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Abstract: This paper offers a qualitative insight into the convergence of Bayesian parameter inference
in a setup which mimics the modeling of the spread of a disease with associated disease measurements.
Specifically, we are interested in the Bayesian model’s convergence with increasing amounts of data
under measurement limitations. Depending on how weakly informative the disease measurements are,
we offer a kind of ‘best case’ as well as a ‘worst case’ analysis where, in the former case, we assume
that the prevalence is directly accessible, while in the latter that only a binary signal corresponding to
a prevalence detection threshold is available. Both cases are studied under an assumed so-called linear
noise approximation as to the true dynamics. Numerical experiments test the sharpness of our results
when confronted with more realistic situations for which analytical results are unavailable.
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1. Introduction

Computational models in epidemics are commonly relied upon to estimate the disease spread at
fairly large spatial- and temporal scales, often referred to as scenario generation. With the increasing
volumes and improved resolution of data from, e.g., mobile apps and disease testing time series from
hospitals and nursing homes, predictive data-driven models formed from first principles are within
reach. The accuracy of such models is ultimately limited by the specifics of the available disease
surveillance data. In this paper we attempt to gain a qualitative understanding of how Bayesian infer-
ence of epidemiological parameters may be expected to perform and what the limiting factors are.

Epidemiological models are typically formed by postulating laws for the flow of individuals be-
tween different compartments in a large population and have been studied in this form for a long time.
When connected with data in the form of observations, the associated inference problem is also a
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fairly mature field, see, e.g., [1-3]. With the increasing qualities and quantities of data, the various
incarnations of data-driven modeling allow for substantially higher modeling resolution compared to
traditional macroscopic approaches [4-8]. For example, individual-level contact tracing has been used
to study disease spread models at various population sizes [9-13]. Data-driven models have allowed
epidemic and endemic conditions to be investigated at a level of detail not previously possible [14-16].

The identification of the epidemiological parameters from data falls under the scope of problems
formally studied in System Identification [17]. However, a ‘system’ viewpoint of epidemiological
modeling is not yet standard, and identification of parameters is rather more often approached through
calibration of residuals [5, 16, 18], sometimes also blending in aspects of Bayesian arguments. Fully
Bayesian approaches are rarer, albeit with some exceptions [8, 19], typically due to the technical dif-
ficulties with formulating suitable (pseudo-)likelihoods and the slow convergence associated with the
conditioning of the problem. Although Bayesian inference is notably well-posed thanks to its use
of prior distributions, the posterior distribution itself is often a computationally ill-conditioned object
whenever strong parameter correlations are present, e.g., resulting from nearly singular maps from
parameters to observables. These conditions, together with the societal importance of this modeling
domain, make it relevant to reason around the limits of fully Bayesian techniques.

Fundamental questions concerning Bayesian convergence in general settings, including infinite-
dimensional ones, have been treated [20, 21], and have also been revisited with specific tools and
applications in mind, e.g., Gaussian processes and other machine learning algorithms [22, 23]. “Brit-
tleness” [24, 25], or high sensitivity to small perturbations have been proposed to be a problematic
phenomenon under certain conditions. For applications, this points to the importance of striking a
balance between the granularity of the model and the information content and level of detail of the
available data.

With the specific aim of reaching qualitative conclusions for Bayesian modeling in epidemiology,
we will connect some usual modeling approaches in infectious disease spread with a basic linear
stochastic differential equation. We analyze the pre-asymptotic Bayesian posterior in the high-quality
data regime as well as the estimate’s convergence under weakly informative disease measurements.
This is motivated by current trends in disease spread monitoring through for example sewage water
analysis and symptoms data collection using smartphones [26, 27].

The rest of the paper is organized as follows. In §2 we suggest the Ornstein-Uhlenbeck process as a
meta-model of epidemiological models, covering various Susceptible-Infected-Recovered (SIR)-type
models locally in time, during endemic as well as under epidemic conditions. In §3 we briefly analyze
the posterior convergence when accurate full state measurements are available. The main results are
found in §4 where we more fully develop an analysis for the case of poorly informative data. We offer
some examples of relevance in §5 and a summarizing discussion is found in §6.

2. The Ornstein-Uhlenbeck process

We connect in this section the Ornstein-Uhlenbeck process with some basic epidemiological models
via linearization and quasi steady-state arguments. We also briefly discuss, by means of a backward
analysis, how continuous and discrete time in this setting can be connected in probability law under a
certain parameter map.
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2.1. Disease spread modeling

Epidemiological modeling typically involves ordinary differential equations (ODEs), e.g., the SIR-
model which is often used to model the annual flu [1, 28],

S’ =-BEHS DI
r'@ = @XHsoIin - yI@ 2.1)
R(t) =vyI()

in terms of Susceptible, Infected, and Recovered individuals, respectively, and for a total population
size X = § + I + R. The model parameters 8 and vy define the transmission and recovery rates, and the
basic reproduction number is then given by Ry, = /v, that is, the expected number of new infections
resulting from a single index case [1].

Simplifying the SIR-model by removing the R-compartment one obtains the SIS-model, where the
recovered state has been removed and hence effectively identified with the susceptible state,

S'(1) = —(BEHS(OI() + yI(2) } (2.2)

@ = @EEHSOI0) - Y1)

and with the same R, as the SIR-model. It is sometimes useful to add an environmental compartment
expressing the infectious pressure ¢, i.e., the amount of infectious substance per unit of space. This
defines the SISg-model [29], where the E stands for the Environmental compartment,

(1) =-=BSD)e(t) +yI(1)
Ir'a =pS®e() —yI(r) (2.3)
@' (1) =Z() - pe(r)

where the indicated governing equation for ¢ is just a basic example. The SISg-model is convenient
to adapt to spread over a network and to detection situations involving sampling the environment [19].
Due to the indirect transmission the basic reproduction number now scales as a square root, with
Ry = B/ (yp).

The use of ODEs can be justified for epidemiological models in sufficiently large populations. In
smaller populations, e.g., networks of small communities, stochastic variants are necessary to properly
capture the underlying dynamics of the spread [3, 30]. For example, a stochastic differential equation
(SDE)-version of (2.2) was analyzed in [31] which essentially replaces Sdt by a Brownian diffused
version S dt + ndB(t). This has the effect of lowering the basic reproduction number to Ry = (8 —
17/2)/y. A first-principle stochastic approach is to rather express the dynamics as a continuous-time
discrete state Markov chain (CTMC). The SIS-model above is then defined via discrete transitions with
exponentially distributed waiting times,

s+1 25 2
I - S

meaning, e.g., that one infectious individual may infect one susceptible individual, and such that 8 and
v are now understood as rate parameters in the driving Poissonian processes. One can show that now
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Ry = (1 — £7'/2) x B/y such that consistency with the previous SDE formulation would require that
1> = 7' and hence follows from the typical Poissonian population-dependent noise scaling 1 oc £~!/2,

Let P(t) be some given measure of the intensity of the disease, such as the absolute or relative
disease prevalences, I(f) or ™' I(¢), respectively. Another alternative could be the infectious pressure
¢(#), which also informs on the current disease intensity. Gathering data from the disease spread
means collecting information about P(¢), typically in the form of a time-series, (F(P(t;));, say, for some
measurement operator F. Consider endemic conditions first, that is, P is considered stationary. As an
ansatz, suppose

P(t;) ~ P[P = p] = p(p) o« exp (-2/0 E(p)), (2.5)

for some epidemiological potential E. Under endemic conditions we can expect this to be a single well
potential, say,

E(p) < (p — @)* + constant, (2.6)

or at least can locally be approximated by this form. This is consistent with the Ornstein-Uhlenbeck
(OU-) process [32],

X(0) = X, 2.7)
dX(t) = k — uX(@) dt + o dW(?), (2.8)

where X(¢) € R and where the parameters of the model are 8 = [k, u, o] € R? and in (2.6), a = k/u.

As a concrete example, we may approximate the continuous-time Markov chain (2.4) by linearizing
the rates around the non-trivial stationary state I, = X(1 — y/B) of (2.2). Similarly, the noise term o
can be determined by inspecting the total variance of the Poissonian rates in (2.4) around this equilib-
rium. This yields a linear noise OU-approximation to the state variable / of the SIS-model (2.4) with
parameters

k =Z(B-v’/B =7yZ(Ro—1)*/Ry
Ho=B-v =y(Ro— 1) (2.9)
o =2XB-y)?/B =2yER, - 1)/Ro

where we use the approximation Ry = (1 —X7!/2)x3/y ~ B/y. Hence, with this specific interpretation
of the OU-process,

Ro=(1-2%/u) =(1-2"a) . (2.10)

The quality of this approximation is exemplified in Figure 1; the effect of linearizing around the
stationary state can be seen as a slightly too fast transient compared to the Markov chain.
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Figure 1. The approximation (2.9) exemplified for Ry = [1.1, 1.5, 2] (bottom and up), with
> = 1000 and y = 1. For comparison the ODE-, the OU-, and the continuous-time Markov
chain (CTMC) interpretation are shown.

During epidemic conditions we are rather sampling a transient of the process and, moreover, there
are also typically many kinds of feedback involved, e.g., from minor adjustments of individual level
behavior, to major societal changes and governmental intervention strategies. Although this means that
there is now a greater challenge in formulating a data-centric meta-model of the situation we may still
consider a window of time for which the disease spread parameters are approximately constant and
such that (2.7)—(2.8) remain a relevant model of the situation. A difference is then that data is gathered
out of equilibrium (hence away from @) and presumably also under more noisy conditions with larger
values of . More general epidemiological potentials could be considered through the SDE in gradient
formulation,

dP(t) = -VE(P,) dt + cdW (1), (2.11)
for which the stationary measure is still given by (2.5). For general SDE models, a change of variables

allows us to locally consider an SDE with constant noise [33] and, in turn, any time-homogeneous
SDE with constant noise,

dX(t) = f(X)dt + ocdW(1), (2.12)

is of course readily linearized into an OU-process.

2.2. Exact sampling

The OU-process (2.7)—(2.8) is a Gaussian continuous process with mean and covariance given by
k —ut —ut
ElX;] = —(1 —e™) + e X, (2.13)
U
o2
Cov[X,, X,] = 2—(e-ﬂ'H' — M), (2.14)
U

such that the stationary distribution is X. ~ N(k/u, 0?/(2u)).
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Numerical simulation procedures are typically based on Euler-type discretization methods. Assume
for convenience a fixed numerical time step Ar and compute

Xoe1 = X, + (k — pX,)At + AW, (2.15)

with AW, being i.i.d. normally distributed numbers of zero mean and variance At. The numerical
trajectory (X,) is then an approximation to the OU-process (X(z,)) at discrete times ¢, = nAt for
n=20,1,...andis also a Gaussian vector with mean and covariance

E[X,] = k + (1 — pAn)"(Xo - E), (2.16)
7 7

2At
COV(XnaXer) = 1 c

o — A - sA™)(A ~ phry (2.17)

Actually, (2.15) forms an AR(1)-sequence [34]. Comparing (2.13)—(2.14) with (2.16)—(2.17) we
readily find the following useful result.

Proposition 2.1 (Exact OU-samples and backward analysis). The discrete process (X,) given by the
explicit Euler method (2.15) follows the law of the discrete samples of an exact OU-process with
perturbed parameters (ka;, far, O ), Where

1 —puAr = exp(—Atua)
k _ kas
PR (2.18)
o2 _ U—Zt
u—pPAr T 2up

This system of equations can be solved explicitly provided At < ™",

k _ klog(1-uAr)
M _1 ({JAIA)
_ _ log(1-par
MHae = ——x — (2.19)
2 _ _~n2log(1-pAn
On = 20 2uAt—p2 A2

These perturbed parameters are all first order perturbations in At of the exact parameters.

The inverse of (2.19) is that

k :Iu@
I/JAI( )
_ l-exp(-Amp
o B, 220
_ —Atu
o - O-At 2up

It follows that, for given parameters [ka;, tas, 0a;], @ forward Euler simulation using the new set of
parameters [k, u, o] defined by (2.20) will produce a sample trajectory obeying the law of the OU-
process with the given parameters exactly.

3. Bayesian filtering with full information

We first briefly consider in this section the behavior of the Bayesian posterior as a function of the
prior and of data in the sense of full state measurements. Hence we suppose that sampled process
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data Dy = (d,-)f\i o 18 available at some fixed time step A, that is, d; = X(¢;) with #; = ih and X(-) an
OU-process with X for simplicity considered a known sure number.
It will be convenient to consider the following reparametrization of the OU-process

a = ﬁ €eR
B =e*te(0,1) (3.1)

— 2 1
Y =52 1o € R,

and we put u = [a, B8, y] for brevity, also defining uy = [ay, B0, Yo, i.e., the true parameters generating
the data.

Under this reparametrization we readily find from Proposition 2.1 that the exact discrete process
can be written in the AR(1)-sequence form

X1 = BXi +a(1 - B) + 7%, (32)
where the & ~ N(0, 1) are independent. Writing ¢ := a(1 — ), explicit least squares estimators for the
parameters can be found by solving
2

. T 202 —. i V-1 T 17 N-1
min 4 x [8,81" — bl = min [[1 14155 x 6,817 = [dier 15 (33)

where the brackets over the data form column vectors. The residual of this solution implies the corre-
sponding estimator for vy,

¥ =N =-2)A X [8,8]" - bli3. (3.4)

By the Gaussian character of the OU-process these estimators coincide with the maximum likeli-
hood estimators.

The Bayesian convergence to the true parameters as N — oo can be characterized by either the
Bernstein von Mises theorem (BvM), for 4 fixed, or by contrast functions convergence for a fixed time
window ¢ € [0, T']. BvM states that the Bayesian posterior converges to a normal distribution centered
at the maximum likelihood estimate with the inverse Fisher information matrix (FIM) as covariance
[35-37]. Similarly, the contrast functions approach considers the convergence of the approximation of
discretized observations, approaching the same normal distribution for N large enough [38—40]. In the
present case the FIM can be determined explicitly using the log-likelihood log £(X;.|X;; u) induced
by (3.2) and the definition

82
>=-E [ﬁ log L] (up). (3.5)
The result is that
% = Diag ((1 - Bo)*y0. 1/(1 = ). 1/(2%3)) . (3.6)

Proposition 3.1 (BvM Theorem for (3.2)). Provided that the prior has a continuous and positive density
in an open neighborhood of (a,B,7), as N — oo we have that the ML-estimators (3.3)—(3.4) converge
to the true values as

VNG - ug) 5 N0, 271, (3.7)
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(convergence in the sense of distribution) with X defined by (3.6). Alternatively, (3.7) dictates the
asymptotic convergence of the mean of the Bayesian posterior.

To summarize, the asymptotic variances of all parameters are independent of @,. The noise term
vo mainly affects the convergence of @ (and 7y, in an absolute sense). Finally, an increase of Sy
implies a faster convergence towards S, at the cost of a slower convergence towards «,. Under the
interpretation of an SIS-model (2.9)—(2.10), the parameter «, is in one-to-one correspondence with the
basic reproduction number Ry, hence its central interest here.

The asymptotic nature of both the BvM Theorem and the contrast function convergence is a poor
match in epidemiological situations where data is often scarce and poorly informative at the time
scale over which the parameters can be considered static. This motivates our interest in also the pre-
asymptotic regime of the Bayesian posterior. We therefore consider prior densities of the specific form

w(w) & exp (-2 P, 9)) (3.8)

where, for integrability, P is to be a polynomial of degree 2 in @ and nonnegative for g € (0, 1). This
choice has the convenient property that the posterior measure after N observations is

MG <y exp(-2 (0w + P, ) (3.9)

where

N-1
On(@.B) = ) (di —Bdi = a1 = B)Y, (3.10)
i=0

and where d; = X(1,) is the observation at time ¢;.

Remark. To include also the case of flat priors, while avoiding technicalities for nonintegrable densities,
we note that, since the value of a constant prior has no influence on the posterior, we can still determine
a posterior after a single initial observation, and then use this posterior as a prior for the rest of the
observations.

The following result examines the convergence of the Bayesian posterior.

Theorem 3.2 (Convergence of log-likelihood). Consider the polynomial qy:

N-1
an(a@,B) = N™'On(a,B) = N7 Z(dm —Bd; — a(1 = B))’. (3.11)

i=0

Then as N — oo we have the almost everywhere uniform convergence on every compact of gy
towards the function f,

2B

_ 3.12
Yo(l + Bo) (312)

fla,.p)=( —,3)2[

- _ 2
(=g T ]+
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Proof. For a general point (a, ), we rely on the ergodic theory of Markov chains [41, p. 472] to get that
N='Y g(d;, d;,) converges almost surely towards E[g(d;, d;,;)] for g integrable against the stationary
measure. Using (2.13)—(2.14) this implies the limits:

1

N7 de = Bdi — ao(1 = p), (3.13)
i=0

N“N_l(d- — Bdi)* — (ao(1 = PB))* + L+B 2B (3.14)
£y ’ Y01 =Byl -2 '

Combined, we obtain the claimed limit in a pointwise sense. As each (gy) 1s a polynomial in (o, 8)
of bounded degree, pointwise convergence is equivalent to convergence of the coefficients, and hence
implies the convergence on all compact sets.

An obvious extension is to consider measurements polluted by noise, say, d; = X; +n;, for i.i.d. n; ~
N(0,7) and some variance 1. The posterior so obtained is readily computed via a recursive Kalman
filter but does not have a simple analytic form. To first order in n, however, (3.8)—(3.9) still holds
provided v is replaced with [1/y + n(1 + 8*)]~! and Qy in (3.10) is replaced with

N-1
Oy = > [dis = pdi — a1 = p) + npy(d; - Bdi-y — a(1 = )T, (3.15)
i=0
where the right nBy-term is skipped when i = 0. Intuitively, the first order effect of noise in data is
to broaden the posterior with the variance of this noise. We next proceed to investigate more severe
truncations of the measurements from the epidemiological process.

4. Bayesian filtering of surveillance data

In the previous section we considered full process data to be available without any extrinsic noise.
This models the best possible Bayesian setup but is also clearly unrealistic in epidemics. As a model
of a more challenging situation we consider in this section the recorded data to be some (possibly
stochastic) function of the OU-process X(-), which itself is considered a latent variable. We are ini-
tially concerned with binary data of the form Dy = (di)fi o Where di = Y; = l1x()s., again over a
uniform grid in time ¢; = ih, and for a known filter cut-off value ¢ (see also the related setup in [42]).
That is, the epidemiological interpretation is that the data is considered to be time-discrete information
about whether or not the prevalence X(-) of the population is above or below a certain known threshold
c. With the prevalence process hidden one is forced to estimate it simultaneously with any parame-
ter estimates. Using the AR(1)-form (3.2) we have that the stationary measure for the (p + 1) steps
(X, ..., Xisp) 1s Gaussian N(a, X) with X given by (for p > 0)

(1 B B> - pr

B B 1 B - Igp—l
sexpy=lple @D

R A | B

B - 132 B 1
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In order to be able to conduct an analysis where information is obtained only from the observable
Y(-), we take (4.1) as a motivation for the following:

Assumption 4.1 (p-step Markovian stationary assumption). We say that we work under the stationary
assumption whenever we assume that the law of the latent variable Y(-) can be directly inferred from
the stationary p-step law (4.1).

We stress that it is known that this type of clipped Gaussian processes are not p-step Markov for
any p [43]. Assumption 4.1 rather serve as an approximation where we approximately model Y(-) as
if it was p-step Markov with law deduced from (4.1). The pseudo-likelihood for the filtered variable Y
then becomes

N-p
Lyw) = [ [@u¥ir- . Yiey) 4.2)
i=0

where ¢,(e) denotes the probability for a Gaussian stationary filtered process with parameters u to be
e € {0, 1}7*!. We also define the pseudo-potential

N-p

O = log L) = > 10g@u(Yis ..., Yisp). 4.3)

i=0

We show below in §4.1 that the stationary assumption allows for converging posterior estimates for
the parameter S, but leaves any prior density unchanged over a certain curve in (@, y). In §4.2 we briefly
consider the filter cutoft value ¢ (the sensitivity) to be uncertain and straightforwardly show that any
prior density on c is unaffected by data. We next replace the sharp deterministic filter by a stochastic
filter implementing a sigmoidal response function and sharpen our results in this more general setting
in §4.3. Finally, in §4.4 we consider slightly more informative measurements consisting of a finite
discrete response and we show that this resolves the singularity issues associated with purely binary
measurements.

4.1. Binary measurements

We first show that under the p-fold stationary assumption one can estimate the correlation term 3
rather well, but increasing the gap between the filter threshold ¢ and the mean « has an effect on the
likelihood which is indistinguishable in law from increasing the noise .

We start with a technical lemma.

Lemma 4.1 (Equality in law). For u in any admissible set of parameters, let p, be the law of
(Yo, ..., Y,) under Assumption 4.1 corresponding to N(a,,X,). Then p, = p,, if and only if B, = B,

and [y, (c — a,) = \fyw(c — ).

Proof. (=) Suppose p, = p,. Consider (X7,... ,X;) a Gaussian vector with law N(a,,X,). As
P(X§ < ¢) = Yecoay (0, e), we deduce that P(X{ < ¢) = P(Xy < ¢). This can be written as an

equality between standard cumulative distribution functions of Gaussians, since /7y, (1 — ﬁg)(xg —ay)
and /v, (1 = B2)(X} — @) are standard Gaussians. This translates into:

V(L =B — @) = fvu(l = B7)(c — ) (4.4)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4128—4152.
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We also have P(X{j, X| < ¢) = P(Xj, X]" < ¢), and this implies, with A = 4/y,(1 -B2)(c - a,),

1 f ox ( x2+y2—2ﬁunydd
- _ xdy
e J TR
1 2 +y2-28,
= — exp(—x Y Bxy dxdy. (4.5)
1- w Vl_ﬁ%v

(—c0,A]2
This last expression shows that the map B, — P(X{, X{ < ¢) is locally analytic. As a corollary of
Slepian’s lemma [44], this map is also increasing and hence strictly increasing. It follows that the last

equality implies 8, = 8,,.
(&) The law p, is uniquely determined by its 27*! values. All these values are of the type

1(Q; u) = (det M(B,))" 7"V x exp (-xM(B,)x") dx, (4.6)
0A)

where Q(A) is a product of p + 1 intervals, each being either (—oco, A] or [A, +0). And so, if 5, = B,
and +fy,(c — a,) = +fyw(c — a,), the laws p, and p,, are indeed equal.

Theorem 4.2 (Non-identifiability). Assume p > 1. For any integrable prior n, non-zero on &, and for

f bounded, as N — oo,
ff.LNdﬂ' - ffdfr, 4.7
&

where & = {u; +fy(c —a) = \fyo(c — ap), B = Bo} and 7t is the prior restricted to the set &E.

Proof. At first, thanks to Lemma 4.1, the law ¢(Y; . . ., Y;,,) is not characterized by uo = [ao, Bo, Yol, but
rather by [ \/yo(c—ao),Bol. As the ¥;’s are binary, the quantity ¢(Y}, ..., Y;.,) can only take 27+ yvalues,
which we denote by ¢, for e € {0, 1}**!. This means that the log-likelihood under Assumption 4.1 can
be written as a finite sum:

logLy= > N(elogg.. (4.8)
e€(0,1}p+!
where
N(e) = #{i € {0,N = p}; (Ysr....Ys,,) = €} (4.9)

Now, as the discrete OU-process is an AR(1)-sequence [34], we may infer the convergence of
N(e)/N towards a stationary value:

1
LEL Z g log ¢!, (4.10)

0 1 p+l1

where ¢ denotes the law of a stationary filtered process with parameter u. We note that

1
lim OgLN— Z ¢ log uo+ > gloggle. @.11)

N—oo
0 1}p+1 0 1}p+1

Up to a constant this limit is the negative of the Kullback-Leibler divergence between the laws ¢
and ¢"°, which vanishes if and only if the two distributions are equal. We already know that the laws
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of ¢" and ¢ are equal if and only if 8 = By and +fy(c — @) = +fyo(c — ay), 1.e., if u € &. Consider the
associated relation:

u=(a,B,y)~u =(,p,y)iff =4 and \y(c - @) = \/)7(6 -a). (4.12)

It is straightforward to show that this relation is reflexive, symmetric, and transitive, thus forming
an equivalence relation. Thanks to Lemma 4.1, we know that the map u — Ly(u) factorizes through
the equivalence relation to a map w +— Ly(w) where w ranges over the different equivalence classes of
u.

Lemma 4.1 also allows us to state that the map L is injective. Consider wy in the equivalence class
of uy. Then for any neighborhood W of wy, there is a 6 > 0 such that for N large enough, w ¢ W
implies

log Ly(wo) > log Ly(w) + 6,
N N
which means that the posterior measure of W converges towards 1. Since the factorized map Ly — 6,,,,
the theorem follows.

(4.13)

The same argument implies that, if we consider the case p = 0, the posterior will be even more
degenerate. For p = 0 one gets the convergence

f fLydr — | far, (4.14)
o

where now 7 is the prior restricted to &':

& ={u; \yu(1=B2(c—a) = [y =) - ap)). (4.15)

This case is relevant whenever we consider large gaps of time in between the measurements such
that they can be considered practically independent.
At this point, let us remind that the quantities £y(«) and CDZ(u) are defined in Eqs (4.2) and (4.3).

Theorem 4.3 (Rate of convergence of pseudo-potential). Under the p-Markovian stationary Assump-
tion 4.1 there exists a mapping f, and a constant o, > 0 such that, as N — oo, we have the convergence

in law:
O (1)

Wi

Proof. This is a direct consequence of the Central Limit Theorem, with f,(«) being the mean value of
@} (1) and o, a nonnegative constant.

- fp(u)) — N(@©O,0)). (4.16)

4.2. Propagation of filter uncertainty

A relevant variation of the theme is to consider the parameter ¢ (the “test sensitivity”’) an uncertain
parameter. Mathematically, this means considering the likelihood Ly a function of (@, 8, y,c), and
priors and posteriors depending also on c. However, the following result shows that this setup will not
produce any more information about the parameters.
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Theorem 4.4 (Translation of filter uncertainty). Consider a prior of the form u(a)n(c — a, 3,y) and the
pseudo-likelihood in §4.1. Then the resulting posterior measure will be of the form u(a)Il(c — a,B,7),
where, for fixed c, Il(c — -, -, ) is the pseudo-posterior from the prior n(c — -, -, -).

Proof. This result is immediate once one realizes that the pseudo-likelihood has the property that, for
any r € R,
Ly(a,B,y,c) = Ly(a +1,B,y,c+1). (4.17)

In other words, the only information we can infer on the parameters (c, @) is the gap ¢ — @. Any
uncertainty of ¢ can be understood as an uncertainty on «, and vice-versa.

4.3. Non-perfect binary measurements

Rather than a sharp cut-off value ¢, most environmental sampling methods obey some kind of sen-
sitivity response, e.g., of sigmoid character, with a quick rise in the detection probability as one pro-
gresses through some threshold region. Examples here could include sampling and subsequent analysis
of sewage water or animal droppings, but this would also be a relevant model in the case of statistical
regression estimates using data obtained via self-reporting smartphones applications.

A general ansatz to capturing this situation is to consider

Yi ~ B(s(X)), (4.18)

where s is a map from R to [0, 1] and B denotes the Bernoulli law. Typically, the map s is sigmoidal
with a gradient around the threshold ¢ which depends on the sensitivity and specificity of the test. We
naturally ask that the efficiency of the filter does not depend on its previous use, i.e., that (¥;|X;); is
an independent family. To construct such an object, one may consider an i.i.d. family of uniformly
distributed variables (&;) on (0, 1), independent from (X;), and set

Yi = lfiSs(Xi)- (419)

This object clearly fulfills all properties mentioned and is general enough to capture also quite
specific situations.

We will now establish our result in this more general setting. Consider a bounded and continuous
map f : R”"! — R. We observe the OU-process X(t) through the map f, so the observations are
Y; = f(Xi,...,Xi.p) where as before X; = X(#;). To define a pseudo-likelihood, we reason as if the
observed data can be regarded as stationary. We thus denote by f, the law of a stationary OU-process
with parameters u filtered via the measurement map f and we remind ourselves that the latent process
X(¢) is not necessarily stationary.

We consider a likelihood of the kind

N-p
Ly o exp [Z log fM(Y,-)], (4.20)
i=0

normalized to mass one, and we denote the potential by

N-p
gn(u) := N' )" log (¥, (4.21)
i=0
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This setup simply corresponds to observing the data portion (Xj, ..., X;;,) via the filter f and, as-
suming stationarity, building a pseudo-likelihood. Unfortunately this does not directly include the
intended case of a sigmoid filter, as this would rather involve measurements h(&;, X, ..., & p, Xivp)
with (&) an 1.1.d. sequence independent from (X;) and uniform on (0, 1). However, once the proposed
case is examined, one can get to the latter case by exchanging the order of integration using the Fubini
property, i.e., studying the behavior of A(ty, X;,...,?,,X;.,) and then integrate over (t,...,?,). For
example, consider the case p = 1. Then the intended map /4 would be

h(t()’ X0, tl’ xl) = (lt()Ss(xo)’ 1I13s(x1)) (4'22)

For a fixed u, f, can take at most 4 values, e.g.,

Ju(1, 1) = E[s(Zo)s(Z1)], (4.23)

where (Zy,Z,) is a stationary OU-process of parameter u, and similarly for f,(0, 1), f,(1,0), and
/.(0,0). As this technique would render the proof lengthy, we decided to put it aside.

In order to state our result, we need to specify some minimal set of regularity conditions. Con-
vergence of the potential is required as well as definiteness in the Kullback-Leibler divergence (D).
Additionally, we shall also require a separation condition in the large data limit.

Assumption 4.2 (Regularity). We assume the following specifics:

1) The potential gy converges uniformly on the compacts of u.

2) DKL(ﬁlo’ fu) =0=u-= Uop.

3) There is a 6 > 0 and a compact neighborhood K of u, such that, for N large enough and for
u € KC, gn(uo) > gn(u) + 6.

Theorem 4.5 (Weak convergence). Under Assumption 4.2, we have the weak convergence
Ly = 0y (4.24)

This theorem can be adapted to cover other situations:

o If Dki(fy fu) = 0 does not imply u = uy, one can try to factorize the map through an equivalence
relation (as in the proof of Theorem 4.2) to get the convergence towards the indicative function of
the set {u; Dxr(fi fu) = 0}.

e If we only want to consider parameters within a subset U of the set of parameters, one can always
consider the assumptions restricted to the set U, and then one would have the convergence only
for priors with support in U.

Proof. We divide the proof in two steps as follows.

Step 1 Let us call g the limit of (gy), which by assumption is not random. The same argument
as in the proof of Theorem 3.2, the ergodicity of the process (X;), allows us to state that the limit
function must be E[log f,] (up to a constant, the limit is actually — Dk (f,,, f.)). As adding a constant
is equivalent to multiplying all posteriors by a nonnegative constant, we may assume the limit function
to be equal to u = — Dxr(fi,, fu)-
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Step 2 As Ly is proportional to exp(gy), the assumptions allow us to deduce that the mass of any
neighborhood of 1, converges towards 1. This implies the weak convergence of the posteriors towards
the Dirac 6, .

4.4. Non-binary measurements

As a final variation on the theme we now show how Theorem 4.5 can be applied in such a way as
to overcome the issues with the non-identifiability of Theorem 4.2. The idea is that the test with one
filter ¢ evidently at best gives us a curve containing the parameter i, namely the one satisfying 5 = Sy,
and /y(c — @) = +/yo(c — ap). Suppose instead that we have two kinds of tests, one with cut-off ¢; and
one with cut-off ¢,. Since the intersection of the two curves implied by the respective filters ¢; and ¢,
is exactly the point uy, it is natural to assume that two filters are enough to get the convergence of the
posterior towards ¢,,. We show that this is indeed the case.

Theorem 4.6 (Trinary filter). Let ¢ < ¢, and consider the filtered values Y; to be
Yi = 1X,‘>Cl + 1X,’>Cz3 (4'25)

and the associated pseudo-likelihood
N-p
Ly=||e@....2.p), (4.26)
i=0

where ¢ is the multivariate cumulative distribution function of a Gaussian N(a,X) (4.1). Then the
sequence of pseudo-likelihoods converges weakly:

Ly — 6. (4.27)

Proof. 1t is sufficient to check that the sequence (Y;) verifies Assumption 4.2. Considering gy :=
N~'log Ly, one has

N,
sv= ), logpue). (4.28)
e€{0,1,2)P
where N, is the number of times (Y, .. ., Yi,,) matches e, and p, is the cumulative distribution function

of the underlying Gaussian process N(a, ). From this we get directly conditions (4.2) and (4.2) of
Assumption 4.2. For condition (4.2), if the Kullback-Leibler divergence is zero, then we must have
pu(e) = py,(e) for all e. This implies the equalities

B =B
Vy(eir —a) = +fyolcr — ap) (4.29)
Vy(ea —a) = +fyolca — ao)

As ¢y # ¢, we have u = uy, and so the assumptions are fulfilled.
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5. Illustrations

We devote this section to some illustrations of selected results from §8§3 and 4. We shall do this in
the intended epidemiological setting and thus no longer assume the OU-process, but rather the SIS-
and SISg-models from §2 in the form of continuous-time Markov chains over a discrete state-space. In
§5.1 we investigate the precision of the predicted posterior uncertainty under full state measurements,
while in §5.2 we offer a demonstration of the singular behavior under filtered measurements. Finally,
in §5.3 we highlight the use of synthetic data when approaching more realistic problems defined over
a network.

The software for the numerical experiments is available for download via the corresponding author’s
web-page”.

5.1. Asymptotic uncertainty

We first consider the Bayesian uncertainty under accurate measurements and take the continuous-
time Markov chain version of the SIS-model (2.4) as an example. Using the SIS < OU approximate
interpretation (2.9) we have from (3.1) the relations

aou =Z(1-R;" Ry =1+aou(l-pB5,)vou
Bou = exp(—yh(Ro — 1)) 2 =aou + [ -B5)voul™ (5.1)
You =%X'Ro-[1-pB5,1" y = —logBou - [h(Ry — )]

where {Ry, X, y} are the SIS-model parameters.

We generate synthetic data from the Markov chain as illustrated in Figure 1 for £ = 1000 and with
ranges of values y € [0.1, 1] and Ry € (1,3.5]. We let I(0) = 0.01 X X and sample exact values of I(¢;)
fort; =ih,i=1,...,N,and h = 1. This corresponds to 100 perfect samples in a closed population at
a rate equivalent to between one to one tenth the disease period unit (= 1/y).

We evaluate the posterior over a grid of values in the (R, y)-plane by simply normalizing the likeli-
hood for the Markov chain given the synthetic data discussed previously. The likelihood of the Markov
chain is formally obtained by solving the associated master equation which, however, is inconvenient
to do except for small populations £. A more general approach is via a local linear Gaussian approxi-
mation and a Kalman filter. Put I, = /(0) and define

I = (1+ ABETN(E - 1) - Aty) I + wy,
wi ~ N0, [ABE(Z - L) + Atylly), (5.2)

that is, this is the forward Euler discretization of the Langevin equations approximating the Markov
chain. The Kalman filter associated with (5.2) computes a likelihood for each data point, albeit for
a perturbed model. The relative error in the Langevin approximation generally scales with the in-
verse of the population size X, and can be expected to be rather small in the present context (see [45,
Ch. 11.3]). Further, Proposition 2.1 suggests analyzing the Euler discretization via backward analysis
as a parameter perturbation, but unfortunately this is not generalizable to non-additive noise [46]. For
aresolved discretization, however, yAt < 1, weak first order convergence can be expected under broad
conditions. We use the constant Kalman resolution At = 4/4 and next focus on the estimation error.

“Refer to the BISDE-code at https://user.it.uu.se/~stefane/freeware.html
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We have already evaluated the asymptotic covariance matrix under accurate data in (3.7). Using the
linear uncertainty transformation Q’ ~ JQJ', where J is the Jacobian of the parameter map (5.1), and
where Q is the (diagonal) covariance matrix in (3.7), we can estimate the posterior variance

R 1+
Var(Ry) ~ 2 x Pou

A similar formula can be worked out for the variance of y as well, although a bit more involved.
For small enough 4, the denominator 1 — Soq; ~ Yh(Ry — 1) in (5.3), and so the relative uncertainty
in any consistent estimator of Ry can be expected to depend weakly on Ry itself. This effect is seen
for Ry > 1 in Figure 2 (top), where it can also be seen that the approximation (5.3) derived from the
OU-approximation is somewhat optimistic. Similarly, we find that the relative uncertainty of R, goes
down with increasing values of y, or, which by (5.1) is the same thing, with decreasing correlation Soq,
(cf. Figure 2, bottom).

s ET T - ‘X><Y><
S XXXXXxXxxX._,.-
<£ D s ssail
0.95 ¢
2 3
Ry
1.05
(=)
s - B v
S e
<ol ————— et e
= y « X% XX x XX x X x x
0.95 -
0.5 1
Y

Figure 2. Marginal posterior uncertainty (+ 2 SD) for the SIS-model and a range of param-
eters. Top: with y = 1 fixed, bottom: with Ry = 1.5 fixed. Crosses: MMSE-estimators R,
(i.e., posterior means), dotted: estimated uncertainty according to (5.3), red: posterior width
(=2 SD).

5.2. Limits of convergence

The SIS-model investigated previously was dependent on two parameters only and hence the sin-
gularity detected in §4 is not likely to be limiting any convergence. While various model modifications
naturally lead to additional independent parameters, e.g., an extra transition S — I modeling external
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infectious events, the most immediate modification is to simply consider the population size X uncer-
tain. For instance, this is a possible setup for inference relying on sewage water analysis, where the
data is binary according to whether the infectious substance is above or below some known threshold
value c, but the sewage uptake area is populated with an unknown number of individuals.

We remark that this is a considerably challenging task, and although we are able to demonstrate
the sharpness of our negative results from §4 in this setting, the fact that this problem can at all be
approached is quite remarkable.

As ground truth we use the same parameters as in the previous section, but with y = 1/10 (time™")
and Ry = 1.5 fixed, and we need to sample more, N = 1000 points equispaced with 4 = 1. The data is
then taken to be the filtered sequence Y; = 1x... with ¢ = 0.9 X I, = 0.9 x X(1 - R(;l).

The measurement map is strongly nonlinear and so the Kalman filter needs to be extended in some
way. We took an immediate approach by simply discretizing the state variable / into M = 100 Gaussian
particles, distributed according to the percentiles of the stationary measure for a given proposed set of
parameters. Each particle is evolved in time [0, 4] using steps of size At according to the Kalman filter
(5.2), after which the prior distribution is formed by aggregating the probability mass in the vicinity
of each particle. This yields the likelihood for a single data point after which the posterior distribution
for the state is obtained by setting selected particles’ mass to zero (according to the data point) and
rescaling appropriately.

From Theorem 4.2 we have the singular curve +/yoq(c — @oq) = constant, which gets transferred
via the map (5.1) into a surface in (R, 2, y)-space. After arbitrarily fixing y we thus obtain a curve in
the (Ry, X)-plane. Since the SIS-to-OU map (2.9) is an approximation and, moreover, the likelihood
is approximated via a Kalman filter, this analytical curve can be expected to be a perturbation of the
observed numerical posterior level curves. As shown in Figure 3 the match is quite remarkable.

R ===
—————
1.6 =
(=]
g 1.5
1.4}
—_—
S ———
13 —_——— :
900 1000 1100

by

Figure 3. Left: (log-)posterior for the SIS-model under filtered data and conditioned on the
true value v = 1/10 (time™!). Also indicated is the singular curve as predicted by theory
passing through the true parameter generating the data (circle). Right: marginal distribution
for R, together with a normal fit (dashed).
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5.3. Network epidemics

Epidemic models on networks can give rise to phenomena not observed in single-node systems, e.g.,
the rescue effect [1], where the infection is “rescued” from extinction through the network structure.
Here we consider both the SIS- and the SISg-model, respectively, cf. (2.2)—(2.3). We assume these
models at each node in a network implicitly defined by pre-recorded movements of individuals between
the nodes. As a concrete example this would be an appropriate model for estimating disease parameters
in a monitoring program for bovine animals using cheap, but low-informative, tests collected on a
weekly basis for a subsample of sentinel nodes.

The nodal model is replicated across 1600 nodes, populated with 196,168 individuals, and the nodes
are connected using 466,692 prescribed movements of individuals over four years, see Figure 4. The
system is not well stirred on the aggregate level, but events occur frequently; the average # of events
per sample node and day = 0.20[0.19,0.21] with 50% credible interval (CrI). This particular network
was constructed by anonymizing a set of recorded cattle movements and can be accessed through the
publicly available R-package SimlInf [19, 47]. We extract model measurements from the same 100
randomly pre-selected sentinel nodes every 7th day for a total of 4 years. Each measurement is the
outcome of a binary test: if the prevalence (P = X~'I) in the node is above a threshold value (¢ = 30%
or 4% for the SIS- or the SISg-model, respectively), where all nodes are seeded at 10% or 2% initially.
In Figure 5, we illustrate the sampling output in time for the SISg-model.

& o

5.‘}0 .r' 53 ..
(1) % . o
3} ) *. .

s

Figure 4. Illustration of the transport network; the red points are the sentinel nodes, and the
grey points are the latent ones. Red/black lines are transport events into a sentinel- or latent
node, respectively.
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Figure 5. The population-weighted average prevalence (red) is unobservable, but the pseudo
prevalence (blue) is obtained from weighting together multiple binary measurements. The
least squares OU-fit for the pseudo prevalence is used as summary statistics (a few samples
in grey are shown).

A challenging aspect of many data-driven inference problems, e.g., including network, dynam-
ics is that the likelihood function is intractable and must be estimated through repeated simulations.
Bayesian inference in this setting is termed Likelihood-free inference (LFI), or Approximate Bayesian
Computations (ABC); see [48, 49] for reviews. In this example, we consider the Sequential Monte
Carlo (SMC) adaptation of ABC (SMC-ABC) implemented in SimInf and described in [50].

Our SMC-ABC implementation determines proposal rejections per generation n using the normal-
ized Euclidean kernel K (x,y) = \/ > ((xi — yi)/x:)* < &, for statistics of the simulation proposal y and
observation x and with a series of decreasing tolerances &,. The statistics are computed as follows.
Each simulation generates a time series of pseudo prevalences, i.e., a population-weighted sum of
positive samples. We interpret the time series as an OU-process and select the least square estimates
(3.3)—(3.4) as indirect summary statistics [5S1]. A word in favor of this particular choice of statistics for
other ABC implementations, e.g., synthetic likelihoods [52], is that least square estimates are asymp-
totically normally distributed under broad assumptions [53]. Notably, we get away with using statistics
with one more or equal dimension as the parameter set, suggesting that this characterization is indeed
very fitting.

For the inference we use a single initial simulation with the true parameters (8,7y,Ro)sis =
(0.16,0.1,= 1.6) and (B,y,p,Ro)sis, = (0.054,0.1,0.44,= 1.108), respectively, and we infer all pa-
rameters simultaneously. For priors, since we have no likelihood and thus cannot easily produce a
strictly non-informative prior, we take uniform distributions over quite large intervals in parameter
space: B and y ~ U(0, 1) in both cases and p ~ U(0.4,0.5). We use the decreasing ABC tolerances
g, = 100exp(-0.25(n — 1)), forn = 1...15 and 1000 SMC particles.

We found that p requires a tighter prior than the others for the computations to complete in a rea-
sonable time: the SISg-model is considerably more challenging but is also more realistic, particularly
so in our setting on a network where rather large prevalences are required for the SIS-model to not
simply die out.

The results for the Ry-marginals are displayed in Figure 6, where we also investigate the concen-
tration effect of data through the relative change in quartile coefficient of dispersion (QCD); a small
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concentration factor indicates an accurately identifiable parameter. Although the SISg-model is clearly
more challenging, Ry is still well reconstructed for both models.

Binary data implies identifiability when given multiple observations at the same time, e.g., over a
small collection of nodes in a network rather than on a single node, as indicated in a qualitative sense
by Theorem 4.6. Additionally, Ry is identifiable with quite high accuracy even when the dependent
parameters covaries. The example is prototypical of using synthetic data to evaluate the feasibility of
an intended setup. Since the posteriors are robust with respect to capturing the synthetic truth, we have
good reasons to also have some faith in the design when approaching real data.

! | O Poslterior O Prior |
0 : : 5
% 1 1 8
SISert 1
SIS = : ;
0.500 1.108 1.600 2.200
Ro
B Y P Ry
SISE 0.61 0.59 0.70 0.0086
SIS 0.089 0.093 - 0.016

Figure 6. Top: posterior and prior distributions for Ry with the true values indicated. Bottom:
recorded QCD concentration factors for all the parameters (see text for details).

6. Conclusions

Throughout this work we have employed the Ornstein-Uhlenbeck process as a meta-model of more
involved epidemiological models. We indicated in §3 a convergence analysis of the Bayesian posterior
under direct process observations. Since this is an unrealistic setup in most epidemiological applica-
tions, one can think of these results as best possible.

We next took the opposite standpoint and considered data to be severely filtered such that, literally,
each data point contributed only a single bit of information. For instance, this could be a model of
pooled data obtained through environmental sampling and subsequent analysis. To obtain a closed
framework we added a fairly general stationary p-step Markov assumption and worked out conditions
on the data to obtain a non-singular inverse problem.

With increasing compute power and improving possibilities for gathering data, fully Bayesian first-
principle epidemiological models can be realized. As a minimum standard, we propose, such methods
should be preceded by a proof of self-consistency: data generated from the model itself and chosen
“nearby” the actual data should allow for accurate parameter identifiability. Under this basic standard,
Bayesian epidemiological modeling with both short-term prediction and generation of forecasting sce-
narios can be included as an integrated part of the public health’s methodological arsenal.
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