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Abstract: Laboratory-based elastic wave measurements are commonly used to quantify the seismic
properties of Earth’s crust and upper mantle. Different types of laboratory apparatuses are available
for such measurements, simulating seismic properties at different pressure and temperature. To
complement such laboratory measurements, we present a numerical toolbox to investigate the seismic
properties of rock samples. The numerical model is benchmarked against experimental results from
a multi-anvil apparatus, using measurements of a stainless steel calibration standard. Measured
values of the mean compressional- and shear-wave velocities at room conditions of the steel block
were 6.03 km/s and 3.26 km/s, respectively. Calculated numerical results predicted 6.12 km/s and
3.30 km/s for compressional and shear-wave velocities. Subsequently, we measured Vp and Vs
up to 600 MPa hydrostatic confining pressure and 600 ◦C. These measurements, at pressure and
temperature, were then used as the basis to predict numerical wave speeds. There is, in general, good
agreement between measurement and predicted numerical results. The numerical method presented
in this study serves as a flexible toolbox, allowing for the easy setup of different model geometries
and composite materials.

Keywords: stainless steel standard; ultrasonic wave; finite element modeling; dynamic wave propagation

1. Introduction

Seismic waves provide key geophysical observations on the structure and composition
of Earth’s interior. Laboratory measurements provide the most direct constraints of seismic
properties in rocks. Starting with the fundamental work of [1–4], laboratory measurements
have explored a range of additional factors that influence elastic wave speed during the
past 60 years, such as pressure and temperature [5–11], influence of micro-cracks e.g., [10],
anisotropy e.g., [12–15], partial melt generation and its influence on seismic wave speed
and attenuation [16–23].

As such, laboratory-derived elastic properties are invaluable for interpreting seismic
data and provide an important method for investigating tectonic and geodynamic processes
and understanding the inner Earth structure [7,24,25]. A complement to laboratory mea-
surements are provided through predictive (e.g., effective medium) and numerical models
e.g., [26–34]. Predictive and numerical experiments can help understand elastic wave
propagation in a material by providing additional information to laboratory measurements.
This is because models provide the possibility to investigate the effects of composition,
structure, and geometry using inferences of the compositional e.g., [31,35] and structural
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characterization of materials e.g., [18–21,32–34,36]. We note that laboratory and numerical
experiments are complementary and best used in combination.

In this study, the compressional (Vp) and shear wave (Vs) velocities of a near isotropic
standard stainless steel were measured up to 600 MPa confining pressure and temperatures
up to 600 ◦C using an ultrasonic frequency measurement setup in a multi-anvil apparatus.
A numerical model created with the COMSOL Multiphysics® software was set up and
benchmarked against the laboratory measurement data. COMSOL Multiphysics is a
general-purpose commercial finite element software. Models were set up and tested in
2D and 3D to simulate elastic wave propagation in the multi-anvil apparatus for the
same stainless steel standard in order to verify the model based on laboratory data. This
numerical setup can be used as a toolbox to obtain a better understanding of the role of
different features, ranging, for example, from microstructural effects of minerals in rocks to
compositional layering at the macroscopic scale. In this study, the numerical benchmark
models consider an elastic isotropic material with various boundary conditions.

2. Methodology
2.1. Sample Description

The sample is a homogenous cube of steel with edge lengths of 43 mm (Figure 1; steel
grade ATS 314). The steel is composed mainly of Fe (~55–60%), with minor amounts of Cr
(~25%), Ni (~20%), Mn (~2%), Si (~1–3%), and minor C, S, and P. The listed mechanical prop-
erties at room conditions show a modulus of elasticity (Young’s modulus, E) of 200 GPa and
a density of 7900 kg/m3 (https://www.azom.com/article.aspx?ArticleID=8259, accessed
on 4 March 2022).
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Figure 1. Standard stainless steel sample, ATS-314. The arrow mark on the sample shows the
orientation of how the sample is placed in the multi-anvil apparatus.

2.2. Experimental Setup

The laboratory measurements were performed with a triaxial multi-anvil apparatus
(Figure 2) at the Institute for Geosciences at Kiel University, Germany. The apparatus has
six pistons that are used to apply stresses. Ultrasonic velocities (P- and S-waves) were
measured using the ultrasonic pulse transmission technique e.g., [1,2,6,8–15,36]. Three
ultrasonic transducers were mounted at the end of each piston in a configuration that

https://www.azom.com/article.aspx?ArticleID=8259


Resources 2022, 11, 49 3 of 14

allows for the transmission of one compressional wave velocity, Vp, and two orthogonally
polarized shear wave velocities, Vs1 and Vs2, along the three sample axes. The dominant
frequencies of the transducers were 2 MHz and 1 MHz for P- and S-waves, respectively.
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Figure 2. (a) Setup of the multi-anvil apparatus and positioning of the P and S wave transducers.
(b) Transducers are placed at the end of pistons, and thermocouples are placed close to the piston-
sample interface, and (c) measurement setup along the three principal axes, X, Y, and Z (modified
from [10]).

The apparatus is capable of operating at temperatures up to 750 °C; however, in
order to prevent the initiation of thermal cracks or the propagation of existing cracks with
thermal-induced stresses, as a laboratory routine, the samples are generally tested to a
maximum confining pressure of 600 MPa and a temperature up to 600 ◦C. Changes in
sample dimensions, as a function of pressure and temperature, are monitored by linear
strain sensors, which are used to correct Vp and Vs measurements. In the current study,
the experiments began at room pressure and temperature conditions, followed by an
incremental increase in pressure to 600 MPa. In the second phase, the confining pressure
was kept constant, and the temperature was increased to 600 ◦C, in steps of 100 ◦C. During
these two phases, when the apparatus reached the desired condition, ultrasonic wave pulses
were applied to the sample along the three principal axes. Vp and Vs of the corresponding
nine ultrasonic waves were measured along the three sample axes, three were P, and six
were S waves.

The elastic wave speeds were calculated by the following equations:

Vp,s = L/∆tp,s (1)

where L is the sample length (in m), ∆t is the time of flight of the ultrasonic wave, measured
in seconds. To compensate for the change in length at higher pressure and temperature
conditions, the linear strain was used to recalculate the velocity, using:

Vp,s(P,T) = (L − ∆L)/∆tp,s (2)



Resources 2022, 11, 49 4 of 14

where ∆L represents the change in length of the sample, measured based on the piston
displacement at elevated pressures and temperatures. Similarly, the density (ρ) of the
sample is calculated based on the experimental condition, which at room conditions is:

ρ0 =
m
V

(3)

where m is the sample mass (kg) and V is the sample volume (m3). Mass and volume were
determined by measurements of weight and sample length, and since the sample is small,
any influence due to gravity is neglected. At elevated pressure and temperature conditions,
the change in volume (∆V) is considered, and:

ρ(P, T) =
m

V − ∆V
(4)

The first and second dynamic elastic moduli (Lamé’s constants, λ and µ) are calculated
from the measured Vp and Vs, such that:

Vp =

√
2µ+ λ
ρ

(5)

Vs =

√
µ

ρ
(6)

from which Young’s modulus (E) and the Poisson ratio (υ) can be calculated, according to:

E =
µ(3λ + 2µ)
λ + µ

(7)

ν =
λ

2 (λ + µ)
(8)

Finally, we also calculate the mean Vp and Vs, as well as the anisotropy of Vp (%AVp),
using:

Vp mean =
Vpmax + Vpmin + Vpint

3
(9)

%AVp =
Vpmax − Vpmin

Vpmean
× 100 (10)

where Vpmax, Vpmin, and Vpint are the maximum, minimum, and intermediate P-wave
velocities measured along the principal sample axes (Figure 2c). In addition, we calculated
the difference in shear wave speed of the two polarized shear waves in terms of percentage
(dVs%), using dVs (%) = (Vs1 + Vs2)/(Vs1 − Vs2) × 100 (%).

Measurements were carried out in two phases for increasing pressure and temperature.
In the first phase of measurements, the ultrasonic wave velocities (Vp, Vs) were measured
while the pressure was increased step-wise from the room conditions up to 600 MPa
(Figure 3a,c,e,g). For each pressure increment, the sample was allowed to equilibrate at
the new pressure for 5 min before the measurement was conducted. In the second phase,
the confining pressure was kept constant at 600 MPa, and the temperature was increased
step-wise to 600 ◦C (Figure 3b). A period of 30 min was used to let the sample equilibrate
at the new temperature. The confining pressure was kept near-constant, at 600 MPa, to
limit thermally induced stresses due to expansion and re-opening of pores, flaws, and
micro-cracks in the sample while measuring the ultrasonic wave speeds (Figure 3b,d,f,h).
Linear strains from all 3 sample axes were measured during confining pressure conditions
from room pressure to 600 MPa and temperatures from room conditions up to 600 ◦C
(Figure 4a,b). Linear strain measurements reflect sample volume changes because of
increasing pressure and temperature. This volumetric change, calculated from the linear
strain, indicates how the sample changes dimensions during pressurization and increase in
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temperature. The linear strain is small for the pressure increase and relatively much larger
for an increase in temperature. In other words, the effect of temperature is significantly
greater than the effect of pressurization in influencing the sample volume (Figure 4a,b).
Figure 4c,d show the calculated Young’s modulus and Poisson ratio, from the Vp and
Vs measurements, as a function of pressure and temperature. For further details on the
laboratory measurement technique, we refer to [6,36].
Resources 2022, 11, x FOR PEER REVIEW 6 of 17 
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room conditions up to 600 MPa and 600 °C. (a) Vp as a function of confining pressure. Note that Vp 
is slower along the Z-axis than along X- and Y-axes at low confining pressure; the difference be-
comes very small at higher pressures. (b) Vp as a function of temperature at a fixed confining pres-
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Figure 3. Ultrasonic Vp and Vs measured as a function of confining pressure and temperature from
room conditions up to 600 MPa and 600 ◦C. (a) Vp as a function of confining pressure. Note that Vp
is slower along the Z-axis than along X- and Y-axes at low confining pressure; the difference becomes
very small at higher pressures. (b) Vp as a function of temperature at a fixed confining pressure
(600 MPa). (c,e,g) show the measurements of two polarized shear waves and the shear wave splitting,
dVs (%) as a function of confining pressure; (d,f,h) show the measurements of two polarized shear
waves and the shear wave splitting, dVs (%) as a function of temperature.
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and Poisson’s ratio (from the mean Vp and Vs ) as a function confining pressure and temperature,
respectively.

2.3. Numerical Methodology
Governing Equations and Constitutive Laws

For a general solid in two and three dimensions, with boundary conditions in one to
two dimensions and neglecting body force, the equation of motion can be expressed in
Einstein notation as:

σij,j = ρ
··
ui; for i, j = 1, 2, 3 (11)

where σij is the stress tensor, ρ is density, and ui is the displacement vector. Dots above
variables specify time derivatives. This equation is supplemented with suitable sets of
boundary and initial conditions. For rheology applications, a pure linear elastic constitutive
law (Hooke’s law) is used [37]:

E
(1 + ν)

(
ν εkk δij

(1 − 2ν)
+ εij

)
= σij (12)

In Equation (13), the isotropic form of Hooke’s law is given in terms of E and v; εij
is the strain tensor, εαα is the volumetric strain, and δij is the Kronecker delta. The εij
are also the infinitesimal strain tensor components which are kinematically related to the
displacement field ui, as follows:

εij =
1
2
(
ui,j + uj,i

)
(13)

In COMSOL Multiphysics software, version 6.0, the Solid Mechanics module part of
the Structural Mechanics Module has implemented the weak form of the above sets of
equations in the framework of the finite element method and can be efficiently used to
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describe the seismic wave propagation in a solid media that is modeled as an isotropic
linear elastic media.

The 3D FE mesh used was tetrahedral. The model steps are given in microseconds
due to the very high frequency (MHz) of the incident wave, and the size of the samples
is given in meters (Figure 5). The edge boundary condition for the compressional wave
is zero displacement in the normal direction and free slip in the direction parallel to the
boundary. Symmetry and roller boundary conditions are both the same in two-dimensional.
For the shear wave, the displacements perpendicular to the polarization direction are set to
zero, whereas in the polarization direction, the corresponding stress is set to zero (that is,
on the plane with normal motions, the normal stress is set to zero, and on the plane with
shear motions, the associated shear stress is set to zero). The buffer zone (piston setup in
the current model) is formed out of the same material as the steel samples tested for this
bench-mark study.

Table 1. Young’s modulus, Poisson’s ratio, and density for the laboratory measurements (used as
input for the numerical model) and the output results in the form of the P wave and a shear wave
(note that no polarization is reported in the numerical model).

Young’s Modulus
(GPa) Poisson’s Ratio Density (kg/m3) Vp (km/s) Vs (km/s)

Laboratory experiment 228 0.298 8256 6.03 3.26

Numerical results
2D/3D 228 0.298 8256 6.1 3.3
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3. Results
3.1. Laboratory Measurements of Ultrasonic Wave Velocities and Dynamic Elastic Properties

From the Vp and Vs measurements along sample X, Y and Z-axes, it was possible to
obtain Vpmean and Vsmean (Equation (9)), as well as AVp, AVs (Equation (4)), and linear
strain. Vpmean increased from 5.97 km/s to 6.08 km/s, from room pressure conditions
to 600 MPa. The values of Vpmean decreased from 6.08 to 5.80 km/s during increasing
temperature to 600 ◦C (Figure 3b). Anisotropy of Vp is below 1%, indicating that the steel
can be considered effectively isotropic. The anisotropy increases slightly from temperatures
of 500 ◦C to 600 ◦C but is still below 1%. The intrinsic Vp and Vs presented in Figure 3
represent linear fits to the mean Vp above 200 MPa for Vp and Vs as a function of pressure,
whereas the intrinsic Vp and Vs as a function of temperature take into account all Vp and
Vs measurements as a function of temperature.

Linear strain along the 3 sample axes (ε1, ε2, and ε3) was determined from the
piston displacement and shows how the sample deforms as a function of pressure and
temperature. Negative linear strain is considered as an expansion of the sample in the
laboratory measurement, whereas positive strain is considered compaction of the sample.
Importantly, these data provide changes in sample length, which are subsequently used to
calculate Vp and Vs and recalculate density. Linear strain appears similar along all sample
axes during pressurization, with somewhat higher positive values of ε2 (sample shortening
along the y-axis), compared to ε1 and ε3. During increasing temperature, linear strain
along all sample axes is very similar, with negative values (expansion) but higher relative
values compared to linear strain during pressurization. This indicates that heating the steel
has a larger influence on sample volume compared to the pressurization, and hence also
on Vp and Vs. From the Vp, Vs measurements, the material properties, including Young’s
modulus, Poisson’s ratio, and density, were calculated (Figure 4c,d). The elastic constants
and density served as input parameters for the numerical modeling of Vp and Vs and
benchmarking of the model.

3.2. Numerical Modelling Results

The numerical models (used for benchmarking) were developed in two and three
dimensions with the same material properties (Table 1) and similar geometry and bound-
ary/initial conditions. The three-dimensional model is drawn to simulate a realistic setup
of pistons and sample with similar dimensions used as in the laboratory (Figure 5). Since
the geometry is symmetric, the extension from the two-dimensional case to the three-
dimensional case is considered trivial, although it could be affected if different boundary
conditions were used in the two different model setups. The geometry of the model, includ-
ing the steel sample (in orange) in the middle and the pistons of the multi-anvil apparatus
(in grey), are shown in Figure 5. Two buffer zones, representing the apparatus pistons, were
placed on the left and right sides of the specimen to resemble the laboratory conditions
as close as possible and eliminate model artifacts and edge effects as much as possible.
Comparing the first peak arrival time of the incoming and outgoing waves of the constant
geometry (in the sample), it is possible to calculate the Vp and Vs using Equation (1) from
(Figure 6). The numerical test specimen was set up with material properties from Table 1.
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20 152 6.01 6.09 6.07 6.054 6.054 6.054 −0.05 0.03 0.01 6.054 
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Figure 6. Illustration showing how the velocity is calculated from the incoming and outgoing waves;
(a) geometry of investigation and the two sensor boundaries for the elastic wave (in blue and green),
(b) waveform, where ∆t is the time of flight-of-flight, determined from the peak amplitudes in the
two waveforms.

The modeling results for two- and three-dimensional cases were essentially identical
and differed by less than 2% in general compared to the laboratory measurements under
all experimental conditions (Table 2). Even though it is expected that the measured and
modeled Vp and Vs should perfectly coincide (given that the measured values are used as
input for the models), the small difference likely arises from uncertainties in the picking of
the modeled velocities and effects related to the setup of the model (e.g., size of the model
mesh). In this model, the polarization is imposed as in Figure 5c,d. The polarized shear
waves are equal for all two-dimensional cases, and no difference is observed in the S-waves
for isotropic three-dimensional cases.

The density and elastic moduli of steel measurements make it possible to consider
the influence of pressure and temperature effects on Vp and Vs in the numerical model
(Figures 3 and 4). The changes in density and elastic moduli during applied confining
pressure were small, with ~2% change in density and ~5% change in elastic moduli from
room pressure to 600 MPa. However, these changes were much more significant for increas-
ing temperature (at a fixed confining pressure of 600 MPa), where density and Young’s
modulus changed from 8256 kg/m3 and 228 GPa at room temperature to 8053 kg/m3

and 188 GPa at 600 ◦C (Figure 4c,d). Poisson’s ratio changed from 0.298 to 0.320 for the
same increase in temperature. In the model, we use the recalculated density and elastic
moduli to model Vp and Vs in order to incorporate the effect of pressure and temperature
on elastic wave velocities. The numerical modeling results, presented in Figure 7 and
in Table 2, generally illustrate no difference compared to the measured Vp and Vs. The
models were ran as an isotropic elastic medium and therefore the models currently run
very fast. However, more complicated models in three-dimensional geometries will have
much longer run times than two-dimensional ones.
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Table 2. Laboratory measurements, numerical modeling, and their Vp data. Abbreviations: Temp—
temperature (◦C); Pc—Confining pressure; VpL—laboratory-measured Vp; VpN—numerically mod-
eled Vp. Vpmean are calculated from laboratory measurements using Equation (9).

Laboratory Numerical dVp (VpL-VpN)

Temp. Pc Vp-Z Vp-Y Vp-X Vp-Z Vp-Y Vp-X dVp-Z dVp-Y ∆Vp-X Vp
Mean

(◦C) (MPa) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s)

20 12 5.85 6.03 6.02 5.967 5.967 5.967 −0.12 0.06 0.06 5.967

20 25 5.87 6.04 6.04 5.985 5.985 5.985 −0.12 0.06 0.06 5.985

20 35 5.88 6.05 6.06 5.996 5.996 5.996 −0.12 0.06 0.06 5.996

20 51 5.9 6.07 6.07 6.011 6.011 6.011 −0.11 0.05 0.05 6.011

20 76 5.95 6.08 6.07 6.033 6.033 6.033 −0.08 0.05 0.03 6.033

20 102 5.99 6.09 6.07 6.051 6.051 6.051 −0.06 0.04 0.02 6.051

20 152 6.01 6.09 6.07 6.054 6.054 6.054 −0.05 0.03 0.01 6.054

20 203 6.02 6.09 6.07 6.062 6.062 6.062 −0.04 0.03 0.01 6.062

20 254 6.03 6.09 6.08 6.067 6.067 6.067 −0.03 0.02 0.01 6.067

20 305 6.04 6.09 6.08 6.071 6.071 6.071 −0.03 0.02 0.01 6.071

20 356 6.05 6.09 6.08 6.072 6.072 6.072 −0.03 0.02 0 6.072

20 407 6.05 6.09 6.08 6.074 6.074 6.074 −0.02 0.02 0.01 6.074

20 458 6.06 6.09 6.08 6.076 6.076 6.076 −0.02 0.01 0 6.076

20 509 6.06 6.09 6.08 6.077 6.077 6.077 −0.02 0.01 0 6.077

20 560 6.06 6.09 6.08 6.078 6.078 6.078 −0.01 0.01 0 6.078

20 600 6.06 6.09 6.08 6.079 6.079 6.079 −0.02 0.01 0.01 6.079

20 600 6.07 6.09 6.09 6.082 6.082 6.082 −0.01 0.01 0 6.082

101 600 6.03 6.04 6.05 6.04 6.04 6.04 −0.01 0 0.01 6.04

201 600 5.99 5.99 6.01 5.998 5.998 5.998 −0.01 0 0.01 5.998

301 600 5.94 5.95 5.96 5.951 5.951 5.951 −0.01 0 0.01 5.951

402 600 5.89 5.9 5.91 5.901 5.901 5.901 −0.01 0 0.01 5.901

501 600 5.85 5.84 5.86 5.851 5.851 5.851 0 −0.01 0.01 5.851

601 600 5.78 5.76 5.8 5.783 5.783 5.783 0 −0.02 0.02 5.783
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Figure 7. Vp calculations from the two- and three-dimensional numerical modeling with COMSOL,
investigating the effect of (a) pressure and (b) temperature on the elastic wave speed. Note that the
models do not consider the changes in linear strain, but do take into consideration dynamic elastic
moduli (Young’s modulus and Poisson ratio) and density. In contrast, the Vp and Vs laboratory
measurements depend on the time-of-flight of the elastic wave and the change in sample length.

4. Discussion and Conclusions

This study presents a new COMSOL Multiphysics-based numerical model for elastic
wave propagation in materials in two- and three-dimensions, which is verified (bench-
marked) using the results from laboratory measurements of steel up to 600 MPa confining
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pressure and temperatures up to 600 ◦C. The numerical modeling results show less than a
2% difference with measured experimental values; there was no difference between results
from two- and three-dimensional models.

Although the model presented in this study presents a relatively simple application,
in which the velocities obtained are based on known laboratory-measured Vp and Vs
as a function of pressure and temperature, there is considerable flexibility in setting up
different kinds of models. For example, geometries with anisotropic minerals due to lattice
preferred orientation, stratified geometry, grain size and shape and structural effects, such as
inclusions of partial melting, the existence of microcracks, the effect of grain boundaries, and
grain sliding. The advantage of the numerical model, developed in COMSOL Multiphysics,
is the possibility to investigate elastic wave propagation in a variety of model setups,
considering numerical experiments both on a laboratory scale and field scale (as well
as upscaling of laboratory results). This numerical tool can include a variety of mineral
arrangements (geometry) and can propagate P- and S-waves from different directions to
determine seismic anisotropy; it is simple to extend investigations to study the directional
dependency of waves and anisotropy into three dimensions. Three-dimensional models
are valuable since all laboratory experiments are performed in three dimensions.

A notable effect in laboratory measurements is the closure of pores and microcracks
during sample pressurization, which is illustrated by an exponential increase in elastic wave
speed at low confining pressure, which generally occurs below 200 MPa e.g., [1,2,38–40]. In
geological samples, this is known as the crack-closure domain, in which no notable contri-
bution to sample volume change occurs (i.e., no notable linear strain changes), but with a
pronounced effect on Vp and Vs. To incorporate such crack closure requires a modification
of the numerical model but remains possible with the COMSOL Multiphysics software.
In contrast, the effect of temperature on samples, which results in thermal expansion, is
evident in linear strain measurements and associated sample volume change. An extension
of the model can be set up to investigate the effects of pressure and temperature changes
on Vp and Vs by incorporating thermal expansion and pressure/temperature-dependent
derivatives of Vp and Vs.

Current numerical results allow studying the relations between the structural frame-
work of the rocks (foliation, lineation), velocity anisotropy, shear wave splitting, and shear
wave polarization. Anisotropic materials can be considered in the model using the complete
elastic stiffness tensor (as defined by Hooke’s law in anisotropic form) with up to 21 inde-
pendent elastic constants e.g., [29] (see appendix/online Supplementary Materials). Such
a model setup can play an essential role when studying the influence of crystallographic
preferred orientation (CPO) developed by viscoplastic deformation in ductile materials
e.g., [16,17,24–28]. Data sets for CPOs can be obtained from measurements using Scanning
Electron Microscope Electron Backscatter Diffraction or, for example, from viscoplastic
self-consistent models e.g., [41,42]. Changes in the shape and sizes of geometrical inclu-
sions can, for example, represent grain shape and size e.g., [6,36,43,44]), as such numerical
models are used to further investigate the effect of grain sizes and grain boundary on
ultrasonic waves. The numerical COMSOL Multiphysics model introduced in this study
provides a relatively simple option to study the elastic properties of complex geological
materials and serves as a useful addition in the fields of digital rock physics and materials
science. Further information and examples of applications with the COMSOL Multiphysics
model presented in this study are available in Supplementary Materials and the YouTube
channel: https://youtu.be/XxCVrix54V4 (accessed on 20 February 2022).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/resources11050049/s1, S1: Numerical model setup for anisotropic
medium; The module recipe used with this COMSOL model is freely available in Supplementary
Materials and the YouTube channel https://youtu.be/XxCVrix54V4 (accessed on 20 February 2022)

https://youtu.be/XxCVrix54V4
https://www.mdpi.com/article/10.3390/resources11050049/s1
https://www.mdpi.com/article/10.3390/resources11050049/s1
https://youtu.be/XxCVrix54V4
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