
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 5

Design in Telemedicine

BY
ERIK BORÄLV

Development and Implementation
of Usable Computer Systems

ISSN 1651-6214
ISBN 91-554-6133-6
urn:nbn:se:uu:diva-4760

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2005

ISBN

Parts of the thesis

This thesis is based on a number of research activities, parts of which have
previously been published. The following is a list of the relevant papers and
notes on my contribution to them.
1. Domain Specific Style Guides – Design and Implementation. Olsson E,

Göransson B, Borälv E, Sandblad B, Proceedings of the Motif & COSE
International User Conference, Washington D.C. 1993, pp. 133-139.

2. Usability and Efficiency – the Helios approach to development of user
interfaces. Borälv E, Göransson B, Olsson E, Sandblad B, Computer
methods and programs in biomedicine, supplement volume 45, Decem-
ber 1994, pp. 47-64.

3. A Teleradiology System Design Case. Borälv E, Göransson B. Confer-
ence proceedings of Designing Interactive Systems 1997, ACM’s Spe-
cial Interest Group in Computer-Human Interaction (SIGCHI) in co-
operation with the International Federation for Information Processing
(IFIPWG 13.2), Amsterdam, 18-20 August 1997. ISBN 0-89791-863-0,
pp. 27-30.

4. Design and Evaluation of the CHILI System. Borälv E. Technical report,
Department of Information Technology. 2004-056. ISSN 1404-3203.

5. Evaluation and Reflections on the Design of the WeAidU System.
Borälv E. Technical report, Department of Information Technology.
2004-057. ISSN 1404-3203.

Important changes in the format
Please note that the original format of the three first papers has been edited
to fit into this thesis.

Paper 1
This paper describes how to develop a Style Guide for a specific context of
use. It discusses what domain knowledge is and how this knowledge can
help us to develop better systems.

My contribution to this paper was to describe how to relate graphical
components (widgets) to the domain. The main contribution to the project
and this paper was the design and implementation of domain-specific com-
ponents.

Paper 2
This paper is a continuation of Paper 1. It describes how to use a Style Guide
to implement a medical engineering environment in a larger setting. It de-
fines a basic model of development that will make better use of the domain-
specific aspects of the Style Guide.

My role here was to define how the domain-specific components fit into a
development environment.

Paper 3
In this paper, the underlying design process is presented in the form of a
method. It introduces the concept of Design Patterns (or Design Criteria). It
describes how criteria and requirements were transformed into a physical
interface design. It further shows how the concept "Work Task" (as defined
in Papers 1 and 2) can be used as the primary approach when developing a
system.

I took part in all design work and method compilation.

Paper 4
This paper summarizes the design approach used in the CHILI system. It
contains an evaluation of the system after a number of years in clinical use.

I performed the evaluation and wrote the paper. I was one of the original
designers of the system and I still remain involved in the project.

Paper 5
This paper presents the original ideas behind the computer support system
called WeAidU. An evaluation of the system is included.

I performed the evaluation and wrote the paper. I was part of the devel-
opment project 1999-2000, and was involved in the initial design and de-
ployment.

Contents

Introduction...7
Purpose and goal ..7
Research and work performed..8
Result..10
Perspective ...10

The “right” solution ...12
Disposition ...14

Methods ..15
Viewpoint ...15

Research approaches..15
Evaluation..16
Action Research...18

Central problems ..19

Human-Computer Interaction ...22
Research questions...25

A slice of software development history..27
In the beginning ...27
Integrated development environment ..27
Development today: a moving target...28
Model-based GUI ..29

Medical Informatics ..30
Telemedicine and telemedical applications ...30
The user and the importance of utility and usability31

Design ...33
Helios (Papers 1 & 2) ...34

Project description ...34
Solution..35

MEDICUS/CHILI (Papers 3 & 4)..35
Project description ...35
Solution..37

WeAidU (Paper 5)..38
Project description ...38
Solution..40

Conclusion ..42
Guidelines...45
Design methods ..46
Development methods..47

More is more, less is better ..47

Summary in Swedish ..49
Design i telemedicin – utveckling och konstruktion av användbara
datorsystem...49

Acknowledgements...50

References...51

7

Introduction

Purpose and goal
While in high school, my first impression of software development was one
of fascination. It appealed to me that one could build systems based on logic,
to perform actual and valuable tasks. With structure and careful planning one
could make beautiful graphs of x3 curves or an archive for one’s vinyl col-
lection.

Even later, with formal training and education in computer science, this
fascination still dominated. Where did this sensation come from and what
makes software development interesting? Obviously “hot” items such as fast
computers or special effects are, by their nature, interesting to work on. But
any problem can be made interesting if it poses the right type of challenges.
Vacuuming is not one such problem – but someone challenging a teenager
(for instance) to clean up his whole room in ten minutes, redefines this as a
problem that could potentially be interesting.

What makes software development interesting is a combination of inter-
esting tools, well-formulated problems and high standards. High standards
are said to explain some of Apple’s success and good reputation – its presi-
dent, as well as the entire company, are all about high standards [21]. Almost
all of the company’s products behave better than expected, are “user
friendly” and look good – even many years later. You can tell an iPod is a
good product just by looking at the case it comes in.

“High standards” may initially seem to be a strange explanation, espe-
cially when left to stand on its own. But, there is a continuance and it is
about challenges.

Programming is largely about challenges. It is also an activity where it is
possible to experience “flow” – a state of focus that occurs when one is en-
gaged in challenging tasks that demand intense concentration and commit-
ment. According to Mihaly Csikszentmihalyi1, flow occurs (see Figure 1)
when a person’s skill level is perfectly matched to the challenge level of a
task that has clear goals and provides immediate feedback [16].

1 Pronounced chick-sent-me-high-ee

8

Figure 1. Csikszentmihalyi saw optimal activities in the flow channel moving out-
ward as skills are gained, and certainly before apathy sets in. This is perhaps a paral-
lel to Vygotsky's Zone of Proximal Development, described as "the distance be-
tween the actual development level as determined by independent problem solving
and the level of potential development as determined through problem solving under
adult guidance or in collaboration with more capable peers." [63]

One particular element of programming is user interface design and con-
struction. It requires the skills needed for any kind of software development,
in addition to being subject to the constraints that arise when building some-
thing for human use. Even in naïve settings, the implications of “human use”
are striking; it has to be good enough for the users, meaning that the user
interface has to present the various possible actions in an understandable
way; the user must be able to use the interface to perform her desired ac-
tions; and finally, the user must understand the outcome of the chosen ac-
tions. The domain of computer support in medicine – the area dealt with in
this thesis – is not at all a naïve setting.

My motivation for working in the fields of Human-Computer Interaction and
Telemedicine has been to increase my own skills and to learn how to build
systems that are of help to the users. The purpose of my research has been to
examine some of the ways that this particular kind of software is designed.
The way in which software development is carried out affects usability. I
discuss different ways to design and construct software used within the field
of telemedicine, in order to increase usability for users in health care.

Research and work performed
The work presented in this thesis relates to three different research and soft-
ware development projects in the medical domain. In all of the projects, our

Skill

Anxiety

Boredom

Flow

Apathy

Challenge

9

department was given the general task of being responsible for usability
issues of the resulting system as well as the explicit task of designing the
graphical user interfaces

The selected projects had a particular requirement in common: they were
to deliver solutions at a certain point in time. They were, in fact, not research
projects with concealed commercial qualities – they were exactly the oppo-
site. The implication is that planning and work strategies must ensure that
the project delivers in the end and my research activities had to adapt to this
situation.

I was part of the three development projects from start to finish (some
projects are still ongoing) and the area of user interfaces was my responsibil-
ity. The approaches are therefore selected to fit into a setting which is no
different from any typical commercial software development project.

The projects span a substantial time frame, starting in 1992 and continu-
ing up until today. Naturally, the work has been affected by the trends and
methods that dominated at various times throughout this period.

Helios consisted of a large university consortium. The primary goal of
this research project of the CEC (Commission of the European Communi-
ties) was to build a software framework suitable for the medical domain, in
order to facilitate the development of medical applications. The framework
consisted of many modules and each module was a research topic in its own
right. Our task and research goal was to examine how to gain and pass on
design knowledge in static forms, such as Style Guides and Widgets (reus-
able visual components). We based our research on the assumption that it is
possible to express this kind of design knowledge once and for all – more or
less. All necessary design knowledge and advice would be compiled into
written advice and complemented by pre-designed, re-usable elements. In
this context, my work consisted of looking into how one could transform
domain knowledge into static descriptions, such as pre-designed widgets.

For the second project, Medicus, the research question remained more or
less the same, but we looked at other, more refined ways to acquire design
knowledge. The design decisions were not taken in advance, rather they
were made during development process. Again, the decisions were docu-
mented as static knowledge, in the form of (almost universal) “patterns” that
also could be understood and used outside of this project. In this context, I
looked at how one could describe the design decisions so they could be un-
derstood by others, and how to document them so that the knowledge would
not disappear over time.

Representing a combined third project, the CHILI and WeAidU computer
and support systems both reflect a transition away from the generation of
static design knowledge. Both projects implicitly reject the idea of upfront
design or even requirements. As an alternative, the starting point is more or
less a blank paper, and the design and development process is instead
adapted to handle design decisions as they occur. However, this adaptation is

10

more than just trial-and-error and it is not a random process. In this context, I
took a very active role in designing or shaping the framework (the overall
design) so that subsequent changes in the details were still possible. The
initial research concentrated on how to design this complex software, so that
it would still be easy to use. Later on in the project, there was a shift in focus
towards more overall usability questions.

Result
Based on the knowledge and experience in software engineering, human-
computer interaction and health care, my research shows that we need to
acquire a deeper understanding of what characteristics the computer support
should encompass, in order to succeed in developing usable systems. This
understanding can be enhanced by including users in the development proc-
ess, by producing many intermediary prototypes and by making progress in
fine increments. A major conclusion is that the design and development
process never ceases – if it does, the system will fail to function in a real-life
workplace. The way in which computer support is introduced and brought
into use also plays a vital role in determining the outcome. If it is introduced
in a way that stakeholders approve of, the better the odds are that it will be
accepted in the long run.

The idea is to make the computer system flexible enough so that the cost
of late changes is less than the cost of early changes. The way in which
software is produced must be set up so that changes do not hinder meaning-
ful development. This challenges the methods that are chosen, but more im-
portantly it challenges the skills and self-confidence of the developers. If the
developers feel confident, they are able to re-work the implementation and
use the change to improve the internals as well as the resulting system.
However, if the developers do not feel that they have the necessary skills
then the introduction of new requirements will become a burden that will
complicate further advancement.

The process of going from abstract requirements to a visual representation
is a key target, as it involves many of the elements that we believe affect the
usability of the finished product. It is very likely though that the chosen
method must contain a prototype-oriented approach [65] that can steer the
process.

Perspective
In academic situations, researchers want to discuss – or at least be familiar
with – the various perspectives that other fellow researchers draw on. As you
would expect, it makes a difference in the field of Human-Computer Interac-

11

tion (HCI) if one has a background in Cognitive Psychology or if one’s
background is in the field of Ethnography, for instance. My formal back-
ground is in Computer Science which deals with the technical side of how to
build computer systems.

Scandinavian software designers, who wanted to make systems design
more participatory and self-ruled, turned to prototyping in the early
1980s [18, 10, 11]. By using prototypes, developers sought a pro-active way
for users to develop a joint consensus on what they needed from a computer
system [9]. Prototypes provided a common language for developers and
users; a way to test solutions iteratively and to implement industrial democ-
racy in the workplace. The same way of reasoning can be seen in the field of
architecture.

Figure 2. Illustrations from the Trattato di architettura. c. 1470. Biblioteca Nazion-
ale, Turin.

As early as the 15th century, Francesco di Giorgio and other master builders
in Sienna started collecting drawings that contained examples of working
solutions to general problems (see Figure 2). More recently, Christopher
Alexander, a mathematician but foremost an architect, suggested in his thesis
“Notes on the Synthesis of Form” from the 60s, that we should use new
types representations as tools to facilitate communication between the de-
signers of buildings and the people that were to live in the building [2]. This

12

kind of tool or language is now known in the computer business as “design
patterns.” [1]

This striking view of making computer support more democratic inspired
others who became interested in user-centered design; information designers
began to employ prototyping as a way to encourage user participation and
feedback in design approaches. Prototyping is nevertheless seen as a method
that meets very different needs in Scandinavia and elsewhere in the world.
As a result, diverse development approaches have implemented prototyping
quite differently, have deployed it to meet quite different goals, and have
tended to understand prototyping results in different ways [58].

This diversity is also reflected in the background of our department – it
was established early in the computer age, when focus was often exclusively
on computerizing manual (office) work practices. This focus differs from
that of many younger HCI institutions that often carry a dissimilar view, and
where the objective, in essence, is to look for innovation, pleasure, novel
interaction and ground-breaking change, using computer technology. In con-
trast, our department is still rooted in making everyday work life better in
small, steady increments. This is partly a reflection of the domains that we
work in. For the most part, these domains are areas where safety-critical
aspects and highly specialized work skills are emphasized. The main areas
include train traffic control, high-speed ferry operations, train cab opera-
tions, health care and dynamic process control.

For my own part, the most attractive aspect of our perspective is the way
development is performed. It is always a cooperative effort, where explora-
tion of ideas and solutions play a vital part. Just as Schön [54] talks about
reflection-in-action, the aim of my research is to investigate the possibilities
of translating direct experience from practice into a form that makes sense to
the academic audience as well.

The perspective itself, i.e. the background and experience, is essential to
this kind of research since the researcher him/herself is the most important
research instrument.

The “right” solution
Education, training and scientific methods improve the chances of being able
to build usable systems. A usable system is fine, but is not the same thing as
the “right” system. As a student, you study theory and in the best case, also
train on the practical side – how to put the theory into use. This is a way to
ensure that one can solve the given problems. However, being able to solve
problems is not always enough if one is particular about how to define us-
ability [26].

Take a common problem in computer science – sorting data. The solution
that most people suggest when asked for a sorting algorithm is something

13

called Bubble Sort2. It is the simplest way to sort a list of objects. Unfortu-
nately it is also one of the slowest ways! The Bubble Sort solution is correct,
but is not the “right” way to sort data.

The problem is not so much the day to day management. Really good hackers
are practically self-managing. The problem is, if you're not a hacker, you
can't tell who the good hackers are. A similar problem explains why Ameri-
can cars are so ugly. I call it the design paradox. You might think that you
could make your products beautiful just by hiring a great designer to design
them. But if you yourself don't have good taste, how are you going to recog-
nize a good designer? By definition you can't tell from his portfolio. And you
can't go by the awards he's won or the jobs he's had, because in design, as in
most fields, those tend to be driven by fashion and schmoozing, with actual
ability a distant third. There's no way around it: you can't manage a process
intended to produce beautiful things without knowing what beautiful is.
American cars are ugly because American car companies are run by people
with bad taste.

Paul Graham, on Great Hackers [21]

The view one should have in regards to solutions, is that the output of design
is a design space rather than a single solution [39]. The Design Space con-
tains all possible solutions, but all the solutions are not necessarily suitable.
This approach contrasts with the traditional concept of design, which as-
sumes that the eventual output is simply a specification or artifact. Only
when an association to the Design Space is made, is it possible to analyze
just how good the proposed solution is. The right solution is something that
needs to be found through exploration and by intentional choice.

Figure 3. The Design Space (DS) contains all possible Options (solutions) to the
Question. For most questions, the DS is large. A novice student or a designer in
training is happy just to find any solution in DS, but when striving for high stan-
dards, we need to find the “right” or best possible option in the DS.

2 The idea is to compare two adjacent objects, and to swap them if they are in the wrong
order. The algorithm repeats this process until it has gone through all the data without swap-
ping any items. This way of sorting large bodies of data is the most inefficient sorting algo-
rithm in common use.

Design Space

option1

option2

option3
Question Good solution

Bad solution

14

Sadly, this is a part of the design domain that is said to be indefinable and
said to contain a design paradox in that we need to be “right” in order to
recognize what is “right”.

Disposition
The following chapter describes the research methods used. It explains how
to carry out research in live development projects (action research) but also
how to use the more traditional scientific methods.

A description then follows of the field of Human-Computer Interaction
(HCI) and how I have interpreted this in relation to my work. This section
provides a definition of the research question and it also briefly discusses the
way software has developed, from the 1980s and onward.

The next chapter, titled Medical Informatics, deals with computers in
health care, and discusses what elements characterize this combination. For
the most part, my work has been limited to telemedical systems and this is
also explained.

The final chapter discusses the topic of design, including the actual work
and research performed within the projects.

Finally, there is a discussion about the results and the conclusions that I
have made.

15

Methods

Viewpoint
The main targets for our department’s research have always been real users,
in real settings. The focus is on the end user's situation (as opposed to the
contractor's situation, the buyer's role, etc.) and the daily work that is to be
carried out. This is usually a task filled with many small and delicate prob-
lems – problems that if solved, would result in major, overall improvements
as compared to the current situation. In other words, we focus on today's
work problems and how to solve the most immediate ones. This is in con-
trast to many other activities in the HCI area that look into the future and try
to find completely new directions of problem-solving, or try to introduce
new forms of technology to solve the problems. For us, HCI is not about
radical innovation. It is about making improvements in the context of an
evolving process.

Taking an active role in the projects where we are doing research is an-
other common practice within our department. In these situations, we are not
merely providers of HCI expertise. Rather we are more like regular co-
workers, if regarded from an outside perspective. In the most ideal of cir-
cumstances, we take part in the project from the earliest phase, follow then
the initialization of the project, and finally join the development team as the
project evolves. This has been the case in all the projects that are presented; I
have been a member of the project group from the starting point (when no-
body in the group really knows what to do) up until the finish line, when the
product is finally deployed or sold.

Research approaches
As a rule, in HCI, there are three predominant ways to conduct research [50]:
1. experimental studies
2. survey studies
3. observational studies

Experimental design is used to control all external variables and vary only
those that are being tested. The strength of the experimental study is its abil-
ity to clearly localize the effect of a particular design. The method allows the

16

study of isolated design factors, but requires a situation where variables are
controlled, something that is not always feasible.

Survey studies are useful for describing systems, for detecting strong and
weak points, and for suggesting improvements. Surveys, questionnaires and
interviews provide a structured approach in which the user assesses factors
related to the subject of the particular study. User assessments are introspec-
tive and are subject to biases but through empirical verification it is possible
to establish reliability and validity of user responses. Furthermore, when
comparisons are made between different groups of subjects rather than with
an absolute criterion, it may not matter that responses are biased.

Observational studies are reasonably easy to conduct but are open to in-
terpretation. In an observational study, one or several systems may be se-
lected and researchers observe the users. Analysis may be on a purely verbal,
descriptive level or based on quantitative measures. Conclusions are tenta-
tive since researchers have little or no control over conditions interacting
with the system [51]. A factor that has to be taken into consideration is when
observing work that is partly your own product. In situations like this, one
needs to involve more people to avoid biases.

In terms of the conditions we work in (development projects) it is often
only feasible to perform surveys and observational studies. The major part of
my work has been in the form of observational studies, complemented with
surveys and interviews whenever possible. The experimental approach is not
used, due to the nature of the work.

Evaluation
Jakob Nielsen categorizes users’ experiences in different dimensions or lev-
els [42]:
1. general knowledge about computers
2. expertise in using a specific system
3. knowledge about the domain

He argues that the level will – or should – have implications for the design of
the user interface. A user with extensive experience is able to use a computer
system in a better, more efficient way than people without experience. An
expert user knows more about how the system behaves when using it. The
level of experience can also affect the evaluation process. Methods for
evaluation are normally separated into:

usability testing methods, where users are involved
usability inspection methods, where users are not involved

An established method for evaluation is performance measurement where
the purpose is to determine whether a usability goal has been reached or not.
User performance can be measured by having users carry out pre-defined

17

tasks while observing relevant aspects of the interaction. One could concen-
trate on the time needed to complete the task, or on error rates, depending on
the specific task at hand. The tests can be performed in a live setting, where
the user is performing real tasks, or in controlled laboratory settings where
more parameters can be controlled. For the kind of systems I have worked
on, evaluation requires skilled users because we are mostly interested in the
efficiency of daily use.

There are a number of ways one can carry out an evaluation. For the
quantitative aspects (performance and efficiency of the system) absolute
measures are possible to attain. The results produce a number of direct
measures of performance and efficiency.

In terms of qualitative aspects – for example, the quality of the system
from the users' point of view – several approaches are needed to cover all
relevant areas. These approaches include questionnaires and expert observa-
tions [37, 31]. These are the methods that I have used the most frequently.

Heuristic inspection
An expert evaluation or heuristic evaluation differs from traditional evalua-
tions. It is actually more of an inspection than evaluation and it is performed
by trained experts.

Established, pre-defined guidelines are often used to classify the findings.
During the evaluation session, the evaluator goes through the system several
times and inspects the various dialogue elements and compares them with a
list of recognized usability principles (the heuristics). These heuristics are
general rules that describe common properties of usable interfaces.

The result is a list or groups of issues that have an impact on the usability
of the system [43, 42].

Questionnaires
Questionnaires range from informal versions with hand-tailored questions, to
standardized versions that are rigorously tested and validated [52].

The Software Usability Measurement Inventory (SUMI) is a proven
method for measuring software quality from the end user's point of
view [30]. SUMI is a consistent method for assessing the quality of use of a
software product or prototype, and it can assist in the detection of usability
flaws before a product is shipped. It is backed by an extensive reference
database embedded in an effective analysis and report generation tool.

The Software Usability Scale (SUS) was developed as part of the usabil-
ity engineering program in integrated office systems development at Digital
Equipment Co Ltd., Reading, United Kingdom [13]. It is a reliable, low-cost
usability scale that can be used for global assessments of systems usability.
The SUS is a simple, ten-item scale giving a global view of subjective as-
sessments of usability. This measure can be used to compare usability across

18

a range of contexts. Just like the SUMI, it is a validated questionnaire, but
with a minimal footprint.

Action Research

"If you want to know how things really are, just try to change them"

Kurt Lewin, who coined the term action research [36]

My research has a qualitative approach, since almost all of the work is done
within a live setting. The primary reason for doing qualitative research is that
one wants to gain a deeper knowledge – the why and how questions – which
cannot be measured in numbers. It is also an expression of the fact that
knowledge lies within the development projects. We often label the approach
as Action Research (AR), although not necessarily adhering to a particular
instance or interpretation of AR – though participatory action research is
similar to our approach [29].

In social psychology, Action Research emerged before and during the
Second World War as a form of research in which the researcher learns
about certain group processes by actively participating in or manipulating
certain aspects of these processes. Action Research has its academic roots in
sociology, social psychology, psychology, organizational studies, and educa-
tion. In AR literature, one finds a varying degree of rejection of the classical
notion of scientific research. This is a reminder of AR's origin where resolu-
tion of theoretical issues was of less importance, and finding the solution to
social and organizational problems was regarded as more important. AR is
based mainly on the premise that most things are done within groups and the
insight that working within groups has a fundamental effect, not only on the
total outcome but also on the individual members of the group. Action-
oriented research is said to generate situation-specific knowledge; it does not
deal with the mere application of some pre-existing knowledge.

According to Hopkins [25], action research can be described as an infor-
mal, qualitative, formative, subjective, interpretive, reflective and experien-
tial model of inquiry in which all individuals involved in the study are in-
formed and contributing participants. The primary intent of Action Research
is to provide a framework for qualitative investigations in complex working
situations [35]. It consists of four stages, all repeated throughout the duration
of the project: reconnaissance & plan, action, observation, and reflection &
revision (see Figure 4)

19

Action ObservePlan Reflect

Revision

Figure 4. Action Research Stages.

However, during a project it is common to fall back on quantitative methods
since they serve as a valuable complement to the free form of observations
that otherwise would be the only source of information.

Central problems
One central problem in terms of development is that the heath care world is
still not sufficiently computerized. This is not primarily due to a lack of re-
sources, even if this too is an important factor. Instead this insufficiency
stems from the difficulty in knowing what to computerize and – perhaps
even more so – the difficulty in knowing how to computerize. Recently, the
main criticism has been that the computerizations have been excessively
individual. The focus on integration and communication has been lost when
many of those involved in computerization have merely been looking to
solve their own problems [57].

But simply moving current work practices into the digital domain does
not automatically solve any problems or make work better or more efficient.
In fact, some computerization has had the opposite effect, for instance, when
the selected solution has been inappropriate, or when all aspects of the cur-
rent situation have not been taken into consideration.

20

Figure 5. In complex situations there are many technical devices and systems that
may interfere with the care process.

One of the primary reasons that this happens is due to the complexity of the
situation in the medical domain; a situation that is often too complex to be
reduced into a manageable set of constraints that can be implemented into a
computer system. There are many reasons for this complexity:

The care-giving process is strictly focused on the patient. Anything (espe-
cially technical systems) that stands in the way of this patient orientation
is easily regarded as a severe obstacle.
In certain circumstances, legislation can be a barrier. It may be a question
of economic issues – when someone needs treatment outside her normal
service area (in another part of the country, in another country) – or it
may be issues of security or confidentiality that prevent rational handling
of patient information, etc.
A hospital is full of professionals with highly specialized skills. Their
skills match current needs and thus reflect what they are required to be
able to handle in a specific setting. Change the setting and the organiza-
tion's body of skills will adapt to the change.
A hospital consists of numerous smaller and often independent depart-
ments. Sometimes they overlap in terms of activities, sometimes not.
Each department has many local solutions and local technology used to
solve their tasks.
The medical activity in itself is complex and can therefore be difficult to
both comprehend and express logically. Much of the internal knowledge

21

is based on fact, some knowledge is based on experience and some on
professional instinct. The health care process is thus very different from
biomedical science. The former is more related to the art of medicine,
whereas the latter is closely connected to the academic aspects and the
biological disciplines of medicine.
The information that is available can be of poor quality. The process for
data collection and for entering data may be of low quality, resulting in
poor validity and reliability, as shown by Peterson [49].

Knowing what the problem is that needs to be solved, is the first of the cen-
tral problems. But the next step, the how step, is equally difficult. For even if
one knows what the problem is and how it arises, it is still difficult to find a
solution. The proposed resolution must also show that real gains will be
made in terms of the existing situation, since the existing solution is likely be
the first alternative in any competing position. The focus of the medical or-
ganization is to treat patients, and if a solution works (although possibly
unsatisfactorily) it is likely to remain in use. The health care system is com-
plex and changing from a known solution that works to an unfamiliar system
that may or may not be superior, is not always the most obvious and straight-
forward decision.

22

Human-Computer Interaction

Human-computer interaction is a discipline concerned with the design,
evaluation and implementation of interactive computing systems for human
use and with the study of major phenomena surrounding them.

ACM SIGCHI Curricula for Human-Computer Interaction [23]

Although the desktop computing revolution has greatly increased the range
of possibilities, most users and developers would agree that getting a com-
puter to do specifically what they want it to do is as challenging as ever.
Despite the successful introduction of personal computers into nearly all
professions, the daily experience of using computers can still generate emo-
tional distress or strain. The world is simply full of poorly designed pro-
grams that lack usability in the most elementary ways. If usability aspects
are not actively considered during development, then they are not likely to
not be considered at all. Genuine usability never happens by pure
chance [43].

Unfortunately, much of the Web is like an anthill built by ants on LSD: many
sites don't fit into the big picture, and are too difficult to use because they de-
viate from expected norms.

Jakob Nielsen [44]

The major goal within the field of Human-Computer Interaction (HCI) is to
design computer systems that effectively support the user in his/her work task
and decision-making. The definition of Usability according to ISO 9241 is:

Usability
The extent to which a product can be used by specified users to
achieve goals with effectiveness, efficiency and satisfaction in a
specified context of use.

Effectiveness
The accuracy and completeness with which users achieve goals.

Efficiency
The resources expended in relation to the accuracy and completeness
with which users achieve goals.

23

To achieve genuine usability, we must understand and master many tasks
(see Figure 6). A working system alone is not sufficient, because the system
is going to be used by a large number of different people with different
needs and capabilities. The conditions of work are likely to change, and the
world surrounding the system and its users is definitely going to change. In
addition, it is not a question of technical issues alone. Social aspects also
play a vital role in any complex work situation [46].

Figure 6. SIGCHI view of HCI. [23]

Being able to understand how users think and perceive information and how
people co-operate during work is the first step when dividing the overall
development process into smaller elements. It is at this point that the devel-
opment process first starts.

Much of this initial work within HCI is treated by the underlying disci-
plines, for example cognitive psychology and software engineering. Those
fields could be described as being objective since measurable goals and facts
are often in focus. Examples of such facts include the human mind's capa-
bilities in terms of memory capacity, the information flow before decision
making, the error rates at a given speed of processing etc. Much of the
knowledge in this area forms the basis and theory for the other related HCI
research areas.

The next step deals with how to apply these basic facts and considerations
in practice, in order to be able to develop computer applications and systems

24

with high usability [42]. Software design embraces many aspects: function,
safety, human interface, ergonomics, graphics, algorithms, and data struc-
ture. Correspondingly, these various aspects of software design invariably
have an impact on one another. The development process is also equally
about what to develop and how to develop it. This how is addressed by pay-
ing attention to the way software is developed. The solution is to involve
end-users and other stakeholders earlier in the process and in more stages of
the development process [20]. The proposed solution, combined with mod-
ern development strategies, such as prototype-driven development, produces
a superior final result [34].

One key purpose of Human-Computer Interaction (HCI) is to ensure that
computer support is valuable and useful to users. Research within the field of
HCI has contributed to this in many different ways.

At the outset, much of the work within HCI dealt with safety and basic
operational issues; many systems and machines were potentially dangerous
if used incorrectly, or they could fail, leading to dire economic conse-
quences. When computers grew to be the most common machines that users
interacted with, other kinds of problems became more important. Reading
and understanding information presented on visual displays units was – and
still is – one major research area. Later the actual interaction with visual
information became the problem in focus.

Computers and interactive systems now play a very large and fundamen-
tal role for many professionals. Many workplaces and work tasks are based
completely upon the use of computers; information is stored in computers,
only computers can access information, only through the use of computers is
information modified and shared, and decisions are channeled though ac-
tions taken on computers. The penetration of computer systems into modern
working life is indeed remarkable. In January 2004, approximately 96 per
cent of all Swedish enterprises with ten or more employees used com-
puters [60].

In all the above cases, the purpose of the computer system is to help and
assist in the actual work that is being performed. Ideally, the computer is
there to support the user. Computer support, if done properly, is a useful and
productive tool that makes work safer, more meaningful, more productive,
and even more fun.

However, the state of computer systems is not quite this perfect. Many
systems fail to support the work task and instead become burdens them-
selves, producing more work for the user. Being mechanical in character and
encoded to follow certain pre-arranged rules, the computer systems are not
likely to perform well at all times, given the changing and non-static nature
of companies and work tasks. The clash between the deterministic computer
and the not-so-deterministic human being is bound to cause some problems.

However, the situation is not all bad. Computer science knows a lot about
how to build systems that are flexible and adaptable. We also know a lot

25

about human beings, human psychology and the way people work. The com-
puter industry, computer science, HCI and other stakeholders have matured
greatly, and today’s computer systems have made improvements from both a
technical and a usability point of view.

Still, more than 50 percent of software development projects fail to meet
their economical and functional requirements. As many as 31 percent of the
projects are cancelled before they are completed, since they do not meet the
requirements there were originally outlined [59].

Many things can be said about why software development fails and why it
is so difficult to succeed. The most common reasons attributed to breakdown
are the failure to include end-users in the process, the incomplete and/or
changing requirements and the lack of support from management. From a
HCI point of view, the lack of usability is a key concern. Most computer
users recognize the problems involved in using computers, based on their
own experience.

Although the desktop computing revolution has greatly increased the
range of possibilities, most users would agree that getting a computer to do
what they want it to do, is as challenging as ever. The daily experience of
using computers can still produce emotional distress or tension.

Research questions

But by searching for that magic metaphor you will be making one of the big-
gest mistakes in user interface design. Searching for that guiding metaphor is
like searching for the correct steam engine to power your airplane, or
searching for a good dinosaur on which to ride to work.

Alan Cooper [14]

Designing computer systems that effectively support the user, is the major
goal within human-computer interaction. To achieve this, we must under-
stand and master several tasks. These tasks first address the question of
knowing in what direction development should head, and later, the question
of knowing in what manner to develop the system.

This view might seem off-target at first, since it does not mention the di-
rect goals or actual functions of the system. However, more often than not,
there is no objective goal to aim for that can be formally specified and used
as indicator to recognize when we have an appropriate system. This is
somewhat confounding since most of the current methods of systems devel-
opment (see Figure 7) focus on and require that these goals are made explicit
in order to steer development.

26

Figure 7. Overview of the flow in systems development, for the IBM Rational Uni-
fied Process® [32]. The picture shows a large investment on upfront design early in
the project.

When looked at carefully, most computer systems have so many objectives
and purposes – technical, organizational or strategic – that limiting the
measurement of success of a particular system to an imperfect set of objec-
tive goals, is a strategy that does not necessarily lead software development
in the right direction. Instead, a successful system can be described in terms
of a well-balanced matrix, consisting of many different types of values.
There are the objective goals, the functional capabilities and usability aspects
– quite often possible to measure and assess. This thesis deals with systems
for human interactive use, so it will also discuss values such as pleasure,
emotion, long-term expertise effects and the system’s potential to grow and
expand. These “soft” goals contribute to making the picture more complete
in comparison to the picture drawn when merely traditional objective goals
are looked at.

For HCI researchers, this situation – which encompasses many varying
and possibly conflicting goals, presents a great challenge. The constructive
focus on producing usable systems is a matter of understanding this intricate
situation and knowing how to proceed from there.

Many approaches exist that can be used to solve this complex develop-
ment task. The research presented here is targeted towards finding ways –
methods and practices – to design and develop computer systems (especially
in the medical domain) that will give users the support and the usable system
that they need.

In order to succeed in developing an efficient system and user interface,
time and effort must be spent analyzing the task, the work contents and the
utilization of information in this work task. In short, the application must
only do two things: provide the right actions at the right moment and show a

27

sufficient amount of information. If this can be accomplished, we are in a
good position to find a satisfactory solution [45].

But the available screen space will, in all cases, be less than desired and
therefore we cannot show all the information we would like to see. Also, we
are never exactly sure of what the next action should be, or precisely what
information should be displayed. Therefore information has to be organized
in a structured way so that we can achieve the best possible compromise
between all the elements that affect the system's overall usability.

A slice of software development history
In the beginning
Not too long ago, development of computer applications required only a
small number of tools: a text editor to write the code, a complier to transform
the programming code into executable code, and perhaps some kind of de-
bugger to systematically trace errors in the system. These tools had little or
nothing to do with each other. They were tools in their own right, developed
for the specific tasks that they were to carry out. Each tool had to be learned
separately. To be able to enter text efficiently, one had to first learn to under-
stand text input, and then learn a little bit about how text editors are built,
and then finally learn how to modify the editor to suit one’s specific needs.
Since the tools were few in number, this could be done with modest effort.

The development flowed from one tool to the other, in a kind of iterative
circle of development.

Integrated development environment

To paraphrase Fred Brook's wonderful essay "No Silver Bullet," well over
half of the time you spend working on a project (on the order of 70 percent)
is spent thinking, and no tool, no matter how advanced, can think for you.
Consequently, even if a tool did everything except the thinking for you -- if it
wrote 100 percent of the code, wrote 100 percent of the documentation, did
100 percent of the testing, burned the CD-ROMs, put them in boxes, and
mailed them to your customers -- the best you could hope for would be a 30
percent improvement in productivity. In order to do better than that, you have
to change the way you think.

Allen Holub [24]

Somewhere along the way software designers came to the insight that we
might need to integrate the tools in order to narrow the development circle.
This would expedite the whole development process. Developers would no
longer need to learn all the details of each tool. This integrated development

28

environment (IDE) combined the minimum set of used tools – the editor, the
compiler and debugger – into one streamlined developer environment.

IDEs have been tremendously successful. This success coincided with
advances in graphical user interfaces. GUIs have always been (rightfully so)
considered very difficult to implement. For a long time, computer graphics
was slow because it lacked today’s hardware support. Therefore many deli-
cate techniques had to be used and combined to achieve proper speed and
usefulness. IDEs made aspects of this work a lot easier; one did not have to
learn all the details of the underlying library of graphical components, one
could use a visual layout tool to construct the user interface, and one did not
have to write any code for this part of the application. The tool would take
responsibility for most things related to the user interface. Since there was a
library of graphical components from the IDE manufacturer, the manufac-
turer would see to it that the user interface achieved the desired speed.

This success sparked the development of new IDEs and today we find old
utilities packaged into the IDE family, complete with a new user interface
and tight integration with other IDEs.

Today’s IDEs contain a lot more than their predecessors. While compet-
ing to provide IDEs to address every imaginable developer need in one all-
inclusive IDE, vendors fail to focus on improving the functionality of each
particular tool. Instead, it seems that vendors are providing features that first
"cover the earth" by bundling many constituent components, while offering
little value to the software development process. The current state of affairs
reveals a constant and continual expansion in which IDEs are getting larger
and larger. But vendors still have a long way to go before they achieve one,
single, rational goal: to make the lives of developers easier, enabling devel-
opment teams to be more productive and thereby leading to higher-quality
software products.

Development today: a moving target
Development used to be simple, but inefficient. Now it has turned efficient
but at the same time so difficult that the promise of efficiency is in danger.
Development consists of many programming languages, and many operating
systems, but the real moving parts come from the underlying technologies
upon which we build our systems. First of all, developers probably need to
know a minimum of basic programming languages: C++, Java, VisualBasic,
and C# [17]. Developers also need to have a reasonable understanding of
several operating environments: Unix, Linux, MS-Windows, and MacOS.
Next in line come the various data description representations such as
HTML, XML, XSLT, DTD, CSS and then there are also the scripting lan-
guages that you probably need: JavaScript, CGI, JSP, ASP, Perl, and PHP.

29

The most awful part of this problem is that when you've finally got your head
around all the various parts involved in today's denouement, you must ensure
that all these different parties dance nicely together when they meet up at the
resulting debutante's ball.

Model-based GUI
Much of the complexity and problems that arise when implementing user
interfaces, originate from the connections between the interface and the un-
derlying system. With a model-based view, one takes the following stance:

Model-based interface development is a new paradigm for developing inter-
faces that offers solutions to the main shortcomings of current tools. The
model-based paradigm uses a central knowledge base to store a description
of all aspects of an interface design. This central description is called a
model, and typically contains information about the tasks that users are ex-
pected to perform using the application, the data of the application, the
commands that users can perform, the presentation and behavior of the inter-
face, and the characteristics of users. [41]

If these connections are programmed separate from the interface specifica-
tion, the result is lots of effort being wasted on writing error prone codes that
must be rewritten whenever the layout changes and whenever the underlying
system changes. Therefore it is important that these connections form an
integrated part of the declarative specification language.

30

Medical Informatics

Medical Informatics is both an Art and a Science.

Science: where methods are conceived and experimentally validated by
means of computer models and formalisms.

Art: where computer processing systems are built and assessed.

Handbook of Medical Informatics [6]

To a great extent, the practice of health care is an information management
task. A physician's decision-making is based upon expert knowledge, infor-
mation from the individual patient, and information from many previous
patients – the latter being known as experience [62]. Decision-making is
often very difficult, not only due to the fact that the required expert knowl-
edge in each individual medical field is enormous, and growing daily. Diffi-
culty in making decisions is also due to the fact that the information avail-
able for the individual patient is multi-disciplinary, imprecise and very often
incomplete [8].

Medical Informatics is located at the intersection of information technol-
ogy and the different disciplines of medicine and health care. The role of
Medical Informatics is to deal with the common set of problems and solu-
tions that relates to both medicine and computer science.

Telemedicine and telemedical applications

Telemedicine is conceived of as an integrated system of health-care delivery
that employs telecommunications and computer technology as a substitute for
face-to-face contact between provider and client. [4]

The introduction of telecommunication (computers, the internet, mobile
phones, and wireless communication) has already changed the way we com-
municate with each other – not only in emergency situations but also in eve-
ryday, routine communication. This change will also affect the way we
communicate in our professional lives.

31

Within medicine, particularly within its most specialized areas, access to
domain experts is limited for many practical reasons. Access to medical data
such as electronic medical records, patient images, and laboratory results, is
also often limited by physical properties. In general, the main difficulty is
that medical data is not available or accessible in a certain situation – either
because it is physically not there, or because the expert is not where the data
is, or because the data cannot be accessed without using time-consuming
manual procedures [56].

In order to address some of these issues, much effort has been invested in
making medical data "portable" by storing it in computers instead of on film
plates and paper. This resulted initially in a plethora of storage formats that
was as useless as paper used to be, in the situations were data was needed
elsewhere. With an increased computer maturity and international attempts
at defining medical standards (for terminology, medical record data struc-
tures, protocols for data exchange, etc) the situation is improving and Tele-
medicine is rapidly gaining favor over previously used procedures [3].

The user and the importance of utility and usability

Figure 8. The ISO 9241 usability framework.

In health care, as in many other work situations where computerized infor-
mation systems are used, the purpose of the work performed by the involved
professionals is never to operate the computer. The computer is a tool that

User

Task

Equipment

Environment

Product

Context

Goals

Effectiveness

Efficiency

Satisfaction

Intention

Usability

Outcome

32

will be accepted and used only as long as it efficiently supports the efforts to
provide good health care for the patient.

This means, among other things, that the user interface for the informa-
tion system must be designed to optimize the health care work activities as
such and not simply to optimize the handling of the computer as a tool [55].
In Figure 8 we see what the framework for measuring usability looks like.

33

Design

Design is the (early) stage in development process when one plans out in the
mind the qualities and inherent features of a future artifact.

Sometimes the graphical user interface (GUI) is mistaken for being the
design element of computer systems. The GUI is about visuals, but there are
dynamic aspects as well as aspects of interaction that need to be taken into
account. Using a traditional HCI point of view, the interchange of informa-
tion between system and user is part of the design, in addition to the
GUI [45]. But even this perspective may be a too limited. For instance, a
nurse who hands over a paper-based patient record to another nurse can
merely be seen as someone just passing over information. But below the
surface, there are many possible interpretations of this act. One interpretation
is that the responsibility for the patient has changed hands at the same time.
From an information-processing perspective it is possible to just concentrate
on the transferred information itself.

I subscribe to the view that design is a “reflective conversation” as de-
fined by Schön [65]. He describes this relationship of reflection in action as
the shift that happens when something interrupts the flow of the designer,
who then shifts to a more conscious mode of analysis. This has been called a
reflective conversation with materials. This perspective is closely related to
my previous examples of the Scandinavian participatory approach and ex-
ploration of the design space using prototypes.

Design is everywhere today. Everything around us – products, environ-
ments, even services – is designed with different objectives in mind. There
are academic degrees in design and more design awards than one can count.
The year 2005 has been designated as the “Year of design” by the Swedish
government. There are examples of when the notion of design has been
taken too far, when policies and behavior have been called objects of design.
It is questionable if everything can be labeled design in this way. Although
design is hard to define, introducing some form of limitations will help us
talk about good or bad design.

When building computer systems, we work from a perspective that shapes
the questions that will be asked and the kinds of solutions that are sought.
Winograd considers the perspective of design as vital [64], and argues for a
language/action perspective:

34

“One useful way to identify a perspective is by its declaration of what people
do. From a language/action perspective we say that People act through lan-
guage. As a contrast, consider the more predominant perspective that People
process information and make decisions. Of course everyone in an organiza-
tion can be described as doing both, but there is a difference of focus”.

A number of different approaches have been used in an attempt to reach the
goal of a working system. Each of the projects described in the papers that
are discussed in this thesis, has a different solution. The various approaches
are the result of our own broadened experience and to some extent they also
reflect the varying needs of the projects.

Helios (Papers 1 & 2)
Project description
Helios was a research project within the framework of the AIM (Advanced
Informatics in Medicine) program of the CEC (Commission of the European
Communities). It was a large project with seven partners from different
European countries.

In the Helios project, the overall undertaking was rather complex from a
development point of view. The Engineering Environment contained many
state of the art technologies, like natural language processing, images proc-
essing, automatic routing of communication and decision support. The goal
was to build an advanced software tool that, in turn, was going to be used as
a tool to construct complete medical applications. The project contained a
number of teams of developers and general stakeholders.

Figure 9. Design example from the Helios project showing part of an interface ele-
ment for a clinical test form.

35

Solution
The solution suggested by our team was to produce static knowledge that
could be agreed upon. This was also the research question: how could this
knowledge be described and acquired? Ideally, the knowledge could be fi-
nalized once and for all. The solution would form a collection of guidelines
and rules that would help a developer who was looking for design support.
This knowledge base included basic cognitive facts on how humans work
when interacting with computer systems. It is quite possible to find vital,
static knowledge from cognitive psychology – i.e. we will always have a
certain long-term memory capacity. Cognitive psychology can describe and
help us understand how we function as humans.

This static knowledge was combined with knowledge about the target
domain – in this case, medical systems. The knowledge about the domain
came from previous experience, field studies and trials. All of this was then
combined into a medical style guide – the idea being that it would be possi-
ble to make something similar to a cookbook, which a developer could use
as a practical guide when developing a new medical system. Since some
parts of the target domain are static we could even present design work that
could be described as static. For example – the medical domain will always
be patient-centered. Therefore we are able to produce a number of designs
and implementations that will deal with frequent tasks that relate to patients.
The patient card (with basic information about the patient: name, sex, age,
etc.) could be designed before any specific application development had
started. In Figure 9 we see examples of static design that can serve as a basis
for the development of additional forms.

This reasoning could be applied further and re-usable visual components
(called widgets) could be developed to better suit the target domain. One
example of such widgets is text entry fields in which the input can be veri-
fied before accepted as valid input. Another example is navigation controls
that could hold and control many objects of a similar type (patient cards for
example) [12].

In conclusion, the core idea was that as designers and HCI experts, we
could describe the foundation for our own knowledge so that it could be used
by others. Our explanations would take the form of prescriptions and advice.
A lot of upfront design could be provided, as examples of functioning
graphical user interface objects.

MEDICUS/CHILI (Papers 3 & 4)
Project description
CHILI is a general-purpose radiology workstation with teleradiology and
telecardiology functions. CHILI is the successor of MEDICUS. Both appli-

36

cations were developed for the same purposes, by virtually the same group
of people.

The context in the MEDICUS project was very different, as compared to
the sizable Helios project. MEDICUS and CHILI both had a small and well-
acquainted group, made up predominantly of software developers. Again,
the goal was complex: a teleradiology station with the ability to handle on-
line communication and application sharing. In this context, we wanted to
take the same research standpoint used earlier, and examine if there were
other, better forms of describing HCI knowledge. The purpose was to ensure
that usability would be included in the development process.

The main use of the application would be to view images for interpreta-
tion and consultation purposes. Teleradiology is a means of electronically
transmitting radiographic patient images and consultative text from one loca-
tion to another. The final design proposal – a prototype – for application
development can be seen in Figure 10.

Figure 10. The original CHILI design proposal. This is the final design specification
before implementation started.

37

Solution
The selected approach focused on elements that were the most important
according to a particular ranking. We call these criteria, and the whole proc-
ess is referred to as criteria-based design.

We assert that the product of user interface design should be not only the in-
terface itself but also a rationale for why the interface is the way it is. We de-
scribe a representation for design based around a semi-formal notation
which allows us explicitly to represent alternative design options and reasons
for choosing among them.

MacLean on arguments behind the artifact. [40]

The selected strategy was partly influenced by the current methods that were
in vogue: Object Modeling Technique [53] and Design Patterns [19]. OMT
was a predecessor to Rational Unified process [27].

Developer

User/Org.

Request Modeling

Analysis

Domain

Experience

Statement Functional model

Dynamic model

Object model

Design

Figure 11. The OMT model overview.

We modified the OMT model (see Figure 11) to better suit our purposes,
which were not primarily to construct the system, but rather to specify and
design how the system should work. The outcome is a design proposal but it
also includes the rationale for the proposed solution. The resulting model is
seen in Figure 12.

38

Design
space

Design
criteria

Design decisions*

Rejected
decisions

Prototype* Application
Implementation

Documentation*

Figure 12. Our re-engineered OMT model that retains information about underlying
design reasons as well as information about other attempted solutions that were
rejected.

The model deals with how to manage conflicting options and how to pre-
serve the knowledge about the selections that are made. The result is both a
prototype and documentation. The resulting artifacts are marked with an (*)
in Figure 12.

A short summary of the method is as follows:
The process starts off with an initial set of design criteria. The whole team
must agree on these criteria.
During the design process, solutions are drawn from a very large set of
possible solutions referred to as the design space.
If a proposed solution is consistent with all other chosen solutions and it
is supported by the design criteria, it is implemented in the prototype. At
the same time, the solution is transferred to the design documentation
If a solution is rejected, the proposed solution, plus the reasons why it was
rejected are moved to the design documentation.
The final prototype plus the design documentation serves as a basis for
the development team as they start implementing the application.
Formal and informal evaluations of the application both influence the
original criteria and the design space.
The process is repeated until all necessary functionality is incorporated in
the design.

WeAidU (Paper 5)
Project description
WeAidU offers physicians automatic medical decision support, where they
can obtain a second opinion in a matter of seconds. It is aimed at the cardi-
ological market and uses AI and image analysis validated by medical ex-

39

perts. A correct diagnosis can, for example, help prevent heart attacks which
are the leading cause of death in the world today.

Figure 13. The first production version of the WeAidU application.

The aim of WeAidU was to develop an Internet-based intelligent system that
could provide near instantaneous professional aid in clinical decision-
making. The system involves artificial neural networks trained to interpret
myocardial perfusion scintigrams. This makes it possible to enhance the
effectiveness of clinical decision-making in the case of coronary artery dis-
ease. The system is designed to work on the Internet.

The following images show two generations of the same decision support.
In Figure 13 we see the first attempt. The second solution in Figure 14
shows a more traditional solution with pull-down menus.

40

Figure 14. The current version of the WeAidU application.

Solution
The WeAidU approach is an exploratory strategy. It is based on the notion
that initially we cannot accurately know what to develop and therefore we do
care about requirements! The process is characterized by the spirit of “find-
ing out the requirements as you go." The reason for this is that we actually
want a transition from the status quo, and a preliminary study of today's
situation may not bring us to an appropriate solution [15]. Because of this
stance, the project’s work methods meant targeting the most difficult issues
at hand, on a day-to-day basis.

In this context, my focus and interest has been to observe and study how
the development process is reflected in the final system. Since the way soft-
ware is developed affects the outcome, it is of special interest to examine
how usability is affected.

The method is an interactive as well as an iterative process, where the re-
peated cycle consists of the following steps:

Abstraction
Structure
Representation
Detail

41

Abstraction includes the study of the target domain, in order to form some
kind of an elementary understanding of the domain. That general under-
standing is then categorized into a structure that is possible to manipulate. A
structure can include the relationship between involved elements and users'
interests. A transformation from the structure to a visual representation then
follows. This contains the most important properties of the desired solution.
In the early stages of development, the representation is often a prototype
that is at some primal level of maturity. Afterwards, details are added to the
visual representation [65].

Figure 15. Old and new way of estimating cost of changes vs. time.

The technique described is similar to the ideas found in XP – eXtreme Pro-
gramming [5]. One of the driving forces in XP is the insight that it is more
efficient, both in the short run and the long run, to only solve the problems at
hand, instead of solving all the potential problems that might arise. For a
trained programmer or designer this can be very frustrating, since this insight
conflicts somewhat with the "golden standard" of developing the best possi-
ble solution – in which all similar problems can be solved with a single ele-
gant solution. The reason we can ignore a full study before starting devel-
opment, can be explained by the old "truth" about estimation of cost vs. time
(see Figure 15) which claims that “there is a small cost for early changes,
and a large cost for late changes.” This statement does not hold true for all
forms of development, and not only because of improved tools and more
powerful computers. If the whole development cycle is based upon change
and streamlined to handle changes (early ones or later ones), then the result
is a flattened cost curve.

Advances in hardware and more suitable programming tools are a help in
this process but they are not the most important cause of change. Instead, it
is the shift in methodology and a change in attitude towards how software
ought to be produced, that can bring about this effect.

42

Conclusion

Based on the knowledge and experience in the target domain, my research
shows that in order to succeed, we need to acquire a deeper understanding
about what to develop. This understanding can be enhanced by including
users in the development process, by producing many intermediary proto-
types and by making progress in fine increments [22, 48]. The way that the
computer support is introduced and brought into use also plays a vital role in
determining the outcome.

We also need to define what a successful system is, since this is not solely
based on measurable objectives – as put forth, for example, in the ISO us-
ability definitions.

A good and usable system in medicine can be said to posses the following
characteristics:

Efficiency
Flexibility with regard to local work practice
Ability to minimize cognitive load
Ability to support learning within the medical domain
Easy to learn and use
Suits the work process
“Obvious” because is does the “right” thing
Supports the care delivery process
Is concerned with the human aspects of the medical profession

Although not a strict definition, this list of attributes will help us discuss and
talk about the nature of our goals.

Embrace change
Not enough attention has been given to the dynamics of design – in other
words, to things that change. From the very start we know that work content
and practice will change over time. We also know that the profiles of the
users will change, for example when more and more people become com-
puter knowledgeable. It is also true that the computer systems themselves
change over time, sometimes in the most fundamental ways.

The web browser can serve as an example of a changing application from
recent years. At the start, there was a simple web browser that could only
display plain web pages as text. However, after a period of time, it could
show complex designs and plug-ins from other applications such as video.

43

As new technology entered the scene, the same design had to cope with the
introduction of e-mail into the same application. Still later, a calendar func-
tion was fitted into the very same system.

Change is an on-going process in the life of any computer system. We
cannot always control the direction of change, but nevertheless, we can con-
trol the effect that change has on the design. Learning to embrace change
will help us increase our flexibility, eliminate stress and – in the end – in the
midst of uncertainty, result in better solutions.

The idea is to make the computer system, including the entire develop-
ment process, flexible enough that the cost of late changes is less than that of
early changes.

This might sound confusing, but early changes, or requirements if you
like, are not always the obvious cheap solution. Beck [5] explains this shift
in modern systems development by explaining how we always say that we
are going to write requirements and then implement the software according
to the requirements – but in fact, we never do. The requirements always
change, or for some reason are considered unclear, because the needs of the
users are never precisely known from the start. When that occurs, the cost of
retro-fitting the design is inevitably high.

In order to be able to create a situation where change is possible, one has
to be well-prepared. The way software is produced has to be set up so that
changes do not hinder any new development. This addresses the methods
used, but more importantly, it addresses the skills and self-confidence of the
developers. If the developers feel confident, then they are able to re-work the
implementation and use the change to improve the internals as well as the
resulting system. If the developers do not feel they have the necessary skills,
the introduction of new requirements will become a burden that will compli-
cate any further advancement.

Problem statement
Embracing the whole development cycle in detail is truly a giant task. Sci-
ence can address well-formulated problems but not, as Schön puts it, "messy,
indeterminate situations" like those we often face in a real-world pro-
ject [54]. The main problem with developing a usable system needs to be
defined accurately. A key question is what elements determine how the re-
sult is going to turn out. Still, a holistic approach would bring much more
useful knowledge into the hands of those who need it. It is my sentiment that
the whole is not always the sum of its parts. In this sense, a birds-eye view of
the development process could bring about something more valuable and
usable. From an industrial point of view, methods and development tech-
niques for usable systems are regarded as the most important issue within
HCI research [28]. The focus of the work then has to be directed more to-
wards distributing knowledge instead of participating in the development
process.

44

Strategy
The process of going from abstract requirements to a visual representation is
a key target, as it involves many of the elements that we believe affect the
usability of the finished product. Exactly how one should do this and what
kind of methods could be used are still questions we should examine more
closely. It is very likely though that this process must include a prototype-
oriented approach [65] that steers the process.

Features

Scenario

Full prototypeVertical prototype

Horizontal
prototype

Figure 16. Relationship between different prototyping techniques.

By using prototypes, one is liberated from the many intrinsic problems of
software development. In Figure 16 we see some potential uses for proto-
types. For example, prototypes can be used to capture a work situation in a
certain scenario, or to mimic the full functionality of some chosen feature in
a vertical prototype. Apart from its traditional areas of use (i.e. testing and
benchmarking), a prototype can facilitate communication between stake-
holders and serve as documentation of design decisions.

45

Figure 17. Bringing it all together…
Published with kind permission of the artist [7].

In this thesis, three ways of developing Telemedicine systems with good
usability are described. The first approach is based on formalized knowledge
in the form of a domain-specific style guide. The style guide contains a mix
of objective HCI knowledge and heuristic guidelines. The second approach
is based on the role of the user interface designer; it presents a method of
designing the user interface in such a way that the knowledge and rationale
behind the design is preserved throughout the entire development cycle. The
third and latest effort is a heuristic method that redefines the approach to
software development. Its standpoint is to utilize technical changes that
software development has gone through during the last decade. These tech-
nical changes are used to modify the development process so that continual
changes in the development process are possible.

Some conclusions now follow, derived from each of the attempted solu-
tions:

Guidelines
Today, Style Guides and similar design tools (guidelines and standards) are
very much in demand from industry. Some of the popularity is probably a
result of the recent focus on quality assurance and the desire to develop sys-
tems according to pre-defined or well-established methods. Furthermore,
guidelines have a high level of applicability (as opposed to standards) and
can be used from the very start of a project [47].

46

Even though guidelines are based primarily on accepted practice and pro-
vide broad applicability, they are still the cause of some controversy. Indeed,
some ask the question whether guidelines really help in the process of devel-
oping usable systems. The main argument is that since guidelines are de-
scribed on a general level (e.g. "strive for consistency") they still need some
kind of interpretation to be of use in a specific situation. But if an active
interpretation is needed, then a developer lacking knowledge from the field
of HCI, cannot make this interpretation correctly and the overall purpose of
the guideline is not fulfilled.

"...consider the ability to write grammatical English. The skills that enable
one to construct a grammatical sentence are the same skills necessary to rec-
ognize a grammatical sentence, and thus are the same skills necessary to de-
termine if a grammatical mistake has been made. In short, the same knowl-
edge that underlies the ability to produce correct judgment is also the knowl-
edge that underlies the ability to recognize correct judgment. To lack the
former is to be deficient in the latter". [33]

Although there are limitations to the use and applicability of guidelines there
are strong arguments for them. The question of whether the result is im-
proved by the use of guidelines is perhaps irrelevant; if the only source of
HCI knowledge within a project is gained from guidelines, then it is better
than nothing at all.

Design methods
Improving usability measures by putting forward yet another method is pos-
sibly counter-productive; part of the explanation why systems have poor
usability is the lack of simple and clear development strategies. Adding yet
another method to the plethora of existing rules may not bring us closer to
the goal of more usable systems or efficient development.

The design method (the modified OMT model) described in this thesis is
a conceptual one that attempts to bridge the gap between the initial design
and the final system. Having established all the correct requirements and
achieving a good design is of little use if the final implementation does not
take these results into consideration. The major benefit derived from the
proposed design method is that it addresses this issue – so the purpose is not
simply to introduce itself as yet another method. It is the preservation of both
design and rationale that is important to sustain. Given the complexity of any
user interface design, much can be gained if underlying design knowledge
can be maintained throughout the project. My work has convinced me that if
this kind of design decision can be made comprehensible to all members of
the development group, then the final system will come a lot closer to
achieving its originally intended design and purpose.

47

Development methods
What if new computer languages and development tools delivered the long
promised, more efficient development cycles? What if the cost of imple-
menting a feature on the first day of the project was the same as if it was
implemented on the last day of a project? What if we were not restricted by
hardware performance or software restrictions to using only the existing set
of interface components? What if we were free to choose the solutions that
best suited our needs instead of being limited to the existing solutions?

It is advantageous to make changes in the way software is developed, but
many decisions in the software industry are based on tradition and proven
practice. Possible changes are not always considered in a serious manner.
We are not (yet) close to answering all the questions listed above, even if we
are making progress. The latest effort described in this thesis is an attempt to
practice the proposals put forward by the eXtreme Programming movement.

Embracing change is not easy. It is not uncomplicated to ignore the un-
comfortable feeling of not knowing what to develop and simply defer unre-
solved questions to a later point in the process, when we might know more.
Instead, a lot of effort is spent on developing functions that answer questions
like "wouldn't it be nice to be able to do this?" This is sometimes called
"creeping featuritis" – that is to say, the tendency for anything complicated
to become even more complicated because of the fear of just keeping things
as simple as possible. In this sense, the attempted solution that is presented
has perhaps not been a successful one. However much progress has been
made, primarily in terms of the way software is meant to function in hospital
settings in the future.

Bringing about a change in the way software is developed is a difficult
task. The traditional techniques have become so natural for us that it will
take time to achieve change. While not included in the scope of this thesis, it
is important to note that economic aspects play a vital part here. A mentality
of sufficiency is good business, whereas a mentality of scarcity creates its
own waste.

More is more, less is better

The two most important tools an architect has are the eraser in the drawing
room and the sledge hammer on the construction site.

Frank Lloyd Wright

While a certain percentage of the population will always be "gadget nerds"
who cannot get enough of functionality in a device, most people long for a
TV recorder whose programming is intuitive, a wireless access point that is

48

easy to configure, or a cell phone whose instruction book has fewer than 100
pages.

In a recent survey, Microsoft found that most consumers use only 10% of
the features offered in Microsoft Word. In other words, 90% of the features
of this frequently used software get in the way of the features that people
actually want. This violates all principles of good design.

The Google Company provides ways to search through a huge amount of
information on the Internet. To do this, they use advanced search algorithms
and some 100,000 computers (the exact number is kept secret) to serve the
users. In contrast to this complexity, the current word count on the
Google.com website is 27.

What this boils down to, is that there is a place for computer systems that
solve the problems we want to be solved, without adding anything more to
the problem. Uncomplicated as this conclusion may seem, it encompasses
more than first meets the eye.

Contrary to one’s first impression, there is no contradiction between a
simple design and its utility. Simplicity hinges as much on cutting away non-
essential features as on adding helpful ones. The tempting and obvious path
is to add features to a design, since this growth process provides a sense of
improvement. But we must be aware of what values we actually desire; in
essence, more means a quantitative approach. Less could mean a qualitative
enhancement. Anyone can make things bigger and more complex. It takes a
touch of courage and a lot of skill to move in the opposite direction.

All evidence indicates that size and complexity are major factors when a
software project fails. From the Standish Group’s failure statistics we know
that a stunning 98% of large and complex IT projects (those costing over $10
million) fall short of their goals [61].

Many benefits can be achieved by maintaining a view that promotes sim-
plicity. For instance, a simple design always takes less time to finish than a
complex one. So, as long as it works, always do the simplest thing possible.

The trouble with simple living is that, though it can be joyful, rich, and crea-
tive, it isn't simple.

Doris Janzen Longacre [38]

49

Summary in Swedish

Design i telemedicin – utveckling och konstruktion av
användbara datorsystem.
Inom människa-datorinteraktion så är det ett övergripande mål att utveckla
fungerande datorsystem som stöder användarna väl. För att klara av att nå ett
sådant mål behöver vi kunskap och förmågor inom flera områden.

En utvecklingsprocess måste börja med att man först skaffar sig en (viss)
förståelse för vad som ska utvecklas, och senare, funderar över hur man bäst
designar och utvecklar systemet. En sådan syn kan uppfattas som ogenom-
tänkt, då den inte alls tar upp eller specificerar funktioner, det vill säga det
som systemet i själva verket ska utföra eller beräkna. Dock, i praktiken finns
det inget sådant korrekt mål, som kan uttryckas som en slags funktionell
specifikation. Istället finns det en uppsjö vaga målsättningar – några som
överlever hela projekttiden, andra inte. Det är i sammanhanget därför be-
kymmersamt att majoriteten av dagens utvecklingsmetoder bygger på att
objektiva mål och kravspecifikationer tas fram, och att de initiala kraven
används för att styra hela den fortsatta utvecklingsprocessen.

För forskare i människa-datorinteraktion är mängden krav som ställs på
datorsystem en stor utmaning. Många av kraven innehåller inbördes konflik-
ter och kan dessutom verka som varandras motsatser. Huvudmålet att ut-
veckla användbara system handlar till stor del om att kunna hantera just den-
na komplexa situation och förstå hur man ska lösa konflikterna på bästa sätt.

Det finns många olika angreppssätt och metoder för att utveckla dator-
stöd. Denna avhandling utvecklar ett angreppssätt, baserat på vetskapen att
faktorer och egenskaper hos datorsystemen som påverkar upplevd och upp-
mätt användbarhet också måste vara del av utvecklingsprocessen. Avhand-
lingen presenterar denna metod tillämpat på utveckling av datorstöd för
sjukvård. Den föreslagna lösningen visar på betydelsen av att användare är
delaktiga i en stegvis upprepande utveckling där vikt läggs vid utforskande
av lösningar på lång sikt. De vanligare, relativt resultatinriktade systemut-
vecklingsmetoderna som väljer att se utvecklingsprocessen som design, ut-
veckling och utvärdering är inte tillräckliga för att ge god användbarhet i
sammanhanget.

50

Acknowledgements

Over the years there have been many people and organizations involved in
my work.

First, I would like to thank my supervisor Bengt Sandblad.
I would also like to thank the colleagues in my department, whom I have

always enjoyed working with. I would especially like to mention Bengt
Göransson, Eva Olsson and Mats Johnson.

On many occasions I have been working on site with fellow researchers at
the Medical and Biological Informatics department of the German Cancer
Research Center in Heidelberg, Germany. There are many persons involved,
but I particularly want to say thanks to a few of them: Prof. Dr. H.P.
Meinzer, for all of the invited assemblies and longstanding cooperation, Dr.
Uwe Engelmann, for rewarding travels around Europe and all our late night
sessions, Andre Schröter, for all his technical expertise, ex-member Dr.
Athanasios M. Demiris, for many different things, including squash games.
It has always been enjoyable. Also many thanks to the whole CHILI team,
both old and new members.

I also want to thank the WeAidU team, especially Lars Edenbrandt and
Andreas Järund for interesting work with the start up of a new type of appli-
cation.

I wish to thank the sponsors that made it all possible: Swedish National
Board for Industrial and Technical Development (NUTEK) for my participa-
tion in WeAidU, Advanced Informatics in Medicine Program of the Com-
mission of the European Communities for my participation in Helios and the
European Commission/Information Society Technologies for my participa-
tion in CHILI and MELISA (Multiplatform e-Publishing for Leisure and
Interactive Sports Advertising).

51

References

1. Alexander Christopher, Ishikawa Sara, Silverstein Murray. (1977). A Pattern
Language: Towns, Buildings, Construction. Oxford University Press. ISBN:
0195019199.

2. Alexander Christopher. (1970). Notes on the Synthesis of Form. Harvard Uni-
versity Press. ISBN: 0674627512.

3. Ball M.J, Douglas J, Garets D. (1999). Strategies and Technologies for Health-
care Information: Theory Into Practice. Springer Verlag. ISBN: 0387984429.

4. Bashshur RL. (1995). On the definition and evaluation of telemedicine. Telemed
J. Spring;1(1):19-30.

5. Beck K. (1999). Extreme Programming Explained: Embrace Change. Addison-
Wesley Pub Co. ISBN: 0201616416.

6. Bemmel van J, Musen M. (1997). Handbook of Medical Informatics. Springer
Verlag. ISBN: 3540633510.

7. Berglin J. (2002). Lagom Berglin : Jan Berglin Samlade Teckningar 1999-2002.
Ordfront Galago AB, Sweden. ISBN 9189248392.

8. Berner S.E, Ball M.J. (1998). Clinical Decision Support Systems: Theory and
Practice. Springer Verlag. ISBN: 0387985751.

9. Beyer H, Holtzblatt K. (1998). Contextual design: defining customer-centered
systems, Morgan Kaufmann Publishers Inc., San Francisco, CA.

10. Bjerknes G, Ehn P, Kyng M. (1989). Computers and Democracy. A Scandina-
vian Challenge, Aldershot: Avebury, 250 s, ISBN:0-566-05476-0

11. Bødker, S. (1991). Through the Interface: A Human Acitivity Approach to User
Interface Design., Hillsdale NJ, Larwence Erlbaum Associates, Publishers,
ISBN 0-8058-0571-0.

12. Borälv E. (1994). New Interface Primitives - extending the OSF/Motif widget
set. Report no. 47, CMD, Uppsala University.

13. Brooke, J. A. (1996). "Quick and dirty" usability scale. In Jordan, P., Thomas,
B., and Weerdmeester, B. (Eds.), Usability Evaluation in Industry. UK: Taylor
and Francis.

14. Cooper A, (1995). The myth of metaphor,
http://www.cooper.com/articles/art_myth_of_metaphor.htm. Page visited 2004
Dec 21.

15. Cooper A. (1995). About Face: The Essentials of User Interface Design. IDG
Books Worldwide Inc. ISBN: 1568843224.

16. Csikszentmihalyi M. (2000). Beyond Boredom and Anxiety: Experiencing Flow
in Work and Play. Jossey Bass Wiley. ISBN: 0787951404.

17. Eckel B. (2000). Thinking in Java. Prentice Hall Computer Books. ISBN:
0130273635.

18. Ehn, P. (1989). Work-oriented design of computer artifacts, Hillsdale, NJ: Law-
rence Erlbaum Associates, 496s, ISBN 91-86158-45-7

19. Gamma E, Helm R, Johnson R, Vlissides J. (1995). Design Patterns. Addison-
Wesley Pub Co. ISBN: 0201633612.

52

20. Göransson, B. (2004). User-Centred Systems Design: Designing Usable Interac-
tive Systems in Practice. Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology, ISSN 1104-232X ; 981.

21. Graham P. (2004). Hackers and Painters: Essays on the Art of Programming.
O'Reilly UK. ISBN: 0596006624.

22. Heiskanen A, Newman M. (1997). Bridging the gap between information sys-
tems research and practice: the reflective practitioner as a researcher. Interna-
tional Conference on Information Systems. Proceedings of the eighteenth inter-
national conference on Information systems. Atlanta, Georgia, United States.
pp. 121 - 132. ISBN:ICIS1997-X.

23. Hewett, Baecker, Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank.
(1996). ACM SIGCHI Curricula for Human-Computer Interaction,
http://www.acm.org/sigchi/cdg/. Page visited 2004 Dec 21.

24. Holub A, (1999). Building user interfaces for object-oriented systems,
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-toolbox-p5.html. Page
visited 2004 Dec 21.

25. Hopkins, D. (1985). A teacher's guide to classroom research. Philadelphia: Open
University Press.

26. ISO/IS 9241-11. (1998). Ergonomic requirements for office work with visual
display terminals (VDTs) – Part 11: Guidance on usability. First edition 1998-
03-15, ref. number ISO 9241–11:1998(E), International Organization for Stan-
dardization, Geneve.

27. Jacobson I. (1994). Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley Pub Co. ISBN: 0201544350.

28. Katzeff C, Svärd P.O. (1995). Användbarhet i praktiken. Stockholm, Sweden:
Swedish Institute for Systems Development.

29. Kemmis S, McTaggart R. (1988). The Action Research Reader. Third edition.
Deakin University Press, Victoria.

30. Kirakowski J, Porteous M, Corbett M. (1993). Software Usability Measurement
Inventory questionnaire. SUMI End-user Handbook. Human Factors Research
Group, Ireland. http://www.ucc.ie/hfrg/questionnaires/sumi/. Page visited 2004
Dec 21.

31. Kirakowski J. Questionnaires in Usability Engineering, A List of Frequently
Asked Questions (3rd Ed.), Human Factors Research Group, Cork, Ireland.
http://www.ucc.ie/hfrg/resources/qfaq1.html. Page visited 2004 Dec 21.

32. Kruchten P. (2003). Rational Unified Process: An Introduction. Addison-
Wesley. ISBN 0321197704.

33. Kruger J, Dunning D. (1999). Unskilled and Unaware of It: How Difficulties in
Recognizing One's Own Incompetence Lead to Inflated Self-Assessments.
Journal of Personality and Social Psychology 77:6 (Dec. 1999), pp. 1121-1134.
http://www.apa.org/journals/psp/psp7761121.html.

34. Laurel B. (1990). Art of Human-Computer Interface Design. Addison-Wesley
Pub Co. ISBN: 0201517973.

35. Lewin K. (1946). Frontiers in Group Dynamics: II. Channels of Group Life;
Social Planning and Action Research. Human Relations (1:2), pp. 143-153.

36. Lewin K. (1958). Resolving Social Conflicts, Harper.
37. Lewis R. J. (1995). Computer Usability Satisfaction Questionnaires: Psychomet-

ric Evaluation and Instructions for Use. International Journal of Human-
Computer Interaction. v.7 n.1 p.57-78.

38. Longacre Janzen Doris. (1980). Living More with Less. Herald Press. ISBN:
0836119304.

53

39. MacLean A, McKerlie1 D. (1995). Design space analysis and use-
representations. In Scenario-Based Design: Envisioning Work and Technology
in System Development. Edited by J. M. Carroll. Wiley, New York.

40. MacLean A., Young R. M., Moran T. P. (1989). Design rationale: the argument
behind the artifact. Proceedings of the SIGCHI conference on Human factors in
computing systems: Wings for the mind, Volume 20 Issue SI.

41. Model Based Interface Development, http://smi-
web.stanford.edu/projects/mecano/model-based.htm. Page visited 2004 Dec 21.

42. Nielsen J, Mack R.L. (1994). Usability Inspection Methods. John Wiley & Sons.
ISBN: 0471018775.

43. Nielsen J. (1994). Usability Engineering. Morgan Kaufmann Publishers. ISBN:
0125184069.

44. Nielsen J. (2004). The Need for Web Design Standards,
http://www.useit.com/alertbox/20040913.html. Page visited 2004 Dec 21.

45. Norman D. A. (1990). The Design of Everyday Things. Currency/Doubleday.
ISBN: 0385267746.

46. Öhman Persson J. (2004). The Obvious & The Essential: Interpreting Software
Development & Organizational Change. Uppsala Dissertations from the Faculty
of Science and Technology, ISSN 1104-2516 ; 57.

47. Olsson, E. (1999). Providing design knowledge to system developers by do-
main-specific style guides. Licentiate thesis. IT/Human-Computer Interaction,
Uppsala University.

48. Olsson, E. (2004). Designing Work Support Systems – For and With Skilled
Users. Comprehensive Summaries of Uppsala Dissertations from the Faculty of
Science and Technology, ISSN 1104-232X ; 983.

49. Petersson H. (2003). On Information Quality in Primary Health Care Registries.
Linköping studies in science and technology. Dissertations ; 805. ISBN 91-
7373-612-0.

50. Preece J, Rogers Y, Sharp H, Benyon D. (1994). Human-Computer Interaction.
Addison-Wesley Pub Co. ISBN: 0201627698.

51. Rapoport, R.N. (1970). Three Dilemmas in Action Research. Human Relations,
(23:4), 1970, pp. 499-513.

52. Root W.R, Draper S. (1983). Questionnaires as a Software Evaluation Tool.
Proceedings of ACM CHI'83 Conference on Human Factors in Computing Sys-
tems 1983. p.83-87.

53. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorenson F. (1991). Object-
Oriented Modeling and Design. Prentice Hall. ISBN: 0136298419.

54. Schön D. A. (1984). The Reflective Practitioner: How Professionals Think in
Action. Basic Books. ISBN: 0465068782.

55. Shneiderman B. (1997). Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley Pub Co. ISBN: 0201694972.

56. Shortliffe E.H, Wiederhold G, Perreault L, Fagan L. (2000). Medical Informat-
ics: Computer Applications in Heath Care and Biomedicine. Springer Verlag.
ISBN: 0387984720.

57. Specialtiding: IT i vården. (2004). Dagens Medicin och Computer Sweden. 17
November 2004.

58. Spinuzzi C. (2002). A Scandinavian Challenge, a US Response: Methodological
Assumptions in Scandinavian and US Prototyping Approaches. ACM Special
Interest Group for Design of Communications. Proceedings of the 20th annual
international conference on Computer documentation. Toronto, Ontario, Can-
ada. pp. 208 – 215. ISBN:1-58113-543-2

54

59. Standish Group (1995). The CHAOS report. Available at
http://www.scs.carleton.ca/~beau/PM/Standish-Report.html, and
http://www.standishgroup.com/sample_research/chaos_1994_1.php.

60. Statistiska centralbyrån/Statistics Sweden. (2004). Företagens användning av
datorer och Internet 2004/Use of ICT in Swedish enterprises 2004. SCB, En-
heten för forskning och informationsteknik, Stockholm. ISBN 91-618-1261-7.

61. The Standish Group. (2004). Unfinished Voyages.
http://www.standishgroup.com/sample_research/unfinished_voyages_1.php.
Page visited 2004 Dec 21.

62. Van Bemmel J., Gremy F, Zvarova J. (1985). Medical Decision Making. North-
Holland. ISBN: 0444878408.

63. Vygotsky, L.S. (1980). Mind and society: The development of higher mental
processes. Cambridge, MA: Harvard University Press.

64. Winograd T. (1987). A Language/Action Perspective on the Design of Coopera-
tive Work. Human-Computer Interaction 3:1 (1987-88), 3-30.

65. Winograd T. (1996). Bringing Design to Software. Addison-Wesley Pub Co.
ISBN: 0201854910.

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 5

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through the series
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology. (Prior to January,
2005, the series was published under the title "Comprehensive
Summaries of Uppsala Dissertations from the Faculty of
Science and Technology".)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-4760

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2005

	Abstract
	Parts of the thesis
	Contents
	Introduction
	Purpose and goal
	Research and work performed
	Result
	Perspective
	The “ right” solution

	Disposition

	Methods
	Viewpoint
	Research approaches
	Evaluation
	Action Research

	Central problems

	Human-Computer Interaction
	Research questions
	A slice of software development history
	In the beginning
	Integrated development environment
	Development today: a moving target
	Model-based GUI

	Medical Informatics
	Telemedicine and telemedical applications
	The user and the importance of utility and usability

	Design
	Helios (Papers 1 & 2)
	Project description
	Solution

	MEDICUS/CHILI (Papers 3 & 4)
	Project description
	Solution

	WeAidU (Paper 5)
	Project description
	Solution

	Conclusion
	Guidelines
	Design methods
	Development methods
	More is more, less is better

	Summary in Swedish
	Acknowledgements
	References

