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Abstract. Deep convolutional neural networks are a promising machine learning approach for
computationally efficient predictions of flow fields. In this work we present a simple modelling
framework for the prediction of the time-averaged three-dimensional flow field of wind turbine
wakes. The proposed model requires the mean inflow upstream of the turbine, aerodynamic
data of the turbine and the tip-speed ratio as input data. The output comprises all three mean
velocity components as well as the turbulence intensity. The model is trained with the flow
statistics of 900 actuator line large-eddy simulations of a single turbine in various inflow and
operating conditions. The model is found to accurately predict the characteristic features of the
wake flow. The overall accuracy and efficiency of the model render it as a promising approach
for future wind turbine wake predictions.

1. Introduction
The modelling of wind turbine wakes and their interaction with the atmospheric boundary
layer (ABL) continues to be one of the greatest challenges in wind energy research today [1, 2].
While non-linear numerical approaches such as RANS (Reynolds-averaged Navier Stokes) or
LES (Large-eddy Simulation) can provide accurate predictions of the occurring flow phenomena,
they often remain too computationally expensive for wide-spread applications in the industrial
practice. On the other hand, more efficient engineering models often hinge on empirical tuning
factors and tend to fail in off-calibration situations. In recent years, deep learning techniques
have given rise to various novel approaches for efficient fluid dynamics modelling. This includes
topics such as turbulence [3, 4] and wall modelling [5, 6] as well as surrogate models for entire 2D
or 3D flow fields for case-specific problems [7, 8, 9]. One promising approach for computationally
efficient flow field predictions are convolutional neural networks (CNNs). CNNs are based on
filter kernels (convolutions) mapping the information of input data with a grid-like topology to
multiple feature maps. Feeding the stacked feature maps of one convolutional layer to the next
allows for a progressively more complex encoding of larger features. When compared to classical
fully-connected neural networks, CNNs comprise notably fewer tunable parameters, since the
kernel size of each layer is typically a lot smaller than the size of the input data [10, 11].
Therefore, CNNs have proven to be particularly suitable to process large multi-dimensional
data such images, videos, but also flow fields [12]. Guo et al. [13], for instance, used a standard
encoder-decoder CNN to predict the laminar steady state flow field around various types of
geometries. Santos et al. [8] employed a Res-Unet-type architecture to model the flow in porous
media. Similar approaches can be found in [14] and [15] for the prediction of flow fields around
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airfoils. All of the aforementioned studies trained the respective models with numerical data,
mostly from RANS simulations.

When it comes to wind turbine wakes, recently, Renganathan et al. [16] employed CNNs
in combination with other machine learning methods to predict the two-dimensional mean
velocity field downstream of a wind turbine based on low dimensional input data (meteorological
measurements and SCADA data). Here, LiDAR measurements served as training data for the
two-dimensional flow field prediction. Others used classical fully-connected neural networks
to model velocity deficits and wake-added turbulence, while training the models with RANS
simulation data [17, 18].

In this work we present a first feasibility study of a CNN-based surrogate model, hereafter
referred to as WakeNet. The model is trained with the statistics obtained from actuator
line LES runs that are efficiently computed using a GPU-based Lattice Boltzmann LES solver
[19, 20]. As opposed to previous studies, the model predicts the full three-dimensional flow field
downstream of the turbine and only relies on user-specified input data, comprising the mean
inflow conditions and aerodynamic turbine data. The usability of the trained model is thus
similar to common engineering wake models. A key feature is that it leverages a blade-element
momentum approach (BEM) as a pre-processing step that provides the spatial distribution of
the turbine’s aerodynamic forces as an additional input feature.

The rest of the paper is organised as follows. In Section 2 we describe the general concept
and architecture of the model. Section 3 outlines the LES set-up used for the simulation of the
training data. In Section 4 we discuss the accuracy of the trained model and provide examples
of the flow fields generated by the model. Final conclusions and an outlook of future work is
given in Section 5.

2. WakeNet
The general objective of the model is to predict the time-averaged three-dimensional flow field
downstream of a single turbine, while only relying on easily specifiable input data, i.e. the mean
inflow conditions, aerodynamic data of the turbine (radial distributions of thickness, chord
length, etc., as well as airfoil polars) and the tip-speed ratio (TSR). In the following we outline
the overall modelling concept as well as a brief description of the CNN model architecture. An
illustration of the workflow and model architecture is shown in Fig. 1. For a more comprehensive
description of CNNs we refer to LeCun et al. [21, 10].

2.1. Input and Output Data
In in line with similar studies, e.g., [8, 13, 14], the model is set-up as a fully convolutional neural
network. Hence, input data, all hidden feature maps, and output data are grid-like arrays that
are solely processed via convolutional operations (no fully connected layer). In this case, the
model input is two-dimensional and refers to the undisturbed mean inflow velocities (ū, v̄ and
w̄ in the stream-wise, lateral and vertical direction x, y and z, respectively) and the turbulence
intensity Ti on a cross-stream plane of 4D×4D (D being the turbine diameter) upstream of the
turbine. Moreover, the model is provided with an estimate of the mean normal and tangential
aerodynamic forces of the turbine (p̄n and p̄t) that are mapped onto the same plane with an
actuator-disk-like approach. To this end, we employ the BEM method fed with the inflow
velocity ū, aerodynamic data of the turbine, and a user-specified TSR. On the input plane, p̄n
and p̄t are thus only non-zero in the rotor-swept area of the turbine (see Fig. 1). Furthermore, it
should be emphasized that the force data only serves as an input to the CNN that shall facilitate
the prediction of the wake flow. It does not represent an output of the model. The accuracy
of the forces, e.g., with respect to the corresponding forces in the simulated training data, is
secondary. The mapped forces should merely be well-correlated with the characteristics of the
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Figure 1: Illustration of the WakeNet model architecture and processing of the input data.
The number of channels C and dimensions of the data refer to the output of the convolution in
each layer.

wake flow. In summary, this results in a two-dimensional input with ny = nz = 96 points in the
lateral and vertical direction, respectively, as well as Cin = 6 input channels.

The output of the model is the three-dimensional flow field downstream of the turbine,
starting from the rotor plane. Similar to the input data, the flow field comprises the three
mean velocity components (ū, v̄, w̄) and the turbulence intensity, Ti, (Cout = 4) and has the
same in-plane resolution ny and nz. The resolution in the stream-wise direction is nx = 40.
With a spacing of ∆x = 6∆y the output field spans 10D downstream. Note that one key idea
of the model is the compatibility of the model output and input in terms of in-plane dimensions
and parameters. At a future stage, this way, the output of one model instance can serve as the
input to another instance, allowing for the modelling of entire farms (given a sufficient training
of the model with wake inflow data). For a better conditioning of both input and output data,
the velocity scales and forces are normalised with the mean hub height velocity uh and ρ u2hD,
respectively (with ρ being the density).

2.2. Model Architecture and Optimisation
The model architecture is a standard shared encoder-decoder structure as traditionally used for
image-processing tasks with CNNs. The objective of the encoder is to sequentially increase the
feature depth of the data while reducing the in-plane dimensions. To that end, each layer of
the encoder comprises a convolution followed by a batch normalisation [22], ReLU activation,
and a final down-sampling via MaxPooling. The kernel size of each convolution ky × kz is 3× 3
with a stride sy,z = 1. Subsequently, the decoder sequentially upsamples the encoded data
using transpose convolutions. For this particular model, the upsampling not only increases the
in-plane dimension (ny and nz), but also extends the data in the stream-wise direction x. After
the respective transpose convolutions of the first two layers of the decoder (Conv4 and Conv5;
see Fig. 1), we apply the same operations as the encoder (convolution, batch normalisation, and
ReLU). In the last layer (Conv6) we employ just a convolution in order to transform the data
to the desired output format. The kernel size of the convolutions of the decoder is 3 × 3 × 3
with a stride sx,y,z = 1. The total network comprises about 4.8 · 106 tunable parameters.
Furthermore, it should be noted that larger networks with the same architecture (more channels
and/or additional convolutional layers) did not yield better results for the cases considered in
this work.

The model loss J is measured as the mean squared error (MSE) of ū, v̄, w̄ and Ti (L2 loss).
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Table 1: Parameters covered in the simulations of the training dataset.

Parameter n

TSR 5 5.0, 6.0, 7.0, 7.5, 8.0
zh/D 3 0.71, 0.95, 1.19
uh/ms−1 5 5.0, 7.5, 10.0, 12.5, 15.0
z0/m 3 10−3, 10−2, 10−1

Ti 4 0.01, 0.05, 0.10, 0.15

The model is trained by minimising J via mini-batch gradient-descent using the Adam optimiser
with decoupled weight decay (AdamW; [23]), with a learning rate γ = 10−3 and a weight decay
λ = 10−2. The implementation of the model framework is based on the open-source deep
learning library pytorch [24].

3. The Dataset
The comprehensive dataset for the training and testing of the model is obtained from LES of a
single turbine in various inflow and operating conditions. The numerical set-up and an overview
of the simulated cases is given below.

3.1. LES set-up
The simulations are performed with a GPU-based LBM (Lattice Boltzmann Method) solver [19].
As a collision model we use the cumulant LBM with parametrised relaxation rates, recovering
the weakly-compressible Navier-Stokes equations with second-order accuracy in advection and
fourth-order accuracy in diffusion [25]. The sub-grid scales are modelled with the anisotropic
minimum dissipation model (AMD; [26]) with a model constant Ci = 1/12. The turbine is
represented by an actuator line model (ALM). The ALM implementation closely follows the
original method by Sørensen and Shen [27] and has previously been validated in [28, 20].

The domain measures Lx = 14D and Ly = Lz = 6D in the stream-wise, lateral and vertical
direction, respectively. The resolution of the isotropic Cartesian grid is ∆x/D = 1/24 referring
to a total of 7.09 · 106 grid points. The simulations are run at a Mach number of 0.1. For the
sake of simplicity, the inflow is prescribed at the inlet in terms of a mean logarithmic velocity
profile that is perturbed with synthetic Mann turbulence [29]. The domain is periodic in y. The
bottom boundary condition is a simple bounce-back scheme coupled to the iMEM wall modelling
approach [30]. At the top, we use a symmetry boundary condition (simple bounce-forward, see
[31]). An extrapolation boundary condition is applied at the outlet, combined with a viscous
sponge layer. The turbine is located at x = {3D, 3D, zh}, while the hub height zh varies between
the cases (see Section 3.2). Each simulation is initially run-up for one domain flow-through time
T = Lx/uh. After the spin-up, the flow statistics serving as training data are gathered for 10T
in the respective cross-stream planes downstream of the turbine. A corresponding plane sampled
2D upstream of the turbine serves as the inflow model input for each case during the training.

3.2. Cases
For the simulations of the dataset we consider the NREL 5MW reference wind turbine [32],
with D = 126m and a rated wind speed u0 = 11.5m s−1. The cases cover ranges of five
parameters which notably affect the wake properties, i.e., the TSR, the hub height zh, the mean
hub height velocity uh, the shear (parametrized via the roughness length z0 in the logarithmic
inflow velocity profile) and the inflow turbulence intensity. The explicit values of all parameters
are summarised in Table 1. Taking into account all possible combinations of the parameters,
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Figure 2: Box plots of the L2 relative test error of the model trained with different amounts of
the training data ntrain/nc. The whiskers represent 1.5 times the interquartile range. The mean
is given by blue dots (•).

the dataset contains a total amount of nc = 900 cases. Each case ran in about 0.45 h on a single
Nvidia RTX 2080 Ti GPU.

4. Results
The model is trained with the hyper-parameter settings given in Section 2. Due to the large
size of the model and the individual training cases, the memory capacity of the utilised GPU
(Nvidia RTX 2080 Ti) only accommodates a batch size of 4 for the training.

The overall accuracy of the model is evaluated in terms of the L2 relative error for each case
i of the test data:

L2 =

√√√√∑np

j=1

(
YWN,i(xj)− YLES,i(xj)

)2∑np

j=1 YLES,i(xj)2
, (1)

where YWN and YLES are the WakeNet output and the LES reference value, respectively, and
np is the number of grid points of the output data of each case, with np = nx ny nz. Additional
detailed local evaluations of the model will be discussed in Section 4.2.

4.1. Training
Initially, we investigate the sensitivity of the model to the number of training cases ntrain. To
this end, we perform several training runs with different amounts of training data. In every
training, the model is evaluated with the same randomly chosen test data, referring to 20%
(ntest = 180) of the cases of the dataset. The model is trained for a maximum of 400 epochs,
while the specific training length depends on the individual runs in order to avoid over-fitting.
The training process with the largest amount of cases (80% of the dataset) took about 5.6 h on
a desktop using the aforementioned GPU.

Fig. 2 provides a comparison of L2 of the model trained different fractions of the dataset
ntrain/nc. For all output parameters the model performance notably improves the larger the
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Figure 3: Contour plots of the LES data (top rows), model prediction (mid rows) and respective
difference (bottom row) of ū(y, z)/uh (left) and Ti(y, z) (right) with TSR = 7.0, zh/D = 0.95,
uh = 7.5m s−1, z0 = 0.1m and Ti = 0.05.

number of training cases. Only the error of Ti appears to converge already with 60% training
data. For ū/uh and Ti, larger amounts of training data also reduce the spread of the test
error. The model trained with 80% training data is able to reproduce the stream-wise velocity
with a mean L2(ū/uh) of 0.56%. The highest L2 is found for the lateral and vertical velocity
with mean errors of 27.95% and 27.41%, respectively, while the maximum errors lie around
60%. The turbulence intensity is predicted with a mean relative error of 17.01%. The observed
accuracies show that the proposed model concept is generally able to parametrize the wake
flow of the turbine. Particularly, the accuracy in reproducing the stream-wise velocity can
arguably be appreciated. The larger relative errors in the other output variables seem to be
mainly attributed to their lower order of magnitudes, as the absolute errors of v̄, w̄ and Ti are
comparable to ū or even lower (see below). Another factor can be the normalisation of v̄, w̄ and
Ti using the mean stream-wise hub height velocity, uh. Normalisations with other, more specific
velocity scales might yield a better conditioning of the data and improve the training.

4.2. Flow Field Predictions
A more detailed analysis of the predictions of specific flow features is outlined in the following.
For the sake of brevity we limit the discussion to the model trained with 80% of the dataset.
As a starting point, we compare a selection of contour plots of the LES data against the model
output for an exemplary case of the test data; see Fig. 3. The stream-wise velocity is well-
captured at all downstream locations. This refers to the characteristic shape and strength of
the velocity deficit as well as the velocity of the ambient flow. The largest differences measure
about 0.04uh, while occurring in small patches scattered across the entire flow field. The model
also reasonably predicts the overall characteristics of Ti throughout the entire wake. When
compared to ū, larger deviations from the LES solution are more clearly clustered in the far-
wake. Fig. 4 depicts the corresponding vertical profiles of all output variables of the same case
as well as two additional cases with lower and higher TSR, respectively. Regardless of the
TSR, the model excellently predicts the downstream evolution of ū. Thus, dependencies of the
wake characteristics (e.g., magnitude of the velocity deficit, wake rotation, and the downstream
recovery rate) on the thrust and power of the turbine are successfully encoded in the model.
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Figure 4: Vertical profiles of ū, v̄, w̄ and Ti as predicted by WakeNet (full lines) compared
against the corresponding LES results (dashed lines). All cases refer to the same inflow conditions
as shown in Fig. 3. The TSR is 5.0 ( / ), 7.0 ( / ) and 8.0 ( / ), respectively.

Figure 5: Contour plots of the local MAE of the test data.

This also applies to the characteristic change of the mean velocity profile from near to far-wake
due to the laminar-turbulent transition. In absolute terms, a similarly good agreement is found
for the lateral and vertical velocity. For all TSRs shown, the turbulence intensity is slightly
overestimated in the far-wake. Still, the key features of Ti, including a distinct increase after
the laminar-turbulent transition as well as the subsequent decay throughout the far-wake, are
well predicted.

In order to analyse the spatial variations of the model accuracy, we compare the local mean
absolute error

MAE(x) = 1

ntest

ntest∑
i=1

|YWN,i(x)− YLES,i(x)| (2)

of the test data, in Fig. 5. The highest MAE of ū is found in the near-wake (x/D = 1)
and clearly outlines the outer edge of the rotor swept-area of the turbine. With increasing
downstream distance the error tends to decrease. As for v̄ and w̄, the largest errors are also
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found in the near-wake, yet more concentrated in the center of the rotor-swept area. In contrast,
the MAE of the turbulence intensity is largest at x/D = 5. Generally, we find that larger error
magnitudes tend to occur in areas with a large variability of the corresponding variable in the
training data. For instance, Ti is relatively small in the near-wake, regardless of the inflow
conditions or TSR of the turbine, and typically increases drastically after the transition of the
wake (see, e.g., Fig. 4). The downstream distance of this point of transition depends heavily on
the inflow conditions and thrust of the turbine. Both magnitude and local distribution of Ti
therefore vary mostly at 3 ≤ x/D ≤ 8 between the training cases, while being relatively similar
closer to the turbine.

5. Conclusion
We have presented a CNN-based model framework for the prediction of the three-dimensional
steady-state wake flow downstream of a single turbine. This feasibility study shows that CNNs
are a promising model family to encode high-fidelity simulation data into computationally
efficient surrogate models. A single prediction of the trained model runs in 1326µs on a single
core of a local CPU (Intel i7-7800X) or in 33µs on an Nvidia RTX 2080 Ti GPU, respectively.
The discussed results indicate that the model is able to accurately capture detailed features of the
wake flow under different inflow and operating conditions. This combination of high efficiency
and accuracy makes it a potential contender for established low to mid fidelity approaches such
as analytical wake models or even RANS.

While the presented results are arguably promising, it should also be stressed that the
discussed model refers to the most simple CNN architecture possible, namely a shared encoder-
decoder. Judging from other applications of CNNs to fluid flow problems, further improvements
can be anticipated using, e.g., an encoder with separated decoder for each output variable [15],
ResNet [33] or ResUNet-type architectures [8] and/or locally weighted loss functions, to name a
few. Another aspect worth investigating is the sensitivity of the model to wake conditions not
covered in the training data. Or, in other words, how well does a model trained on a certain
dataset generalise to other flow scenarios? This not only includes other inflow or operating
conditions but also different turbine types.

Code and Data Availability
The source code of the model is available for download at https://source.coderefin
ery.org/wind_energy_uu/wakenet. The utilised training data can be found at https:
//doi.org/10.5281/zenodo.5911015.
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