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Abstract
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Consider the problem where we want a computer program capable of recognizing a pedestrian on
the road. This could be employed in a car to automatically apply the brakes to avoid an accident.
Writing such a program is immensely difficult but what if we could instead use examples and
let the program learn what characterizes a pedestrian from the examples. Machine learning can
be described as the process of teaching a model (computer program) to predict something (the
presence of a pedestrian) with help of data (examples) instead of through explicit programming.

This thesis focuses on a specific method in machine learning, called deep learning. This
method can arguably be seen as sole responsible for the recent upswing of machine learning in
academia as well as in society at large. However, deep learning requires, in human standards, a
huge amount of data to perform well which can be a limiting factor. In this thesis we describe
different approaches to reduce the amount of data that is needed by encoding some of our prior
knowledge about the problem into the model. To this end we focus on sequential and hierarchical
data, such as speech and written language.

Representing sequential output is in general difficult due to the complexity of the output
space. Here, we make use of a probabilistic approach focusing on sequential models in
combination with a deep learning structure called the variational autoencoder. This is applied
to a range of different problem settings, from system identification to speech modeling.

The results come in three parts. The first contribution focus on applications of deep learning
to typical system identification problems, the intersection between the two areas and how they
can benefit from each other. The second contribution is on hierarchical data where we promote
a multiscale variational autoencoder inspired by image modeling. The final contribution is on
verification of probabilistic models, in particular how to evaluate the validity of a probabilistic
output, also known as calibration.
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Populirvetenskapling
sammanfattning

“Ndr fordndringens vind blaser, bygger en del vindskydd
medan andra bygger viderkvarnar.”

— Kinesiskt ordsprak

Mainniskor dr nyfikna och nér det kommer till att utforska, tolka och forsta
var omgivning finns det inget som klar oss. Vi kan skaffa oss nya fardigheter
och insikter enbart genom att observera och interagera med virlden omkring
oss. Maskininldrning handlar om att ge maskiner eller datorprogram en del
av den féormégan; maskinen skall kunna léra sig utifran exempel. I maskinin-
larning pratar man dock séllan om maskiner eller datorprogram utan istéllet
modeller; vilka kan ses som komponenter i datorprogram. I grunden &r dessa
modeller egentligen matematiska funktioner vilka autonomt kan anpassas till
de exempel (vanligtvis kallat data) som de ldr sig av; en bittre term kanske
saledes hade varit autonom modellanpassning.

Sedan den industriella revolutionen har maskiner hjélpt ménniskan att gen-
omfora monotona och repetitiva uppgifter. Detta har ocksa fortsatt in i den
digitala virlden med datoriseringen. Vissa uppgifter har dock varit alltfér
komplicerade for att kunna programmeras explicit. Ett exempel pa det &r att
identifiera ett foremal i en okénd milj6 fran en bild, se till exempel Figur 1.
Maskininldrning mojliggér detta och 16ser problem som tidigare uppfattats
som omdjliga.

Maskininlarning 4r i grunden ett férhallandevis gammalt koncept och for-
mulerades redan i borjan av datoriseringen pa 1960-talet. Det dr dock under det
senaste decenniet som maskininldrning tagit steget ut ur den akademiska sfaren
och borjat paverka samhdllet i allt storre utstrackning; framforallt inom rost-
och bildigenkénning med exempel s& som robotdammsugare, sjdlvkorande bi-
lar och personliga assistenter som Google now och IPhones Siri. Det dr svart att
sdga exakt vilka faktorer som har varit viktigast for att det steget skulle tas just
nu, men en viktig faktor dr rent berdkningsmaéssig i kombination med méngden
data; det gick helt enkelt inte att gora de berdkningarna som behovdes tillrack-
ligt snabbt tidigare. Detta har i sin tur lett till flera viktiga tekniska framsteg
som forstarkt effekten av 6kad berdkningskapacitet.

Denna avhandling behandlar framférallt en specifik maskininldrningsteknik
kallad deep learning; en relativt ung teknik som kraver vildigt mycket data,
men som ocksa ger vildigt bra resultat. Fran ett méanskligt perspektiv dr dock



Recognition results:Power Strip

Confidence:85%

Figur 1. Fran en robotdammsugares perspektiv har en maskininldrningsmodell i robot-
dammsugaren identifierat en grenkontakt under bokhyllan. Den bla rutan representerar
var i bilden som modellen lokaliserat objeket; grenkontakten i detta fall. Programmet
som styr dammsugaren dr programmerat att undvika grenkontakter for att slippa trassel
med sladdarna och kommer styra undan fran den. Att manuellt (d.v.s. utan hjilp av
maskininldrning) programmera en modell som identifierar grenkontakter &r néra pa
omojligt.

méngden data ofta uppseendevickande stor och overstiger med rdge den méng-
den vi ménniskor behover for att 14ra oss en ny formaga; ofta &r den flera stor-
leksordningar storre. I denna avhandling presenterar vi olika alternativ for hur
man kan utnyttja pa férhand kind information och inkludera det i designen av
modellen. Med en sddan modell kan man reducera méngden data men med
bibehallen prestanda, alternativt fa béttre prestanda med samma méngd data.

En begréansade faktor nédr det kommer till maskininldrning ar typiskt sett
méngden tillgdnglig data; framforallt den midngden data som har bra kvalitet.
Forestill dig en organisation som vill automatisera en process med hjilp av
maskininldrning. I en sédan situation &r en faktor som litt forbises kostnaden
for att behandla data till en bra kvalitet. Den data som redan finns tillgdnglig
ar ofta oorganiserad och ostandardiserad, ndgot som har negativ inverkan pa
modellen. Att reducera mingden data som behover férbehandlas genom att
utnyttja redan kidnda egenskaper i datan kan séledes vara avgorande for om ett
projekt kommer att lyckas.

I den hir avhandlingen fokuserar vi pad hur man kan utnyttja att datan har
sekventiell natur och hur man kan kombinera det med deep learning, samt hur
klassiska modeller for sekventiell data forhaller sig till modeller som bygger
pa deep learning. Vi behandlar ocksé flera olika metoder som ber6r generering
av sekvenser, till exempel att generera tal och text, och hur modeller som goér
detta kan konstrueras effektivt.
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Introduction

“Look deep into nature, and then you understand
everything better.”

— Albert Einstein

Machine learning sounds more abstract than it really is and can, in a nutshell,
be described as finding patterns in data. In the machine learning lingo, this is
called fitting a model to the data or training a model. Typically, machine learn-
ing problems are divided into three groups: supervised learning, unsupervised
learning and reinforcement learning, which are distinguished from each other
by how the data is used to train the model. A supervised model predicts a set
of output features given a set of input features and needs matching examples
of input and output data to be trained. An unsupervised model finds patterns
in (or models) the data to discover properties or relations that explain the data
without relying on any predefined labels, e.g. as in clustering. A reinforce-
ment learning model learns how to act/predict given only a feedback signal
(reward), while at the same time being responsible for gathering more data by
interacting with its environment.

The vast majority of machine learning algorithms represents the model as
a set of functions — machine learning and function approximation can thus be
used almost interchangeably. An important aspect of this is that we can encode
any prior knowledge that we have about the data into this function and the
optimization of the function, to significantly increase the model’s performance.

This introductory chapter gives a brief background to the core concepts used
in this thesis and puts them into a broader context. Furthermore, it provides
the foundation for the chapters to come and how they relate to each other.

1.1 The sequential problem

The model structures used for the machine learning problem highly depend
on the data they are applied to. Problems defined by data with a natural se-
quential ordering, i.e. sequential problems, can roughly be divided into five
cases: sequence classification and regression; unconditioned sequence gen-
eration; conditioned sequence generation; sequence-to-sequence; and synced
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Chapter 1. Introduction

Sequence classification Uncondltloned Conditioned Synced
Sequence-to-sequence
and regression generation aequence -t0- aequence

Figure 1.1: The five different sequential model structures. The subscripts of the in-
puts and the outputs indicate the sequential order. Inputs and outputs without indices
are considered nonsequential. The arrow in the case of synced sequence-to-sequence
models indicates that information inside this box can not travel in the opposite direc-
tion, e.g., y; can not depend on x,. Note that the input to the sequence-to-sequence
model does not need to have the same length as the output.

sequence-to-sequence. This division is visualized in Figure 1.1 and to exem-
plify four of these cases, we introduce running examples in Section 1.5.

Sequence classification and regression problems are defined by a sequen-
tial input and an output that we wish to predict. As an example of classification,
we consider a problem where we want to binary classify whether a recorded
sound is the sound of a person coughing or not. We introduce this problem
further in Section 1.5.1.

All other problem cases have sequential output. For such problems without
a dedicated input, i.e. unconditioned sequence generation, the goal is to
accurately model and analyze the data and/or the generating system. The use
case can be to continuously predict the future, i.e. forecasting, or to be able to
generate new sequences. System identification without exogenous input [1, 2]
is another example of this. This thesis use modeling of handwritten text and
speech as an example of a sequence generation problem, where the intent of the
modeling is to analyze the data and generate new examples. This is formally
introduced in Section 1.5.2. A natural extension to this is to condition on some
nonsequential data, i.e. conditioned sequence generation. An example of
this is to generate handwritten text according to some input. We illustrate this
case in Figure 1.2, but do not cover it with a dedicated example.

We can also consider the case where we condition on a sequential input.
We call this case a sequence-to-sequence (also referred to as seq2seq [3]) or
a translation problem due to its structural similarity with the problem of trans-
lating a sentence from one language to another language. In this thesis we
exemplify the sequence-to-sequence problem in Section 1.5.3, where the goal
is to generate speech from text.

Finally, we consider the case of synced sequence-to-sequence problems.
Problems on this form are often similar to the unconditioned case, however,
the use case is slightly broader as it can also include filtering, reinforcement
learning and control problems. The fundamental difference between synced
sequence-to-sequence and translation is that information can only travel for-

12



1.2. Generative models

Vision Language
Deep CNN Generating RNN

.\ A group of people

/.\ shopping at an outdoor

.\ /. market.

— P —> —

.\ /. There are many
- vegetables at the

([ fruit stand.

Figure 1.2: The output of a sequential model is often probabilistic and the output
needs to be sampled to be interpretable. Here the model has produced two different
sampled captions when conditioned on the image on the left. Reprinted by permission
from Springer Nature: Deep learning, LeCun et al. [4] Copyright (2015).

ward inside the sequential model — something we call a causal constraint. This
constraint limits the model so that the output can never depend on any inputs
from the future. Examples of this case are control, model-based reinforcement
learning and system identification with exogenous input [1, 2]. The last of
these is used as a running example in Section 1.5.4.

A very common assumption for sequential models is that they are time-
invariant. In machine learning there are three large classes of models that
adhere to this property: autoregressive models with finite history; state-space
models with a finite state-space; and transformers, a type of kernel-based mod-
els that can be considered to belong to both of the already mentioned classes [5].
Chapter 2 gives a more thorough background on autoregressive and state-space
models, and transformers are further discussed in Section 4.10.

Traditionally, system identification has provided the go-to methods for se-
quential problems. The feasible problems were limited to problems that re-
quired either a relatively short memory or a very deep understanding of the data
by the model engineer. With deep learning (see Section 1.3) the set of feasi-
ble problems changed heavily in favor of problems that require longer memory,
broadening the range of solvable problems. This has generated an explosion of
new models and methods, e.g. electrocardiogram classification [6], speech and
text language modeling [7, 8], human motion prediction [9] and human level
Starcraft II gameplay [10]. However, models based on deep learning tend to
be a lot more data hungry, i.e. require more data, than system identification
models.

1.2 Generative models

Classically, a generative model is viewed in contrast to a discriminative
(supervised) model [11]. While both models are probabilistic, the generative
model considers the joint distribution, i.e. the inputs and the outputs, and the

13



Chapter 1. Introduction

discriminative model considers the conditional distribution, i.e. the output con-
ditioned on the input. However, in this thesis we slightly deviate from this
terminology and use the term generative model in a wider sense. In generative
models we also include problems that have a dedicated input if the output space
is complicated and a substantial part of the complexity in the model appears in
modeling the output space rather than the conditioning input space. This is the
case for many models with sequential output, where the output distribution of-
ten is very complex. See for example Figure 1.2, where the same input image
can generate several quite distinct plausible captions.

A generative model can also be seen in the light of the slightly wider concept
of unsupervised modeling, which is not limited by the probabilistic notation
that accompanies the generative terminology. The purpose of unsupervised
modeling is to get insights about the data, or as a tool to enable a supervised
machine learning algorithm to perform better when the amount of labeled data
is scarce (i.e. semi-supervised learning and transfer learning, see Section 3.5).
A generative model can fulfill this role, while also being able to generate arti-
ficial data and possibly detect out-of-distribution data.

One purpose for the generative models that are used today is to push the
advancement of new architectures. Generative models enable us to investigate
what properties of the data the model can capture, e.g. by visually inspecting
samples from the model. In this way, we can guide the model development
towards models that are able to represent features that humans identify as im-
portant in the data. The learned model structures can then be translated to
other problem setups, e.g. a supervised problem, which can benefit from these
features and also increases the interpretability of the model. One example of
generative image modeling is the NVAE model [12] trained to generate images
of humans, see Figure 1.3. Even though these generated images have some ar-
tifacts, we can see that the model generates many of the essential features of a
face.

1.3 Deep learning

Efficiently approximating functions is fundamental in essentially all ma-
chine learning. Be it predicting the electricity price in 24 hours [13] or classify-
ing the bird species producing that chirp you heard outside your window [14].
The great conundrum here is if and how we can get a model to learn as effi-
ciently as a human, child or adult. In other words, how can we constitute the,
for us, inherent human prior that seems rudimentary for efficient learning, into
a model. Although humans as a species are far from unraveling the true nature
of this problem, the recent breakthrough of machine learning using neural net-
works have made significant progress on this matter — solving problems that
only 15 years ago would have been classified as impossible.

14



1.3. Deep learning

Figure 1.3: Images generated from the NVAE model [12].

Neural networks have, from being a niche area of machine learning, grown
into one of the core pillars of machine learning today. The specific techni-
cal contributions behind this growth can be hard to pinpoint. Not only have
increased computational power made it possible to do more and larger experi-
ments, but, as more experiments are done, more data is also accumulated into
ever-growing datasets supporting these complex models.

The rapid development of neural networks, which started in the early 2010s,
led to networks that grew deeper and deeper, and researchers started to adopt
the term deep learning. Originally, deep learning was introduced to denote
models (not necessarily neural network-based) that were hierarchically divided
into several layers, largely inspired by the functional behavior in popular bio-
logical models of the human brain. However, the domination of neural net-
works combined with the deep learning structure have ultimately led to the
two becoming more or less synonymous with each other — both names now
imply a heavily parameterized and layered function.

At present day, deep learning (with neural networks) have approached a
more stable regime of its hype curve, where much of the research is focused
on application or adoption to new fields. A large portion of the more architec-
tural research have progressed to more niche domains, with datasets or com-
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Chapter 1. Introduction

putational resources infeasible for most academic-funded research (GPT-3 [7],
ViT [15], etc.). However, this does not mean the field is not moving, quite
the opposite. Development of both practical and theoretical aspects are made
continuously [16, 17], and applications and adoptions to new fields seems ev-
erlasting. It is now also possible to see a small shift in how deep learning
models are applied. Rather than training a model from scratch, one can start of
from models trained unsupervised on similar data and fine-tune them for the
problem at hand (see Section 3.5). This enables much larger models to be used
without overfitting. Recently, these large unsupervised models were dubbed
foundation models [ 18] for their use as a starting point to build many different
models.

1.4 Hierarchically structured data

Some areas where deep learning has had its greatest breakthroughs are prob-
lems involving images or spoken/written language. Before the introduction
of deep learning, these were problem areas where humans outshone machine
learning algorithms significantly. This has since then changed dramatically
and today a sufficiently trained image classification algorithm can surpass
even expert human classifiers, e.g. skin cancer classification models that sur-
pass dermatologists [19]. Another example is text generated with the GPT-3
model [7] that approaches a level where it can be hard to distinguish between
text written by a model and by a human. This has opened up a whole new
avenue of possibilities, e.g. a role-playing game/story told interactively with a
text-generating model'.

Both language and image data have in common that they are what we call
hierarchically structured. This structure manifests itself in that features that
efficiently describe the data have three properties. The first is a compositional
property, i.e., the features can be described hierarchically and advanced fea-
tures can be expressed using more basic features. The second is a locality
property, i.e., features on the same hierarchical layer are more correlated the
closer they are. The third is a consolidation property, i.e., more advanced fea-
tures tend to have lower frequency components than more basic features, i.e.,
advanced features correspond to a larger portion of the image or sequence.

To exemplify this we can consider features that represent an image of a
house. The simplest features are local and describe a local neighborhood well.
It could be the color of a patch in the image, the presence and the orientation
of an edge or the texture that make up a brick wall. On a second level, these
features can be combined in their local neighborhood to create larger features,
e.g. windows, walls and doors. Finally, these features can make up the whole
concept of a house and whether it has a postmodernism style or a traditional

aidungeon.io
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1.5. Running examples

Swedish red cottage style. With a similar argument one can decompose a text,
with letters forming up words and words that in turn make up sentences.

The hierarchical structure of deep learning models often matches the hierar-
chical structure of the data. It has been shown that this model structure imposes
a beneficial inductive bias on the model [20, 21]. In other words, it incentivizes
the model to learn inductive rules rather than memorizing the data. Since the
inductive bias affects the output of the model in a similar way as a prior, we say
that the hierarchical structure imposes a prior on the model. For the purpose
of this thesis we call this a deep hierarchical prior. For many problems, such
priors can have a big impact — especially when data is more scarce.

1.5 Running examples

To illustrate the different kinds of sequential problems we use four running
examples that we revisit throughout the thesis. These examples are introduced
in the following sections.

1.5.1 Example: Cough classification

Quantitative as opposed to qualitative measures can guide us to make objec-
tive decisions on what kind of treatment a patient in healthcare needs. It can
also enable us to compare different drugs and evaluate their effectiveness in a
more objective manner. One area that can benefit from quantitative measures
is chronic cough. Chronic cough is estimated to affect 5-15 % of the adult pop-
ulation and is defined as coughing that lasts longer than 8 weeks [22, 23]. On
a personal level, chronic cough is correlated with decreased life quality, so-
cial isolation and depression. Furthermore, patients with chronic cough have
50% higher chance of having seven or more days of sick leave per year [24].
Chronic cough also burdens the primary care, as cough is the third most com-
mon cause to seek healthcare at the primary care in Stockholm county, Swe-
den [25]. Measuring the severity of chronic cough for a patient, i.e. how often
they cough, enables a quantitative measure on the effect on the patients’ life
quality and/or the effectiveness of a certain drug.

A simple quantitative measure on coughing is to count how many times per
day the patient coughs. This can be done by giving a small collar mic and
recording device to the patient for wear under a period of time (~24 hours).
However, manually counting the incidence of coughs in the recording heav-
ily limits the usage of this measure as it is very labor intensive and thus very
expensive. The obvious alternative is to train a machine learning model to
separate coughing sounds from other sounds and use this to count the number
of coughs in the recorded audio. Since coughing sounds typically are around
one second long, one possible approach is to simply split the recorded audio
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Figure 1.4: Which of the spectrograms depicts a cough and which depicts dropped
keys? Time is on the x-axis, frequency is on the y-axis and the power is shown with
color, lighter color corresponds to higher power.?

into one second chunks and classify each chunk as either cough or no cough,
effectively turning the problem into a classification problem.

However, distinguishing between different sounds with machine learning is
very difficult and traditionally mel-spectrogram features have been used to re-
duce the dimensionality of the input space [26] (see Figure 1.4). A spectrogram
converts a signal into its frequency components and depicts how the power of
each frequency component varies with time. Even so, the problem is still prob-
lematic and the traditional methods had to resort to manual supervision [27].

1.5.2 Example: Generative models

To model the generative process underlying some data can for multiple rea-
sons be beneficial for the machine learning engineer, see Section 1.2. For the
specific case of handwritten text, a trained generative model can be used to im-
prove the decoding of the written text in a semi-supervised fashion. Similarly,
it can also be used to detect out-of-distribution samples and frauds, e.g. fake
signatures. Finally, it is also possible to use the trained model as a pretrained
model for generating handwritten text conditioned on some input [28, 29].

In this example we consider two datasets. The first is a dataset of handwrit-
ten text on a digital whiteboard [30] from more than 200 different writers. The
handwritten text consists of a series of pen positions coupled with an event of
when the pen is lifted from the screen. The text that is written can be visual-
ized by connecting all the pen positions for which the pen is not lifted. Some
samples from the dataset can be seen in Figure 1.5. The second dataset is a
speech dataset called Blizzard dataset [31] which consists of around 40 hours
of 16-kHz speech from audio books read by a single reader.
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Figure 1.5: Samples of handwritten text from five different writers in the Ila-
mOnDB [30] dataset.

Both handwritten text and speech are complex and multimodal, and are dif-
ficult to model. The complexity of the data means that the model needs to be
nonlinear, or have carefully designed features, to be able to accurately model
the data. Furthermore, for downstream modeling capabilities, e.g. using the
trained model to decode the text or speech, it is almost required to downsample
the sequences. Examples when this is required are for problems with handwrit-
ten text, where the sampling rate of the whiteboard is approximately 25 samples
per letter, and speech, where the typical phoneme length is tens or hundreds
of milliseconds long, corresponding to 100-1000s samples. Thus, as a further
constraint we concentrate on models that used downsampled intermediate fea-
tures to model the sequences.

1.5.3 Example: Text-to-speech

Text-to-speech, or speech synthesis [8, 32], is what we in this thesis call
a sequence-to-sequence problem, where the goal is to generate speech condi-
tioned on some text, see Figure 1.6. Speech synthesis is not only another inter-
face for digital communication, but also a tool for speech impaired humans to
speak or visually impaired humans to read.

An inherent problem with all sequence-to-sequence problems is that the in-
put sequence and the output sequence have different lengths and the causal re-
lationship between the two sequences could be arbitrary. This is very apparent
when translating between Japanese to English, where the order of subject, pred-
icate and object changes completely. In text-to-speech this mainly becomes a
problem of alignment as different parts of the text input are pronounced at dif-
ferent rates, c.f. the length of a t sound with the pause due to a period. A
common model structure for sequence-to-sequence problems, especially when

) '°() J& SQYSIUL} PUB SPUOIAS G'() J& SiIe)s punos doIp-£oy 9y, "SPU0ILs G'() JoYe YsIuLy
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”This is text-to-speech” Veziio-Spezon
model

Figure 1.6: The basic idea of a text-to-speech model. The model takes a sentence or
a statement and generates the corresponding sentence in raw audio format.
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Figure 1.7: A schematic of the circuit board used to generate the silverbox dataset [34].
The inputs signal u and the output signal y are sampled to produce the input and out-
put sequences, x;.1 and y., respectively. Models trained on this data are typically
unaware of this structure.

using deep learning, is the encoder-decoder structure [33]. In this structure the
encoder operates on the input and the decoder generates the output of the full
model conditioned on the output of the encoder. For this example, we consider
the input as a string of one-hot encoded characters, and the output is raw audio.

1.5.4 Example: Circuit modeling

Our final example is a problem from system identification. The data we
want to model is recorded output from a system excited with a known input
signal. The problem is what we call a synced sequence-to-sequence problem
as inputs in the future cannot affect the output at an earlier time step. The
trained model captures the behavior of the physical system and can be used for
prediction of the output given an input signal, to control the output to a specific
range or for insights about the physical system.

In the silverbox dataset [34] the input and the output are sampled from the
system at ~600 Hz over approximately 60 s with Gaussian white noise as input.
The system is a circuit board created to simulate a nonlinear harmonic oscilla-
tor, see Figure 1.7. This dataset is significantly smaller compared to the other
problems mentioned here, which in turn means that the model structures need
to have stronger priors and stronger regularization to avoid overfitting.
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1.6 Contribution

This thesis is located in the gap between the traditional field of system iden-
tification and the newer field of deep learning. The first papers are trying to
reduce the distance between the fields by using deep learning on typical system
identification problems (Paper I and Paper II). In addition to this it contributes
to understanding how we can translate the success of deep learning for image
modeling to the field of sequential modeling using similar constructions (Pa-
per III). This is done while keeping the notation and interpretation probabilistic,
which leads to the final contribution that is on the topic of assessing the validity
of probabilistic models (Paper 1V).

Paper I

C. Andersson, N. Wahlstrom, and T. B. Schon. “Data-Driven Impulse Response
Regularization via Deep Learning.” In: Proceedings of 18th IFAC Symposium
on System Identification (SYSID). Stockholm, Sweden, 2018, pp. 1-6

Summary: In this paper we present a novel idea on how to construct a
prior for the finite impulse response of a system through deep learning. This
prior is then used to regularize an estimator of the finite impulse response.
The main idea draws inspiration from impulse response estimations regular-
ized with Gaussian processes. In previous works, the Gaussian process is used
as a prior for the parameters in the impulse response estimation. In this paper,
we learn a prior that we model with deep learning instead of using a Gaussian
process.

Contribution: The idea originated from Niklas Wahlstrom, but the majority
of the implementation and writing was made by me.

Paper 11

C. Andersson, A. L. Ribeiro, K. Tiels, N. Wahlstrom, and T. B. Schon. “Deep
convolutional networks in system identification.” In: Proceedings of the IEEE
58th IEEE Conference on Decision and Control (CDC). Nice, France, 2019

Summary: Many results from deep learning are yet to impact system iden-
tification. This paper tries to connect deep learning and system identification
and experiments with known good models from deep learning by applying
them to typical system identification problems. Additionally, the paper inves-
tigates the relationship between the models from deep learning and the models
known in system identification.

Contribution: The general idea for the paper originated from Thomas Schon
while the idea for the connection to system identification via Volterra series
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was by Koen Tiels. He is also the author of that part of the paper. The rest of
the writing was jointly made by me, Antonio Riberio, Niklas Wahlstrom. The
implementation was done by me and Antdnio.

Paper III

C. R. Andersson, N. Wahlstrom, and T. B. Schon. “Learning deep autoregres-
sive models for hierarchical data.” In: Proceedings of 19th IFAC Symposium on
System Identification (SYSID). Padova, Italy (online), 2021

Summary: Deep learning has shown great results on image data with con-
volutional neural networks, which utilize invariances and other prior beliefs we
have of the data. This work aims to translate these ideas to sequential data and
at the same time combine it with hierarchical variational autoencoders, which
has also shown great results on modeling image data.

Contribution: The general idea for the paper originated from me and was
refined with the help of Niklas Wahlstrom and Thomas Schon. The majority
of the implementation and writing was made by me.

Paper IV

J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. Schon.
“Evaluating model calibration in classification.” In: Proceedings of Machine
Learning Research. 2019

Summary: A calibrated model has nothing to do with the accuracy of the
model — instead it is a measure on how accurately it predicts the probability that
it makes the correct prediction. This paper covers calibration for classification
models, how to formalize the concept and how to evaluate calibration, or rather,
how the current standard of evaluation calibration is insufficient.

Contribution: The idea behind this paper grew from a discussion between
me, David Widmann and Juozas Vaicenavicius. The formalized notion and the
formulation thereof are products of Juozas and David while the theorems are
results from discussions in between the three of us. The implementation was
done by me and David.

1.7 Related but not included work

[A] A. H. Ribeiro et al. “Automatic diagnosis of the 12-lead ECG using a
deep neural network.” In: Nature Communications 11.1 (2020), p. 1760
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[B] L. Ljung, C. Andersson, K. Tiels, and T. B. Schon. “Deep Learning and
System Identification.” In: IFAC-PapersOnLine 53.2 (2020), pp. 1175-
1181

[C] C. Andersson. Deep learning applied to system identification : A proba-
bilistic approach. Licentiate thesis, Uppsala University, Sweden. 2019

1.8 Thesis outline

The four concepts (sequential models, deep learning, generative models and
hierarchical structured data) presented in this introduction outlines to a large
degree this thesis. Chapter 2 dives deeper into sequential problems and models
and formalizes the learning problem in this setting. Chapter 3 gives a brief
background on deep learning from a probabilistic view point as well as an
introduction to different generative models. Chapter 4 crowns the creation by
combining Chapter 2 and Chapter 3. It introduces deep learning for sequential
problems and deep generative sequential models. The final chapter, Chapter 5,
summarizes the thesis with concluding remarks and potential future work.
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Learning in a sequential setting

“Arithmancy is predicting the future using numbers.”

—J. K. Rowling

A machine learning problem can be characterized by a model, some data, &,
and a goal defined by a performance metric. The model is in turn parameter-
ized with some model parameters, 0, that are tuned to the data. Throughout this
thesis we use a mix of frequentistic and Bayesian methodology. We only con-
sider maximum likelihood/a posteriori estimates and we use p, (%) to denote
the model. However, we argue in terms of the prior, and aleatoric and epis-
temic uncertainty. See for example Wilson et al. [21] or Lakshminarayanan
et al. [41] for the basic ideas behind this viewpoint. One unconventional no-
tion we use is that we do not differentiate between the prior that acts on the
parameters of a model and the (dirac) prior that is implied by a specific model
choice.

The data is a set of n samples, 2 = {y'?},, from what is called the data
generating distribution, s (y), in the unsupervised case. If the problem has
some dedicated input each sample is instead a pair, & = {x?,yD}" from
the joint distribution s7 (x,y). The goal in the machine learning problem is to
perform well — according to some metric — on some unseen data by fitting the
model to &. In addition to the model parameters there are hyperparameters,
i.e., aspects of the parameterization of the model or fitting of the model that are
not easily tuned. This typically gives rise to two linked optimization problems,
one for the model parameters and one for the hyperparameters.

This chapter covers both how to find hyperparameters and how to solve
the model parameter optimization problem in a general probabilistic machine
learning case. Building on this we introduce the basic model assumptions that
follow in the domain of sequential data. The coming chapters further define
these concepts in the specific case of deep learning.
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Chapter 2. Learning in a sequential setting

2.1 Training a model

To train or optimize a model means to fit the parameters in a way that im-
proves the performance according to some training objective or loss, £, given
the data. Following the frequentist methodology, this corresponds to finding
the point estimate that minimizes the loss function,

0 = argmin %(Z, 0). 2.1
0

There exists a multitude of different such losses, e.g. cross-entropy and squared
loss, which can be motivated from a probabilistic parameterization via maxi-
mum likelihood or more specifically negative log-likelihood loss,

F(D,0) = —logpy(D). (2.2)

Under the assumption that the datapoints are sampled independently, this can
further be simplified to

L(D,0) =~ ) logp,(x.y). (2.3)
(x,y)€D

There are also losses that are not directly motivated from a probabilistic point
of view, e.g. the loss used in generative adveserial networks [42].

An important note here is that the loss does not necessarily have to corre-
spond to the evaluation metric that we want to optimize in the end, but rather
just acts as a proxy for the metric. A prominent example of this is a typical
classification problem, which is trained by minimizing the cross-entropy, but
evaluated with prediction accuracy.

The optimization technique to solve the minimization problem depends to
a large degree on the problem at hand. For deep learning problems, which this
thesis covers, the by far most common optimization techniques are based on
first order gradient descent.

2.2 Bias-variance trade-off

The trained machine learning model is evaluated on a part of the dataset,
which is set aside during the training. The performance on this (test) dataset
should reflect how the model performs in the ”wild” when deployed. This is
known as the test error and can be decomposed into three parts: the irreducible
error, which is inherent to the problem due to measurement noise; the bias error,
which stems from a too simplistic model; and the variance error, which origi-
nates from the fact that the training data is stochastic by nature, i.e. sampled
from the data generating distribution.

The variance error can be reduced in two ways, either by modifying the
model, i.e. decreasing the complexity of the model, or by increasing the size
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Figure 2.1: A schematic picture of the decomposition of the performance error into its
three components; bias error, variance error, and irreducible error. The best possible
model is where the total error is minimized.

of the training data. However, decreasing the model complexity increases the
bias, since it makes the model less flexible. For a fixed dataset size there is
thus a sweet spot, where the total error is minimized, see Figure 2.1.

Besides varying the model complexity, it is also possible to alter the cost
function in the purpose of reducing the variance of the trained model. The
most common alteration is to add a regularization cost. This extra cost, which
(typically) only depends on the parameters, is simply added to the cost in Equa-
tion (2.1). We do not go into more detail on regularization, but for the reader
who is interested we refer to Hastie et al. [43] and Bishop [11].

We purposely left out the effect of a prior in the above argument. Although a
prior has the same general effect as decreasing the complexity of the model, the
relationship is a bit more complex. First and foremost, the increase of the bias
error from the prior will dissipate with more training data. Thus, introducing
a prior is typically superior to decreasing the complexity as it scales better
with more data. Secondly, not all priors are equal, but can be more or less
adapted for the specific problem. Thus, if a prior more accurately encodes prior
information it can reduce the variance error more without affecting the bias as
much. An example of this is the use of an inductive bias in the model [21].

Other terms that often come up in conjunction with the bias-variance trade-
off are underfitting and overfitting. Underfitting corresponds to the case when
the model is too restrictive and the bias error dominates the variance error. On
the other hand, if a model is overfitting it fits the data too well, the training error
is typically a lot smaller than the test error and the model does not generalize
to unseen data. In this regime the variance error dominates the bias error.

In recent years there have been some developments subjugating these results
with some doubt by observing something that is denoted double decent for
overparameterized models, i.e. models with more parameters than data points
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in the training dataset. Belkin et al. [44] observed that the test error does not
have the typical U-shape. Instead, it starts to decrease again in the overparam-
eterized region. The implications on model design from these results is still a
subject for research, but it can potentially explain why some overparameterized
models (e.g. deep learning-based models) perform very well.

2.3 Training hyperparameters

Training the hyperparameters, v, of a model typically requires two steps:
an inner optimization for the model parameters, 6, and an outer optimization
for the hyperparameters. There are primarily two reasons for this: the hyper-
parameters are often not differentiable, e.g. the number of model parameters;
and the hyperparameters are used to optimize the bias-variance trade-off. To
estimate the test error we use two disjoint datasets to fit hyperparameters: a
training dataset to fit model parameters, and a validation dataset, &y, that acts
as test dataset. The complete optimization can thus be described as

Vv =argmin £y (Dy,0(v)), (2.4)

where 6(v) are the parameters from Equation (2.1). Note that %y, does not
need to be the same as the training loss, %, and can be nondifferentiable.

To solve this optimization problem there are a couple of different options.
For problems where solving the model parameter optimization is fast, one can
typically use simple gridding or sampling to find a good estimate. As the model
parameter optimization becomes more expensive, these brute force approaches
can turn out to be too expensive for an exhaustive search and more advanced
sampling schemes, e.g. Bayesian optimization [45, 46], could be a solution.
One should note though that these more advanced schemes are no silver bullet
and manual tuning, i.e. trial and error, can be at least as good. As a matter
of fact, to a certain degree it is the intuition behind the hyperparameter tuning
that characterizes a good machine learning engineer, and is by some considered
more art than science.

2.4 Sequential models

This and the following sections continue the description of the sequential
problems introduced in Chapter 1, and how the sequential nature of the data
affect the models we use.

In the case of sequential classification and regression problems the input is
sequential, i.e., x = x;.1, where T is the length of the sequence, and the output
is nonsequential output, y. Thus, we use p, (y|x;.r) to denote the model for
these problems. For problems where the output is sequential, i.e. y = y;.1,
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Table 2.1: A partition of sequential problems and how they can be factorized.

Problem Factorization
Sequence classification and regression pyIxiT)
Unconditioned sequence generation [Lroyii1)
Conditioned sequence generation [1,rGly1s-1.%)
Sequence-to-sequence [LrO1yie1:X1.0)
Synced sequence-to-sequence I[1,p0 1y 1.%1.)

we have four different scenarios. In the first two cases, where the input is not
sequential or simply nonexistent, we have an unsupervised type of problem.
We denote the model used as p,(y.1|x) or py(y;.t). Secondly, if the input
is sequential, but given separately from the output, we have a sequence-to-
sequence problem. In this case the input does not need to have the same length
as the output sequence and we denote these models as p, (y.1 | x.5) Were M
is the length of the input sequence. Finally there is the synced sequence-to-
sequence problem, where the input and the output sequence are in sync. The
input here is typically of the same length as the output, i.e. x = x;,p. However,
it can also have some fraction of the output length as they can have different
sampling rates. With a slight misuse of notation we use p, (y;.r | x;.1) to denote
the model, noting that the output cannot depend on future inputs, i.e. causally
constrained.

A very common way to model problems with sequential output is to fur-
ther factorize the models sequentially. One should note though that this is not
necessarily required for good performance, and we give a brief background
on models that do not use this factorization in Section 3.2. The sequential
factorization can be expressed as, py (y1.1 | X1.27) = [1, P9 (Vi | Y121, X1.27) fOr
sequence-to-sequence problems and p, (yy.1 |x;.1) = [ 1,29V, 1 y1.4-1,X1.,) for
synced sequence-to-sequence problems. The other sequential output problems
can be derived from these, see Table 2.1 for an overview of these factoriza-
tions. An effect of this factorization is that we can let the previous output be
an explicit input to the model as long as the model uphold the causal constraint.
Thus, it is possible to model an unconditioned modeling problem with a similar
model as for a synced sequence-to-sequence problem, see Figure 2.2.

The sequential factorization gives rise to autoregressive models and state-
space models, two popular models in machine learning as well as physical mod-
eling. Both of the models approximate the parameters, 0, in py (v, | Y1.-15X1:7)
to either be the same at each time step, i.e. time invariant models, or have a
known dependence on time, i.e. time varying models.
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Figure 2.2: It is possible to realize an unconditioned sequence generation problem
with a causally constrained model that takes the previous output as the input. If we
also have exogenous inputs, xy.1, these can simply be concatenated to the previous
output.

2.5 State-space models

A state-space model (SSM) introduces a Markovian latent state, z,, to cap-
ture the history of the past observations and inputs up to a time point ¢, see
Figure 2.3. We can formulate this in the synced sequence-to-sequence prob-
lem formulation as

Po e Y1-1-X14) = fpe(yt 120P0 (21 215 X)Pg (21 1YV 115 X1 1)AZ 14
(2.5)
which also translates naturally to the other sequential output problems. The two
probabilistic densities, the fransition density p(z,|z,_;,X,) and the emission
or observation density p, (y,|z,) are sufficient to fully describe a state-space
model. The full state-space model is given by

T
PoVrr I X1r) = fl_[pﬁ(yt 120Po (2, 1221, X )dzy 1 (2.6)
=1

Coupled with the state-space formulation is the filtering problem, i.e. find-
ing the posterior distribution p,(z,_1 |yy.,_1,*1.,1), Which is needed to infer
the state given the previous observations. This inference problem can, de-
pending on the model structure, be difficult to solve. A key property of the
state-space model is that the inference can be done recursively,

Po (@1 Yranxr) & [ po (vl 2)p (|21 %P (20 |y1:,_1,x1=,_1>dzf_(1, :
2.7
which is the working stone in filtering algorithms. A related distribution is the
smoothing distribution which finds the posterior of the state given all observa-
tions, i.e. pg (2, |y1.1s X1.7)-
The linear Gaussian state-space model (LGSSM) and the hidden Markov
model (HMM) are traditionally two of the most prominent state-space mod-
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els [11]. Their linear structure makes them advantageous when solving the fil-
tering problem, which in these cases can be done analytically via the Kalman
filter [47] and dynamic programming [48] for the LGSSM and the HMM, re-
spectively. In the more general case both the transition density as well as the
observation density can be arbitrary complex and even multimodal. Such mod-
els, called nonlinear state-space models, are in contrast more difficult to do in-
ference on and one usually has to resort to sampling methods such as sequential
Monte Carlo [49].

The state-space formulation can be natural for some physical problems due
to known physical properties of the data generating process. However, it should
be pointed out that for most problems the introduction of a latent state to cap-
ture the history of the observations is an approximation, at least as long as the
dimension of the state stays finite. Even so, it can still be a useful approxima-
tion that introduces an effective prior for many sequential problems.

Example 2.1 (Linear Gaussian state-space model). The linear Gaussian state-
space model uses a transition distribution and an observation distribution that,
as the name suggest, are Gaussian. With an exogenous input signal we have,

Pz lz1,x) = N(z, 1Az, +Bx,, 1), (2.8)
while the observation distribution is defined as,
P lz) = N (y,1Cz, o), (2.9)
which equivalently can be written on state-space from as,

=Az,_; +Bx, + ¢,
<t -1 t t (2.10)
v, =Cz, +v,,

where €, and v, are i.i.d. and distributed as V" (0, 1) and N (0, Zq), respec-
tively.

2.6 Autoregressive models
An alternative way to approximate the factors in the sequentially factorized
model is to truncate the history as

PoVelViac1sX1:0) = Po el Vecker—15Xe—ket)» (2.11)

where k is the truncation horizon — also known as the receptive field. Simi-
lar to the state-space model, this model is an approximation to the one-step
ahead prediction density, as long as this horizon stays finite. In this case, data
with negative time indices is usually replaced with zeros, referred to as zero
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Figure 2.3: A typical description of the state-space model with z; .1 as latent variables
and y.T as observed variables with exogenous input x. in the synced sequence-to-
sequence problem formulation. Observed (or observable) variables are gray (x;.1 and
yi.1) and unobserved variables are white (z1.7).

padding. In this thesis, we call this an autoregressive model to keep the no-
tation concise with other work, even though a more proper terminology is a
nonlinear autoregressive model with exogenous input (NARX).

Example 2.2 (Finite impulse response). A4 special case of the autoregressive
model with an exogenous input signal is to additionally assume that

T
pOirlxir) = HP Vel X sr) (2.12)

t=1

i.e., the current output is conditionally independent of past outputs. This can
be a good assumption for a system if there is no or little process noise and the
measurement noise is close to white. If we model p(y, | x,_.;) with a Gaussian
distribution and let the mean be a linear function of x,_,., we arrive at the
so-called finite impulse response model.

Training an autoregressive model can be difficult, especially in the case
where the truncation horizon is large since the number of parameters grows
linearly with k. In this thesis we present two alternative ways of handling this.
In Paper I we regularize a linear model with a long horizon to prevent over-
fitting and in Paper III we use a model where the number of parameters only
grows logarithmically with the horizon.
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2.7 Example: Circuit modeling

Let us return to the circuit modeling example introduced in Section 1.5.4.
This example is typical for system identification and the time invariant fac-
torization we introduced in this chapter, i.e. [T, p(y; |y1.,_1,X1.,). We fit this
model to the data by using the negative log-likelihood as the loss function and
get the optimization problem

T
0 = arg;nin E(D,0) = argmin Z Z —logpy Oy, 1¥iy—1s%1)- (2.13)

O (xyei=1

This problem formulation is also known as the one-step-ahead prediction prob-
lem since what is optimized is the one-step-ahead prediction density.

With this we can substitute our modeling choice, e.g. the linear autoregres-
sive model

Xi—k:
PoOe I Yiu—1:X14) = Po Ve | X s Yecp—1) = N (yt |6 ( 1kt ) ) UZ) )

Yi-kit-1
(2.14)
into Equation (2.13) and solve the corresponding optimization problem. In
the specific case of a linear autoregressive model this optimization problem
corresponds to a linear regression/least squares problem.
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“You take the red pill — you stay in wonderland, and 1
show you how deep the rabbit hole goes.”

— Morpheus, The Matrix

This chapter introduces three concepts that are essential throughout this the-
sis, namely deep learning, neural networks and probabilistic models. In the
interest of keeping this thesis to the point, we assume that the reader has a
basic understanding of neural networks. This includes fully connected neural
networks, convolutional neural networks and core concepts around training
and evaluating the network, such as back-propagating gradient, minibatch gra-
dient decent and early stopping. Section 3.1 gives a short background on the
subject and introduces the notation used in this thesis. For a more detailed
background on neural networks we refer to Goodfellow et al. [46].

A probabilistic model in this context corresponds to models where we model
the output with a probability distribution. Additionally, we can introduce some
latent variables, z, that can help modeling complex distributions. Through the
probabilistic framework it is possible to derive many of the standard losses,
e.g. the least square and cross entropy loss. However, the general framework
makes it possible to also use other assumptions that do not translate to any
common loss, e.g. mixture of Gaussians. In addition to this, the framework
also increases the interpretability of the model and the output as more infor-
mation is conveyed through a distribution than a single predicted value (see
Section 3.7).

Deep probabilistic models are orthogonal to and should not be confused with
what is known as Bayesian neural networks [50], where all the parameters of
the neural network are interpreted in a Bayesian way. Neither should it be
confused with probabilistic neural networks [51], which are an alternative to
neural networks altogether, building on nonparametric function estimators.

3.1 Neural networks

A neural network can be explained as a function approximator that is opti-
mized with stochastic gradient descent. However, compared to other function
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parameterizations, neural networks can be made very flexible while still gen-
eralizing well, even when overparameterized [44]. There is still a lot of theory
missing related to how and why they perform as good as they do, even if some
progress have been made in recent years [16, 17]. An alternative way of fram-
ing the success of neural networks is to say that the network structure provides
a good inductive bias that acts as a prior, guiding the neural network to solu-
tions that generalize well.

A neural network consists of several layers of linear parametric functions
alternated with nonlinear activation functions. The most basic linear function
is

hy =Y W x.+b, (3.1)

where W and b are the parameters, x is the input to the layer and 4 is the
transformed input. When this is combined with an activation function we get
a fully connected (FC) layer.

The second most common linear function is the convolutional layer. This
parameterization provides a useful inductive bias when working on data that
is translational invariant, e.g. time-invariant signals and images. The transla-
tion invariance can possibly range over several dimensions. For example, a
time-invariant signal has a one-dimensional invariance, an image has a two-
dimensional invariance and a video has a three-dimensional invariance. In
addition to the invariant dimensions there is usually one extra dimension for
features. For example, image data is typically represented with three dimen-
sions: two for the invariant spatial dimensions plus one dimension for features.
Thus, the data has dimension, Width x Height x Feature channels, for which
we denote a convolution as,

—lwy, 214wy, =Wy /2]+wy

hiJ,m = Z Z Z wm,l,k,cxi+l,j+k,c + bm’ (32)
I==|w,, /2]  k=—|w,/2] ¢

where |-| is a shorthand notation for the floor function. Furthermore, W is
called a kernel or filter and w,, and w,, denotes the range of this kernel in the
Width and Height dimension, respectively. The kernel and the offset, b, are the
parameters of this function.

Following the probabilistic notation of this thesis the output of a neural net-
work is a distribution, or more accurately, the parameters of a parametric dis-
tribution. Thus, for a simple supervised model we use the notation

Po(y1x) = P(yINNy(x)), (3.3)

where NN, (x) is a neural network with parameters 6 that output features for
the parametric distribution, 9. These features can for example correspond to:
the mean and covariance of a Gaussian distribution; the means, covariances
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3.2. Deep generative models

and weights of a Gaussian mixture distribution; or the logits of a categorical
distribution.

An important aspect of neural networks is to properly initialize the param-
eters and normalize/standardize the input and output data. Today, the most
popular deep learning frameworks, Tensorflow [52] and PyTorch [53], han-
dles the initialization of the parameters behind the scenes. However, the data
normalization is left for the user to implement.

3.2 Deep generative models

With the introduction of deep learning, generative models have conquered
new domains with unprecedented results. Some of the most notable results
are in the domains of natural images [12] and text [7], but also in music [54]
and speech [8], to name a few. This section encompasses some of the most
influential models and the techniques behind them.

A core property of generative models is the ability to generate different re-
sults for the same input and express correlations in the output. This requires
stochasticity to be included into the model, either by recursively feeding obser-
vation noise back into the model or by introducing latent variables in the model.
The recursive method can be motivated by using the sequential factorization
introduced in Chapter 2,

K
P = [[pOxlyia) (3:4)
k=1

where K is the dimension of the output. However, this method is not limited
to sequential data, but can be used for any kind of data. Some examples of
this method are, PixelRNN [55] and PixelCNN-++ [56] that generates images
by interpreting an image as a sequence of pixels, GPT-3 [7] that generates
text, and Wavenet [8] that generates speech. Generating new samples with
this model structure is typically computationally heavy, since each generated
output needs to be propagated through a large portion of the network for each
new prediction. The advantage is that the training can be done in parallel and,
since there is no explicit noise, the models are relatively straightforward to
train and implement using likelihood-based losses. A possible extension is
to also include latent variables as done in e.g. STORN [57], SRNN [58] and
VRNN [59], which is covered further in Section 4.5.

For models with latent variables there are two major directions: likelihood-
based methods such as variational autoencoders (VAE), normalizing flows, and
diffusion models; and nonlikelihood-based models such as generative adver-
sarial networks (GANSs). For the likelihood-based methods a major problem
to overcome is how to efficiently compute the likelihood,

Po) = [ po(y,2)dz. (3.5)
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The VAE solves this problem by introducing an approximate posterior distribu-
tion ¢, (z;y), which through importance sampling estimates the likelihood in
a tractable way. In Section 1.2 we introduced the NVAE [12], which sampled
images of high fidelity, but VAEs can also be used as a component in other
models to create flexible and interpretable distributions, e.g. STORN, SRNN,
and VRNN mentioned in the previous paragraph. In Section 3.3 VAEs are
explained in more detail with more examples.

An alternative to introducing an approximate posterior is to restrict the func-
tion that connects the latent variables and the observations to be bijective. Nor-
malizing flows [60] use a neural network, y = f, (z), as the connecting function
with the restriction that every layer needs to be bijective. Under this constraint
the likelihood can be evaluated exactly without any approximations as,

!
ay |

Po(y) = p(z =f;'(y)) det (3.6)

This method proposes a very flexible parameterization that still allows for ex-
act evaluation. However, this bijective constraint also limits the model. It is
uncertain how much of the generalizing performance of neural networks that is
preserved with this constraint and it is also difficult to train the model with high
dimensional data. Yet, Glow [61] showed that it is indeed possible to generate
images of faces with high fidelity. It is also possible to combine the normaliz-
ing flow with an autoregressive factorization to form so-called autoregressive
flows [62, 63]. In this case, y and z are represented as sequences instead, i.e.
y = y;.1r and z = z;,7. The advantage of this factorization is that the function
only needs to be bijective for the functions that connect z, and y,, enabling a
larger class of functions to be used. Masked autoregressive flows [62] and in-
verse autoregressive flows [63] are two prominent examples of this structure.
For a more thorough background on normalizing flows and applications of it,
see e.g. Papamakarios et al. [64].

Even though diffusion models [65] are likelihood-based, the data likelihood
is not used to train these models. Instead, they are trained to reverse one step
of a predefined noising process. This noising process progressively corrupts
the original sample, y,, with Gaussian noise over K steps, y,...,yx — after
which all information on the original data is gone. The distribution of the final
corrupted data is then unit Gaussian, i.e. p(yx) = N (v, 10,1). The goal of
the model is to reverse the corruption, i.e denoise the data, by approximating
PVi_1 |ve) with a neural network. A sample from the model is produced by
recursively applying p, (vi_; | V&), starting from a unit Gaussian sample for y.
Diffusion models are among the strongest deep generative models and can pro-
duce high fidelity samples of both images [65] and speech [66]. However, due
to the recursive structure of the generative process they tend to be computa-
tionally heavy and thus slow at generating samples.

Generative adversarial networks [42] (GANs) avoid the problem with eval-
uating the likelihood altogether by using a completely different loss function.
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3.3. Variational autoencoders

Table 3.1: A selection of generative models and some of their properties. All models,
except normalizing flows, are free to use any parameterization of the neural networks.

Likelihood-  Latent Fast Unconstrained
Model . .
based variables sampling neural networks
Autoregressive v’ - - v’
VAE v’ v’ v’ v’
Normalizing flow v’ v’ v’ -

Diffusion v’ v’ - v’
GAN - v’ v’ v’

In addition to a generative model, G, (z), a discriminative model, D, (y) is
proposed for the sole purpose of distinguishing generated data from true data,
where ¢ are the parameters of this network. The two networks are trained in
conjunction in a game theory setup, where both networks try to outperform the
other. Thus, the two networks are trained in alternation, keeping the other one
fix, with the following losses

%n(#) =~ E Dy(y) + E D,(Gy(2)), (3.7)
%6(0) =~ B Dy(Gy(2)). (3.8)

Note that Equation (3.7) and Equation (3.8) are not optimized until conver-
gence — they are optimized until the other loss starts to deteriorate. A problem
with this formulation is that there is no objective measure on how well the gen-
erative model is performing, which makes it very difficult to compare different
GANSs. The training also tends to be very unstable and can easily get stuck
in local minima. Even with these constraints, GANs (together with diffusion
models) are one of the qualitatively best performing generative models to this
date, e.g. StyleGAN [67, 68]. Some theoretical progress has been made to
make the training more stable. One example of that is Wasserstein GAN [69],
where the GAN is reformulated using a Wasserstein distance to improve the
stability. In Table 3.1 we try to summarize all the different generative models
and some of the distinguishing properties.

3.3 Variational autoencoders

The variational autoencoder [70, 71] is briefly introduced in Section 3.2 as
a probabilistic model with latent variables. These latent variables benefit the
model in primarily two ways. Firstly, they enable more complex and possibly
multimodal distributions, which is often required for good performance on high
dimensional and correlated outputs. Secondly, the learned latent variables can
help us analyze the data by categorizing and clustering it.
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However, as discussed in Section 3.2, latent variable models entail a prob-
lem with estimating the marginal likelihood,

o) = [poy1p@dz= B py(yla). (3.9)

where p(z) is the prior of the latent variables. This integral is in general in-
tractable, especially in the case where p,(y|z) is modeled with an arbitrary
neural network.

One way to estimate this integral is to use a Monte Carlo method. However,
estimating Equation (3.9) naively requires a significant number of samples (to
reduce the variance of the estimate), making it infeasible in practice. To re-
duce the variance of the estimate and thus effectively reducing the number
of Monte Carlo samples required, importance sampling with a proposal, g(z),
can be used. The best such proposal, i.e. the minimal variance proposal, is
the true posterior, p,(z|y), [72]. However, it is as intractable as computing
the sought likelihood since it requires the marginal data distribution. Varia-
tional inference [11] offers an approximation to this problem by introducing
an approximate posterior found by minimizing the KL-divergence to the true
posterior under some constraints. For example, with a Gaussian constraint this
posterior is expressed as

q(z;y) = argmin KL (4(2) I p(z]y)) » (3.10)
gewnN
where ¢ € A" denotes that ¢ is from the class of Gaussian distributions. Here
we have emphasized the fact that this approximate posterior, ¢(z;y), will de-
pend on y. This KL-divergence can be rewritten in terms of the likelihood
and the so-called evidence lower bound (ELBO), sometimes also known as
the variational lower bound, as,

KL (q(2) llpe(zly)) = — JE_logpy(ylz) + KL(q(2) lIp(2)) +logp, (y).

—ELBO(y)
(3.11)

Using this, we note that the optimization in Equation (3.10) can be done by
maximizing the ELBO instead (since log p, (y) is independent of ¢(z)). The
advantage of the ELBO is that it is typically is more tractable to compute than
the original KL-divergence and depending on the constraints used for ¢(z), one
or both of the terms in the ELBO can be analytically tractable. For example,
in the case where the prior is a Gaussian, the posterior can be constrained to
a Gaussian and yields a KL-term that is analytically tractable. The ELBO can
also be used to derive a lower bound on the likelihood, hence its name, as

logp,(y) = B 'logpy(y12) = KL(g(2) p(2)) + KL (¢(2) Iy (213))
> B logpy(yl2) ~KL(g(2) lIp(2)), (3.12)

40



3.3. Variational autoencoders

since the KL-divergence is always positive. Thus, depending on the accuracy
of the approximative posterior, the ELBO can also be used to approximate, or
at least give a lower bound on, the likelihood.

The variational autoencoder does one additional approximation. The opti-
mization problem in Equation (3.10) is generally too computationally heavy to
compute during the training of a neural network model (even with the ELBO).
Instead the variational autoencoder approximates the solution directly with a
neural network, that outputs the parameters of a parameterized distribution, i.e.
G(z;y) = qg(z;y). Finally, since both the approximate posterior and (a lower
bound on) the log-likelihood can be optimized by maximizing the ELBO, it is
possible to simultaneously optimize them by maximizing

£(y.0)=_E logpy(ylz) =KL (gp(@))lp(). (3.13)

2~qq(z

This parameterization of the optimization problem is known as amortized varia-
tional inference [73]. It distinguishes itself from ordinary variational inference
in that the approximate posterior is not necessarily the best posterior under the
given constraint. Thus, if a good approximate posterior is what is sought, fur-
ther tuning of the approximate posterior is advised. The most common assump-
tion for variational autoencoders is to choose a Gaussian distribution for the
prior and the approximative posterior even though other assumptions exists,
e.g. Bernoulli distributed [74].

3.3.1 REINFORCE and the reparameterization trick

Optimizing Equation (3.13) still requires us to estimate the expectation taken
over the approximate posterior, even if the KL-term can be calculated analyt-
ically. This is done with Monte Carlo sampling, usually only with a single
sample. However, since the optimization is done with gradient descent, we
need to take some extra measures to be able to propagate the gradient through
these samples. There are at least two different approaches to rewrite the gra-
dient of this expectation, called REINFORCE [75] and the reparameterization
trick [71].

REINFORCE was originally developed for the reinforcement learning prob-
lem, hence the name. The idea behind it is to change the distribution over which
we take the derivative and consider a fix point instead as,

0 d qe(z;y)
— E 1 = E —1 e
00 z~q4(z3y) 0gps (¥12) gopr 4y (zy) 00 0gp9(y|Z)C]0f(Z;y)
0
= E —lo Z
2~qly (zzy) 00 gPo(y12) 6=0"

7]
+ E logpy(ylz) = logge(z:y) ,
~qy (z3y) a0 0=0'

(3.14)
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where 0’ is the point where the derivative is evaluated. This has the advantage
that it can be used to differentiate samples from any distribution.

The reparameterization trick, on the other hand, is limited in the distribu-
tions it can be applied to. It can only be used on distributions that can be
expressed as a differential function of a sample from a fixed base distribution,
p(e). One large class of distributions with this property is the location-scale
family, including the Gaussian distribution. For this case the expectation can
be rewritten as,

a a
36 o, B logpe 1) = B =5logpy (v 1p(y) + o9 ()e), (3.15)

where p(e) = A°(0,1) is independent of 6, and u,(y) and o, (y) are some
arbitrary functions. Both methods can be used to estimate this expectation and
itis possible to prove that none of the methods have any fundamental advantage
over the other in general [76]. However, the reparameterization trick produces
lower variance estimates in the case of variational autoencoders empirically.

3.3.2 Posterior collapse

One problem that can arise when training variational autoencoders is pos-
terior collapse. This corresponds to a state where the approximate posterior
closely matches the prior and almost no information is encoded in the latent
space, i.e., the KL-divergence term in Equation (3.13) is close to zero and
dominated by the likelihood term. This state is in practice difficult to escape,
effectively making it a local minimum. To enforce that all the modeling capa-
bilities are used, a couple of different methods have been proposed. Here we
present two of these methods.

KL annealing [77, 78] is one such method, where the core idea is to discount
the KL-term in the loss. This is done by multiplying the KL-term with a dis-
count factor, 0 < y < 1, which allows more information to be encoded for the
same amount of loss. This is then annealed linearly from O towards 1 during
the initial phase of training. After this phase the KL-term has a strong enough
gradient to avoid the pitfall.

Free bits [63] is an alternative method with the same purpose. However,
instead of setting a scaling discount factor, this method gives each KL-unit an
amount of “free bits” and the gradient is only passed through the KL-units if
it is greater than the set amount of free bits. This ensures that each KL-unit
(the KL divergence in each dimension of the latent space) encodes a minimum
amount of information. The threshold of free bits can also be annealed during
training if the threshold was unnecessary high.
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3.4. Hierarchical variational autoencoders

3.4 Hierarchical variational autoencoders

We previously discussed how deep learning can use the hierarchical struc-
ture of the data by extracting hierarchical features (see Section 3.1). In a similar
fashion, such a hierarchical mapping can also benefit a variational autoencoder
realized by stacking several layers of latent variables. For example, a model
with three such layers yields a generative distribution as

px) = fp(x | Z(l),Z(z),Z(3))p(Z(l) |Z(2),Z(3))p(z(2) |1(3))p(z(3))dz(”dz(2)dz<3).
(3.16)

This makes it possible to express very complex distributions using only simple
components.

Even though stacked latent variables were proposed already in the original
submission on variational autoencoders [71], it only had a minor effect on the
performance of the model. The ladder variational autoencoder, proposed by
Senderby et al. [78], was the first model that showed some real performance
gain from this structure, where the key improvement was how to model the
approximate posterior. The idea can be summarized as factorizing the posterior
similarly as for the generative distribution,

2,28 y) = peV 122,23 y)pz? 1235 y)p(®sy).  (3.17)

q(z'V,z
We call this model structure a hierarchical variational autoencoder and it has
since its introduction been used as a backbone in a number of follow up models,
e.g. ResNet VAE [63], BIVA [79] and NVAE [12].

The hierarchical variational autoencoder can be described with a bottom-up
and a top-down hierarchy of features (see Figure 3.1). The bottom-up hierar-
chy of features, d”, are extracted from the observations y, and each successive
layer of features depends on the previous layer, d/~1. The top-down features,
h'D, are structured in a similar fashion, but in the opposite direction. The poste-
rior distribution uses both the bottom-up and the top-down features, while the
generative distribution only uses the top-down features. Using these features
we can rewrite Equations (3.16) and (3.17) as

2
p) = [ pGe k) [ p @18 D)p(3)dz M dz®dz™ (3.18)
I=1
2
C](Z(l),Z(Z),Z(3);y) — H q(z(” Ih(l),d(l))q(z(3) Id(3)) (3.19)
=1
where i) = NN(z+D, p#D) @D = NN(d"=V), h® = {} and d? = y.

The hierarchical variational autoencoder works especially well for high di-
mensional observations. One explanation for this is that the model structure
encourages the model to explain away some of the lower-level features, so that
modeling of the higher-level features can be done more efficiently. An alter-
native interpretation of this is that a model with latent variables at different

43



Chapter 3. Deep probabilistic models

Figure 3.1: A picture of a hierarchical VAE, with the bottom-up network extracting
features, d*), on the left, and the top-down network with intermediate features, h*),
for generating an observation on the right. The bottom-up is exclusively used for the
approximate posterior while the top-down network is partially shared between the
approximate posterior and the generative distribution. When estimating the likeli-
hood of an observation the latent variables, z(*), are sampled from the approximate
posterior and when sampling from the model they are sampled from the generative dis-
tribution. The vertical dashed line acts as a residual connection and was not present in
the original ladder VAE [78], but it was used in the ResNet VAE [63]. In this thesis we
use circles to denote stochastic variables/features and diamonds or squares to denote
deterministic variables/features.

hierarchical levels makes it possible to capture both complex concepts that in-
volve many observations and simpler concepts that only model dependencies
between a few observations. In Paper III and in Section 4.7 we introduce a
hierarchical variational autoencoder adopted to sequential data.

44



3.5. Transfer Learning

EEEAREEEDR

(a) Samples from a hierarchical variational autoencoder trained on MNIST.
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(b) Samples from the MNIST dataset.

Figure 3.2: A comparison of images from the MNIST dataset and images generated
with a simple hierarchical variational autoencoder trained on the same images.

One use case of a hierarchical variational autoencoder is to model images.
Figure 3.2 depicts samples from a model trained on the popular handwritten
number dataset MNIST [80]. Besides generating numbers similar to those in
the dataset, the latent structure can help us further analyze the data and what
the model have captured from the data. One example of this is to use the ap-
proximate posterior to investigate the latent space of the generative distribution.
Figure 3.3 visualizes the mean of this approximate posterior for the topmost la-
tent variables, color coded with the label that corresponds to each image. Even
though no information on the classes is given to the model, it clusters the data
somewhat and even separates out the number one completely. An alternative
it to use the trained model to distinguish between in-distribution data, i.e. data
from the MNIST dataset, and out-of-distribution data, i.e. nonnumeric sym-
bols [81].

3.5 Transfer Learning

Neural networks are, relative to other machine learning methods, data hun-
gry, i.e., they require a larger amount of collected and annotated data before
they reach a comparable performance level. An idea to jump-start a neural net-
work is to use transfer learning [82]. That is, take a neural network trained on
a ’similar” problem with a larger dataset (source), adapt the pretrained model
to the specific problem, and finetune it with the available annotated data (tar-
get). A model trained through this approach can use an annotated dataset that
is substantially smaller while still having a performance that is comparable to
that of a model trained solely on a large annotated dataset.

A surprising observation with transfer learning is that the source problem
and dataset used for the pretrained network can differ significantly from the tar-
get problem. A telling example of this is the work by Esteva et al. [19], which
utilized a model trained on an image classification task on ImageNet [83], a
large dataset containing natural images of primarily animals and also some
inanimate objects such as building and clothes, with a total of 1000 classes.
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LWE N VA WM =

Figure 3.3: A visualization of latent space of a hierarchical variational autoencoder
trained on MNIST. The visualized space is the mean of the approximate posterior for
the topmost latent variables (2 dimensions) for the test data, color coded with the label
that each example corresponds to. Even if the model structure does not make any
clustering assumptions, the model clusters the data in groups that partly matches the
labels.

The target dataset on the other hand is approximately 130 000 closeup photo-
graphic and dermoscopic (microscopic) images of skin lesions labeled with
757 distinct classes. Even though ImageNet does not contain any images on
humans, let alone images on skin, this pretraining boosts the finetuned model
to achieve accuracy on par with expert dermatologists. One should note that a
key aspect in this example, observed in follow up work by Raghu et al. [84],
is that the model is overparameterized compared to the target dataset and the
benefit of transfer learning is reduced with smaller models.

In the previous example both the source and the target problem were of a
classification nature. However, transfer learning can be used also when the
structure of the source problem and the target problem do not match. An ex-
ample of this is BERT [85], which is trained to predict one or several words
that have been masked in a sentence. The trained model can then be finetuned
on a range of different classification tasks in natural language processing with
good generalizing capabilities [85]. A key point is that the source problem
does not require any labeled data and is thus unsupervised. The abundance
of unsupervised data that is available today have resulted in very large models
that are trained solely for the purpose of transfer learning. Recently, such mod-
els were dubbed foundational models [18] for the unique role that they can be
shared across a large range of downstream tasks and the potential that brings to
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the future of deep learning. The example on cough classification demonstrates
transfer learning with one such model called wav2vec 2.0 [86].

3.6 Example: Cough classification

In this section we continue on the cough classification example introduced
in Section 1.5.1. Speech recognition is a very data intense division of machine
learning requiring thousands of hours of annotated data to reach an accept-
able performance [86]. Detecting speech and cough in audio are conceptually
similar tasks — even if speech is expressed with a significantly wider range of
different phonemes, the fundamental features are still to a large degree com-
mon.

One idea to reduce the amount of training data required to achieve an ac-
ceptable performance in cough classification is to use a network pretrained on
speech data. One such model is wav2vec 2.0 [86], which is trained unsuper-
vised on a huge dataset of audiobooks. This model is primarily intended for
speech analysis, but the features extracted can still prove useful for detecting
coughs (c.f. the example in Section 3.5). More specifically wav2vec trans-
forms the one second recorded snippets into a sequence of features, where
each feature corresponds to 20 ms of sound. This sequence of features is then
aggregated by calculating the mean of the sequence (see Section 4.11 for other
ideas on how to do this aggregation). The aggregate is then fed to a simple clas-
sification network (see Figure 3.4). With the pretrained wav2vec model and a
single layer classification network it is possible to train a model that detects 22
seconds of cough (only missing a single cough) and 11 one second sequences
false positives in a one-hour recording (precision 95.6 % and specificity 99.7 %
treating all one-second sequences independently). This is achieved with less
than 3 hours of annotated data, where only approximately 10 minutes is used
for training'.

3.7 Calibration

The performance of a probabilistic model cannot reliably be expressed by
a single quantity, e.g. accuracy, but is in reality multifaceted [87]. Consider a
binary classification problem and two different models that both have a 90%
accuracy. However, the models are probabilistic, meaning that they output a
distribution for the prediction. In this example, the first model always predicts
its selected class with 99% confidence, while the other model predicts with
90% confidence. Which of the models should you choose? The first model
predicts that it will be correct 99% of the time. However, comparing this to the
measured accuracy we see that it does not match. In reality it was only correct

IThis is ongoing work, which is yet to be published.
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Figure 3.4: A model structure to distinguish if the input, here represented by the wave-
form in top bottom of the figure, corresponds to a coughing sound or not, represented
by y in the bottom of the figure. wav2vec [86], a pretrained feature extractor, consol-
idates the raw audio (depicted with the gray triangles in wav2vec) into a sequence of
features, h1.),, which are aggregated and used for the prediction of the label, y.
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90% of the time, so the model was overconfident. The other model however
correctly predicted its accuracy, i.e., its confidence matches the accuracy. This
makes the second model more reliable.

Why should we care if a model is reliable and not only about its accuracy?
Firstly, a model that knows what it knows and, perhaps more importantly,
knows what it does not know is more trustworthy for someone that wants to
interpret the model output. It makes it easier to identify problematic input and
reason about the cost associated with potential misclassifications [88]. It also
enables further probabilistic reasoning by combining the predicted distribution
with other probabilistic objects. For example, we can reason about the cost of
gathering more data, as well as, which data to gather to make the model more
confident and more accurate [89].

The example we used so far is a bit unrealistic. A model does typically
not output only one specific confidence — instead it depends on the available
evidence in the sample that it is trying to predict for. Evidence can be the
presence of certain features useful for the classification, or the quality of these
features. For example, when classifying the race of a dog from an image, some
features like the color of the nose might be occluded if the image is taken from
behind, or if the image has too low resolution it might not be possible to fig-
ure out the texture of the fur. Thus, for samples with less available evidence,
the model might produce less confident predictions, while other samples with
more available evidence will produce more confident predictions. However,
since the ground truth for each sample is only a single observation it is diffi-
cult to know if the prediction is reliable or not. The idea in calibration is to
condition on a prediction distribution instead of conditioning on the specific
input. In other words, what is the average prediction when the model predicts
a distribution, p. In a mathematical notation we denote this with a calibration
function,

r(@) =P (ylpy(ylx) =p), (3.20)

where P is the average distribution of y under x,y ~ i (x,y).

For a calibrated [90, 91] model this calibration function should be equal
to the identity function. It is also possible to condition on other aspects of
the model or the data, e.g., the model should be calibrated only for the most
probable class. By doing so we can construct other calibration functions that
corresponds to different aspects of calibration. In fact, the most common cali-
bration function conditions only on the maximum class, i.e.

Fuas () = P (3 = € maxpy (v = c|x) = p), (321)

where ¢ = argmax . p,(y = c|x). This is the calibration function used in the
well-known expected calibration error [92] (ECE).

The performance of a model in the aspect of calibration is typically pre-
sented either as a reliability diagram, see Figure 3.5, or as a quantitative mea-
sure, such as expected calibration error. The expected calibration error is a

49



Chapter 3. Deep probabilistic models

measure on the distance between the maximum class calibration function and
the identity function defined as,

J‘|rmax(ﬁ) _IA"P(ﬁ)dﬁ (322)

This integral and its factors, P(p) and r,,,.(p), are in this case estimated by
binning over the predicted probability.

It is important to note that accuracy and calibration are two orthogonal mea-
sures. A model that only predicts the marginal class distribution for every
input is perfectly calibrated, but has quite poor accuracy. On the other hand, a
model that always predicts correctly with only 51% confidence is underconfi-
dent and thus uncalibrated. There also exist some techniques that can be used
to make an uncalibrated model more calibrated without affecting accuracy, e.g.
temperature scaling [92].

Calibration of models is often overlooked and most users consider more
accurate models as more desirable than perfectly calibrated models. However,
it has been shown that deep learning models in particular are overconfident
when it comes to the predictions that they make [92], which makes calibration
something that should not be ignored — especially in safety critical applications
such as skin cancer diagnosis and autonomous driving. In Paper IV different
aspects and pitfalls of calibration are explained in more detail.
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(a) The prediction of the model (blue) and the true probability (red) for different values of the
input, x.

—poylx) —m(ylx)

0.6

0.4

True probability of y = 1

02 |

| | | |
0 0.2 0.4 0.6 08 p 1
Predicited probability of y = 1

(b) A reliability diagram for the model in (a).

Figure 3.5: In (a), the prediction for a model p, (y|x) on a binary classification prob-
lem is visualized, where the model is trained on samples from the true model s (y | x).
In (b), the associated reliability diagram is visualized for both the true model and the
trained model. For a perfectly calibrated model the blue line in should be equal to the
red line (b). Note that it is not required for them to be equal in (a) for this to hold. p
corresponds to the same confidence level in both subfigures and are here simply used
for visualization purposes. 51






Sequential deep learning models

“A wizard is never late, nor is he early, he arrives
precisely when he means to.”

— Gandalf the Grey

In Chapter 2 we introduced sequential learning in a very general framework.
In this chapter we focus on how we can utilize deep learning in combination
with this framework. We introduce the analogues of autoregressive models
and state-space models in deep learning. Furthermore, we discuss these mod-
els in relation to a deep hierarchical prior and how they can be combined
with latent variables for improved generative properties. The beginning of
this chapter focuses on the case of sequential output, that is, either the synced
sequence-to-sequence problem (Section 1.5.4) or sequence generation problem
(Section 1.5.2). Sequential input problems are then covered in Section 4.11 and
Section 4.12.

4.1 Recurrent neural networks

One of the core models in sequential deep learning is the recurrent neural
network [93] (RNN), originally proposed in 1986. The structure was derived
from the earlier Hopfield networks [94] and the Ising model [95], which are
popular biologically inspired models for memory and recall. In essence, the
recurrent neural network is a state-space model (see Section 2.5), but the se-
quential state is, for the most part, considered to be deterministic. To explicitly
specify that the state is purely deterministic we denote it with, /.7, whereas
a stochastic state, z;.1, can include both a deterministic and a stochastic part.
In addition to this we also define an input, X,.r, and an output, y,.r, to the re-
current neural network. It is important to note that these inputs and outputs
do not have to coincide with the input and output of the problem structure —
it can be slightly altered for the task and model at hand, hence the ~-notation.
In this setting, a recurrent neural network is defined by two functions, a transi-
tion function, f;, that recursively updates a state subjugated by the input, and
an output function, g,, that defines the output given a state. This is expressed
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Chapter 4. Sequential deep learning models
as

hy = fo(h,_1, %), (4.1a)
Vi = 8o(hy), (4.1b)

where f, and g, are parameterized with neural networks and #,_; is calculated
recursively starting with some initial state, 4,. One of the most basic models
on this form is the Elman network [96], which implements f, and g, as single
layered neural networks.

With this basic notation of a recurrent neural network we can compare it with
the state-space model from Section 2.5 in the synced sequence-to-sequence
problem setting. For the state-space model, the one-step ahead prediction func-
tion is defined via the latent state as,

Po Y- tX1) = [ Poi120P0 (2 12015 X0)P0 (2ot 1Y 11 X121
4.2)

Since we in Equation (4.1) consider the state as deterministic, i.e. z, = h, and
poh, 1 h,_1,%;) = 8(h, = fy(h,_1,X,)), the integral in Equation (4.2) disap-
pears. Similarly, the integral in Equation (2.7) disappears and with it the need
for solving the (intractable) filtering problem. However, this also poses an is-
sue. Without the filtering, the state is deterministically given by the input to
the model alone. If we in this case let the input to the recurrent neural network
be equal to the input in problem structure, i.e. X;.r = x;.7, the model predic-
tions are independent of earlier observations and the model effectively turns
into [], py(y;|x1,,). For systems with a substantial amount of process noise
or with a close to chaotic behavior, this assumption becomes very strict and
the predictive performance suffers. To avoid this issue the input to a recurrent
neural network often also includes the most recent output, i.e. X, = (x,,y,_;) in
the synced sequence-to-sequence problem setting and X, = y,_; in the sequence
generation problem setting, see Figure 4.1.

One alternative approach to motivate the additional input is to change how
we interpret the states, /,, of the recurrent neural network. Instead of inter-
preting the states as deterministic variants of some latent variables, z,, we
interpret them as statistics of the predictive distribution of the latent states,
Doz 1 X145, Y1:4-1). These statistics can then be viewed as deterministic states
which are updated recursively. For example, these statistics could be the mean
and variance, which are sufficient statistics for the the Gaussian distribution,
and be updated recursively, as in the Kalman filter [47]. However, s, may
encode other arbitrary abstract statistics of the predictive distribution of the
latent variables. Following this approach, instead of parameterizing the tran-
sition density, py (z, 1z,_;) directly, it is parameterized as a function that takes
the prior of the state, p,(z, | X1, Y1.4—1), solves the inference problem associ-
ated with observing an output and transitions it to the prior of the next state,
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4.1. Recurrent neural networks

Figure 4.1: A schematic illustration of the recurrent neural network. The output is fed
back into the model by letting i, depend on y,_;. This allows the state to be determin-
istic, while still being able to model complex sequences.

that is

Po ([ X105 Y1:-1) = fPa()’r—l 12-10P0 (24 12-1) P (Zem1 [ X14-15 V1:-2) A2
hy By

~ fo(he_1s X0 Y1) 4.3)

c.f. with the one-step ahead prediction with a Kalman filter. Finally, the ob-
servation density can similarly be expressed as

Po Vel X1 V1m1) = fp49 O 12) Po (2 | X 15 Yia—1) dz, = P (¥, 189 (hy)),
h,

4.4
where the output of g, (h,) are some features parameterizing the output distri-
bution.

This feedback of the output into the model is not without drawbacks. Dur-
ing training the true observation is most commonly used for this feedback, also
known as teacher forcing [46]. However, when generating (i.e. simulating)
from the model, these true observations are (of course) not known and the
model-generated output is used as input for the next step instead. This implies a
mismatch between training and generation (a distributional shift between train-
ing time and testing time), that may impose a problem [97]. An alternative idea
is to instead sample an output from the model also when training. This, how-
ever, tends to be a lot harder to optimize, since this loss is significantly more
stochastic. It is also possible to do a mix of the two ideas called scheduled
sampling, as discussed by Bengio et al. [97], where each time index is either
sampled or teacher forced randomly. With this approach a more robust model
can be achieved.
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4.2 Example: Circuit modeling continued

Let us again return to the circuit modeling example from Section 1.5.4 and
use a recurrent neural network as the model. We assume the observation den-
sity to be

pﬂ(yt|x1:t’y1:t—l) = N(y,lgg(h,),exp(a)z), (45)

and the dynamics are sgiven by

hy = fo(h_y, X0 Y0215 (4.6)

where ¢ is an independent parameter that is optimized jointly with the param-
eters of the recurrent neural network. In Code 1, we show how an Elman net-
work using PyTorch [53] can be implemented and how to calculate the training
loss. Note that the standard recurrent neural network in PyTorch only defines
the transition function and not the observation function. The observation func-
tion is instead implemented with a linear layer that operates on each state inde-
pendently. Finally, both the initial output, y,, and the initial state, &, are set
to zero.

In Paper II, we compare a recurrent neural network (specifically a long-short
term memory model), a temporal convolutional network and a nonlinear autore-
gressive model with state-of-the-art methods from system identification on the
SilverBox dataset.

4.3 Long short-term memory model

A recurrent neural network is trained using gradient descent similar to any
other neural networks, also known as backpropagation through time as it simi-
larly to the forward pass updates the gradients recursively. In other words, the
gradient most be propagated in the opposite direction of all the arrows in Fig-
ure 4.1. A problem with this is that the gradient information has a tendency to
increase or decay exponentially fast due to the recursive gradient calculation.
In turn, this may lead to either exploding gradients that destroy any training
progress made, or vanishing gradients that simply never converge [98].

The long short-term memory (LSTM) model [98] was developed to mit-
igate the vanishing/exploding gradient problem by allowing information to
pass more freely in both the forward pass and the backpropagation. This is
done by using a state update function that more closely resembles a memory
model, where the state updates are governed by so-called gates. This allows
information to be stored over longer periods of time without being diluted by
noise or unimportant inputs, which in turn allows the gradient information to
be backpropagated with less susceptibility to the vanishing/exploding gradient
problem.
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4.3. Long short-term memory model

Code 1 Training a recurrent neural network

import torch

# Dimensionality of the problem
channels_x = 1
channels y = 1

# Size of the hidden state arbitrarily chosen to 3
hidden_size = 3

# The state evaluation

rnn

= torch.nn.RNN(input_size=channels x + channels_y, hidden_size=hidden_size)

# The observation function, (g)

obs_g = torch.nn.Linear (in_features=hidden_size, out_features=channels_y)
# The standard deviation in the observation density

sigma = torch.nn.Parameter (torch.zeros (1)

def

def

train_loss(x, y):
# x: a batch of input sequences (batch size x sequence length x channels x)
# y: a batch of output sequences (batch size x sequence length x channels y)

# add zeros first and remove last entry of y
y_padded = torch.nn.functional.pad(y, (0, 0, 1, 0))[:, :-1, :]
model_input = torch.cat((x, y padded), -1)

# This call recursively caluclates the states for each sequence in the batch
states, _ = rnn(model_input)

# This call operates independently on each state to produce the mean prediction
output_mean = obs_g(states)

# Calculate the loss as the negative loss likelihood

loss = (sigma + 0.5 * ((output_mean - y) / sigma.exp()).square()).sum()

# or alternatively

pred dist = torch.distributions.normal.Normal (output mean, sigma.exp().pow(2))
loss = - pred dist.log prob (y)

return loss.mean (0) .sum/()

sample (x) :

# x: input sequences (sequence length x channels x)
y = [I

T = len(x)

# The last observation is initialized to zero
last_obs = torch.zeros (1)
state = torch.zeros(l, 1, hidden_size)

for t in range(T):
input_rnn = torch.cat((x[t], last_obs), -1)
# Fix the dimensions of the input
input_rnn = input_rnn[None, None, :]
_, state = rnn(input_rnn, state)
# Normal is a normal disitribution
pred_dist = torch.distributions.normal.Normal (obs_g(state([0, 0]),
sigma.exp () .pow(2))
last_obs = pred dist.sample()
y.append (last_obs)
return y

57



Chapter 4. Sequential deep learning models

The LSTM has three different kinds of gates: a forget gate, f;, that when
active makes the memory cell reset; an input gate, i,, that when active lets
the network store information in the state; and an output gate, o,, that lim-
its what information is propagated out from the memory cells. The gates are
implemented as soft binary factors using the sigmoid function, which allows
the model to be fully differentiable. The state is divided into two parts: one
part that is storing the actual information, c,, and one part that corresponds to
the output of the model, d,. All in all, the network can be described with the
following equations,

fi =0 (Wp, X, + Weud, | + by),

i, =0W; X +W;,d,_ +b,),

0, =W, X, +W,,d,_, +b,),

¢, =f; ©0c,y +i, ©tanh(W_,u, + W_,d,_| +b,),
d, = 0, © tanh(c,),

where W, and b, are parameters and © denotes elementwise multiplication.

One should note that this interpretation of the LSTM states should not be
seen as an instrument to investigate how the LSTM works, but rather for how
the design was motivated. In fact, since the introduction of the LSTM, several
other architectures have been proposed that rely less on the interpretability of
the states in favor of less complex model structures with preserved or even
superior performance. One commonly used model structure in this category is
the gated recurrent unit (GRU) [59], which simplifies the expressions to only
have two gates and one state.

The initial area of usage of the LSTM was for language modeling, but it
has in more recent years been replaced with transformer-based models in this
domain (see Section 4.10). In the current deep learning arena, the LSTM and
its alternatives, e.g. GRU, have stabilized as a baseline method with a wide
variety of applications as new areas adopt models based on deep learning, e.g.
price forecasting [99].

4.4 Multiscale recurrent neural networks

Despite the success of recurrent neural networks, they, by themselves, do not
imply any of the deep structure that is characteristic for deep learning — most
notably is the absence of hierarchical feature extraction, which made neural
networks so powerful. One idea to approach such a deep structure is to stack
several recurrent neural networks on top of each other, similarly to how fully
connected or convolutional networks are structured. The idea is thus to let the
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4.4. Multiscale recurrent neural networks

Figure 4.2: A stacked recurrent neural network with two layers in the synced sequence-
to-sequence problem formulation.

output from one recurrent network be used as an input to the next as,
1
AL = RNN" (%,7), (4.72)
2
;= RNN® (hil}). (4.7b)

This structure, called stacked recurrent neural networks (see Figure 4.2), has
proven to be beneficial for modeling complex distributions, in particular for
natural language problems [3].

Another idea to further adopt a deep hierarchical prior (see Section 1.4) is
to similarly stack the recurrent neural networks, but let them run with different
update rates, i.e, how often they update their internal state. For example, a re-
current neural network with an update rate of two skips every other state update
and simply outputs the last state instead. The idea can easily be portrayed by
considering a model that generates a sentence with two stacked recurrent neural
networks operating with different update rates and thus at different timescales.
The slower network captures features that evolve slowly in the sentence, e.g.,
what words that follow certain words, while the faster network captures how
the words are actually spelled, i.e., what letters follow others, conditioned on
the word that the faster network outputs, see e.g. hierarchical multiscale re-
current neural networks [100] and clockwork recurrent neural network [101].
In the literature, multiple different structures have been proposed to achieve
this. One rough division between the structures are models that use adaptive
update rates and those that use fixed update rates. Models with adaptive up-
date rates try to adapt the interval at which the state is updated depending on
the data it generates, i.c., the slower network updates only when a new word
is required. In this case we also need some method to detect when an update
should be made [100, 102]. Fixed update rates use, as the name suggests, a
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Figure 4.3: A multiscale state-space model with three hierarchical levels. A model
with this structure encodes the deep hierarchical prior introduced in Section 1.4.

fixed update scheme, meaning that the features in the slower network do not
necessarily match words and are thus less interpretable [103, 101, 104]. The
advantage is that the network is simpler and easier to train as it avoids the com-
plexity related to discovering delimiters. Furthermore, it is straightforward to
generalize this structure to even more hierarchical levels, which simplifies the
scaling of the model.

A generalization of the multiscale recurrent neural networks, with fixed or
adaptive interval, is a sequential hierarchical latent variable model, see Fig-
ure 4.3. We choose to visualize this model in favor of any of deterministic
versions mentioned in the previous paragraph as the stochastic states avoids
explicit feedback connections in the visualization. This allows us to focus on
the essential properties of a multiscale state-space model without going into
too much detail. One such property is that the multiscale state-space model
embodies the hierarchical prior we associate with structured sequential data.
An important factor to note here is that the sequential submodel on each hier-
archical level does not need to be able to capture long dependencies as these
relations can be expressed in the slower evolving submodels. For example, in
Figure 4.3 the relationship between y, and y,, ; may just as likely be expressed

through their common feature z\>.

4.5 Stochastic recurrent neural networks

Even though we saw that a state-space model effectively can be represented
using a deterministic recurrent neural network, it still can be beneficial to keep
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some of the latent variables as stochastic. The latent states might provide an ef-
fective inductive bias, improve the interpretability, and increase the flexibility
of the model. However, the inclusion of these latent states still gives rise to the
filtering problem related to finding the posterior distribution over them. One
idea to make this more feasible is to use a variational autoencoder as a means of
solving the inference problem. This approach is the core idea of most recurrent
neural networks involving latent variables.

The use of VAEs has generated a number of different stochastic adaptations
of recurrent neural networks, each with slight differences in how the latent vari-
ables interact with the states and observations as well as how to parameterize
the approximative posterior. The stochastic recurrent network (STORN) [57],
the variational recurrent neural network, (VRNN) [59], the stochastic recur-
rent neural network (SRNN) [58], and Z-Forcing [105] are some examples
that implement this idea. In all of these models the state is represented with
one stochastic part, z,, and one deterministic part, ;.

In this section we ony describe one of these architectures in detail, the
SRNN [58], which combines a recurrent neural network with a VAE. The gen-
erative distribution, p, can be explained as having two coupled recurrent net-
works, one deterministic and one stochastic, see Figure 4.4a. The main take-
away is that the deterministic states are independent of the latent sates, which
implies that they can be computed independently of the latent variables, sim-
plifying the inference problem significantly. In addition, it does not affect the
factorization, which can be expressed as,

Po Vel Vi1 X1 i) = fpﬁ(yt |2 h)Po (24 1 2415 Py %)
Po(Zeoy Y11 X1 hyym1)dz, -1 dz,, (4.8)

where h . is given by the deterministic recurrent neural network. Note that
we once again denote the input with X,,; as we most often consider the past
output to be concatenated with the exogenous input x;., c.f. Section 4.1. The
reason for this is that the model is not flexible enough to capture the long-term
relations in the output using only the stochastic state.

The approximative posterior, ¢, of the SRNN approximates the smoothing
distribution. This is implemented with the help of another recurrent neural
network that runs backwards in time to aggregate the future information into a
separate state, a,. This gives the approximative posterior as,

T
g zrrsxirsyir) = [ |90l 2 a (@ b)), (4.9)
=1

which is depicted in Figure 4.4b.

All of different variants on RNNs in combination with VAEs suffer from
a problem similar to posterior collapse, i.e., no information is encoded in the
latent space. For these networks, the problem is slightly more disguised as
the model still can perform well with only the deterministic states. Free bits
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(a) The generative distribution of a (b) The approximate posterior of a
stochastic recurrent neural network. stochastic recurrent neural network.

Figure 4.4: The stochasic recurrent neural network combines the variational autoen-
coder with a recurrent neural network. The approximative posterior reuses the deter-
ministic states of the generative distribution and a recurrent neural network backwards
in time to approximate the smoothing distribution.

and KL-annealing is often used also here to circumvent this. Z-forcing [105]
proposed a slightly altered loss function to force the model to use the latent
space for the same purpose.

4.6 Temporal convolutional networks

Similarly to how a recurrent neural network is the neural network version of
a state-space model, there are neural network-based versions of autoregressive
models. These autoregressive networks, developed in the early 90’s, have been
frequently used in system identification [106]. The recent deep learning devel-
opment has also benefited these models, where the perhaps most prominent
examples are temporal convolutional networks [107] and the Wavenet [8].

The most basic version of the models from the early era straightforwardly
parameterizes the one-step ahead distribution function with a neural network.
In the case that the observations are real-valued this could be implemented with
a simple normal distribution, i.e.

PoVe Vi1 X)) = N O | fo (Dr—rir—1> X—ke]) s a?), (4.10)

where f is a fully connected neural network and k is the truncation horizon.
However, the performance of this model often falls short compared to the re-
current neural network-based ideas, especially in the case where long memory
is needed as this model scales poorly with increased truncation horizon.

The temporal convolutional network (TCN) is a generalization of Equa-
tion (4.10) to a model that uses convolutions instead of fully connected lay-
ers. One interpretation of this is as stacked convolutions that extract sequen-
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tial features in a hierarchical manner, very similar to how convolutional neural
networks act on an image (although without any downsampling/pooling op-
eration). However, stacking such convolutional networks must be done with
precaution as the prediction at every time step is never allowed to depend on
the future (the convolution must be off-center, see Figure 4.5). A convolutional
neural network that fulfills this constraint is called a temporal convolutional
network and got a lot of attention with the work of Bai et al. [107], which
studied its performance in comparison with recurrent neural networks. The
convolutions in this network allow for a larger degree of parameter and com-
putational efficiency when training compared to the more basic neural network-
based autoregressive model.

A temporal convolutional network has another advantage compared to Equa-
tion (4.10). The idea is to increase the receptive field, i.e. the history used for
each prediction, without increasing the number of parameters as quickly. This
is done by parameterizing the convolutional network with kernels, where only
every u-th element is nonzero, called dilated convolutions, and stacking sev-
eral such convolutions. With a kernel size k, i.e. the number of parameters
in the kernel, a dilated convolution has a receptive field of k times . Each
temporal convolution layer is mathematically defined as

k-1
he=>"Y Wik (4.11)
i=0 ¢

where W € R¥FiFou ig the kernel, and F;, and F, are the number of features
of the input and output of the convolution, respectively. By stacking several
dilated convolutions with an exponentially increasing dilation rate it is possible
to create a model with exponentially long memory with only a linear increase
in the number of parameters, see Figure 4.5.

One large advantage of using convolutions is that it makes it possible to
use many of the tools and tricks originally developed for convolutions ap-
plied to images even in a sequential setting. For example, layernorm [108],
dropout [ 109] and parameter initialization schemes can almost be directly trans-
ferred from image models to the temporal convolutional network. Furthermore,
Bai et al. [107] showed that convolution tends to be much easier to optimize
(more stable gradients) and tune than recurrent neural networks on the same
problem. In addition, the convolutions are faster during training since many of
the features are shared and the model is highly parallelizable.

Another well-established structure is the residual connection [110], which
also easily translates to the temporal convolutional network. This residual con-
nection can be expressed as,

h’l:T = )?l:T + DIICOHV()ZIT), (412)

where DilConv stands for a dilated convolution and could in principle be a
series of convolutions. Wavenet [8] is one prominent example of a network
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Figure 4.5: An illustration of a temporal convolutional network where the input, X.t,
is operated on with 3 dilated convolutions with kernel size 2 and dilation rates of 1, 2
and 4, respectively. The full model has a receptive field of 8 — but only 6 parameters,
that is 2 for each layer. The blue and red markings depict the functional dependence
the output has on the input and the intermediate features.

that uses residual connections. This network models 16 kHz raw audio with a
dilation rate of up to 1 024 samples and thus a receptive field in the order of
1 000’s of samples.

The structure of a TCN closely resembles a convolutional neural network
without down/up-sampling. This implies that it also embodies some properties
of a deep hierarchical prior in that advanced features are built up by more basic
features and the basic features focus on a short range correlations. However, it
is not consolidating the advanced features meaning that they may contain high
frequency components.

In some cases, a temporal convolution is not necessary and it is enough to
operate on each time step independently, i.e., i, = f, (X,), where f, is a neural
network. Such an operation can still be implemented with a convolution as
long as the kernel size is set to 1. Such convolutions are also very common
in image modeling, where they operate on each pixel independently with 1x1
kernels. Since many of the ideas in temporal convolutional networks are in-
spired from image modeling, this has led to the somewhat confusing notation
that 1x1 convolutions denote time independent feature transformations also in
the sequential case. For example, a feature transformation that uses the same
activation functions and residual connections as Wavenet is referred to as a 1x1
Wavenet.
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4.7 Stochastic temporal convolutional network

Similarly to how latent variables can be included in the recurrent neural
network it is also possible to introduce latent variables for the temporal con-
volutional networks. A prominent example of this is the stochastic temporal
convolutional network (STCN) [111], which uses a hierarchical variational au-
toencoder for each observation independently. The model can be described
by starting from the one-step ahead prediction factorization, which is approx-
imated by an autoregressive model. This is in turn modeled by introducing a
stochastic latent variable, z,, as

POHY1t) = [ PoGi1Vrka-1:20Po @ | Viga-)dz. (413)

This can the be formalized as a hierarchical variational autoencoder by assum-
ing a factorization of p, (z, | ¥,_x:s—1) @S

Po(Z | Yi—ku—1) =Po (Zt(l) | Zt<2)vyz—k:t—l )Po (Z§2) |Z;3)9yt—k:t—l )
Po (11(3) [ Yicki—1)> 4.14)

wherez, = (z!", 7%, 2?)). The number of hierarchical layers here is arbitrarily

assumed to be three, but could be any number of layers.

This model uses temporal convolutional networks to extract hierarchical fea-
tures, dl(}%, dl(:z%, dl(?) , from the data matching the hierarchical structure of the
latent variables,

dill)" = TCN(y;.1),
d\%) = TCN(d\})), (4.15)
dt = TCN(@d{3).

These features can then be used to represent, y,_;.,_;, at each corresponding
layer. Thus, the full generative distribution can be described as,

POy = [Pl Ipe 2 1287, d M pe (17 127, d7))
)

oz 1d ) dzV dzP dz)? 4.16)

A key assumption in the stochastic temporal convolutional network is that the
approximate posterior of the variational autoencoder can also use these fea-
tures. Thus, the approximate posterior is given as

qo(zsyim) = 4oz 1275d) g (27 127 di P ) gy (25 d). (4.17)

Note that this uses the features without the delay of one timestep compared to
the generative distribution. The full model is summarized in Figure 4.6, where
we introduced deterministic features, /.7, in the generative part for visual clar-

ity.
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The stochastic temporal convolutional network uses a Wavenet structure for
the temporal convolutional network, i.e., it uses a residual connection. How-
ever, one should note that when this model is used on raw speech data, each
observation is considered to be a frame of 200 samples instead of each sample
independently.

Wavenet

Wavenet

1x1 Wavenet

h

YiT yiT

Figure 4.6: A stochastic temporal convolutional network combines a hierarchical vari-
ational autoencoder with a temporal convolutional network. The features extracted
are used for both the approximate posterior and the generative distribution.
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Figure 4.7: The overarching idea of a multiscale autoregressive model. Higher level
features are shared among a larger set of observations while lower level features only
capture the local neighborhood. This model structure encodes the same deep hierar-
chical prior as Figure 4.3.

4.8 Multiscale autoregressive models

A multiscale autoregressive model is constructed with the deep hierarchi-
cal prior in mind. Compared to the temporal convolutional network, which
does not progressively consolidate the features, it utilizes the same hierarchi-
cal structure as the multiscale recurrent neural network, c.f. Figure 4.7 with
Figure 4.3, but without any recurrent connections.

The network consists of two parts, one part that extracts features from the
previous observations, called the bottom-up network, and one part that uses
these features to predict the next output, called the top-down network (c.f. Sec-
tion 3.4). The features extracted from the history are, similar to the stochas-
tic temporal convolutional network, produced progressively with a temporal
convolutional network, but alternated with downsampling to consolidate the
information. The top-down network is then responsible for upsampling these
features again and produce the one-step ahead prediction. The top-down and
bottom-up networks are also connected on each hierarchical level to create
information shortcuts. The temporal convolutional network has a relatively
short receptive field, meaning that the long-range dependencies are mainly
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captured through the high-level features, c.f. U-net [112], which uses a similar
idea for image segmentation. Figure 4.8 depicts both the bottom-up (dotted)
and the top-down (solid) as well as the multiscale aspect with a downsam-
pling/upsampling of two between each hierarchical layer.

(a) The bottom-up network (dotted) extracts features hierarchically and downsamples
them. This implies a U-net [112] like structure that allows local information to be used
in a local context.

l (1)
dl( : gt+2

ﬁWavenet
[ | |

--- Downsample -

(I-1) (I-1) (I-1) (I-1)
d; o Cod 1 8o 90 &3

Upsample

(b) A close-up of the dashed square in Figure 4.8a for the generative distribution. Here
k is the receptive field of the Wavenet model in this layer.

Figure 4.8: A more specific version of the multiscale autoregressive model (see Fig-
ure 4.7) using a U-net [112] structure and hierarchically extracted features. Depending
on the complexity of the data, the latent variables could be ignored.
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Figure 4.9: Samples generated from a multiscale autoregressive model trained on
handwritten text from the lamOnDB [30] dataset.

4.9 Example: Generative models

Let us continue the example on generative sequential models introduced in
Section 1.5.2 and apply a multiscale autoregressive model to the handwritten
text. Figure 4.9 demonstrates samples generated by the resulting model. These
samples can be used to investigate what aspects of the data that the model has
been able to capture. For example, by visually inspecting the samples we can
see that the generated characters physically resemble those of written text and
potentially also a few words. On a higher level we can also see that the samples
seem to follow different styles indicating that the model also captured those
properties of the data.

The multiscale autoregressive model can be used also without latent vari-
ables. In this case it is possible to investigate the effect of the multiscale
prior and compare it to a Wavenet [8] model, which does not impose that prior.
We experiment with two different model architectures, one reimplementation
of Wavenet [8] and one multiscale autoregressive model structurally identi-
cal to the models used in Paper 111, but without latent variables and slightly
smaller. Even though the multiscale model uses significantly more parame-
ters (> 10x), both models use a comparable computational complexity. The
Wavenet even tends to require more memory than the multiscale model during
training (= 30% more). Note that for this experiment we consider all the sam-
ples independently and not grouped into frames. The estimated log-likelihoods
for these models on the Blizzard dataset [31] are presented in Table 4.1, where
the multiscale structure shows a considerably better performance regardless
of the model size. Paper III further investigates the multiscale autoregressive
model also with latent variables.

The usefulness of the intermediate features from the multiscale autoregres-
sive models on other downstream tasks, i.e. transfer learning, has not yet been
investigated and is a subject for future work. However, wav2vec [86] uses a
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Table 4.1: Average log-likelihood per sequence for speech with and without
a multiscale prior on the Blizzard dataset [31]. The large model uses approx-
imately twice the amount of computational complexity as the smaller model
and is slightly smaller than the models used in Paper III.

Model Log-likelihood
Wavenet, Small 15553
Wavenet, Large 16 608
Multiscale, Small 17457
Multiscale, Large 17919

similar network to produce downsampled features, which are very beneficial
for speech recognition, see Section 3.6 for an example on this.

4.10 Transformers

Transformers [33] are a class of models that for the past years have domi-
nated many of the competitions in deep learning, especially for problems that
require very long memory and/or involve language. Even though transformers
are not explicitly used in this work, they are used in many of this thesis’ related
works and their position within sequential modeling today makes it difficult to
ignore them.

The core component of the transformer is the attention layer which has three
variants, standard attention, self-attention and masked self-attention — each
of these is explained below. A transformer is built up by stacking several,
so-called, transformer blocks, each consisting of a sequentially independent
feature transformation (a 1x1 convolution) and an attention layer. The termi-
nology regarding transformers is not standardized and can, depending on the
application, involve any of the three attention variants, in any combination.
However, the most common case is that the transformer only includes masked
self-attention, which is the convention used in this thesis if nothing else is men-
tioned.

One approach to explain the standard attention layer is to give an intuitive
feeling for how it functions. An attention layer has two inputs, here called
the prober and the information bank. The high-level intuition in attention is
that each element in the prober wants to extract some information from the
information bank. For this purpose, the information bank is restructured as
a “dictionary” with a set of values accessible by a matching set of keys, both
created by a transformation of the elements in the information bank. Similarly,
the elements of the prober are transformed into queries. In a simplified way,
each query is used to extract a value from the information bank, where the
value is selected as the value from the best matching key-value pair for the
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query. The match is calculated as a similarity metric between the key and the
query. However, instead of choosing the single best value for each query, a
weighted average of the values in the dictionary is used, where the weights are
the similarity measures.

In a mathematical notation the standard attention function is defined as
A(X, ¢), where the inputs, the prober X and the information bank ¢, are rep-
resented with tensors as ¥ = (¥,);c(n) € RMFand ¢ = (¢)icppry € RME.
Here, F and F are the number of features in the inputs, respectively, while N
and M are the number of elements in the inputs, respectively. With this we get
the queries, keys and values, as

Q = W,
K = éWy,
V = Wy,

where W € RFG, Wy € RF*G, W, € RFH are projection matrices, and
G and H are hyperparameters. For each query, Q,, the output, V; = A(%,¢),,
1s defined as,

V., = softmax(Q,K")V (4.18)

In the more specialized case of self-attention, the same set of data, x, is used as
input for the queries and for the keys and values, as the name suggests. Note
that the attention layer is invariant to the order of the elements in both X and ¢.

Attention layers excel at operating on sets (see e.g. [113]) in the sense that
by design are size/length and order agnostic in terms of the input. However, if
appropriately customized, it can also be applied to sequential/ordered data. The
main idea to achieve this is to expand the input (to the full transformer model)
with more features, a position encoding, that contains the temporal information.
Thus, when the input set ¥ is of sequential nature, i.e. ¥ = ¥;.r € RTF, itis
expanded with some additional temporal features, % (1), as ([X;, F (1)]);e1y-
These temporal features are fixed (nonparameteric) functions of the time step,
t, typically as a set of trigonometric functions with different predetermined
frequencies.

A transformer, T(¥,.1), with self-attention operates on the entire sequence
in parallel to produce a sequence of output features. Similar to the recurrent
neural network and temporal convolutional network the input is expanded with
the past observations when modeling sequential output, or simply replaced (i.e
X117 = Yo.r—1) wWhen the original input is nonexistent. Without any constraints
the self-attention layer can gather information from both the past and the future.
Masked self-attention avoids this problem by masking every entry from future
data by setting the similarity score to negative infinity for these entries. This
effectively turns Equation (4.18) into

V, = softmax(Q,KT,) V.. (4.19)
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There are three dominant use cases for transformers: translation, which
can be seen as the breakthrough of the transformer structure [33] (see Sec-
tion 4.12); generative models, which use very large models of stacked masked
self-attention layers, e.g. GPT-3 [7]; and (nongenerative) unsupervised mod-
els, which learn useful representations of the sequence that can be used for
transfer learning, e.g. BERT [85]. Recently they have also been applied to
other types of data, most notably on images, e.g. ViT [15].

4.11 Sequential classification

All the sequential models presented so far in this chapter have had sequential
output with (optional) causally constrained input as focus. This section instead
focuses on sequential input for classification, and in the next section sequence-
to-sequence. Sequential classification with deep learning has no standardized
solution, although there are several established approaches. One of these ap-
proaches is to use any of the basic models in this chapter as a method of fea-
ture extraction, i.e. recurrent neural networks, convolutional neural network
or transformers, which we generally denote,

hy.r = SequenceModel (X|.1). (4.20)

One significant difference of these sequence models compared to the models
previously introduced, is that they do not necessarily have to uphold the causal
constraints that limited the autoregressive and state-space models. Hence, in
the case of convolutions it is possible to use ordinary 1D convolutions instead
of temporal convolutional networks (see e.g. [6]). Similarly, in the case of
recurrent neural network, it is possible to use bidirectional recurrent neural
networks that aggregate information both forward and backward in time, see
e.g. [114]. Finally, in the case of transformers, the feature extraction is not
limited to masked self-attention see e.g. [85].

However, one obstacle with this approach of feature extraction is that the
length of the input sequence and thus the length of the features might vary,
which implies that it is necessary to aggregate the extracted features somehow.
The perhaps most basic idea to do this aggregation is with global average pool-
ing, i.e. averaging the extracted features. The averaged feature is then indepen-
dent of the sequence length and can be used as input to a standard classification
network,

¥ = NN(Average(h,.1)), (4.21)

where y is used for the final prediction. Recurrent neural networks provide an
alternate avenue to achieve this aggregation by simply using the final state or
the output of the final state as a representation of the entire sequence,

5 = NN(hp). (4.22)
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It is also possible to use the final state of both the forward and the backward
networks of a bidirectional recurrent neural networks [114]. Transformers have
yet another unique solution to this aggregation problem. Recalling that the
transformer essentially operates on a set it is possible to introduce a unique
input token, often denoted [CLS], and appending it to the input vector. The
prediction is then made using the output feature corresponding to that token,
ie.

hy.r., = Transformer(([CLS], X,.7)), (4.23)
57 = NN(hT+1). (424)

See for example Devlin et al. [85] for a more detailed explanation of this idea.

4.12 Sequential translation

The model used for a sequence-to-sequence or translation problem can be di-
vided into two parts: an encoder that extracts features from the input sequence
and a decoder that generates an output conditioned on these features. The en-
coder can, in principle, be chosen as any of the structures for feature extraction
used for sequential classification (that is not necessarily including the aggrega-
tion part) presented in Section 4.11. The decoder can in turn be chosen as any
of the sequential output methods discussed in this chapter or several of them in
conjunction. See Figure 4.10 for a schematic overview of a translation model.

A problem with sequential translation is that the input sequence could be
of arbitrary length and independent of the output sequence length. This gives
rise to a similar aggregation problem as for sequential classification. There are
primarily two solutions to this problem, either aggregate the input features in
the same fashion as for sequential classification [115] or use attention [33] (see
Section 4.10). An example of translation using attention for the conditioning
between the encoder and the decoder is presented in Section 4.13 with the goal
of generating speech from text.

4.13 Example: Text-to-speech

Let us continue the example on text-to-speech introduced in Section 1.5.3
by presenting some of the state-of-art text-to-speech models. Text-to-speech
models typically consist of two parts: an encoder that operates on the text in-
put and extracts features from it; and a decoder that generates the waveform.
Up until recently, text-to-speech models have required a combination of dif-
ferent submodules and algorithms to achieve good performance. For exam-
ple, the decoder in Tacotron [116] predicte a sequence of spectrograms, which
then are converted into waveforms using the Griffin-Lim algorithm [117]. An
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Figure 4.10: A schematic picture of a sequence-to-sequence model. The encoder
produces features that are used by the decoder that generates the output. The encoder
is structurally similar to a sequential classification model, i.e. no sequential constraints,
while the decoder model is a generative model, here with the previous outputs explicitly
included.

improved version of this is the Wave-Tacotron [32], that uses a normalizing
flow to generate the waveform instead, which also implies that the intermedi-
ate representation with spectrograms is no longer needed. Apart from these
two methods for the decoder there are also other models using for example
Wavenet [118] (see Figure 4.11) and GANs [119].

The encoder encodes the input text to a more suitable representation. This
can also include a phonetic middle step by a phonemizer, which gives a better
representation of how to pronounce the given text [119]. The overall structure
of the encoder is similar between different text-to-speech models and typically
uses a sequential feature transformation as those we discussed in this chapter,
e.g. convolutions and bidirectional recurrent neural networks [32, 116, 119].

For proper conditioning on the text, it is typically not enough for the text-
to-speech model to simply aggregate the information as in sequential classifi-
cation (Section 4.11). Instead, an attention mechanism is used as this enables
the model to condition on a sequence with varying length. This is not exactly
the same attention as in Section 4.10, since this attention also feeds back what
the model attended in the last time step. It is thus more similar to a recurrent
neural network than the attention introduced there [120].

This section gives only a brief background on the ideas for text-to-speech
modeling and is not at all meant as a comprehensive overview of the subject.
However, the area poses as potential future work for the multiscale autoregres-
sive model, which neatly fits into the sequence translation framework as a part
of the decoder network.
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Figure 4.11: A schematic overview of the text-to-speech model developed by Shen
et al. [118]. The bottom three boxes correspond to the encoder while the top orange
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Conclusion and future work

“So long and thanks for all the fish.”

— Douglas Adams

This work came to be during a very influential time in machine learning.
Artificial intelligence has moved into the public sphere, both in form of new
applications, e.g. driver assistance and self-driving cars, but also in aspects on
social discussions e.g. ethics associated with machine learning.

5.1 Conclusion

The contributions we cover in this thesis are in three quite distinct direc-
tions, although deep learning, probabilistic modeling and sequential data are
a common thread among them. The first contribution is in the intersection of
deep learning and system identification, both exploring new ways of applying
deep learning in typical system identification settings as well as relating the
deep learning framework to system identification. The second is on aspects of
verification and evaluation of probabilistic models. Specifically, we discuss
the aspect of calibration for classification models. The final contribution is
related to sequential deep learning and what we call a deep hierarchical prior
and its role as an inductive prior for sequential data.

This work is to no amount exhaustive in the respective areas and still have
many potential avenues for further research. While probabilistic and sequen-
tial modeling has a strong theoretic background, deep learning and the many
aspects around it are still to a large degree empirical. Even if some theoretical
advancements have been made it should still be regarded as an engineering
field. However, this does not imply that deep learning should be avoided. One
can draw parallels to the early ages of aviation where the physics behind air-
planes was not fully understood, yet they flew and have since changed the
society drastically.

Even tough it is difficult, if not impossible, to predict what the future has in
store in terms of artificial intelligence and machine learning, I would still like to
make a guess, or perhaps more of a hope, about the future. One structural flaw
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with many state-of-the-art models of the current era is the computation and
power consumption associated with them. While the performance of the mod-
els is approaching human level in many areas, the energy consumption required
to achieve this level is orders of magnitude higher than that of a biological brain.
When I visualize the successor of deep learning, I see analog/neuromorphic
circuits instead of digital to reduce energy consumption. Furthermore, instead
of optimizing the entire function globally, as with gradient descent, I believe
in a decentralized optimization — where the training is done in local cliques.
However, this vision is perhaps as ill-advised as airplanes with flapping wings.
Only the future will tell.

5.2 Future work

As hinted on in the previous section there are still many open questions in
the directions that this thesis visits.

» We believe that deep learning still has a lot to gain from system identifi-
cation and vice versa. One concrete example of this is the HIPPO [121]
parameterization of a state-space model, which has shown remarkable
success on long-term memory problems in deep learning and has so far
not been covered in system identification.

The hierarchical multiscale autoregressive model is still quite unexplored.
Here an interesting avenue is to evaluate the learned features usefulness
in transfer learning as well as in a conditional generative setting, for ex-
ample text-to-speech.

Finally, we believe that foundational models are yet to be applied more
broadly, especially in the area of audio, e.g. text-to-speech, but also other
new domains.
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