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Purpose: We present the nanoCluE model, which uses nano- and microdosimetric quantities to model
RBE for protons and carbon ions. Under the hypothesis that nano- and microdosimetric quantities corre-
lates with the generation of complex DNA double strand breakes, we wish to investigate whether an
improved accuracy in predicting LQ parameters may be achieved, compared to some of the published
RBE models.
Methods: The model is based on experimental LQ data for protons and carbon ions. We generated a data-
base of track structure data for a number of proton and carbon ion kinetic energies with the Geant4-DNA
Monte Carlo code. These data were used to obtain both a nanodosimetric quantity and a set of microdosi-
metric quantities. The latter were tested with different parameterizations versus experimental LQ-data to
select the variable and parametrization that yielded the best fit.
Results: For protons, the nanoCluE model yielded, for the ratio of the linear LQ term versus the test data, a
root mean square error (RMSE) of 1.57 compared to 1.31 and 1.30 for two earlier other published proton
models. For carbon ions the RMSE was 2.26 compared to 3.24 and 5.24 for earlier published carbon ion
models.
Conclusion: These results demonstrate the feasibility of the nanoCluE RBE model for carbon ions and pro-
tons. The increased accuracy for carbon ions as compared to two other considered models warrants fur-
ther investigation.
� 2023 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 182 (2023) 109539 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Since the mechanisms of radiation response are acting over sev-
eral orders of resolution a multiscale approach is inevitable when
trying to model the variation in response between radiation qual-
ities with the RBE (Relative Biological Efficiency) factor. The cur-
rent clinical practice for protons is to apply a constant factor of
1.1 [1] while for carbon ions the larger RBE variations have neces-
sitated the use of models such as e.g. the LEM (Local Effect Model)
[2], the MKM (Microdosimetric Kinetic Model) [3] or the mMKM
(modified Microdosimetric Kinetic Model) [4]. A fully mechanistic
model is however, given the complexity of interacting systems in
living matter, an overwhelming task which has not yet been
demonstrated.
In this work we present an empirical RBE model based on radi-
ation characteristics including the clustering of particle interac-
tions at the nanometric or DNA scale, characteristic target sizes
at the length scale of cell nuclei derived from microdosimetry data,
and the a=b ratio for photons, the latter as a proxy for higher level
responses at the scale of tumors and tissues. We have investigated
routes to an optimal parameterization of multiscale variables for
predicting RBE based on available cell survival assay linear-
quadratic (LQ) data for protons and carbon ions. We name our
framework nanoCluE (nanometric Cluster Effect) after the nan-
odosimetric part that stems from a previous study [5] that
explored the correlation of RBE for V79 cell line to the clustering
of energy deposition (ED) events at the nanometric scale of the
lower levels of the DNA winding packaging. Since cell nuclei con-
tains DNA void domains to effectively constitute cavities for which
the microdosimetric spread of overall energy deposition will be of
importance [6,7], we include a microdosimetric dependence based
on earlier work for characteristic size determination [8]. We intro-
duce some particle specific parameterizations of intermediate vari-
ables based on dose weighted LET (LETD) to facilitate
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RBE modelling using multiscale approach
implementation into a particle therapy TPS (Treatment Planning
System), simply assuming that the particle’s energy, and hence also
LET, is available in a TPS. Finally, we demonstrate the model’s fea-
sibility for proton RBE calculations in a research version of the
RayStation TPS (RaySearch Labs, Stockholm).

Methods and materials

Formalism

Based on the linear-quadratic (LQ) formalism we denote the lin-
ear and quadric coefficients for a radiation quality Q and tissue T as
aQ ;T andbQ ;T , where R instead of Q indicates the reference radiation
quality, commonly photons. Using the quantities
RBEmax;T ¼ aQ ;T=aR;T and RBEmin;T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bQ ;T=bR;T

p
, we follow [9] and

express the RBE for a certain radiation quality and tissue at dose
D as

RBEQ ;T ¼
� a

b

� �
R;T

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
b

� �2

R;T
þ 4D � RBEmax;T � a

b

� �
R;T

þ 4D2 � RBE2
min;T

r

2D
ð1Þ

whereða=bÞR;T ¼ aR;T=bR;T . The dependence of RBEmin;T on the beam
quality has been questioned [10–12], although a recent study sug-
gests a small variation with beam quality [13] for protons. In line
with previous studies [14,15] we assume RBEmin;T to be unity. Our
approach for modelling RBEmax;T is inspired by [14,15] where the
parameterized RBEmax;T for different tissues were inherently scaled
with1= a=bð ÞR;T . Hence, our ansatz for nanoCluE starts from the
identity

RBEmax;T � aQ ;T

aR;T
� 1

ða=bÞR;T
aQ ;T

bR;T
ð2Þ

in which we treat the ratio aQ ;T=bR;T to be described with a func-
tion qðn;l; bÞ
aQ ;T

bR;T
¼ qðn;l; bÞ ð3Þ

where n is a nanodosimetric variable, l is a microdosimetric vari-
able and b ¼ ða=bÞR;T serve as a tissue specific ‘‘macroscopic” vari-
able. Since we will design n and l to include most of the
variation with Q, the functional dependence needed from
qðn;l; bÞ is to be a correction factor, for which we used a second
degree polynomial with mixed terms

qðn;l; bÞ ¼ q0 þ q1nþ q2lþ q3bþ q4nlþ q5nbþ q6lb

þ q7n
2 þ q8l2 þ q9b

2 ð4Þ
where q0 to q9 are parameters fitted to experimental LQ data, see
sect. 2.2. To determine the nanodosimetric and microdosimetric
variables we generated a track structure data base with Geant4-
DNA 10.3.3 [16–18], see supplement for details.
Experimental LQ data

We assembled a data base of experimental LQ data by extend-
ing our earlier used data [5] with data from published databases
[19,20] and elsewhere, see the supplementary material for a full
list. For the nanodosimetric part (section2.3) we exclusively used
data for the V79 cell line for which ample data are available. Fur-
thermore, we only included cell survival data based on mono-
energetic beams, with cells that are not subject to purposely
induced mutations and were asynchronous with respect to the cell
cycle. For both the microdosimetric part described in section 2.4
and the final parametrization of Eq. (4) described in Section 2.5,
2

we used data for other cell lines than V79, and also non-
monoenergetic data provided that the measurements were per-
formed at shallow depths, well upstream of the SOBP. We added
the requirement thatbR;T > 0, necessary for the validity of Eq. (4)
bearing in mind that the model is intended for tumors and tissues
(rather than cell line data) where photon reference values of
a=bð ÞR;T are finite. We excluded data for which a=bð ÞR;T > 20 con-
sidering these unlikely for both cancerous and normal tissues
[21,22]. As radiation quality descriptors we used type and LET,
with the dose weighted LETD to estimate LET for non monoener-
getic values. For the publications where it was not explicitly pro-
vided we used values assigned in reviews [19,20]. For carbon
ions, the LET value that included contributions nuclear fragments
was chosen if reported.
Nanodosimetry

We used the EDs from the track structure simulations to com-
pute the frequency of cluster order (CO) distributions f CO;Q for dif-
ferent beam qualities using the cluster definition from Bäckström
and Villegas et al [5,23]. It gives the frequency, per imparted
energy, for clusters of order CO of EDs for which the distance
between two adjacent EDs never exceeds a characteristic dis-
tancedC . It follows that the dose fraction deposited by a certain
cluster order is proportional toCO � f CO;Q , and that the total response
can be described as a weighted sum of contributions over the total
f CO;Q distribution. Hence, following the formalism of Villegas et al
[5], using clusters for the characteristic distance dC ¼ 2:5 nm, we
modelled the variable n by fitting weights wCOi

of cluster order
bin i for experimental V79 cell line data according to

n ¼ aQ ;V79

aR;V79
� RBEmax;V79 ¼

Pk
i¼1 FCOi ;Q � FCOi�1 ;Q

� � �wCOiPk
i¼1 FCOi ;R � FCOi�1 ;R

� � �wCOi

ð5Þ

where FCOi ;Q ¼ PCOi
CO¼1f CO;Q � CO are cumulated values to enable bin-

ning of cluster orders to limit the overall number of fitted weights
tok. For more information, see the supplemental information.
Microdosimetry

At the microdosimetric level, the variable action of different
radiation qualities can be attributed to the spread of energy depo-
sitions over cell nuclei sized targets. A common descriptor of such
distributions, as a microdosimetric analog of LET, is the frequency

mean lineal energyy
�
f . However, the shape and cavity size for deter-

mination of y
�
f varies depending on experimental conditions rather

than specified from accepted consensus. Based on extensive Monte
Carlo simulations (see supplement) and the work of Villegas et al
[8] we have assumed spherical shape and selected a beam quality
dependent cavity diameter dQ such that the mean single track

specific energy z
�
F equals the MID (Mean Inactivation Dose),

defined as

MIDðQÞ ¼
Z 1

0
SFðD;QÞdD ð6Þ

where SF is the LQ based survival fraction. The corresponding mean

lineal energy denoted as y
�
f ;MID demonstrate a strong relationship

with dQ almost independent of beam quality suggesting its feasibil-
ity as a proxy for microdosimetric characteristics [8]. For use as the
variable l in qðn;l; bÞ of Eq. (4) we used three different base quan-

tities, namelydQ , y
�
f ;MIDðQÞ andLET, the latter because of its wide-

spread usage in RBE models. To compute dQ and y
�
f ;MID for a

variety of cell lines and beam qualities we used LQ-parameters from
the learning set (see the supplementary materials for details). We
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here used data for all cell lines in the database, to correct for the
bias from the V79 cell lines used in the previous section.

We considered several alternatives for the microdosimetric
variable l in Eq. (4) as to find the one that yielded the best fitting
to the learning set data. The considered alternatives were

dQ ; dQ � dR; dQ=dR; y
�
f ;MIDðQÞ; y

�
f ;MIDðQÞ � y

�
f ;MIDðRÞ; y

�
f ;MIDðQÞ=y

�
f ;MIDðRÞ

andLET. Determination of both dQ and y
�
f ;MIDðQÞ involves data for

several cell lines causing numerical variation relative to the corre-
sponding LET value, hence the result was filtered by fitting the
coefficients l1 and l2 to
l ¼ l1LET þ l2LET
2 ð7Þ

before implementation.
Fig. 1. The experimental RBEmax plotted versus RBEmax as given by nanoCluE, i.e. Eq. (3)
with q(n,l,b) as given by Eq. (8) for protons (left) and carbon ions (right). Discs
represent experimental data. The dashed-dotted line represent an ideal model. The solid
curves represent the RMSE of nanoCluE.
Implementation and testing

Each alternative of l went through fitting of Eq. (4) with the
intent to choose the one yielding the highest adjusted coefficient
of determinationR2. Maximizing the adjusted R2 penalizes the use
of additional parameters to avoid overfitting. We tested permuta-
tions of Eq. (4) by leaving out terms and scoring the adjusted R2

for each permutation, in a manner such that b appeared in at least
one term for each test. To account for the published uncertainties
of the LQ-parameters, a bootstrapping technique was used for
which each a; bð Þ entry was represented by five sampled entries
(increasing the number did not change the results much) from nor-
mal distributions with standard deviations as given in the refer-
ences for each data entry. To deal with the paucity of data for
low LET, we used a weight of 3 (relative 1 for the rest) for data
points with an LET 6 3 keV/lm to ensure RBE values of around 1
in the plateau region. The fits were done versus the same learning

set as for determination of y
�
f ;MIDðQÞ anddQ . To simplify TPS imple-

mentations, both n and the finally selected variable for l were
pre-computed as a function of LET and particle type. Given the rel-
atively smooth variation of nwith LET, it was interpolated between
the pre-calculated values, while l was parameterized according to
Eq. (7).

For testing we compared results from our model with previ-
ously published models; for protons we used the McNamara model
[24] and the Tilly-Wedenberg model [14,15]. For carbon ions, we
used the RMF model [25] and an in-house implementation of the
mMKMmodel [4]. All models were implemented in a research ver-
sion (9A-IonPG 8.99.30) of the RayStation TPS. For the RMF model
we assumed a fixed cell nucleus diameter of 4 lm [26] whilst
allowing aR;T and bR;T to vary [27]. For the mMKM model we used
fixed values of cell nucleus radiusRn = 3.9 lm and domain
radiusrd = 0.32 lm [4] and aR;T and bR;T could varied [28]. The quan-
tities used for comparison were RBEmax;T and the RBE for a dose of
2 Gy,RBEQ ;T;2Gy. As comparison metric we used the root mean
square error (RMSE) summed over the available data base. To
reduce bias for nanoCluE we used the leave one out procedure in
which the model was refitted without the test data point.

For test points of RBEQ ;T;2Gy where experimental bQ were not
provided we assumedRBEmin;T ¼ 1. i.e. for the nanoCluE, mMKM
and Tilly-Wedenberg models we assumed in all casesRBEmin;T ¼ 1.
The McNamara and RMFmodels includes a tissue and beam quality
dependent RBEmin that was used. At the voxel level for TPS applica-
tions, we calculated dose weighted values of RBEmax for the spec-
trum of particles imparting dose to the voxel before entering the
value into the final, voxel level calculations of RBE. We only consid-
ered primary protons when calculating LET in RayStation in line
with earlier findings when applying nanoCluE for protons [29].
3

Results

The form of the function qðn;l; bÞ of Eq. (4) that yielded the
highest adjusted R2 = 0.874 was with l equal todQ , and included
all but the l2-term. With coefficient values this is

qðn;l; bÞ ¼ 0:170� 0:944nþ 5:23lþ 0:519b� 0:476nl

þ 0:706nb� 0:233lbþ 0:181n2 � 0:0117b2 ð8Þ
with q expressed inGy�1, with n dimensionless,l in lm and b in

Gy. Excludingl, i.e.q ¼ q n; bð Þ, the highest adjusted R2 = 0.865.
Excluding instead n, i.e.q ¼ q l; bð Þ, the highest adjusted R2 = 0.782.

The final fitted forms of Eq. (7) for protons and carbon ions were

lHþ ¼ 0:129LET � 2:12 � 10�3LET2

lC126þ ¼ 0:0259LET � 2:65 � 10�5LET2
ð9Þ

with l in lm and LET in keV/lm.
The results of nanoCluE RBEmax for carbon ions and protons

compared to experimental values are shown in Fig. 1, separately
for different classes of a=b values of the reference radiation. Resid-
uals as function of LET are shown in Fig. 2 together with RMSE val-
ues for nanoCluE, for carbon ions the mMKM and the RMF models,
and for protons the Tilly-Wedenberg and the McNamara models.
For carbon ions the RMSE value for nanoCluE is about 43 % lower
than that for the mMKM model, and less than half than that of
the RMF model (nanoCluE 2.26, mMKM 3.24, RMF 5.24) while for
protons nanoCluE demonstrate similar results as the other models
(nanoCluE 1.57, Tilly-Wedenberg 1.31, McNamara 1.30).

Comparing the models with experimental RBE at 2 Gy yielded
for carbon ions better results for all models (nanoCluE 0.45, mMKM
0.63, RMF 3.36) and so also for protons (nanoCluE 0.62, Tilly-
Wedenberg 0.52, McNamara 0.55.

For protons the TPS implementation is demonstrated in Fig. 3
for a=bð ÞR;T ¼ 3 for a proton SOBP with a modulation depth of
10 cm and total range of 20 cm in a water phantom. Results are
shown for the nanoCluE, Tilly-Wedenberg and McNamara models
and for a constant RBE = 1.1. For the nanoCluE and Tilly-
Wedenberg models RBEmin;T ¼ 1 was assumed, whilst for the
McNamara model a LET-dependent value for RBEmin;T was used.
All models present the characteristic increase in RBE towards the
end of the spread out Bragg peak but with different magnitudes.
At 1 cm depth, the nanoCluE predicted a 7 % lower RBE weighted
dose than if using RBE = 1.1, as compared to 4 % and 1 % for
Tilly-Wedenberg and McNamara, respectively. At 20 cm depth at
the end of the SOBP, nanoCluE predicts an 11 % higher RBE
weighted dose than if using RBE = 1.1, as compared to 14 % for both
the Tilly-Wedenberg and McNamara models. It is likely that opti-
mizing treatment plans using an RBE model such as nanoCluE will



Fig. 2. Residuals vs LET for the considered RBE models for protons and carbon ions. Data points are color-coded as in Fig. 1.The nanoCluE residuals were obtained by the leave
one out procedure.

Fig. 3. A proton SOBP along with the variable RBE as predicted by nanoCluE, Tilly-
Wedenberg and McNamara models (solid curves) together with constant RBE. Also
shown are the RBE curves (dashed curves) for the models.

RBE modelling using multiscale approach
reduce the RBE modelled dose burden to the OARs (organs at risk).
Albeit somewhat anecdotal, this is demonstrated in Fig. 4 for a
H&N patient prescribed a mean dose of 70 Gy with optimization
goals of D98%>66.5 Gy and D2%<73.5 Gy planned with either RBE
1.1 or nanoCluE modelled RBE. After robustness evaluation using
28 different scenarios of isotropic 4 mm isocenter displacements
Fig. 4. Result of robustness evaluation expressed as mean nanoCluE RBE weighted
dose for 28 scenarios to organs at risk for a head&neck patient prescribed a mean
target dose of 70 Gy. Blue boxes show results for plans optimized with RBE = 1.1,
while black boxes show data for plans optimized with nanoCluE.

4

and 3.5 % Hounsfield value uncertainty, the figure shows the
resulting distributions of mean RBE modelled doses for selected
OARs. For the target, the median of the evaluated nanoCluE RBE
D98% dose is reduced from 75.1 Gy for RBE 1.1 planning to
67.4 Gy with nanoCluE planning.

The quantity resulting from the nanodosimetric modelling, i.e.
n ¼ aQ ;V79=aR;V79 is shown for protons and carbon ions in Fig. 5 as
a function of LET. The cumulative functions FCOi ;Q and the resulting
wCOi

used for its determination are presented in the supplement.
For protons, n increases with increasing LET from unity, indicating
a similar biological damage efficacy for 60Co as for higher energy
protons. For carbon ions, n increases with LET until it reaches a
peak at about 170 keV/lm. At higher values of LET, n decreases
due to overkill [30], in accordance with experimental data for sev-
eral particle types [31]. The resulting microdosimetric quantity dQ

selected as l is also shown in Fig. 5 as function of LET.
Discussion

In this work we present the nanoCluE RBE model which incor-
porates nano- and microdosimetric variables together with a tissue
Fig. 5. (left) The quantity aQ ;V79=aR;V79 resulting from the nanodosimetric modelling
(and used for n in Eqs. (3) and (4)) shown for protons (blue) and carbon ions (red).
The experimental data are shown with error bars, while the modelled results from
Eq. (9) are shown as dots connected by lines. The dots are located at the LET values
for which Monte Carlo track structure simulations were done. (right) The quantity
dQ resulting from the microdosimetric modelling (and used as l in Eqs. (3) and (4))
shown for protons (blue) and carbon ions (red). The data points stems from the
experimental LQ-parameters that dQ depends on. The solid lines represents the
particle specific fits of Eq. (9) for protons (blue) and carbon ions (red).
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specific factor. It has been developed to predict the RBE for proton
and carbon ions over a wide LET range and tissues/tumors charac-
terized by different values ofða=bÞR;T . We have also demonstrated
its simplicity for its implementation into a TPS, albeit only for pro-
tons, through use of LET as the independent variable.

For carbon ions nanoCluE proved superior among the tested
models. However, the usage of fixed cell nuclei diameters and
domain sizes for RMF and mMKMmay have limited their accuracy,
although the latter is used clinically with fixed values [4]. Specific
values for these parameters are not readily available for all tissue/-
tumor types, and thus we followed the example of earlier pub-
lished work [27] in using fixed values for these parameters, but
allowing a=bð ÞR;T to vary. A major limitation for all RBE-models is
the lack of in vivo data necessitating the use of in vitro radiobiolog-
ical data as learning data. The large variation in methodology of the
published data increases the uncertainties of the available LQ-
parameters [19] in addition to scarcity of data for less common
radiation modalities. The uncertainties propagate into model
uncertainty. For protons all the tested models yielded similar
results suggesting that the precision limit a phenomenological
model can reach is achieved and thus limited by the uncertainty
in experimental data. Not surprisingly, all proton models yield
lower RMSE than simply using the constant 1.1 factor. Clinically,
even small variations in RBE may become important when the tar-
get is in close proximity to an OAR, especially if the OAR has a low
a=bð ÞR;T and is a serial organ [32].

Given the datasets of LQ-parameters used in our work no strong
correlation between the introduced quantities and RBEmin could be
found. We therefore resorted to assuming that RBEmin ¼ 1 indepen-
dent of beam quality. One study based on published experimental
data found a weak correlation between bQ ;T and LET for low doses
and low values of ða=bÞR;T [13], which easily could be applied due
to the overall LQ-formalism used in nanoCluE.

Handling of heavy secondary particles with high RBE could
impose problems. However, in an earlier study [29] we showed
that for protons it is consistent to assume that experimental LQ-
parameters include the effects of heavy secondaries, and therefore
not needed be explicitly considered for treatment planning appli-
cations. Another problem inherent to all RBE models is the large
intra-voxel variance in the deposited dose toward the end of the
particle range. This is caused by a high probability that particles
stop within the voxel, as well as reductions in the particle fluence
and range of the secondaries. These factors may lead to an
increased likelihood of tumor cells in part of the voxel avoiding
all hits causing the tumor control probability at the voxel to
approach zero despite high RBE and finite dose. We know of no
solution to accurately calculate a meaningful RBE for these
circumstances.

In this work we addressed only protons and carbon ions. The
framework for the nano- and microdosimetric variables is particle
agnostic although tested only for those two species. Excluding the
l-component in q caused a smaller difference to the adjusted R2-
value than excluding the n-component. It indicates that the nano-
metric scale phenomena might be more important than the micro-
dosimetric parts, with the latter effectively serving as a correction.
Further work is needed to investigate the applicability of those fea-
tures as building blocks for RBE-models applied to helium, boron
or other ions.
Conclusion

In this work we have presented nanoCluE, an RBE model that
combines nanodosimetric and microdosimetric quantities with
the macroscopic tissue dependent a=b-value for photons. All
resulting beam quality dependent parameters are for protons and
5

carbon ions expressed as function of LET to facilitate implementa-
tion into a TPS for calculations in a voxelized anatomy. For carbon
ions, nanoCluE showed better RMSE values versus experimental
data than the mMKM and the RMF models, suggestive of nano-
CluE’s potential to model carbon ion RBE, motivating further explo-
ration of its use. Compared to the Tilly-Wedenberg and McNamara
models for protons, the nanoCluE showed similar RMSE when com-
paring its prediction of RBEmax to published experimental LQ-
parameters. For RBE evaluated at 2 Gy, all variable phenomenolog-
ical proton RBE models gave a smaller standard deviation than
using the fixed 1.1, with nanoCluE having the smallest.
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