analyzed with a liquid scintillation counter 
(Packard Instruments 1900CA TRI-CARB; Canberra Instruments, Downers Grove, IL). 

5.7. Biopharmaceutical Classification 

The drugs were classified into six different biopharmaceutical classes according to their 
permeability115 and solubility181: I. high solubility - high permeability; II. low solubility 
- high permeability; III. high solubility - low permeability; IV. low solubility - low 
permeability; V. high solubility - intermediate permeability; and VI. low solubility - 
intermediate permeability. A drug was regarded as a highly soluble compound if the 
maximum dose given orally was soluble in 250 mL fluid in the pH interval 1-7.5. The 
maximum dose found in the Physicians’ Desk Reference182 and/or in FASS183 was 
compared with the minimum solubility value at a pH between 1 and 7.5. The 
permeability was defined as “low” if <20% and as “high” if >80% of the given dose is 
absorbed in humans. Drugs with FA data in between these values were defined as 
having intermediate permeability.115 The Papp values discriminating between the three 
classes of permeability were obtained from the correlation between drug permeability in 
Caco-2 cells and the FA established in our laboratory. The sigmoidal function used was 
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where Papp50% is the apparent permeability corresponding to 50% of the dose absorbed 
and  is the slope factor. This curve was used to calculate the permeability values 
corresponding to 20% and 80% of the dose absorbed.

The theoretical biopharmaceutical classification performed in Paper II was based on a 
combination of PLS models for solubility and permeability (see section 5.9.2). The 
predicted solubility value was compared to the maximum dose given, and thereafter 
sorted as a low or high solubility. The predicted permeability value was compared to the 
experimentally determined permeability cut-offs, and thereafter sorted as a low, 
intermediate or high permeability.  

5.8. Molecular Descriptors 

The lipophilicity was calculated using the ClogP program (version 2.0) from BioByte 
Corp. (Claremont, CA). The 2D descriptors used in Papers III-IV were calculated with 
Molconn-Z184 and the AstraZeneca in-house program SELMA.185 Molconn-Z was used to 
calculate electrotopological state indices. Briefly, the electrotopological state indices for 
a particular atom result from the topological and electronic environment. The indices 
will encode the electronegativity and the local topology of each atom by considering 
perturbation effects from the neighboring atoms. The program SELMA generates 
descriptors related to size, ring structure, flexibility, hydrogen bonds, polarity, 
connectivity,106,107,186 electronic environment, partial atom charge and lipophilicity. In 
total, Molconn-Z and SELMA generated 566 different descriptors.

The 3D descriptors used in Paper I-IV were obtained after a 500 (Papers III-IV) to a 
250,000 (Paper II)-step Monte Carlo conformational analysis with the BatchMin 
program as implemented in MacroModel version 6.5. The MM2 force field was used for 
the smaller datasets (Papers I and II), while MMFF was applied on the larger datasets 
(Papers III-IV). Water was used as environment for the conformational studies in the 
papers investigating solubility alone (Papers I and III), whereas vacuum was used as 
environment in the studies predicting permeability values (Paper II) and the melting 
point (Paper IV). 

Both the dynamic molecular surface areas obtained by Boltzmann averaging of all the 
low energy conformers (Paper I) and the static molecular surface areas for the global 
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minimum conformation identified in the conformational analysis (Papers I-IV) were 
calculated by MAREA.187 Composite properties, such as NPSA and PSA, were calculated 
as were PTSA descriptors. The PSA was defined as the surface area occupied by 
oxygen and nitrogen, and hydrogen atoms bound to these heteroatoms, whereas the 
NPSA was defined as the SA minus the PSA. The PTSA descriptors correspond to the 
surface area of a certain type of atom (Figure 7). For example, the NPSA originating 
from carbon atoms can be partitioned into the surface areas of sp-, sp2-, and sp3-
hybridized carbon atoms and the hydrogen atoms bound to these carbon atoms. In a 
similar way, the PSA originating from oxygen atoms can be partitioned into the surface 
areas of single-bonded oxygen, double-bonded oxygen, and hydrogen atoms bound to 
single-bonded oxygen atoms. The absolute surface areas and the surface areas relative 
to the SA were calculated. 

Figure 7. Molecular surface areas calculated for acyclovir. a) The PTSAs represent the surface areas 
of each type of atom in the molecule. PSA is comprised of the PTSAs of oxygen atoms, nitrogen atoms 
and hydrogen atoms bound to these heteroatoms. All other atom types are included in the NPSA.  
b) 3D conformation used for PTSA calculations. Oxygen and nitrogen atoms are shown in dark gray. 

5.9. Statistics 

5.9.1. Solubility and Permeability Experiments 

The experimentally determined data included in this thesis were measured in at least 
triplicate. ANOVA was used to test whether the difference between two mean values in 
Paper I was statistically significant (p<0.05). The coefficient of determination (R2)
assesses the goodness of fit of linear and sigmoidal regressions.  
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5.9.2. Model Development  

The diversity of the descriptor space used for the prediction of melting point, solubility 
and permeability values was analyzed by PCA136 (Papers I-IV) and by the ChemGPS 
methodology98 (Paper III). Skewed descriptors were transformed prior to the 
multivariate data analysis to avoid overweighting in the models and descriptors with a 
skewness that exceeded ±1.5 were excluded from the model development. The PCA of 
the input matrix was used to divide the compound datasets into training sets and test 
sets. In general, the training set was selected to cover a maximum range in descriptor 
space and included approximately two thirds of the dataset investigated. Qualitatively 
determined values obtained in Paper II were included in the test set. In the large dataset 
used for melting point prediction, the PCA approach was too complicated to use, since 
the number of compounds made the PCA plot less transparent. Therefore, every third 
compound when listed in ascending melting point order was included in the test set and, 
thereafter, the diversity of the selected training and test sets was checked with PCA. 

The models were obtained by linear regression and MLR in Paper I, by PLS in Papers I-
IV and by consensus modeling of PLS models in Papers III-IV. The number of PLS 
components computed was assessed by the cross-validated coefficient of determination 
(Q2). The training set was divided into four (Paper III) or seven groups (Papers I, II, and 
IV), and the Q2 was obtained by leaving out one group at time from the R2 calculation. 
Only PLS components resulting in a positive Q2 were computed and the number of 
principal components was never allowed to exceed one-third of the number of 
observations used in the model. The models were refined through step-wise selection of 
the descriptors. Initially, all the non-skewed descriptors were included in the PLS 
model. After the first round, the descriptor with the least influence on the prediction was 
deleted and the PLS repeated. If this exclusion resulted in a more predictive model (as 
assessed by a higher Q2), the descriptor was permanently excluded from the model. This 
procedure was repeated until no further improvement of the model could be achieved. 
The predictivity of the models was assessed by root-mean square error of the test sets 
(RMSEte) in Papers I-IV and the external test sets (RMSEext) in Papers II and III. When 
applying consensus modeling (in Papers III and IV), the results of several models were 
averaged to predict the solubility and the melting point, respectively. 



32

-6

-4

-2

0

2

4

6

-10 -8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:47

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:36

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:13

-4

-2

0

2

4

-10 -8 -6 -4 -2 0 2 4 6 8 10

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:25

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:42

Paper I

Paper VPaper IV

Paper IIIPaper II

-6

-4

-2

0

2

4

6

-10 -8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:47

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:36

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:13

-4

-2

0

2

4

-10 -8 -6 -4 -2 0 2 4 6 8 10

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:25

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:36

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:13

-4

-2

0

2

4

-10 -8 -6 -4 -2 0 2 4 6 8 10

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:25

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10

t[2
]

t[1]

Simca-P 8.0 by Umetrics AB 2003-08-25 14:42

Paper I

Paper VPaper IV

Paper IIIPaper II

 [t
2]

 
 [t

2]
 

6. RESULTS AND DISCUSSION 

6.1. Datasets 

In the first part of the thesis, screening approaches for the prediction of solubility and 
permeability were studied (Papers I-III). An experimental method, which measures 
solubility using small amounts of crystalline compounds, was devised in Paper I. The 
solubility data obtained were used to test the applicability of surface area descriptors in 
solubility predictions. In Paper II, solubility and permeability models based on 
molecular surface areas were generated, with the goal to allow theoretical prediction of 
the intestinal absorption of drug-like compounds. The general usefulness of the 
molecular surface areas and descriptors of electrotopology, bond energies, connectivity 
indices, flexibility, hydrophobicity and hydrophilicity for solubility prediction was 
tested in Paper III. In the second part of the thesis, the impact of the solid state and the 
ionization of the compound on the solubility were analyzed (Papers IV and V, 
respectively). Since the five studies had such different purposes, the selection criteria 
varied for the datasets investigated. However, all datasets were selected to be drug-like 
and structurally and physicochemically diverse.  

Figure 8. The physicochemcial diversity identified by use of PCA and 2D and 3D descriptors.
The two first principal components of each data analysis are shown, representing the following 
structural diversity of the datasets; 67% in paper I, 55% in paper II, 54% in paper III, 52% in paper 
IV and 64% in paper V.  
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The physicochemical and structural diversity was identified with PCA for all datasets 
studied. Indeed, most of the datasets were diverse (Figure 8) and, thus, they were 
considered to be suitable training sets for the model development. The ChemGPS 
analysis of the 85 compounds investigated in Paper III showed that the compounds were 
scattered within the drug-like space. As a result, this dataset was considered to be 
challenging to predict in silico, since it was not restricted to certain volumes of the 
drug-like space. The dataset most structurally restricted was the series of amines studied 
in Paper V. However, also this dataset proved to be diverse (Figure 8), mainly due to the 
large variation in physicochemical properties, e.g. size, lipophilicity and hydrophilicity, 
but also because of the inclusion of compounds with primary, secondary and tertiary 
amines. 

A large range in data of the response parameters (solubility, permeability and melting 
point) was desired to avoid obtaining models with limited applicability. The aqueous 
drug solubility of the datasets studied ranged over almost seven log units, from 
0.7 ng/mL of SKF105657 in Paper I to more than 20 mg/mL of ergonovine and 
zidovudine in Paper II. The permeability coefficients of the drugs ranged from 3×10-8

cm/s of folinic acid and methotrexate to 4×10-4 cm/s of ethinyl estradiol (Paper II). In 
Paper IV, the dataset had melting points from 40ºC up to 345ºC, with the majority of the 
compounds displaying melting points between 140ºC and 160ºC. 

The solubility and permeability data were determined in-house with standardized 
methods to maximize the reliability in the data used for the model development (Papers 
I and II). In Paper III, the number of compounds investigated was increased by 
compiling solubility data of Papers I and II, and by including solubility data obtained 
from the pharmaceutical industry. The experimental quality was prioritized over the 
number of compounds studied, so only compounds for which the intrinsic solubility at 
room temperature had been determined were included. The advantage of this 
compilation was that the larger number of compounds resulted in the investigation of a 
larger portion of the drug-like space (Figure 8).  

The external test set of 207 compounds applied in Paper III was compiled from data in 
the literature.160,166 The aqueous drug solubility data found in these publications have 
been used repeatedly for model development,160,163,166,188-190 and hence provide a 
suitable means of comparing new models with existing ones. The PCA of the 
compounds showed that the external test set occupied a limited drug-like space in 
comparison to the 85 compounds in the training and test sets (Figure 9a). Furthermore, 
large homologous series were found within the dataset and, for instance, analogues of 
barbituric acids and steroids constituted 17% and 14% of the 207 compounds, 
respectively. The size of the subsets of acids, ampholytes, bases and non-proteolytes 
also differed largely from the 85 compounds in the training and test sets (Figure 9b).
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Figure 9. Distribution of external test set applied in Paper III. a) The external test set (207 
compounds) occupied a limited volume of the drug-like space defined by the training and test set (85 
compounds). b) The distribution of the proteolytic subsets found within the training and test sets (left 
hand side) and the external test set (right hand side). Bases are shown in white, acids in light gray, 
ampholytes in gray and non-proteolytes in black.  

The two largest subsets of the external test set were non-proteolytes and acids. In 
contrast, the majority of the dataset used in the model development in Paper III were 
bases and only a minority were non-proteolytes, a distribution in accordance with that 
of registered drugs.191 The external test set was therefore regarded as biased to certain 
therapeutics groups which probably would have been better predicted by a training set 
including similar structures. However, the literature dataset allows comparison of the 
general applicability of our solubility models to previously published solubility models, 
and was therefore used. 

6.2. Solubility Measurements In Vitro

6.2.1. The Small-Scale Shake Flask Method (SSF) 

A new experimental method for high quality measurements of solubility in a medium 
throughput mode was developed. The method should be applicable early in the drug 
discovery setting when only small quantities of drugs are available. The commonly used 
shake flask method was therefore adjusted for these demands (Paper I). The results 
obtained with the SSF were of equal accuracy to those obtained with the traditionally 
used large-scale shake flask (Figure 10a) and state-of-the-art potentiometric 
determinations (Figure 10b). The SSF used ultracentrifugation to separate the remaining 
solid from the solution after equilibrium had been reached. This method was successful 
as assessed by light scattering measurements of the supernatant: no colloidal particles 
could be identified within the supernatant. Solubility measurements of high quality 
could be performed in 50 µL of solvent, allowing thermodynamic solubility 
determinations using microgram quantities of the drug (Figure 10c). The study of the
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Figure 10. Results of SSF development. a) Correlation between solubility data available in the literature 
obtained from large-scale shake flask and SSF solubility data. b) Correlation between solubility data 
obtained by potentiometric titration (pSOL) and SSF solubility data. c) Scaling down the sample volumes 
showed that the thermodynamic solubility of solids (pindolol in white bars, probenecid in black) can be 
determined in suspension volumes of 50 µL. d) The time-dependent solubility is illustrated with three 
examples taken from the study performed in Paper I. The majority of the compounds behaved as 
exemplified by testosterone ( ), and reached their solubility value within 24 h. However, hydrocortisone 
( ) approached the equilibrium solubility slowly, as did cimetidine (data not shown). In contrast, the 
solution of amiloride ( ) first became oversaturated and thereafter reached its thermodynamic solubility 
value.  

time-scale needed for the determination of thermodynamic solubility revealed that the 
majority of the model drugs had reached their solubility equilibrium within 24 h 
(Figure 10d). The compounds that had not attained equilibrium within this time differed 
by a factor of less than 1.5 from the solubility value at equilibrium. These results 
suggest that when screening for the intrinsic solubility of solid drugs, the time-scale can 
be set to 24 h if smaller deviations from the thermodynamic solubility value can be 
tolerated. In conclusion, the method devised allows thermodynamic solubility 
determinations to be performed for solids in a microtiter plate format. By using this 
experimental setting, the rate limiting process will be the analysis of sample 
concentration rather than the solubility experiment per se.
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6.2.2. Temperature and Buffer Effects

The temperature dependence was analyzed in two steps. First, the effect of ambient 
temperature on the obtained solubility value was studied in a comparison with a water-
bath controlled temperature. The comparison between solubility data obtained with the 
SSF (22.5ºC±1ºC) and the potentiometric technique (25ºC) showed that this minor 
difference in temperature did not influence the solubility value to a large extent. This is 
in agreement with the finding that solubility values determined at temperatures of ±2ºC 
only differed marginally.77 Hence, the simpler temperature setting of the SSF method, 
i.e. the determination of solubility at room temperature, can replace the more 
sophisticated water-bath experiments. Second, in Paper II the solubility values obtained 
at 25ºC were compared to solubilities at 37ºC (Figure 11). In contrast to what is 
generally expected, 60% of the compounds determined at both temperatures showed a 
somewhat lower solubility at 37ºC than at room temperature. Indomethacin and 
verapamil were most strongly affected by the temperature increase, resulting in a 6-fold 
higher and 9-fold lower solubility at 37ºC, respectively. All other compounds had 37ºC 
solubility values that were ±3 times the solubility value determined at 25ºC. Hence, 
these results suggest that solubility values at 37ºC can be approximated from 25ºC 
determinations in early stages of drug development.  

The effect of the solvent used was studied by performing solubility determinations in 
water and buffer systems. The intrinsic solubility value obtained in different solvents, 
i.e., MQ-water (Paper I), 0.15 M KCl buffer (Paper II) and phosphate buffers (Paper V), 
resulted in slightly different solubilities (Table 2). The majority of the compounds 
showed a lower intrinsic solubility in the buffer systems than in the pH-adjusted MQ-
water. Hence, the higher ionic strength of the buffers in comparison to the MQ-water 
resulted in salting-out effects of the compounds.25-28 The two buffers used affected the 

-1,2

-0,6

0

0,6

1,2

Figure 11. Temperature differences for the compounds in paper II 
measured at 25ºC and 37ºC. logS=logS37ºC-logS25ºC. Solubility values 
at 37ºC were determined for 19 of the 23 compounds investigated.    
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compounds differently, exemplifying the difficulties associated with obtaining a general 
prediction of salting-in and/or salting-out effects by specific buffers.192

Table 2. Intrinsic solubility values given in µg/mL 
determined in MQ-water, 0.15 M KCl and/or 0.15 M 
phosphate buffer at room temperature. 

 Compound SMQ-water
(µg/mL)

S0.15 M KCl
(µg/mL)

S0.15M Ph buffer
(µg/mL)

 SKF105657       0.0007       0.005  
 Prazosin       3.2       2.8  
 Probenecid       3.6       5.2  
 Propranolol     31     70  
 Pindolol     33     23  
 Ciprofloxacin     54     61  
 Ketoprofen     94   120  
 Amiloride   150   125  
 Acyclovir 1213 1200  
 Promethazine       1.6     12       0.6 
 Verapamil       8.2       9.2     11 
 Desipramine     96     47     54 
 Chlorprothixene       0.5        0.5 
 Dipyridamole       1.0        2.0 
 Mifepristone       1.3        0.6 
 Procyclidine       9.3        8.1 
 Propafenone     14        2.1 
 Orphenadrine     55      23 
 Bupivacaine     83      44 
 Pramoxine   178      97 
 Disopyramide   373    298 
 Hydralazine   749    367 
 Terazosin 2743  6580 
 Lidocaine 3800  2398 
 Trimethoprim 3916  3324 
 Celiprolol 4354  5688 

To conclude, the experimental studies performed in Papers I, II and V show that the 
time-scale, the temperature and the selected solvent will influence the solubility value 
obtained. A majority of the compounds investigated reached their solubility equilibrium 
within 24 h. No simple rules-of-thumb were revealed for the contribution of 
temperature, counter-ions and ionic strengths. The results indicate that in early drug 
development an approximation of the drug solubility in the intestinal fluid (in the fasted 
state) can be obtained from aqueous solubility determinations performed at room 
temperature, provided that the solvent has a physiologically relevant pH. However, if 
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the purpose of the generation of solubility data is to establish an experimental database 
for model development, it is important to standardize the experimental setting to reduce 
experimental variation. 

6.2.3. pH-dependent Solubility 

In Paper V, the HH relationship and its application to solubility predictions was 
investigated. The pH-dependent solubility was found to be substance specific, with 
variations in the solubility range of 1.1 to 6.3 log units between the uncharged and the 
completely charged species (Figure 12a). Thus, this study did not support the 
generalization that cationic drugs display a solubility range of three log units.23 On the 
contrary, as many as 76% of the compounds showed a solubility range outside 3±0.5 log 
units, consistent with a substance specific response to the counter-ion of the buffer. The 
counter-ion mediated effect on the pH-dependent solubility has also been reported by 
others.193,194 Moreover, the considerable variation in the slope of the linear part of the 
pH versus solubility curve (–0.5 to –8.6; Figure 12b) revealed a specific response of 
each of the compounds to the pH variation and the buffer system. Slopes of less than -1 
can occur due to self-association of the drug molecules into larger aggregates such as 
micelles.195-197 However, no colloidal particles were identified in the supernatants and, 
hence, values of less than -1 were not caused by formation of micelles. Instead the 
negative deviations in slope were probably related to the formation of low molecular 
weight aggregates such as dimers or oligomers. The same result would be obtained by 
salting-in effects caused by the electrolytes in the buffer.30,31 This scenario is less likely, 
since the buffer was shown to predominantly exert salting-out effects (Table 2). Slopes 
larger than -1 can be attributed to the formation of salts with electrolytes available in the 
buffer.198 Such salts would have a stoichiometry different from 1:1, e.g., of 2:1 drug 
molecules to counter-ions. However, the solid state characterization of the remaining 
solid after the experiment did not confirm such formation at pH-values corresponding to 
the linear part of the pH-dependent solubility curve. Hence, the positive deviations in 
slope might be the result of salting-out effects of the buffer.27,28,30

In a drug discovery setting it is common to determine the aqueous solubility at a single 
pH-value, e.g. pH 7.4 or at the pH-value giving the intrinsic solubility. Thereafter, the 
solubility at other pH-values is calculated using the measured solubility value and the 
HH equation (Eq. 2). The results obtained in Paper V clearly show that such calculated 
solubility values can differ largely from the experimental observations. This is in 
agreement with a recent study performed by Hendriksen and coworkers, who showed 
that at least two solubility measurements have to be performed to predict the pH-dependent 
solubility.199 Moreover, it is important to consider the impact of the inclusion of HH 
calculated solubilities in computer-based model development. If such values are 
included in the training set, models based on incorrect solubility values are obtained.



39

Figure 12. pH-dependent aqueous drug solubility. a) Variation in solubility range shown by 
disopyramide ( ), which displayed the smallest range (1.1 log units) and amiodarone ( ), which 
displayed the largest range (6.3 log units) in comparison to bupivacaine ( ), a compound with a solubility 
range of 3 log units. b) The variation in slope in the solubility profiles observed for celiprolol ( ), which 
had the smallest slope (-0.5 log units) and hydralazine ( ), which displayed the largest slope (-8.6 log 
units) in comparison to bupivacaine ( ), one of the compounds with a slope of -1.

6.3. Permeability Measurements In Vitro 

The passive, transcellular transport of a series of 23 compounds through Caco-2 cell 
monolayers was determined (Paper II). It has been suggested that four of the 
compounds, i.e. erythromycin,200,201 verapamil,202 folinic acid and methotrexate,203 are 
actively transported. However, to enable studies on a structurally diverse dataset, also 
compounds representing structural features more often associated with active rather than 
passive transport, e.g., larger size and polarity,204,205 were included.

Most compounds had a less than twofold difference in permeability values determined 
in the apical to basolateral (a–b) direction compared to the basolateral to apical direction 
(b–a) and were therefore considered to be mainly passively transported. Ciprofloxacin 
had a 3.7-fold difference in permeability in the b–a direction compared to the a–b 
direction. However, a previous study in our laboratory showed that the transport rate of 
ciprofloxacin in the absorptive (a–b) direction is concentration-independent.113

Moreover, erythromycin was found to be actively secreted at the applied concentration 
(1.2 mM), probably by a mechanism mediated by an ABC transporter such as P-
glycoprotein.200,201 The passive permeability coefficient of this compound was obtained 
after inhibition of the secretion by addition of verapamil.  
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6.4. Solubility Predictions In Silico 

6.4.1. Global Solubility Models

The experimental solubility data obtained in Paper I were used to investigate the 
accuracy of commonly used models based on easily comprehended physicochemical 
descriptors for the prediction of aqueous solubility.122,133,144 These models have been 
devised from non drug-like datasets and it was therefore not surprising that they resulted 
in only poor solubility predictions for the series of drugs studied. The best prediction of 
the four models tested was obtained from ClogP and the melting point,144 which 
resulted in an R2 of 0.67 and RMSE of 1.27 log units for the tested compounds. The 
statistics improved when the drug-like dataset was used to train the model, resulting in 
an R2 of 0.85 and RMSEte of 0.66 log units. These results show that non drug-like 
compounds poorly predict aqueous drug solubilities. Moreover, the test of a software 
available at the time of the investigation clearly indicated that further development of 
computational models for the prediction of aqueous drug solubility was required.206

Table 3. Final in silico models obtained. 
Paper Response ntr nte next te R2

, RMSEtr RMSEte RMSEext te ClogP 2D 3D 
I logS   12   5  0.91, 0.61 0.90  x  x 
II logS   14   6   31 0.93, 0.37 0.76 1.05   x 
II logPapp   13   9   26 0.93, 0.35 0.99 0.85   x 
III logS   56 29 207 0.80, 0.90 0.83 0.82 x x x 
IV mp 185 92  0.63, 35.1 44.6  x x x 
The response parameters studied were the solubility (logS), permeability through Caco-2 cell monolayers 
(logPapp ) and the melting point (mp). n denotes the number of compounds, tr, te and ext te denote the 
training, test and external test sets, respectively. The crossed descriptor boxes show the type of 
descriptors included in the final model. In Paper III subset specific models and models for homologous 
series were also devised. RMSE-values are given in log M (solubility), log cm/s (permeability) and
ºC (melting point).

Molecular surface descriptors obtained by Monte Carlo simulations have recently been 
found to be good predictors of drug solubility.160 In order to evaluate the use of PSA, 
NPSA and PTSAs in solubility predictions of drug-like molecules, PLS models based 
on these descriptors were generated by the use of four different datasets (Table 3). In 
Paper I, the approach of adopting surface area descriptors as predictors of solubility was 
tested for the first time. The initial input matrix used in the PLS model development 
contained PTSAs and composite surface areas such as PSA and NPSA. In addition, 
ClogP and descriptors for hydrogen bond donors and acceptors, which previously have 
proven to be important for predictions of solubility,70,133 were included. The best 
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computational model was obtained from ClogP, PTSAs and composite surface areas. 
The PLS analysis showed that properties that are negatively correlated with solubility, 
such as size, lipophilicity and surface areas of non-polar atoms were the most important 
for the solubility predictions of this dataset. Only one hydrogen bond descriptor (surface 
area of hydrogen bound to nitrogen atoms) remained after the descriptor selection. The 
predictivity of the surface areas was tested with another dataset in Paper II. The results 
from this study confirmed the results from Paper I, since a highly accurate theoretical 
solubility model was developed (R2=0.93, RMSEtr=0.37 log units). For this dataset too, 
the predominant descriptors selected by the PLS analysis were those restricting 
solubility, i.e., NPSA, SA and PTSAs related to hydrophobic atoms. Only one 
descriptor for hydrogen bonding was selected, the surface area of double-bonded
oxygen, which correlated positively with aqueous drug solubility. The findings in these 
two papers show that PTSAs, NPSA, and SA descriptors are new potential predictors of 
solubility (Figure 13). Moreover, the results indicate that the surface areas of non-polar 
atoms are general molecular descriptors for aqueous drug solubility, i.e., the selection of 
these variables does not seem to be dataset dependent.

Figure 13. Loading plots for the PLS solubility models. The loadings of the first (w*c[1]) and second 
(w*c[2]) principal components extracted in the PLS analysis of solubility ( ), identifying the most 
important descriptors for solubility of the datasets studied in a) Paper I and b) Paper II. 

To assess the general applicability of the surface area descriptors, a larger dataset was 
investigated in Paper III. Here, a training set of 56 compounds was used, and the model 
obtained was validated with two test sets. The model had an intermediate predictive 
power, with RMSEs ranging from 1.03 to 1.06 log units for the training, test and 
external test sets. Also for this dataset, ClogP, size and hydrophobic surface area 
descriptors proved to be important. Moreover, PTSAs of chloride and sulfur atoms, 
which were important predictors of solubility in Papers I and II, were excluded prior to 
the PLS analysis since these descriptors showed a high skewness. Hence, in this study it 
became evident that the previous selection of descriptors obtained for specific 
heteroatoms was largely dataset dependent. 
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As several publications show that Molconn-Z184 generated descriptors are successful in 
the prediction of solubility,121,123,125-127,162-168 the accuracy of the surface area descriptors 
was compared to the accuracy of models based on these descriptors (Paper III). In 
addition, the program SELMA185 was used to generate 2D related descriptors. Indeed, the 
2D descriptors obtained from Molconn-Z and SELMA proved to be strong predictors of 
aqueous drug solubility. The resulting model had a good predictive power, giving 
values of R2 and Q2 of 0.75 and 0.68, respectively, in comparison to the values of 0.57 
and 0.53, respectively, obtained with the surface area descriptors. Lipophilicity was 
identified as an important descriptor also in this model. Furthermore, descriptors for 
flexibility, connectivity indices, electron energy and ionization were important variables 
in the model. The RMSEs obtained for the training set and the two test sets were of the 
same order of magnitude as the model derived from molecular surface areas (RMSEtr

and RMSEext te of 0.92 to 1.01 log units, respectively).

Figure 14. Averaged consensus model for prediction of aqueous drug solubility. The global 
consensus model (bottom panel) trained on 56 compounds was based on three models (from the left hand 
side): a solubility model built from 2D descriptors; a solubility model built from surface areas obtained 
from the 3D representation; and a solubility model derived from a matrix of both 2D and 3D descriptors. 

The result of the model development in Paper III indicated that the different descriptor 
spaces (2D and 3D) described different molecular properties. Thus, the use of both 
types of descriptors in the model development could be expected to result in improved 
models. This was studied in two ways: first, both 2D and 3D descriptors were used 
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together in the variable selection of the model development, a strategy that marginally 
improved the model in comparison to the model established from 2D descriptors alone. 
Second, averaged consensus modeling was applied, allowing the three derived models 
to influence the prediction. This approach resulted in the best global model devised. It 
was more robust with predictions of higher accuracy and a reduced number of outliers 
in comparison to each of the individual models (Figure 14).  

The assessment of the general application of the global model was performed using a 
drug-like test set compiled from the literature.160,166 The model predicted the dataset 
well (RMSE 0.82), although it was revealed that it failed to predict isomeric compounds 
(Figure 15). The model obtained in this work unfortunately predicted these compounds 
to display equal solubilities. To obtain solubility models that can handle the prediction 
of closely related structures, two approaches need to be taken. Firstly, the model has to 
be trained on isomeric structures, so that electrotopological variables describing the 
change in the electronic environment for these analogues can influence the multivariate 
data analysis. This is supported by the impressive results of models obtained from 
datasets containing isomeric structures in the training set.160,163,166,189,190 Secondly, since 
the influence of the position of substituents on the solubility could be linked to the solid 
state properties rather than to the solvation process,130,144 inclusion of solid state 
descriptors may result in better solubility models.  
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Figure 15. Examples of isomeric compounds included in the external 
                          test set in Paper III. 2-, 4-, 6-, and 7- hydroxypteridines are shown.                                 

6.4.2. Subset Specific Solubility Models 

The aim of the subset specific models presented in Paper III was to investigate whether 
the improved solubility predictions obtained with the consensus model were a result of 
the 2D and 3D descriptors having different preferences for the proteolytic groups of the 
molecules. If so, solubility of a heterologous dataset would be best predicted when both 
types of descriptors are included. To investigate this, the dataset was divided into 
subsets based on the proteolytic function of the compound. The subset of ampholytes 
was predicted by the 2D descriptors with good accuracy (R2=0.80). This was probably a 
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result of the selection of descriptors of positive and negative charge reflecting the 
proteolytic functions of the molecule. Both 2D and 3D descriptors were successful in 
the prediction of bases (R2 of 0.80 and 0.83, respectively). The ease of which this subset 
was predicted from either of the two matrices could be attributed to the low variation in 
the proteolytic function of the compounds. None of the matrices succeeded in the 
prediction of acids. This discouraging result may be an effect of the definition of acids 
applied in the study: functional groups which have the ability to lose a proton within the 
pH-interval of 2-12 were regarded as acidic functions. Therefore, weak acids such as 
phenols were included in this subset. 

To conclude, both global and subset specific solubility models have been generated. 
The present studies clearly showed that both 2D and 3D descriptors are valid predictors 
of solubility. By studying models for proteolytic subsets, it was demonstrated that 
ampholytes and bases were well predicted by the 2D and 3D descriptors investigated. 
Consensus modeling resulted in a global model with good predictive accuracy and few 
outliers. This model was based on rather easily comprehended descriptors related to 
hydrophobicity, hydrophilicity, flexibility, size, connectivity and electron energy. 
Moreover, the consensus model derived is relatively transparent, giving the user 
feedback on the impact structural features have on solubility. 

6.4.3. Computational Protocol for Rapid Calculation of Molecular
          Surface Areas 

The computer-based conformational analysis can either be thorough, in order to find all 
low energy conformers, or rapid, to obtain one conformer that represents the low energy 
population fairly well. Furthermore, the conformational search can be performed using 
different solvent models. If the permeability is to be modeled, vacuum usually is chosen 
as the “solvent”. This is a hydrophobic environment and, hence, is assumed to mimic 
the cell membrane. For aqueous solubility models, the descriptors are calculated from 
conformers generated in water. However, the results presented in Paper II showed that 
surface areas calculated from conformers obtained in vacuum and water were highly 
correlated. This is in agreement with the recent findings by Stenberg and coworkers.113

They found that the PSA generated from water and vacuum conformers were highly 
correlated, suggesting that the conformational search in water can be replaced with the 
faster search performed in vacuum. Compounds with high flexibility are exceptions to 
this rule.134

The surface area descriptors can be calculated either as dynamic or static surface areas. 
The use of a static surface area, calculated on one conformer would result in faster 
calculations than the generation of Boltzmann weighted dynamic surface areas 
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calculated from all low energy conformers. Indeed, analysis of the accuracy of carefully 
calculated dynamic molecular surface areas and the more rapidly calculated surface 
areas showed that these descriptors produced models of equal accuracy (Papers I and 
II). The static PSA has previously been used as a descriptor of permeability with good 
results.172,207,208  Hence, it could be concluded that fast protocols for the generation of 
surface areas can be applied both for permeability and solubility predictions, making 
surface area-based absorption models more attractive for drug discovery settings.    

6.4.4. Molecular Surface Areas as Descriptors of the Solvation  
          Process 

In none of the solubility models obtained in Papers I-III was the PSA an important 
descriptor for solubility. Thus, by combining the results from the solubility studies with 
the results from the theoretical analysis of the solid state characteristic melting point 
(Paper IV), the following generalization can be forwarded: the solubility of non-polar 
compounds is not restricted by the formation of strong crystal structures, but rather, by 
the energy required for the solvation process. This can be described from the solvation 
theory:19,20 if the non-polar surface area of a molecule, and therefore its hydrophobicity, 
increases, the dissolution capacity of the compound in an aqueous environment will 
decrease. The influence of hydrogen bond descriptors on solubility seems to be more 
dataset dependent in comparison to hydrophobic descriptors. This might be due to the 
fact that hydrogen bond descriptors can affect drug solubility in two different ways: 
some polar atoms form energetically favorable hydrogen bonds with water, while others 
participate in strong intermolecular interactions within the crystal lattice. The same type 
of polar atom may either promote or prevent aqueous drug solubility, depending on its 
position in the 3D molecular structure of the compound. Poor solubility of compounds 
with large PSAs will mainly be an effect of the formation of strong crystal structures. If 
the stabilization provided by the crystal bonds is beneficial to the molecule the melting 
point will increase. As a result, the aqueous solubility will decrease, an effect described 
by the van’t Hoff equation:

1
T

T
R

S
aln mTmf,    Eq. 8 

where a is the activity, which corresponds to the concentration in an ideal solution, 
Sf,Tm is the entropy of fusion, R is the gas constant, Tm the melting point and T the 

absolute temperature. Finally, the selection of the size descriptor reflects the energy 
required to form cavities in the water with a sufficiently large volume to accommodate 
the molecules.18,20,145
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6.5 Computational Solid State Characterization 

Before the work on the solid state prediction started, a search was performed on the 
Internet for publications on similar investigations. Not a single publication could be 
found on melting point prediction of drugs, even though crystal lattice energies have 
recently been studied by use of molecular modeling.209,210 This highlights the need for 
development of theoretical tools for solid state prediction. Thus, a theoretical analysis of 
factors influencing the melting point was performed with the intention of obtaining 
calculated solid state characteristics which could be included in computational 
predictions of solubility (Paper IV).144,146,155,211,212 The derived model was based on 2D 
descriptors representing molecular flexibility, polarity and electron distribution 
(Figure 15). The model allowed a classification of the compounds to be made, with 
excellent separation being found between the “low” and “high” melting point classes. 
Unfortunately, the model obtained could not quantitatively predict the melting point. 

Figure 15. Loading plot for the melting point model. The relationship between the 
descriptors (black) and the response parameter (white) is shown. The most important 2D 
descriptors were: the size of the second and third largest ring (MaxRing 2 and 
MaxRing 3); the length of the longest chain with only rotatable bonds (MaxFlex 
Chain1); the lengths of the three longest chains containing only rigid bonds (MaxRigid 
Chain); the length of the longest partially flexible chain (PartFlex Chain); the averaged 
positive and negative partial atom charge calculated from all charged atoms within the 
molecule; the energy of the lowest unoccupied molecular orbital (HMO LUMO 
energy); the PSA; the number of hydrogen bond acceptors (HBacc); and the electron 
accessibility between sp2- and sp3-hybridized carbon atoms (e1C1C2).  
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6.6. Permeability Prediction In Silico

In Paper II, a theoretical permeability model based on composite surface areas and 
PTSAs was generated from the experimentally determined Papp values in Caco-2 cell 
monolayers (Figure 16). Polar surface area descriptors have previously shown a 
negative correlation to permeability,111,113,128,172 and this was confirmed by the model 
obtained in this study. The negative correlation between the polar descriptors and 
permeability was interpreted as a result of the increase in desolvation energy required 
for molecules to enter the hydrophobic interior of the membrane from the aqueous 
surroundings.213,214 For the first time, the SA descriptor was included in a permeability 
model based on molecular surface areas. This might be a result of the large range in size 
(180-734 in molecular weight) of the dataset, which give size as a descriptor enough 
weight to influence the model. The SA was found to be negatively correlated to the 
permeability, which was interpreted as an effect of the steric hindrance to diffusion 
across the cell membrane caused by the ordered membrane structure.213,214 Therefore, 
the larger the molecule, the greater the steric hindrance to diffusion through the cell 
membrane. The accuracy of the permeability model obtained (R2=0.93, RMSEtr=0.35
log units) was comparable to that of a previous in-house model, generated from a 
different dataset.113

Figure 16. The permeability model based on molecular surface area descriptors. a) The model was 
derived from a training set ( ) of 14 compounds and validated with a test set ( ) of eight compounds. b) 
Loading plot of the permeability model showing the interrelationship between the PTSAs and Caco-2 
permeability. The following surface areas were important descriptors for the permeability (in order of 
importance): the PSA, double-bonded oxygen (Odbl), hydrogen atoms bound to nitrogen (H-N), the 
fraction of surface areas occupied by neutral hydrogen atoms (%Hneutral), hydrogen atoms bound to 
oxygen (H-O), NPSAtotal, sulfur atoms (S) and the SA.  
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6.7. Biopharmaceutical Classification 

The biopharmaceutics classification system (BCS) was originally introduced by the
Food and Drug Administration (FDA) to simplify the production of generic drugs.181

The FDA suggests that compounds with a high solubility in comparison to the given 
dose and a high permeability (Class I compounds, see Section 5.7) do not need to be 
studied for bioequivalence after minor changes in the formulation. Various BCSs have 
previously been applied as qualitative screening tools for drug absorption in drug 
discovery and development.115,181,215 In Paper II, a BCS containing six categories was 
used, according to which solubility was classified as “low” or “high”181 and 
permeability was classified as “low”, “intermediate”, or “high”.115 This classification 
was chosen because it provides a better tool for absorption ranking of compounds in 
drug discovery than does the stricter classification provided by the FDA .181 A 
computer-based BCS that predict absorption characteristic with high accuracy would 
sort compounds in accordance with their developability (absorption-wise) prior to 
synthesis. Such virtual tools applied in early drug discovery would result in a decreased 
number of CDs with formulation problems. Only one approach to theoretical 
biopharmaceutical classification has previously been published, defining the classes in 
terms of molecular weight and PSA.216

Figure 17. Comparison of experimental and theoretical biopharmaceutical classification of 23 
drugs. The six classes are marked in light grey and the compounds are numbered as in Table 4. Relative 
scales are used since solubility is dose-dependent and, therefore, compound-specific. a) Experimental 
determination of BCS class. The compounds were mainly distributed in classes I (39%) and II (35%). b) 
Theoretical prediction of the biopharmaceutical classes. The BCS classes were predicted with a success 
rate of 87%. Deviations into an adjacent class are shown by triangles. Acyclovir (compound 21) was 
falsely predicted from Class IV to Class I.

The experimentally determined, dose-adjusted solubility values showed that 44% of the 
compounds had poor solubility characteristics, indicating that the maximum oral dose 
would not be completely soluble. The compounds were found to be distributed between 
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all three permeability classes, but only 17% of the compounds displayed low 
permeability. Thus, the compounds studied were better optimized for permeability than 
for solubility. This is in agreement with recent publications, which conclude that the 
selection of candidate drugs is biased towards molecular properties giving good 
permeability as opposed to good solubility characteristics.69,70 The combination of 
experimentally determined solubility and permeability data showed that the compounds 
were distributed into five out of the six biopharmaceutical classes (Figure 17a). The 
experimental study identified nine new BCS Class I compounds (Table 4). 

The experimental classification identified 14 compounds with poor solubility and/or 
permeability (BCS Classes II–VI), 12 of which were correctly predicted using the in
silico models. In comparison, the Lipinski rule-of-five70 predicted that only four of the 
14 compounds would exhibit poor solubility and/or permeability. The surface area 
based models resulted in 87% of the compounds being correctly sorted into their 
respective class, i.e. only three compounds (acyclovir, amitriptyline and doxycycline) 
were falsely predicted (Figure 17b).  

Table 4. Experimental determination of BCS classes according to the 
FDA guidelines.181

 BCS Class I BCS Class II BCS Class III BCS Class IV 
 1. Atropine 10. Amitriptyline 18. Amiloride 21. Acyclovir 
 2. Desipramine 11. Chlorpromazine 19. Erythromycin 22. Amoxicillin 
 3. Doxycycline 12. Ciprofloxacin 20. Folinic acid 23. Methotrexate 
 4. Ergonovine 13. Indomethacin   
 5. Ethinyl estradiol 14. Phenazopyridine   
 6. Primaquine 15. Tamoxifen   
 7. Promethazine 16. Verapamil   
 8. Theophylline 17. Warfarin   
 9. Zidovudine    

The guidelines given by FDA sort the compounds into the following classes: I. high 
solubility - high permeability; II. low solubility - high permeability; III. high solubility - 
low permeability; IV. low solubility - low permeability. Solubility is defined as high if the 
maximum dose given orally is dissolved in 250 mL of fluid in the pH-interval 1-7.5. 
Permeability is defined as high if 90% or more of the dose is absorbed, otherwise it is 
low.181

To further evaluate the usefulness of the combinations of in silico models in 
biopharmaceutical classification, the recommended set of reference drugs listed in the 
FDA guidelines was used as an external test set for the model.181 The theoretical 
classification correctly predicted 77% of the external test set. None of the compounds in 
the external test set was falsely predicted with regard to both the solubility and the
permeability characteristics. To summarize, the biopharmaceutical model developed in 
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Paper II has so far been tested on 36 compounds and the results indicate that more 
sophisticated in silico models combining computational analysis of solubility and 
permeability can successfully predict the absorption process. If these and other models 
of drug absorption120 are used in the drug discovery process, the resulting CDs will 
probably show improved developability.  
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The determination of pH-dependent solubility profiles of a series of amines 
showed that calculations based on the HH equation can deviate from the 
experimentally determined values by a factor of 100. Large variations in the 
slope of the linear part of the pH versus solubility curve and in the solubility 
range were observed within the series studied. The results demonstrate the 
limitations of extrapolating experimentally measured solubility values obtained 
at one pH-value to the solubility at another. 

The validity of PTSAs in the prediction of intestinal drug permeability was 
confirmed. Moreover, when the solubility and permeability models were used in 
concert, the absorption class of the compounds could be predicted with high 
accuracy. This result indicates that in silico biopharmaceutical classification can 
be performed prior to the synthesis of compounds, which may increase the 
number of high quality leads that result in marketed drugs.  
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8. PERSPECTIVES

The theoretical models obtained in this thesis and models published by others have an 
accuracy of 0.5-1 log units for the prediction of solubility and permeability. The models 
can be used as qualitative computational filters, i.e. providing yes and no answers, or 
sorting compounds into classes denoted “poor”, “intermediate” or “good”. Some models 
may also be regarded as quantitative filters, providing that the deviations mentioned are 
acceptable. However, many different approaches need to be adopted to improve the 
success of the predictions of these response parameters. Firstly, the computational 
models have to be developed using drug-like compounds if they are to predict such 
molecules. Moreover, the experimental databases used for model development need to 
be increased, so that a larger volume and higher density of the drug-like space is 
represented by the training sets. The setting for the experiments should be standardized 
to not restrict the model development by variability in the data. Secondly, the 
incorporation of computationally derived descriptors reflecting the solid state would 
result in better solubility predictions e.g. for isomeric structures. Thirdly, the models 
should be formatted so that constructive feedback can be given to the medicinal 
chemists on how to design better molecules. Since several properties are modeled 
(solubility, permeability, metabolism, toxicity, etc.), all of which are important for the 
developability and success of the compound, it is difficult to draw straightforward
conclusions on how to improve the drug design process based on the predictions. 
However, the adaptation of chemo- and bioinformatics to pharmaceutical screening may 
result in computational models of drug developability that are highly accurate and user 
friendly. In conclusion, the generation of extended experimental drug-like databases can 
be regarded as the rate-limiting step in future model development, since the predictions 
will not improve further until larger volumes of high quality experimental data are 
treated. If such databases are produced, the prerequisites for quantitative rather than 
qualitative ADMET screening are given.
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9. POPULÄRVETENSKAPLIG SAMMANFATTNING 

Under det senaste årtiondet har nya tekniker gjort det möjligt att identifiera och 
producera hundratusentals nya presumtiva läkemedelssubstanser varje år. Gemensamt 
för dessa potentiella läkemedel är att de har en farmakologisk effekt, d v s de kan 
hämma, lindra eller bota sjukdomar och/eller sjukdomssymptom. Tyvärr visar studier 
att många substanser tas upp dåligt från tarmen till blodet. Sådana läkemedel kan inte 
tillverkas som tabletter eller kapslar, vilket annars är de beredningsformer som vanligen 
uppskattas mest av patienten. För att kunna förutsäga huruvida en potentiell 
läkemedelssubstans kommer att absorberas eller inte krävs nya beräkningsmetoder, 
samt kapacitet att behandla stora mängder data.

I avhandlingsarbetet presenteras teoretiska modeller för att studera både läkemedels 
löslighet i tarmsaft och läkemedels transport över tarmväggen, egenskaper som är 
avgörande för hur mycket av ett läkemedel som tas upp av kroppen. Syftet med dessa 
studier har varit att utveckla nya, snabba och billiga metoder för att sålla ut de 
substanser som absorberas bra i tarmen. Därmed väljs bara de bäst lämpade 
läkemedelskandidaterna ut för vidare studier. Inom ramen för avhandlingsarbetet har 
datorbaserade modeller för att beräkna lösligheten av läkemedel och dess transport över 
tarmväggen utvecklats, liksom en ny metod för att experimentellt kunna bestämma 
lösligheten av läkemedel. De datorbaserade modellerna är tänkta att användas för att 
rangordna substanserna efter deras absorptionsegenskaper då läkemedlet fortfarande 
bara finns som idé och inte som färdig substans. Efter denna rangordning kan de 
substanser som uppvisar lovande absorptionsegenskaper framställas kemiskt. Den 
utvecklade experimentella löslighetsmetoden kan därefter användas för att avgöra hur 
löslig substansen är i verkligheten. För att uppskatta transporten av substansen över 
tarmväggen kan en metod baserad på tarmceller användas.  

De experimentellt bestämda löslighetsdata och resultaten från tarmcellsexperimenten 
har använts som utgångspunkt för de teoretiska löslighetsmodellerna och 
transportmodellerna. De teoretiska modellerna baseras på hur läkemedelsmolekylen ser 
ut. Beräkningsprogram av olika komplexitet har använts för att beräkna egenskaper som 
hur stor och hur fettlöslig substansen är. Dessa egenskaper har använts i 
modellbyggandet för att förutsäga löslighet och upptag, och ett urval av de viktigaste 
egenskaperna har gjort m h a statistiska metoder. 

De erhållna resultaten visar att det är mycket viktigt att basera sina modeller på 
experimentella data av hög kvalitet, eftersom de teoretiska modellerna aldrig blir bättre 
än de experimentella data som de grundar sig på. Den nya experimentella metoden för 
löslighetsbestämning kan användas för att skapa en sådan experimentell databas, då den 
ger mycket pålitliga löslighetsvärden. Metoden är lämplig att användas tidigt i 
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utvecklingsfasen av nya läkemedel eftersom den möjliggör experimentell 
löslighetsbestämning även för en substans som endast tillverkats i några få milligram. 
Vidare är det viktigt att många olika typer av substanser ingår vid utvecklingen av 
teoretiska modeller så att dessa blir så generella som möjligt, d v s kan användas för att 
förutsäga absorptionsegenskaperna hos vilken ny substans som helst. Slutligen visar 
studierna att teoretiskt beräknade egenskaper som är länkade till ytan på molekylen kan 
användas för att förutsäga både lösligheten och upptaget. Datormodeller baserade på 
dessa ytegenskaper kunde användas för att identifiera substanser med 
absorptionsproblem. Dessa resultat visar alltså att två av de viktigaste egenskaperna 
som styr upptaget av läkemedel från tarmen kan förutsägas med enkla datorbaserade 
modeller. De modeller som presenteras i avhandlingen kan resultera i att nya läkemedel 
utvecklas effektivare och till lägre kostnad, vilket leder till billigare läkemedel för 
patienten.  
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