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Abstract

HOLMBERG, Pär, 2005, Modelling Bidding Behaviour in Electricity Auctions: Supply Function Equilib-
ria with Uncertain Demand and Capacity Constraints, Uppsala University, Economic Studies 87, 43 pp, 
91-87268-94-9.  

In most electricity markets, producers submit supply functions to a procurement uniform-price auction 
under uncertainty before demand has been realized. In the Supply Function Equilibrium (SFE), every 
producer commits to the supply function that maximises his expected profit given the bids of competitors.  

The presence of multiple equilibria is a basic weakness of the SFE framework. Essay I shows that 
with (i) symmetric producers, (ii) perfectly inelastic demand, (iii) a reservation price (price cap), and (iv) 
capacity constraints that bind with a positive probability, a unique symmetric SFE exists. The equilibrium 
price reaches the price cap exactly when capacity constraints bind. 

Another weakness is difficulty finding a valid asymmetric SFE with non-decreasing supply functions. 
Essay II shows that for firms with asymmetric capacity constraints but identical constant marginal costs 
there exists a unique and valid SFE. Equilibrium supply functions exhibit kinks as well as vertical and 
horizontal segments. The price at which the capacity constraint of a firm binds is increasing in the firm’s 
share of market capacity. The capacity constraint of the second largest firm binds when the market price 
reaches the price cap. Thereafter, the largest firm supplies its remaining capacity with a perfectly elastic 
segment at the price cap. Essay III presents a numerical algorithm that calculates a similar SFE for 
asymmetric firms with increasing marginal costs.  

Essay IV derives the SFE of a pay-as-bid auction such as the balancing market for electric power in 
Britain. A unique SFE always exists if the demand’s hazard rate is monotonically decreasing, as for a 
Pareto distribution of the second kind. Assuming this probability distribution, the pay-as-bid procurement 
auction is compared to the SFE of a uniform-price procurement auction. Two theorems in Essay V prove 
that the demand-weighted average price is (weakly) lower in the pay-as-bid procurement auction.  

Keywords: supply function equilibrium, asymmetry, uniqueness, oligopoly, capacity constraint, uniform-
price auction, pay-as-bid auction, discriminatory auction, wholesale electricity market 

Pär Holmberg, Department of Economics, Uppsala University, Box 513, SE-751 20 Uppsala, Sweden. 

© Pär Holmberg 2005 

ISBN 91-87268-94-9 
ISSN 0283-7668 
urn:nbn:se:uu:diva-5882 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5882)





List of Papers 

This thesis is comprised of the following essays which are referred to in the 
text by their respective Roman numerals. 

I Holmberg, Pär (2005). Unique supply function equilibrium with 
capacity constraints. 

II Holmberg, Pär (2005). Asymmetric supply function equilibrium 
with constant marginal costs. 

III Holmberg, Pär (2005). Numerical calculation of asymmetric 
supply function equilibrium with capacity constraints. 

IV Holmberg, Pär (2005). Comparing supply function equilibria of 
pay-as-bid auctions and uniform-price auctions. 

V Hästö, Peter & Holmberg, Pär (2005). Some inequalities related 
to the analysis of electricity auctions. 





Contents

1 Introduction................................................................................................13

2 The balancing market.................................................................................15

3 The supply function equilibrium................................................................17
3.1 Demand uncertainty and uniqueness of the supply function 
equilibrium ...............................................................................................18
3.2 Financial and physical contracts.........................................................21
3.3 Asymmetric firms — analytical models.............................................23
3.4 Asymmetric firms — numerical models ............................................25
3.5 Pay-As-Bid versus Uniform-Price auctions .......................................27
3.6 Transmission lines..............................................................................30
3.7 Price and quantity discreteness...........................................................30
3.8 Empirical support for the SFE model.................................................31

4 Policy implications.....................................................................................32

5 Future work................................................................................................35

6 Acknowledgements....................................................................................37

7 References..................................................................................................40





Abbreviations

HHI Herfindahl-Hirschman Index 
ISO Independent System Operator 
MWh Mega-Watt hour (unit of energy) 
NoK Norwegian Crowns 
PABA Pay-As-Bid Auction 
PJM Pennsylvania-New Jersey-Maryland 
SFE Supply Function Equilibrium 
UPA Uniform-Price Auction 
VOLL Value of Lost Load 
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, Parameters in the Pareto distribution of the second kind 
c Constant marginal cost 

Demand
 Upper bound of market capacity 
 Lower bound of market capacity 

i  Capacity of firm i (upper bound) 
f( ) Probability density of demand 

Terminating price in the numerical calculation of SFE 
N Number of firms 
p(·) Equilibrium price 
pi Price at which the capacity constraint of firm i starts to bind 
p  Price cap, reservation price 
p  Price floor 

q Power contracted on forward markets 
Si(p) Supply function of firm i
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1 Introduction

Since the 19th century, economists have debated whether to think of firms as 
choosing prices or quantities as strategic variables. Nash-equilibria, from 
which no firm will find it profitable to deviate unilaterally, can be derived 
for both strategies, the Bertrand equilibrium and Cournot equilibrium respec-
tively. The Cournot equilibrium, in which quantity is the strategic variable, 
has often been the first choice for electricity markets; see e.g. Bergman & 
Andersson [7] and Borenstein et al. [11]. This choice is motivated when the 
available capacity of electric power producers is viewed as a strategic vari-
able. The Cournot case can be seen as a worst-case scenario of competition 
in electricity markets but is a problematic modelling device for short-term 
electricity markets. When demand is nearly inelastic, as in real-time markets, 
the equilibrium price becomes infinite.1

Instead of treating either price or quantity as the strategic variable, it is 
natural to try to find a middle ground. One such attempt is the use of conjec-
tural variations [47]. As in the Bertrand equilibrium, price is the strategic 
variable but competitors are assumed to respond in accordance with a reac-
tion function that differs from the strategic variable. This is a major draw-
back of conjectural variations; the timing and information structure of a one-
shot (static) game implies that firms cannot react to one another [47]. Thus 
the methodology is not theoretically satisfactory.  

Wilson [49] analysed a share auction where the object is a divisible unit 
whose value may be uncertain. He was the first to study games in which the 
strategic variable is a demand function. Similar supply function models were 
later presented by Grossman [24] and Hart [25], but without uncertainties. 
The models of Grossman and Hart yield Nash equilibria but are problematic 
as the resulting range of possible equilibria is enormous [31]. Without uncer-
tainty, a firm knows its equilibrium residual demand. Thus any firm’s quan-
tity and price is determined by a single point in its supply function. As a 
result, firms enjoy a lot of freedom in their supply functions to support vari-
ous types of equilibria.   

The Supply Function Equilibrium (SFE) with uncertain demand was in-
troduced by Klemperer & Meyer [31]. The equilibrium concept assumes that 

1 In practice, the problem may be overcome by the assumption that small firms are price-
takers. The competitive fringe gives quantity-setters an elastic residual demand [12].  
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producers submit supply functions simultaneously to a uniform-price auction 
in a one-shot (static) game. In the non-cooperative Nash Equilibrium, each 
producer commits to the supply function that maximizes his expected profit 
given the bids of competitors. The set-up of the model is very similar to the 
organisation of most electricity markets and the equilibrium is often used 
when modelling bidding behaviour in uniform-price electricity auctions, an 
application first observed by Bolle [9] and Green & Newbery [21]. The 
model has also been used to analyse strategic trade policy [36] and verti-
cally-related duopolies [35]. In general, SFE can be applied to any uniform-
price auction where costs/values are certain, bidders have common knowl-
edge, discreteness is negligible — as in a share auction —  and the de-
mand/supply of the auctioneer is uncertain.  

With uncertain demand, the range of SFE diminishes drastically, but mul-
tiple equilibria remain [31]. Another basic weakness of the SFE approach is 
the difficulty of finding valid equilibria, i.e. with non-decreasing supply 
functions, in the case of asymmetric firms [6,48].2 Furthermore, the approach 
is limited to uniform-price auctions. The objective of this thesis is to solve 
these three deficiencies.  

Figure 1. The set-up of the supply function equilibrium model.  

2 Decreasing supply functions are invalid in most electricity auctions.  

S

Bids of firms: smooth and non-
decreasing supply function. 

Demand: uncertain 

Uniform-price auction: 
accepted bids get the same 
price.

p
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2 The balancing market 

Most electric power is sold in advance through trade on forward markets or  
with bilateral agreements. Production and consumption of electricity, how-
ever, are not fully predictable and the cost of storing electricity is high com-
pared to the cost of production. In most power systems, stored electric en-
ergy is negligible. Hence, power consumption and production have to be 
roughly in balance at all times and to maintain balance, adjustments are 
made in real-time. The balancing market, also called a real-time market, is 
an important component in this process. It functions as an auction in which 
the independent system operator (ISO) can buy additional power (incre-
ments) from producers. The increment capacity  is the part of flexible ca-
pacity that has not been sold forward with physical contracts.3

Each bidder submits a non-decreasing supply function to the balancing 
market. This is done before the start of the delivery period for which the bids 
are valid. Hence the imbalance — demand of the ISO — is not known when 
bids are submitted. The delivery period is typically an hour, as in California, 
Pennsylvania-New Jersey-Maryland (PJM), and the Nordic countries, or half 
an hour as in Britain.  

Most balancing markets are organized as uniform-price auctions in which  
all accepted bids are paid the marginal bid, that is, the highest accepted bid 
in procurement auctions. In 2001, the balancing market of England & Wales 
switched to a pay-as-bid auction. Before the collapse of the California 
Power Exchange, a similar switch was also considered for this market [30]. 
In a pay-as-bid auction, as the name suggests, accepted bids are paid their 
bid. Thus the auction is discriminatory in the sense that accepted bids can 
receive different prices. 

In the short-term, the demand for electric power is very inelastic. Thus 
perfectly inelastic demand is often assumed in models of electricity markets 
[1,17,20,41,I-V]. If there are significant bids from consumers in the balanc-
ing market, they can be modelled as from a producer; in the balancing mar-
ket an offer of reduced consumption is equivalent to an offer of increased 
production.   

3 Flexible power production can be adjusted on short notice. 
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Price caps, i.e. reservation prices, are employed in most balancing mar-
kets and are considered in some models of electric power markets, see e.g. 
[6,17,20,I-V]. One argument for the use of price caps is that consumers who 
do not switch off their equipment when electricity prices become extremely 
high do not necessarily have a high marginal benefit of power. Instead, they 
may not have the option to switch off or, due to long-term contracts, do not 
face the real-time price. Thus at some sufficiently high price, social welfare 
is maximized by rationing demand. The reservation price, ,p  is typically set 
to an estimate of the value of lost load (VOLL) [45]. 

This thesis focuses on procurement auctions, but analogous results can be 
derived for sales auctions. Such an analysis is relevant for a balancing mar-
ket, because the ISO sells power back to producers when production exceeds 
consumption. A producer can offer decrements or down-regulation if he has 
sold flexible power with physical contracts. The decrement capacity in the 
market is denoted by .  Firms will only agree to buy back power if the price 
is below their marginal cost and will use their market power to lower the 
price below the marginal cost. Thus the sales auction needs a price floor, 
denoted by .p
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3 The supply function equilibrium 

The private-value, common-value and affiliated-value models are classical 
auction theories that have been applied to treasury auctions and auctions of 
rights to use natural resources [34]. Classical auction theories tend not to 
apply to electricity auctions for two reasons. First, the auctioneer’s demand 
is uncertain in electricity auctions.4 Second, it is often reasonable to assume 
that production costs are certain and common knowledge in electricity auc-
tions. For these reasons, the Supply Function Equilibrium (SFE) is often 
better suited to modelling bidding behaviour in electricity auctions and the 
model has been used extensively during the last 10 years [1-
6,9,20,21,38,41,48,I-V].  

In the original SFE model with uncertain demand [31], firms submit sup-
ply functions simultaneously to a uniform-price auction in a one-shot (static) 
game. In the non-cooperative Nash Equilibrium, each firm commits to the 
supply function that maximizes its expected profit given the bids of competi-
tors. Supply function equilibria of uniform-price auctions can be found by 
making the following observation: each producer acts as a monopolist with 
respect to his residual demand and submits a supply function that gives the 
optimal price for each demand outcome. The optimal price of a producer is 
given by the inverse elasticity rule of a monopolist [47]; the mark-up is in-
versely proportional to the elasticity of the residual demand curve for every 
outcome.  The elasticity of residual demand comprises derivatives of the 
competitors’ supply functions and, in equilibrium, all producers make opti-
mal bids. Hence, the SFE is given by the solution to a system of differential 
equations.  For symmetric producers and smooth supply functions, one can 
show that only symmetric equilibria exist [31], that is, the system can be 
reduced to a single differential equation. However, there is no end-point 
condition so the solution includes an undetermined integration constant.   

4 Parisio & Bosco extend a private value model to consider demand uncertainty [39]. 
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3.1 Demand uncertainty and uniqueness of the supply 
function equilibrium 

The integration constant in the solution of the system of differential equa-
tions allows for a continuum of symmetric supply function equilibria, 
bounded by the Cournot and Bertrand equilibria. The continuum can intui-
tively be understood from the inverse elasticity rule of a monopolist. When 
the supply functions of competitors are very elastic, i.e. they have low mark-
ups at every supply, the best response is to have a low mark-up at every sup-
ply. When competitors’ supply is very inelastic, i.e. they have high mark-ups 
at every supply, the best response is to have a large mark-up at every supply. 
Even if many possible equilibria exist, the equilibrium price always starts at 
marginal cost at zero supply as in Figure 2. This is also true for private-value 
models of uniform-price auctions [34]. An intuitive explanation is that the 
supply price for a firm’s first unit does not affect the sale prices of any other 
units. Thus with certain costs, the first unit is sold under Bertrand competi-
tion.
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Figure 2. The undetermined integration constant allows for a continuum of SFE. 

Multiple equilibria make it difficult to predict bidding behaviour in auc-
tions. Furthermore, it is a nuisance for comparative statics and when compar-
ing auction designs. For example, it is not clear that the integration constant 
associated with an equilibrium is invariant to changes in exogenous parame-
ters or the auction design. The multiplicity of equilibria is a considerable 
drawback for the SFE framework and it is not surprising that many papers in 
the SFE literature try to single out a unique equilibrium.  

Klemperer & Meyer [31] show that if outcomes with infinite demand oc-
cur with positive probability, and if demand can be met with non-binding 
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capacity constraints, then a unique SFE exists. Unfortunately, this assump-
tion is not realistic for the electric power market. Rudkevich et al. [41] 
choose the equilibrium that is least profitable for firms, which is in some 
sense the most robust equilibrium. Green & Newbery [21] consider the equi-
librium in which firms have the highest profit, which represents the worst 
case for consumers. This equilibrium is unique if maximum demand could 
just be met at the Cournot price at full capacity. In another paper, Newbery 
[38] gets a unique SFE by considering entry and assuming bid-coordination; 
incumbent firms coordinate their bids to the most profitable equilibrium that 
deters entry. Anderson & Xu [2] and Baldick & Hogan [6] find a unique 
equilibrium in some cases by ruling out unstable equilibria. Stability is tested 
assuming an infinite speed of adjustment in competitor’s bids when one firm 
has a small deviation from its best-response bid. With a sufficiently slow 
speed of adjustment, other equilibria might also be stable.  

It is well known that capacity constraints limit the range of possible equi-
libria [6,21]. Genc & Reynolds have recently shown that the range of SFE 
candidates can be reduced even further by considering pivotal suppliers [20]. 
They note that global concavity of firms’ profit functions, which was proven 
by Klemperer & Meyer [31], does not automatically apply to markets with 
capacity constraints.5 Thus some candidates that were previously thought to 
be equilibria can now be ruled out. Essay I goes one step further by arguing 
that there is always a risk that demand exceeds market capacity, and that this 
suffices to ensure a unique equilibrium (see Figure 3). The equilibrium price 
reaches the price cap exactly when the market capacity binds. Baldick & 
Hogan [6] single out the same equilibrium but with a weaker motivation. 
Price caps and capacity constraints are viewed as public signals that coordi-
nate the bids of the producers.   

With perfectly inelastic demand, the uniqueness of the symmetric equilib-
rium can intuitively be understood from the following reasoning (see Figure 
3). When demand is sufficiently high to make the capacity constraints of 
competitors bind, a producer faces perfectly inelastic residual demand. If 
such an outcome occurs with a positive probability, the producer’s optimal 
price for this outcome should, following the inverse elasticity rule, be as 
high as possible, i.e. equal to the price cap. Thus the equilibrium price must 
reach the price cap. Furthermore, any firm would find it profitable to unilat-
erally deviate from equilibrium candidates hitting the price cap before the 
capacity constraints bind. The reason is that it is profitable to slightly under-
cut competitors’ horizontal supply á la Bertrand.  

5 As noted in Essay I it seems that Klemperer & Meyer prove local concavity rather global 
concavity.  
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The support of the probability density of demand is important as it deter-
mines the range of possible equilibria. The equilibrium is not otherwise sen-
sitive to the choice of probability distribution. In addition, it is not sensitive 
to risk-aversion. In the supply function equilibrium of a uniform-price auc-
tion, firms choose supply functions such that profit is maximized for every 
demand outcome, conditional on the bids of competitors. There is no trade-
off between profits for different demand outcomes. On the other hand, the 
learning period, i.e. the time it takes for the market to reach an equilibrium, 
may very well be related to the probability density. Learning may be slower 
for parts of the supply curve that are unlikely to be accepted. 

0

3

0 1

Demand by ISO ( )

Pr
ic

e 
( P

)

Price cap

Aggregated capacity constraint

Traditional SFE
without constraints

Traditional SFE
without constraints

Unique SFE
with constraints

Profitable deviations 

Figure 3. The risk of power shortage rules out all but one traditional SFE. 

In this thesis it is argued that in balancing markets, the support of de-
mand’s probability density always includes the decrement and increment 
capacity. In the case of sufficiently large demand shocks or sufficiently 
many multiple failures in “must-run” power plants, which both occur with a 
very small but positive probability, the imbalance exceeds .6 In the case of 
sufficiently many multiple failures in transmission lines to power consuming 
cities, which also occur with a very small but positive probability, the imbal-
ance is below or equal to . This support of the probability density implies 

6 To avoid inconsistencies in the model, one could restrict attention to generator failures for 
producers who exclusively have must-run power plants that cannot be regulated in real-time, 
and who cannot bid strategically in real-time. Two examples of such producers in Britain are 
British nuclear group and British Energy, both of whom exclusively produce nuclear power.   
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that any point in a supply function is price-setting with some positive prob-
ability and ensures a unique equilibrium in the balancing market.   

The length of the delivery period influences the standard deviation of de-
mand. But according to the argument above, the length should neither influ-
ence the support of the probability density nor the SFE of uniform-price 
auctions. However, if other uncertainties exist, e.g. over production costs, 
then such uncertainty may dominate demand uncertainty if the latter is very 
small. This may occur especially for very short delivery periods. In such a 
situation, a private-value or common-value auction model might be prefer-
able to the SFE model.7 In summary, the length of the delivery period or 
equivalently whether bids are valid for multiple periods should not influence 
the SFE, but it may influence the decision whether a SFE model should be 
used at all.

3.2 Financial and physical contracts 
Analogous to increments, the unique equilibrium price for decrements 
reaches the price floor exactly when the decrement capacity binds (see Fig-
ure 4). 

Instead of plotting the real-time price as a function of the imbalance, it 
can be plotted as a function of total demand (see Figure 5). It is assumed that 
q units of power have been sold forward with physical contracts. Anderson 
& Xu derive multiple supply function equilibria for firms that have sold q
units of power with financial contracts [4]. If a risk of power shortage is 
introduced into their model, the equilibrium would be unique and equal to 
the equilibrium in Figure 5. Thus the equilibrium of the real-time market is 
the same whether q has been sold with financial or physical contracts. 

Green has suggested a two-stage model with linear SFE and linear cost 
functions, which endogenises contracted power, q [23].  The first-period 
represents a forward market and the second period is the spot market.   

7 A private-value model is suitable if firms know their own production costs but are uncertain 
about their competitors’ costs. In a common-value model, firms are uncertain about all costs, 
including their own. Such a model might be applicable to an electric power market dominated 
by hydropower, as the opportunity cost of hydropower is estimated from a prognosis of future 
electricity prices.  
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Figure 4.  The unique symmetric supply function equilibrium as a function of the 
real-time imbalance . Marginal costs are linear. N=number of symmetric producers. 
Mark-ups decrease with more producers and are negative (mark-downs are positive) 
for decrements. 
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3.3Asymmetric firms — analytical models 
The assumption of symmetric producers is convenient as it enables the SFE 
to be analytically derived for general cost functions as shown in [1,41,I]. 
However, firms in electric power markets are typically asymmetric so anti-
trust policy and merger control should be based on models with asymmetric 
firms.  

Linear SFE for asymmetric firms with linear marginal costs have been 
analysed by Green [22]. Baldick et al. [5] have developed this concept to 
piece-wise linear SFE, which can handle asymmetric firms with linear mar-
ginal costs and asymmetric intercepts. Linear and piece-wise linear SFE are 
both problematic when considering capacity constraints [5].   

Newbery [37] and Genc & Reynolds [20] have derived SFE for two pro-
ducers with identical constant marginal costs and asymmetric capacities. 
Essay II extends their work to multiple asymmetric producers, partly vertical 
and horizontal supply functions — i.e. binding slope constraints — and sup-
ply functions with kinks. There are three reasons for generalizing the supply 
functions. First, the supply function of a producer is vertical when his capac-
ity constraint binds and horizontal when the price cap binds. Second, such 
vertical and horizontal segments are useful deviation strategies that can be 
used to rule out some SFE candidates. Third, in the market situation with 
perfectly inelastic imbalances that might be zero, excluding kinks and hori-
zontal and vertical segments rules out all supply function equilibria. A simi-
lar observation is made by Rudkevich in his analysis of a market with zero 
marginal costs [42]. The extension of the strategy space complicates the 
analysis as more SFE candidates have to be ruled out.  

Essay II shows that there is a unique SFE. It is piece-wise symmetric, as 
in the model of Newbery [37]. Any two producers will have the same supply 
function until the capacity constraint of the smaller firm binds (see Figure 6). 
At this price the larger firm has a kink in its supply function. The kinks en-
sure that firms with non-binding capacity constraints face a residual demand 
with a continuous elasticity. The capacity constraint of the second largest 
firm binds when the price reaches the price cap. Thereafter, the largest firm 
sells its remaining capacity with a perfectly elastic supply at the price cap. 

Essay II also derives a unique supply function equilibrium for 153 firms 
bidding in Norway’s real-time electricity market, where 99 percent of power 
is hydroelectric. To simplify the calculation, forward markets are neglected 
and it is assumed that the real-time market is isolated from power markets of 
the other Nordic countries, as was the case before 1996. To avoid complica-
tions with opportunity costs, Essay II considers an hour when the alternative 
to power production is to spill water. 
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The asymmetric SFE of the Norwegian market is compared to a symmet-
ric SFE with 8 firms. The two cases have roughly the same market concen-
tration, measured by the Herfindahl-Hirschman index (HHI) [47]. Figure 7 
shows that competition is much tougher in the asymmetric market when 
demand is low and few asymmetric firms have binding capacity constraints. 
It is the other way around for large demand outcomes when the capacity 
constraints of most asymmetric firms bind. 
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Figure 6.  The unique supply function equilibrium is piece-wise symmetric if firms 
have identical constant marginal costs, c.  The capacities of the firms are such that 
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3.4 Asymmetric firms — numerical models 
Asymmetric supply function equilibria with increasing marginal costs are 
given by a system of non-autonomous ordinary differential equations that are 
unlikely to have analytical solutions. Baldick & Hogan [6] observe that in 
general it is difficult to find valid solutions with non-decreasing supply func-
tions by numerically integrating the system of ordinary differential equa-
tions. They identify, however, three exceptions: symmetric firms with iden-
tical cost functions, cases with affine solutions — i.e. affine marginal costs 
and no capacity constraints, — and small variations in demand. The symmet-
ric and affine equilibria can often be calculated analytically. 

Essay III presents a numerical algorithm that can be used to calculate a 
valid asymmetric SFE for more general cases than the three exceptions. The 
algorithm is inspired by the asymmetric SFE derived analytically in Essay II. 
To ensure an equilibrium with similar properties, the following two assump-
tions are employed. First, the larger of any two firms has weakly larger mar-
ginal cost for any percentage of the capacity.8 Second, all firms have the 
same marginal cost at zero supply.9  Let pi be the price for which the capac-
ity constraint of firm i starts to bind. Without loss of generality, assume that 
firms are ordered such that ji  if i>j. Based on the results in Essay II, 
the following conjectures are made: 

all firms offer their first unit of power at the lowest marginal cost.    

p1< p2<...<pN-1= p .

 the largest firm sells its remaining capacity, denoted by NS , with a 
perfectly elastic supply at the price cap.  

Assuming NS  and a vector ,,, 21 Npp  equilibrium candidates can 
be calculated. The system of non-autonomous ordinary differential equations 
can be solved by numerical integration, starting at the price cap and proceed-
ing in the direction of lower prices. As shown in Figure 8, the integration 
terminates as soon as any supply function becomes invalid, e.g. decreasing 
in price. A criterion function  is defined by the terminating price. A SFE 
with the conjectured properties should fulfil .0C  If the equilibrium is 
unique, as one would expect, it can be found by choosing 

8 It should be possible to numerically calculate asymmetric SFE for even more general cost 
functions. However, adjustments of the conjectured SFE may be needed, such as the order in 
which the capacity constraints bind.     
9 With another conjecture, it should be possible to numerically calculate asymmetric SFE 
when firms have different marginal costs at zero supply. In this case, firms might offer their 
first units of power at different prices. Furthermore, the firm with the lowest marginal cost at 
zero supply may offer some power with a perfectly elastic segment that just undercuts the 
marginal costs of its competitors.  
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NN Spp ,,, 21  such that  is minimized. The algorithm is illustrated in 
Figure 9 and the solution for an example with three firms is presented in 
Figure 10.  

Figure 8. The integration starts at the price cap, proceeds in the direction of decreas-
ing prices and is terminated as soon as any supply function becomes invalid.  is 
defined by the terminating price. 

Optimization algorithm

Numerical integration

of first-order condition

(System of ODE)

NN Spp ,, 21
Check validity

pSi

Figure 9. The numerical procedure to find a valid asymmetric SFE.  
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Figure 10. The unique equilibrium for an example with three firms. 

3.5 Pay-As-Bid versus Uniform-Price auctions 
In 2001, the balancing market of Britain switched from a uniform-price auc-
tion (UPA) to a pay-as-bid auction (PABA). It was the belief of the British 
regulatory authority (Ofgem) that the reform would decrease mark-ups in 
wholesale electricity prices. Before the collapse of the California Power 
Exchange, a similar switch was also considered for this market [30].  

In a uniform-price procurement auction, all infra-marginal bids are ac-
cepted at a price above their bid. A first thought might be that switching to a 
pay-as-bid procurement auction would drastically reduce mark-ups for infra-
marginal units and thereby decrease average electricity prices. But this naive 
reasoning does not take into account that firms will change their bidding 
strategy after the switch to a PABA. Using intuition and experience from 
classical auction theory, some papers actually argue in favour of electricity 
markets being organised as UPAs, see e.g. Kahn et al. [30] and Wolfram 
[53]. An experiment by Rassenti et al. [40] also suggests that average prices 
are higher in PABAs.10 However, three theoretical studies of electricity auc-
tions [15,44,IV] suggest that average prices are lower in PABAs and a fourth 

10 The demand in the experiment is not revealed to the players, but is certain in each period 
and the players can deduce it while playing. As in SFE with certain demand, this set-up would 
lead to an enormous range of equilibria [31]. Thus the experimental results are very much 
driven by the equilibrium selection process. Further, it is not certain that the experiments are 
long enough to allow the players find an equilibrium, especially as they have to find out the 
certain demand by themselves. 
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study has the similar conclusion that switching to a PABA would increase 
consumer surplus [16].  

Federico and Rahman [16] compare UPAs and PABAs for two polar 
cases, perfect competition and monopoly, assuming that demand is elastic 
and follows a uniform probability distribution. They show that expected 
output decreases and expected consumer surplus increases after a switch to a 
PABA. On the other hand, welfare is reduced in the competitive case. Under 
monopoly bidding, welfare is larger in a PABA if and only if marginal costs 
are sufficiently flat and demand uncertainty sufficiently low.  

Fabra et al. [15] derive a Nash equilibrium for a duopoly with constant 
marginal costs. In their model, each producer is required to submit a hori-
zontal (perfectly elastic) bid for his entire capacity. Firms are asymmetric in 
terms of both marginal costs and capacity.  Furthermore, demand is perfectly 
inelastic and known with certainty by the producers. Under these circum-
stances the authors show that average prices are lower in the PABA than in a 
UPA. Numerical examples show that the difference may be substantial. The 
implications for production efficiency are, however, ambiguous and depend 
on parameter values. If demand is sufficiently high, the PABA has no pure 
strategy equilibria, only a mixed strategy equilibrium. They present several 
extensions of the model, but the extensions do not lead to definite conclu-
sions regarding the comparison of the two auction types. Son et al. [44] use a 
similar model as Fabra et al., but one of the two firms has two production 
units with different marginal costs. Son et al. also conclude that average 
prices are lower in the PABA than in a UPA if demand is certain and per-
fectly inelastic. Simulations suggest that the conclusion may hold also for 
elastic demand.  

Essay IV employs the fundamental assumptions of the SFE for uniform-
price auctions to derive a SFE for a pay-as-bid auction. In terms of the num-
ber of firms and the cost function, the comparison of the two SFE models 
enables more general conclusions than previous work.  It is observed that for 
some combinations of marginal costs and probability distributions of de-
mand, there are no pure strategy equilibria for the pay-as-bid auction. How-
ever, there is always a unique SFE if the hazard rate of demand is monotoni-
cally decreasing, as for the Pareto distribution of the second kind [29].  Its 

probability density is given by ,111
xxf  which is a convex 

and monotonically decreasing function. The latter is realistic for the balanc-
ing market where large imbalances are less likely than small imbalances.  

Two inequalities proven in Essay V show that for symmetric producers 
and perfectly inelastic demand that follows a Pareto distribution of the sec-
ond kind, average mark-ups are (weakly) lower in the pay-as-bid procure-
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ment auction than in a uniform-price procurement auction. Essay IV shows 
that average mark-ups are equal under monopoly and perfect competition. 

 Figure 11 compares prices in a UPA and PABA for a duopoly market 
and uncertain demand given by the Pareto distribution of the second kind.
The average price as a function of demand is called the equilibrium price and 
is equal to the marginal bid in a UPA. The equilibrium price is generally 
higher in the PABA than in the UPA for sufficiently small demand out-
comes. The equilibrium price in the UPA equals C’(0) at zero demand, while 
it is generally true that the lowest bid in the PABA is higher than C’(0).

For sufficiently high demand outcomes, the equilibrium price is generally 
lower in the PABA than in the UPA. In both auctions, only the unit with the 
highest marginal cost is offered at the price cap. Thus the equilibrium price 
as a function of demand is always below the price cap in the PABA. In the 
UPA, on the other hand, the equilibrium price equals the price cap when 
demand equals or exceeds the market capacity.  Accordingly the support of 
the probability density of the equilibrium price is more constrained in PA-
BAs than UPAs. This seems to be in agreement with experimental findings 
suggesting that price volatility is lower in PABAs [40]. 
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Figure 11. Example for duopoly: equilibrium prices as a function of demand ( ) are 
compared for the uniform-price auction and pay-as-bid auction.  is a parameter in 
the Pareto distribution. 
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3.6 Transmission lines 
Most SFE models of the electricity market neglect the impact transmission 
lines have on bidding strategies. This drastically simplifies the SFE model 
and is a reasonable assumption for some electricity markets. But in the 
United States, most regional systems are tightly constrained by limits on 
transmission capacity [51]. Some simplified (linearised) versions of the SFE 
model have been used to simulate the influence of congestion in transmis-
sion lines [8,18,26]. Recently, Wilson has generalized the models in Essays I 
to V to consider a general network in which nodes have correlated demand 
shocks [51].  

3.7 Price and quantity discreteness 
As in Klemperer & Meyer [31], the greater part of the SFE literature consid-
ers smooth, twice continuously differentiable supply functions. In Essays I to 
III, this assumption is generalized to piece-wise smooth supply functions. In 
reality, however, supply functions are often given in discrete units of price 
and quantity [17]. The neglect of discreteness forms the main criticism of 
continuous SFE models.  

A model incorporating quantity discreteness was originally derived by 
von der Fehr & Harbord [17] and subsequently used in several papers, e.g. 
Brunekreeft [13], Fabra et al. [15] and Son et al. [44]. Anderson & Xu have 
developed a corresponding model for price discreteness [3]. These models 
capture interesting features of electricity auctions but have numerous prob-
lems. First, they are very difficult to solve for uncertain demand, such as the 
case of supply functions with more than one step or more than two bidders. 
Second, they often do not have pure strategy equilibria. Third, in reality 
there is discreteness in both price and quantity. Considering both types of 
discreteness can yield very different results compared to models that only 
consider one type of discreteness [33]. Fourth, it can also be argued that the 
discrete SFE models put more restrictions on bids than actually prevail in 
most electricity markets. Even if market rules limit the number of blocks, the 
block size is usually flexible and firms are normally free to offer generation 
capacity in several blocks with different prices [6].  

Discreteness in price and quantity is a feature of most markets (not only 
electricity markets), but is generally neglected in equilibrium models such as 
Bertrand and Cournot. One could argue that this approximation should be 
valid for the electricity market as well, e.g. due to a small and otherwise 
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negligible degree of uncertainty in the availability and marginal cost of com-
petitors’ generators.11 In the end, it becomes an empirical question whether 
continuous or discrete SFE models are best suited for modelling strategic 
bidding behaviour in electricity markets. It is likely that the conclusion will 
depend on the degree of discreteness in the market design and the size of 
production units in the electricity auction being studied.   

3.8 Empirical support for the SFE model
Hockey-stick bidding [28] implies that some firms offer their last units of 
power at an extremely high price, such as the price cap. This is a problem for 
some US electricity auctions as it implies extreme mark-ups when demand is 
high. This phenomenon supports the idea in Essays I to IV that the equilib-
rium price should reach the price cap for sufficiently high demand.  

Hortascu & Puller [27] and Sioshansi [43] empirically analyse whether 
bidding in the balancing service of ERCOT, a market in southern and central 
Texas, is consistent with the continuous SFE model of uniform-price auc-
tions.12 This market is especially useful for empirical tests as the bid curves 
of all firms are public information. Both studies conclude that the bids of the 
two to three largest firms match the first-order condition implied by the con-
tinuous SFE model.  Interestingly, small firms, which have lower incentives 
to bid strategically, do not bid their marginal costs. Instead they have ex-
tremely high mark-ups and mark-downs, as if to price themselves out of the 
balancing market [27,43]. This is often explained as an unwillingness to 
deviate from their day-ahead schedules [43]. It is uncertain whether the phe-
nomenon is due to costs associated with being flexible in real-time or merely 
managerial inefficiency [27].  

11 As an example, Parisio & Bosco [39] show that allowing for small uncertainties in competi-
tors’ costs may drastically change equilibria with quantity discreteness, e.g. mixed equilibria 
become pure equilibria.  
12 The model of Hortascu & Puller is not a true SFE model, as firms have private information.  
Still it is essentially a standard SFE model, as optimal bid functions are assumed to be addi-
tively-separable and linear in private information [27,43].     
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4 Policy implications 

In most auction models, the reservation price influences the equilibrium so 
choosing the right reservation price is often an important part of auction 
design [34]. As shown in Essay I, a reduced price cap will lower equilibrium 
prices for every demand outcome, i.e. prices far below the price cap are in-
fluenced by the level of the cap (see Figure 12). This does not imply, how-
ever, that the price cap should be set as low as possible. A high price cap 
will increase the incentives for firms to keep and invest in reservation power 
that is used under extreme circumstances only. Moreover, the ISO must be 
prepared to ration demand, i.e. disconnect consumers, instead of accepting 
bids above the price cap; power producers might be inclined to test a non-
credible price cap as in California [50]. To provide the right investment in-
centives under perfect competition, the reservation price should be set to the 
value of lost load (VOLL) [45]. In an oligopoly market, mark-ups will in-
duce extra entry which can lead to overinvestment in capacity [21]. To miti-
gate this problem, the price cap should be set below the VOLL. The lesser 
the degree of competition, the lower the price cap. Analogously, the price 
floor relevant for decrements should be set above its perfect competition 
level in an oligopoly market. 

The problem with hockey-stick bidding in U.S., i.e. that the last units of 
power are sold at an extremely high price in electricity auctions [28], lends 
some empirical support to the unique supply function equilibrium. However 
in some countries, e.g. in the European Union, abuse of market power is 
illegal and firms might not dare to bid with extreme mark-ups. In this case, 
the price cap can be interpreted more generally as the highest price accept-
able without risking interference by the regulator. In this case, the regulator 
needs to monitor that no capacity is withheld from the market. Otherwise 
firms might be tempted to withhold flexible power, increasing the risk of 
power shortages and the probability that the market price equals the true 
price cap.

As illustrated in Figure 12, increased production capacity decreases the 
equilibrium price for every demand. In the balancing market, there is no 
difference between a producer offering increased supply and a consumer 
offering reduced demand. Thus increased consumer flexibility is equivalent 
to more flexible production.  Furthermore, market capacity can be increased 
by co-operation with balancing markets in other countries or states. 
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Figure 12. Reducing the price cap p  and/or increasing the market capacity  push 
down the equilibrium price for every demand.  

Figure 4 shows, as one would expect, that increased competition reduces 
mark-ups (and mark-downs). Thus, as suggested by Green [22], it is recom-
mended that dominant firms are split up, but politically this could be diffi-
cult.  He shows that partial divestiture, which is often easier politically, can 
also be fairly effective. However, encouraging entry “in advance of need” 
tends to decrease welfare because of overinvestment [22]. More flexible 
consumers and co-operation with balancing markets in other countries or 
states also increase competition. To avoid local monopolies or oligopolies, 
bottle-necks in the power system should be avoided.   

Not only the number of firms, but also their asymmetry is important for 
mark-ups. In Essay II, a market with symmetric firms is compared to a mar-
ket with asymmetric firms. Both markets have the same market concentra-
tion, as measured by the Herfindahl-Hirschman index (HHI). For small de-
mand outcomes, the asymmetric market has lower mark-ups whereas mark-
ups are higher when demand is close to market capacity (see Figure 7).  

Figure 4 shows that average mark-ups in the real-time market would be 
small if most power is sold in forward markets, i.e. the imbalance is small. 
This result is supported by Wolak’s empirical studies [52]. The two-price 
settlement [46], which is used in the balancing services of Sweden and 
Finland, gives consumers and producers incentives to buy and sell their ex-
pected consumption and production on forward markets. This should result 
in small imbalances and low real-time mark-ups. On the other hand, the two-
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price settlement also prevents arbitrage between the real-time market and 
forward markets. Hence, low real-time mark-ups do not necessarily spill 
over to forward markets where most trade takes place.      

As demand is approximately perfectly inelastic in the short-term, there are 
no mark-up induced welfare losses in the short-term apart from possible 
production inefficiencies. These inefficiencies occur when firms have 
asymmetric mark-ups and operate at different marginal costs, as in Essay III. 
To solve production inefficiencies, von der Fehr & Harbord [17] have sug-
gested that electricity auctions be organized as Vickrey auctions. The advan-
tage of this auction design is that it is optimal for producers to bid their true 
marginal costs as they receive an information rent. Even if there are no pro-
duction inefficiencies and no welfare losses, mark-ups may lead to an unde-
sirable redistribution of wealth from consumers of electric power to produc-
ers.

Essays IV and V show that if demand is described by a Pareto distribution 
of the second kind, demand-weighted average prices in a pay-as-bid pro-
curement auction are (weakly) lower than in the uniform-price procurement 
auction. Average prices are equal under monopoly and perfect competition. 
These results are in line with previous theoretical studies of electricity auc-
tions [15,16,44]. For decreasing probability density functions with low con-
vexity, switching from a uniform-price auction to a pay-as-bid auction dras-
tically reduces mark-ups in electric power markets. With high convexity, the 
change in the average price is negligible.  

Risk aversion does not change the SFE of a uniform-price auction. In Es-
say IV it is argued that risk aversion should decrease the bids in pay-as-bid 
procurement auctions. Thus it seems that risk aversion would increase the 
advantages of pay-as-bid auctions. In addition, the uniform-price auction 
(weakly) facilitates tacit collusion compared to the pay-as-bid auction 
[14,32].   

There are, nonetheless, disadvantages of a pay-as-bid auction relative to a 
uniform-price auction. First, as shown in Essay IV and by Fabra et al. [15], 
there is a larger risk for non-existent pure strategy equilibria in the pay-as-
bid auction. Second, Kahn et al. [30] point out that in a UPA, it is optimal 
for small firms to simply bid their marginal costs while in a PABA all firms 
will be forced to forecast market prices if they are to receive any contribu-
tions to profits.  This introduces an additional fixed cost for small firms, 
which is disadvantageous to competition in the long-run. 
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5 Future work 

In this thesis a unique SFE is proven to exist for symmetric firms with in-
creasing marginal costs (Essay I) and asymmetric firms with constant mar-
ginal costs (Essay II). It should be possible to prove that a SFE for asymmet-
ric firms with increasing marginal costs must necessarily have the properties 
conjectured in Essay III. Many of the proofs used in Essay II are also appli-
cable for increasing marginal costs and the proofs presented by Baldick & 
Hogan [6] are likely to be useful in making progress here. Proving existence 
and uniqueness of asymmetric SFE with increasing marginal costs are likely 
to be a more problematic task.  

The numerical method suggested in Essay III can be employed to calcu-
late an asymmetric SFE for an existing electricity market. The degree of 
forward contracts, elasticity of demand and the price cap—which can be 
interpreted as the maximum price allowed without risking interference by 
the regulator—can be calibrated to match market data.    

It is argued in this thesis that the supply function equilibrium model is es-
pecially suitable for modelling bidding in balancing and real-time markets. A 
multi-period model is needed to improve the understanding of bidding in a 
forward market and its interaction with the real-time market. It would be 
interesting to study a two-stage game similar to that analysed by Green [23]. 
In place of the linear SFE used by Green, bidding in the second stage can be 
modelled with unique SFE as in Essays I to III.     

Auction models differ in the variables treated as certain and uncertain. 
The dominant uncertainty influences the recommended choice of auction 
model. Thus estimates of the degree of demand and production uncertainty 
faced by bidders in electricity auctions would be highly valuable. With these 
estimates at hand, auction models that can handle both types of uncertainty, 
such as the model of Parisio & Bosco [39] and corresponding models for 
share auctions, should be very useful to determine the dominant uncertainty.  

Essay IV compares SFE of pay-as-bid procurement auctions and uniform-
price procurement auctions. It is shown that the average price in the former 
is lower if demand is given by a Pareto distribution of the second kind. Mak-
ing a similar analysis for other distributions would be a valuable extension. 
For probability distributions with increasing hazard rate, as the normal dis-
tribution, one has to make sure that marginal costs are sufficiently steep to 
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guarantee the existence of a SFE. Analogous to Essays II and III, it should 
be possible to calculate asymmetric SFE of pay-as-bid auctions.  

Finally, the Vickrey auction has been suggested as an alternative to the 
uniform-price auction as it guarantees efficient production. Understanding 
how the average price in this auction compares to the average price in pay-
as-bid and uniform-price auctions would be a valuable extension and contri-
bution to the literature. 
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Abstract

Consider a market where producers submit supply functions to a procurement auction with 

uncertain demand, e.g. an electricity auction. In the Supply Function Equilibrium (SFE), 

every firm commits to the supply function that maximises expected profit given the supply 

functions of competitors. A basic weakness of the SFE is the presence of multiple equilibria. 

This paper shows that with (i) symmetric producers, (ii) perfectly inelastic demand, (iii) a 

reservation price, and (iv) capacity constraints that bind with a positive probability, there 

exists a unique, symmetric SFE.  
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1. INTRODUCTION 

The Supply Function Equilibrium (SFE) under uncertainty was introduced by Klemperer & 

Meyer [14]. The concept assumes that producers submit supply functions simultaneously to a 

uniform-price auction in a one-shot game. In the non-cooperative Nash Equilibrium (NE), 

each producer commits to the supply function that maximises expected profit given the bids 

of competitors and the properties of uncertain demand. The set-up of the model is similar to 

the organisation of most electricity auctions and the equilibrium is often used when modelling 

bidding behaviour in such auctions. This application was first observed by Bolle [5] and 

Green & Newbery [9]. More broadly, the SFE can be applied to any uniform-price auction 

where bidders have common knowledge, quantity discreteness is negligible — objects are 

divisible [23] — and the demand/supply of the auctioneer is uncertain. Multiplicity of 

equilibria is a basic weakness of SFE. This paper demonstrates that under certain conditions 

that are reasonable for electric power markets, especially balancing markets, a unique SFE 

exists.

Supply Function Equilibria are traditionally found by making the following observation: 

each producer submits a supply function such that for each demand outcome, the market price 

is optimised with respect to his residual demand. Each producer acts as a monopolist with 

respect to his residual demand and the optimal price of a producer is given by the inverse 

elasticity rule [22]. Hence, the mark-up percentage is inversely proportional to the elasticity of 

the residual demand curve for every outcome.  The elasticity of residual demand is comprised 

of derivatives of competitors’ supply functions. Thus the SFE is given by the solution to a 

system of differential equations.  For symmetric producers with smooth supply functions, one 

can show that only symmetric equilibria exist [14] and the system can be reduced to a single 

differential equation. However, there is no end-point condition so the solution includes an 

integration constant.

The integration constant allows for a continuum of symmetric equilibria, bounded by the 

Cournot and Bertrand equilibria. The continuum can intuitively be understood by means of 

the inverse elasticity rule. When competitors’ supply functions are highly elastic, i.e. they 

have low mark-ups at every supply, the best response is to have a low mark-up at every 

supply. When competitors’ supply is inelastic, i.e. they have high mark-ups at every supply, 

the best response is to have a large mark-up at every supply. Multiple equilibria make it 

difficult to predict outcomes with SFE. Furthermore, it complicates comparative statics and 



3

comparisons of different auction designs. How can one be sure that the integration constant 

associated with an equilibrium does not change when the organisation of the market is 

changed? Thus, multiplicity of equilibria represents a considerable drawback for SFE.  

I consider a market with symmetric producers, perfectly inelastic demand and capacity

constraints that bind with a positive probability. I show that under these conditions, there 

exists a unique, symmetric SFE.3 A price cap, i.e. reservation price, is needed to limit the 

equilibrium price and guarantee the existence of the equilibrium. The unique symmetric 

equilibrium price reaches the price cap precisely when the capacity constraints bind. Hence, it 

turns out that the integration constant in the solution of the differential equation is pinned 

down by the price cap and the total production capacity. The assumptions leading to 

uniqueness and existence are reasonable for electric power markets. In particular, short-run 

demand is very inelastic in the electric power market, and perfectly inelastic demand is often 

assumed in models of real-time and spot markets [2,7,8,19].  

Capacity constraints reduce the set of SFE in the electric power market, as has been shown 

in previous research [4,9,18]. Genc & Reynolds have recently shown that the range of SFE 

can be reduced even further by considering pivotal suppliers [8]. Specifically, they observe 

that the concavity of firms’ profit functions, originally proven by Klemperer & Meyer [14], 

does not automatically apply to markets with capacity constraints.4 Thus some candidates that 

were previously thought to be SFE in markets with capacity constraints can be ruled out. The 

current paper goes one step further, it argues that a power shortage can occur in any delivery-

period, e.g. due to demand shocks or unexpected failures in one or several power plants.5

Further, it is shown that this risk implies a unique equilibrium. Even if power shortages are 

infrequent and may occur years or even decades apart, they are not zero-probability events. 

The support of the probability density of demand determines the set of SFE, but otherwise 

SFE do not depend on how likely an outcome is [14]. For this reason, even an arbitrarily small 

risk of power shortage is enough to yield a unique SFE.

Price caps are employed in most deregulated power markets and are considered in some 

previous models of electric power markets [4,7,8]. One argument for price caps is that 

consumers who do not switch off their equipment when electricity prices become extremely 

3 Perfectly inelastic demand and symmetry simplify the analysis, but intuitively these assumptions are not critical 
to get uniqueness. 
4 As noted in Section 3.6 it seems that Klemperer & Meyer prove local concavity rather global concavity. 
5 To avoid inconsistencies in the model, one could restrict attention to generator failures for producers who 
exclusively have must-run power plants that cannot be regulated in real-time, and who cannot bid strategically in 
real-time. Two examples of such producers in Britain are British nuclear group and British Energy, both of 
whom exclusively produce nuclear power.   
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high do not necessarily have a high marginal benefit of power. Instead, they may not have the 

option to switch off or, due to long-term contracts, do not face the real-time price. Thus at 

some sufficiently high price, social welfare is maximized by rationing demand.  

With perfectly inelastic demand, the uniqueness of the symmetric equilibrium can 

intuitively be understood from the following reasoning (see Figure 1). When demand is 

sufficiently high to make the capacity constraints of competitors bind, a producer faces 

perfectly inelastic residual demand. If such an outcome occurs with a positive probability, the 

producer’s optimal price for this outcome should, following the inverse elasticity rule, be as 

high as possible, i.e. equal to the price cap. Thus the equilibrium price must reach the price 

cap. Furthermore, any firm would find it profitable to unilaterally deviate from equilibrium 

candidates hitting the price cap before the capacity constraints bind. The reason being that it is 

profitable to slightly undercut competitors’ horizontal supply á la Bertrand. 

0

3

0 1

Demand by ISO ( )

Pr
ic

e 
( P

)

Price cap

Aggregated capacity constraint

Traditional SFE
without constraints

Traditional SFE
without constraints

Unique SFE
with constraints

Profitable deviations 

Figure 1. Capacity constraints and a price cap rule out all but one traditional SFE.

Many papers in the SFE literature try to single out a unique equilibrium. Klemperer & 

Meyer show that if outcomes with infinite demand occur with positive probability, and if an 

infinite demand can be met with non-binding capacity constraints — not realistic for the 

electric power market — then a unique SFE exists.  With a price cap and capacity constraints, 

Baldick & Hogan [4] single out the same equilibrium as in this paper, but provide a weaker 

motivation for their result. In their analysis, price caps are seen as a public signal that 
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coordinate the bids of producers. Green & Newbery [9] consider a model with linear demand 

and use the equilibrium in which firms have the highest profit; the worst case for consumers. 

This equilibrium is unique if maximum demand could just be met at the Cournot price at full 

capacity. In another paper, Newbery finds a unique SFE by considering entry and assuming 

bid-coordination; incumbent firms coordinate their bids to the most profitable equilibrium that 

deters entry [18]. Rudkevich et al. [19] assume that the least profitable equilibrium is most 

likely to approximate reality. Anderson & Xu [3] and Baldick & Hogan [4] find a unique 

equilibrium in some cases by ruling out unstable equilibria. Stability is tested assuming an 

infinite speed of adjustment when there are small deviations from best-response bids. It is 

possible that with a sufficiently slow speed of adjustment, other equilibria might also be 

stable.

In addition to considering a positive risk of power shortage, which ensures a unique SFE, 

this paper makes further contributions beyond the recent work of Genc & Reynolds [8]. First, 

their results are proven for the case of constant marginal costs and a specific load function, 

which corresponds to a specific probability density of demand, whereas a general cost 

function and a general probability density of demand is allowed in this paper. Second, this 

paper is the first to rule out symmetric SFE with vertical and horizontal segments. Thus 

extending the space of allowed strategies, as in this paper and in Genc & Reynolds’ paper, 

does not generate any new symmetric SFE. This is a relevant contribution, as two recent 

papers have demonstrated that asymmetric SFE will generally include horizontal and vertical 

segments [10,11]. Third, because the equilibrium is unique it can be analysed with 

comparative statics.  

The structure of the paper is as follows. Section 2 presents the notation and assumptions 

used in the analysis. In Section 3, the unique SFE is derived in several steps. A first-order 

condition is derived for smooth and monotonically increasing segments of a symmetric SFE 

by means of optimal control theory. The result is the first-order condition derived for 

unconstrained production by Klemperer & Meyer [14]. Next, symmetric equilibria with 

vertical or horizontal segments are ruled out by using optimal control theory with final values 

and their associated transversality conditions. To avoid horizontal and vertical segments in the 

supply, the equilibrium price must reach the price cap exactly when the capacity constraint 

binds. It is shown that there is exactly one symmetric SFE candidate that fulfils this end-

condition and the first-order condition. It is verified that the unique candidate is an 

equilibrium, i.e. there are no unilateral profitable deviations.
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Section 4 characterises the unique SFE. Comparative statics show that the equilibrium has 

intuitive properties, e.g. mark-ups are reduced if there are more competitors. Another 

important implication of the analysis is that the price cap and capacity constraints also affect 

the equilibrium price for outcomes when the constraints do not bind. The assumptions leading 

to the unique SFE are realistic for electric power auctions, but even more so for balancing 

markets. Such a market is considered in Section 5. In Section 6, the unique equilibrium is 

illustrated with an example of a quadratic cost function and Section 7 concludes. 

2. NOTATION AND ASSUMPTIONS 
Assume that there are N symmetric producers. The bid of each producer i consists of a supply 

function Si(p), where p is the price. Si(p) is required to be non-decreasing. Aggregate supply 

of the competitors of producer i is denoted S-i(p) and total supply is denoted S(p).

In Klemperer & Meyer’s [14] original work, the analysis was confined to twice 

continuously differentiable supply functions. In this paper the set of admissible bids is 

extended to include piece-wise twice continuously differentiable supply functions (see Figure 

2). The extension allows for supply functions with vertical and horizontal segments, i.e. 

binding slope constraints. Si(p) is not necessarily differentiable at every price, but it is 

required that it is differentiable on the left and right at every price. Furthermore, all supply 

functions are required to be left continuous.6 From the requirements of the supply functions, it 

follows that all supply functions are twice continuously differentiable in the interval pp ,

if p- is sufficiently large.  

Denote the perfectly inelastic demand by and its probability density function by f( ).

The density function is continuously differentiable and has a convex support set which 

includes =0. Let the capacity constraint of each producer be N/ , so that is the total 

capacity of all producers. A key assumption is that the capacity constraints of all producers 

will bind with a positive probability, i.e. there are extreme outcomes for which .

Above the reservation price, demand is zero. In the electricity market this is achieved by 

means of forced disconnection of consumers when the price threatens to rise above the price 

cap. Thus the market price for extreme outcomes equals the price cap. Allowing for extreme 

6 Consider a supply function Si(p) with a discontinuity at p0. It is then assumed that firm i is willing to produce 

any supply in the range 0,0 piSpiS if the price is p0.  Thus the left continuous supply function is actually 

just a representation of a correspondence. The same is true for the left-continuous demand function used by 
Kremer & Nyborg [15] and the right continuous supply function of Genc & Reynolds [8].  



7

outcomes and rationing is realistic, especially for real-time and balancing markets. However, 

it differs from the traditional SFE models which ensure market clearing by assuming that 

firms receive nothing if the market does not clear [8,14].

Si

p

Figure 2. Admissible supply functions are left-continuous and piece-wise twice 
continuously differentiable. 

Denote the perfectly inelastic demand by and its probability density function by f( ).

The density function is continuously differentiable and has a convex support set which 

includes =0. Let the capacity constraint of each producer be N/ , so that is the total 

capacity of all producers. A key assumption is that the capacity constraints of all producers 

will bind with a positive probability, i.e. there are extreme outcomes for which .

Above the reservation price, demand is zero. In the electricity market this is achieved by 

means of forced disconnection of consumers when the price threatens to rise above the price 

cap. Thus the market price for extreme outcomes equals the price cap. Allowing for extreme 

outcomes and rationing is realistic, especially for real-time and balancing markets. However, 

it differs from the traditional SFE models which ensure market clearing by assuming that 

firms receive nothing if the market does not clear [8,14].

In the case where total supply has a perfectly inelastic segment that coincides with 

perfectly inelastic demand, it is assumed that the market design is such that the lowest price is 

chosen.7 This implies that the equilibrium price as a function of demand is left continuous.  

Let qi( ,p) be the residual demand that producer i faces for .pp Provided that the supply 

functions of his competitors are non-horizontal at p, his residual demand is given by 

                                                
7 The same assumption is used by Baldick & Hogan [4]. 
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pSpq ii ,  if .pp  (1) 

All firms have identical cost functions C(qi), which are increasing, strictly convex, twice 

continuously differentiable, and fulfil ./ pN)(C  Thus marginal costs are monotonically 

increasing.

If more than one producer has a supply function with a perfectly elastic segment at some 

price p0, supply rationing at this price is necessary for some demand outcomes. The perfectly 

elastic supply of producer i at this price is given by ,000 pSpSpS iii  where 

pSpS i
pp

i
0

lim0 .8 Similarly, the total perfectly elastic supply of his competitors at p0 is 

.000 pSpSpS iii  I assume that the rationed supply of producer i at p0 is given 

by .,, 0000 pSpSpSRpS iii  In addition, it is assumed that the rationing 

mechanism has the following properties: R1 0, R2 0, R3 0, and .0,,0 00 pSpSR ii

Furthermore, if 00pS i , then 

.if1
if10

021

0021

pSRR
pSpSRR

 (2) 

The intuition for this assumption is as follows. Consider a case where rationing is needed at 

p0. Assume that producer i increases the price up to p0 for one unit that was previously 

offered below p0. Then the firms’ accepted supply should decrease. The assumed properties 

can be verified for a rationing mechanism, for example, where all producers receive a ration 

proportional to their perfectly elastic supply at p0. This mechanism is called pro-rata on the 

margin and is used in most uniform-price auctions [8,15].  

I also assume that if total supply has perfectly elastic segments at the price cap, all of these 

bids are accepted before demand is rationed.     

3. THE UNIQUE SYMMETRIC SFE 
As in the recent paper by Genc & Reynolds [8], optimal control theory is used in the 

derivation of Supply Function Equilibria. Allowing for vertical and horizontal segments 

complicates the analysis, as it requires ruling out SFE with vertical and horizontal segments to 

achieve a unique equilibrium. Furthermore, to ensure that optimal control theory is applicable 

when testing whether a supply function of a producer is the best response, one needs to ensure 

that the supply functions of his competitors are continuously differentiable in the integrated 

                                                
8 Recall that supply functions are left continuous. 



9

price range. In addition, the control variable needs to be finite. These technicalities imply that 

supply functions of a potential equilibrium have to be studied piece-by-piece.

In Section 3.1, optimal control theory is used to derive the conditions that must be fulfilled 

for all smooth and monotonically increasing segments of a symmetric supply function 

equilibrium. These conditions are simplified to a differential equation which yields the 

standard first-order condition used in the SFE literature, for which an analytic solution exists 

for perfectly inelastic demand.  

In Sections 3.2 to 3.4, irregular SFE are ruled out. In Section 3.2, it is proven that there are 

no symmetric supply function equilibria with perfectly elastic segments. This can be shown 

by means of optimal control theory with a final value.9 The result of Section 3.2 also rules out 

perfectly elastic segments at the price cap. In Section 3.3, equilibria with discontinuities in the 

equilibrium price are also ruled out using optimal control theory with a final value. To avoid a 

discontinuity in the price when all bids have been accepted, the total supply must be elastic up 

to the price cap. Section 3.4 shows that no capacity is withheld in equilibrium.  

The conclusion is that all supply functions of an equilibrium must fulfil the first-order 

condition over the whole price range. The end-condition is that the symmetric supply function 

must reach the price cap exactly when all capacity constraint binds. In Section 3.5 it is 

observed that a unique SFE candidate exists that fulfils the first-order condition and the end-

condition. In Section 3.6 it is shown that it is a globally best response for a firm to follow the 

strategy implied by the unique candidate, given that competitors also follow the unique 

candidate. Thus the only remaining equilibrium candidate is a Nash-equilibrium and a SFE.   

3.1. The optimal control problem for smooth segments of a SFE 
In equilibrium, an arbitrary producer i submits his best supply function out of the class of 

allowed supply functions, given the bids of his competitors. Now consider a segment of a 

symmetric equilibrium candidate pSi , for which supply functions are monotonically 

increasing and twice continuously differentiable in the range ppp . Assume that the 

competitors of producer i follow the equilibrium candidate. Will it be a best response of 

producer i to follow as well? In this section, only local deviations in the range ppp

are considered.  Firm i’s bid outside this range is unchanged, i.e. pSpS ii  and 

                                                
9  In the special case when the total supply is inelastic just below the perfectly elastic segment, this is proven 
with a profitable deviation. 
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pSpS ii . Considering such deviations yields a necessary, but not sufficient, 

condition for SFE. Let the set  be defined by pSi  and all considered deviations of firm i.

Note that by choosing his supply function, producer i can control the total supply function, 

S(p), where

pSpSpS ii . (3) 

As competitors follow the equilibrium candidate and pSi is required to be non-decreasing, 

the total supply, S(p), is monotonically increasing in the interval ppp . Hence, the 

inverse function of S(p) exists for this range. It is denoted p( ):
1Sp . (4) 

In terms of demand, the studied range is given by ,  where pSpS

and .pSpS  Hence, controlling the aggregated supply function, producer i

effectively determines the price for each outcome in the range  under the 

constraints pp  and pp . The optimal p  for this range can be calculated by 

solving an optimal control problem. The control variable is defined as pu , i.e. the rate 

of change in the price. The derivative of the inverse function in (4) can be shown to be 

pSdp
d

d
dppu 1

1

. (5) 

Depending on pSi , S(p) is not necessarily differentiable at every price, but it is 

differentiable on the left and right at every price. 10 Thus u is piece-wise continuous. It is 

required that all supply functions fulfil iS0 , so the control variable is constrained by 

.10
pS

u
i

(6)

In equilibrium, producer i submits his best allowed supply function given pS i , the 

aggregate bid of the competitors. pSi  belongs to the set , which includes all considered 

deviations. Accordingly, if pSi  is the globally best response, it must also be the best 

response in . Thus, given the bids of the competitors, it is necessary, but not sufficient, that 

the following optimal control problem returns the equilibrium candidate. 

10 Recall that all supply functions are piece-wise twice differentiable and always have left and right derivatives.  
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10s.t.

Max

pppp
pS

upu

dfpSCppS

i

ii
p

 (7) 

As a result, it is necessary that the contribution to expected profit from the demand interval 

,  is maximised in equilibrium, given ,, pppp and the bids of the 

competitors. The integrand of an optimal control problem should be continuously 

differentiable in the state variable [20], in this case p. This condition is fulfilled as all 

competitors’ supply functions are twice continuously differentiable in pp ,  and the cost 

function itself is twice continuously differentiable.

The slope constraint 
pS

u
i

10 may bind if there is a profitable deviation from 

pSi , i.e. pSi  is not an equilibrium. However, if, as assumed, pSi  is to be a symmetric 

equilibrium with a monotonically increasing and smooth segment, i.e. 

,,for0 ppppSi   then the slope constraints cannot bind in this interval.  

Hence, the Hamiltonian of the problem in (7) is 

,,,, ufpSCppSpuH ii  (8) 

where  is a co-state or auxiliary variable of the optimal control problem [6]. The control 

variable u should be chosen such that the Hamiltonian is maximised for every  [6]. Hence,  

0
u
H  (9) 

and

0 for ., (10)

The following equations of motion conditions are also necessary for the optimal solution [6]:  

uHp  (11) 

and

.fpSppSCpS
p
H

iii  (12) 

Combining (10) and (12) yields 
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pSppSCpS iii0 , .

We can now use (3) to simplify the above equation, 

,0' pSCppSpS iii .  (13) 

Before continuing with the analysis of this differential equation, note that by means of (1), 

(13) can be rewritten as

res
ii

i

i

ii

p
pq

ppq

pS

ppS
p

pSCp 1
,

/,/'
. (14) 

A producer maximises his profit for every outcome  by observing the elasticity of residual 

demand, ,res
i  and applying the inverse elasticity rule [22].  

The supply functions are monotonically increasing and continuous in the price range 

ppp . Thus the equilibrium price p( ) is continuous and monotonically increasing in 

the demand range . Accordingly, if (13) is fulfilled for all , , then it 

must also be fulfilled for all ., ppp  Moreover, the considered equilibrium candidates 

are symmetric, so Si(p) Sj(p), and (13) can be rewritten as 

.,,0'1 ppppSCppSNpS iii   (15) 

In the subsequent two subsections, non-smooth symmetric SFE will be ruled out. Thus all 

SFE are given by (15). 

Lemma 1 below rules out smooth symmetric transitions to a perfectly inelastic supply and 

isolated points in the (p,S) space, where .0pSi  This ensures that the control variable u is 

bounded and that optimal control theory can be relied upon when deriving the first-order 

condition for any smooth segment.11

Lemma 1: No symmetric equilibria exist that, for a finite positive supply bounded away 

from zero, have smooth symmetric transitions to a perfectly inelastic supply.  

Proof: See Appendix. 

                                                
11 It follows from (5) that 0pSi would violate u< , which is required in optimal control theory [6,20].  
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3.2 Symmetric SFE with perfectly elastic segments do not exist 

Now consider symmetric equilibrium candidates in which all producers have segments with 

perfectly elastic supply at some price p0. In such a case, supply rationing is needed for some 

demand outcomes. In what follows I show that any producer will find it profitable to 

unilaterally deviate from the equilibrium candidate. He increases his expected profit by 

undercutting p0 with units that, for the equilibrium candidate, are offered at p0 (see Figure 3). 

The intuition is the same as for Bertrand competition, where producers undercut one another’s 

horizontal bids down to marginal cost. As marginal costs are monotonically increasing, 

Bertrand equilibria can be ruled out in all price intervals. A formal proof using optimal 

control theory follows in Proposition 2. Optimal control theory is not applicable when the 

total supply is perfectly inelastic just below p0, as the control variable pu  must be finite. 

This case is analysed separately in Proposition 3. Note that one implication of Propositions 2 

and 3 is that symmetric SFE with perfectly elastic segments at the price cap can be excluded. 

Negative mark-ups are ruled out in Proposition 1. This obvious result is useful when proving 

Propositions 2 and 3.

 p 

Profitable 
deviation for 
producer i

000 pSpSpS iii
=Horizontal supply of the competitors 
of producer i at the price p0

”’-

 p0

Symmetric equilibrium 
candidate 

000 pSpSpS iii  Horizontal 
supply of producer i at the price p0.

Figure 3. Symmetric equilibria with perfectly elastic segments can be ruled out. Any producer 
will find it profitable to slightly undercut competitors’ horizontal supply.

Proposition 1: In equilibrium no production units are offered for sale below their marginal 

cost.

Proof: See Appendix.
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Proposition 2: For positive supply, there are no symmetric supply function equilibria with 

perfectly elastic segments at 0p  when market supply is elastic just below p0.

Proof:  See Appendix. 

Proposition 3: For positive supply, there are no symmetric supply function equilibria with 

perfectly elastic segments at 0p  when the market supply is perfectly inelastic just below p0.

Proof: See Appendix.

3.3. The equilibrium price is not discontinuous 

Assume that there is a discontinuity in the price at L , at which the price jumps from pL to

pU. This means that all producers have a perfectly inelastic supply in the interval ,, UL pp

i.e. the slope constraint pSi0  binds in this price interval. As a result, any producer that 

bids just below pL can increase expected profit by deviating. He can significantly increase the 

price for some units offered at and slightly below pL as in Figure 4. This significantly 

increases the price for demand outcomes just below L, while the reduction in sales is small. 

Thus the deviation increases expected profit. This intuition is verified in Proposition 4. This 

proposition also rules out discontinuities in the equilibrium price at the demand outcome for 

which the offered market capacity starts to bind. Thus in a symmetric equilibrium all supply 

functions must be elastic up to the price cap.

 p 
A profitable 
deviation of 
producer i

L

 pL

pU

 p-

-

pD

’

Equilibrium 
candidate

Figure 4. Discontinuities in the equilibrium price do not exist. Any producer will find it 

profitable to deviate. 
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Proposition 4: For symmetric equilibria there are no discontinuities in the equilibrium 

price.

Proof: See Appendix.

In a symmetric equilibrium, the first-order condition in (15) must be fulfilled just below 

and just above p, as equilibria with vertical and horizontal segments have been ruled out. 

Accordingly Si(p) is continuous at p and the cost function is twice continuously differentiable. 

Thus the first-order condition implies that S’i(p) must also be continuous at p, i.e. there is no 

kink at p.

3.4 No capacity is withheld in equilibrium 
If producers are not required by law to offer all of their available capacity to the procurement 

auction, will firms withhold capacity in the equilibrium of the static game? Proposition 5 

ensures that they do not. Instead of withholding some units, it is always better to offer these 

units at the price cap. Thus producers’ bids will be exhausted exactly when the total capacity 

constraint binds, i.e. at .

Proposition 5: If 
N

Cp  no capacity is withheld from supply in equilibrium.  

Proof: Consider a unit that is withheld from supply by producer i in a potential equilibrium. 

Then there is a profitable deviation for producer i in which he offers the unit at a price equal 

to the price cap. This deviation strategy will not negatively affect the sales of other units or 

their equilibrium price. Furthermore, because 
N

Cp and there is a positive probability 

that the demand exceeds or equals the total capacity of all producers, expected profit from the 

previously withheld unit will be positive. Accordingly, the deviation increases the expected 

profit of producer i. Thus there are no equilibria for which units are withheld from supply. 
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3.5 There is a unique equilibrium candidate fulfilling the necessary conditions 

Proposition 5 ensures that no capacity is withheld from the procurement auction in 

equilibrium. Sections 3.2 and 3.3 rule out all irregular symmetric equilibrium candidates. 

Thus symmetric equilibria must fulfil the first-order condition in (15) for .,0

For , demand rationing is needed and the price will equal .p  According to 

Proposition 4 there are no discontinuities in the price for symmetric equilibria. Thus the 

equilibrium price must reach the price cap at . Otherwise, discontinuity in the price will 

occur at .  In addition, Propositions 2 and 3 ensure that the equilibrium price cannot be 

horizontal at the price cap. Thus the equilibrium price must reach the price cap exactly when 

the total capacity constraint binds, a necessary terminal condition for all symmetric SFE. 

The differential equation in (15) is solved by Anderson & Philpott [2] and Rudkevich et al. 

[19]. There is exactly one solution that fulfils the terminal condition :pp

.,
x

dxNxCNpp N
N

N

N
0/1 1

1

1
 (16) 

3.6. The unique candidate is a SFE 
In Section 3.5 it was shown that there is a unique symmetric SFE candidate, given by (16), 

which fulfils the necessary first-order condition and end-condition. This unique candidate is 

denoted by pS X
j .  In this section it will be verified that the unique candidate also fulfils a 

second-order condition, i.e. given the residual demand pS X
i , pS X

i  is a best response 

for firm i. It is sufficient to show that this response globally maximises firm i’s profit for 

every demand outcome.  

It is obvious that no firm can improve its profit in the range , as, in this range, all

producers sell all of their capacity at the maximum price. For ,,
N

 there is some price 

p~ , such that the capacity constraint of producer i binds if his last production unit is offered 

at or below p~ . It can never be profitable for producer i to push the price below p~ , as 
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firm i’s supply cannot be increased beyond the capacity constraint. For ,,0
N

 let us set 

0~ Cp  in this interval, as it is never profitable to offer units for sale below marginal 

cost (see Proposition 1). Thus firm i’s best price must be in the range 

,~ ppp if ,0 . Given pS X
i , neither capacity constraints nor the price cap bind 

in this price interval, except at the boundaries. Thus the profit of producer i for the outcome 

is given by 

ppppSCppSp X
i

X
iX ,~,

and

.,~, ppppSpSCppS
p

p X
i

X
i

X
i

X (17)

From the first-order condition in (15) it is known that

pCppSpSCppS X
i

X
i

X
i ,0'0 .

Subtracting this expression from (17) yields: 

.,~, ppppSpSpSCpSCpS
p

p X
i

S

X
i

X
i

S

X
i

X
i

X

ii

As pSpS X
i

X
i if Xpp , it is straightforward to conclude that 0

,
p

pX

Xppp ,~ and 0
,

p
pX ppp X , . Hence, given pS X

i , Xp  is 

producer i’s globally optimal price for each . Thus, the equilibrium candidate is a SFE.12

                                                
12 Klemperer & Meyer [14] present a corresponding proof for two symmetric firms without capacity constraints 

facing an elastic demand. In the last step of the proof it is not considered that pS X
i  and pS X

i  will 

generally differ for large deviations. With this simplification it can be shown that pX ,  is locally concave in 

the price at Xp , but this is not sufficient to guarantee the existence of an equilibrium.  
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4. CHARACTERISING THE UNIQUE SYMMETRIC SFE 
It has been shown that with reservation prices and capacity constraints, a unique, symmetric 

SFE exists. This is good news for comparative statics. For symmetric equilibria, equation (16) 

continues to be valid even when the number of firms, marginal costs, the reservation price or 

capacity constraints change.  

4.1. Mark-ups 
In a market with perfect competition, the equilibrium price is set by the marginal cost of the 

marginal production unit. The marginal costs of alternative cheaper or more expensive 

generators do not influence the price. What would happen under imperfect competition? 

Equation (16) shows that the equilibrium price of the unique SFE is given by a term related to 

the price cap and a term weighting the marginal costs of generators more expensive than the 

marginal unit. Thus as in the competitive case, generators cheaper than the marginal unit do 

not affect the equilibrium price. However, the price of the marginal unit of a producer is 

limited by the cost of the alternative, competitors’ generators with a higher marginal cost. 

Thus the marginal costs of generators more expensive than the marginal unit influence the 

size of the mark-ups and accordingly the bid of the marginal unit. It is evident that for the 

term with weighted marginal costs, the weight decreases with increased demand. 

Furthermore, all weights are positive and integrate to less than or equal to one, as shown in 

the following calculation:   

111 1

1

1

1
1

N

N

N

N

N
N

xx
dxN .

According to Proposition 1, the equilibrium price never falls below the marginal cost of the 

marginal unit. As a result, producers will choose a positive mark-up for every positive 

demand. This can be shown by manipulating (16) as follows:    

.///

11/1/

/1/1

0
1

1

111
1

11
1

1
1

1
1

NCNCNCp

NCp
x

NCp

x
dxNCNp

x
dxNxCNpp

N

N

NNN
N

NN
N

NN
N

NN
N
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4.2. Comparative statics 
For any positive demand outcome, it is clear from (16) that the equilibrium price will increase 

if the price cap is increased. Equation (16) can also be used to investigate the effect of a 

symmetric change in the capacity constraints: 

0.if,0/1 1

N

NNCpNp

That is, increased capacity decreases the price for all positive demand outcomes.  

p Price cap

C
apacity

constraint

=demand

Equilibrium 
price

Figure 5. Reducing the price cap p  and/or increasing the total capacity constraint of the 

market  push down the equilibrium price for every demand.

What happens if the number of producers increases? Let the total capacity and aggregated 

cost function be fixed, i.e. independent of the number of firms. Denote the total cost to meet 

demand by Ctot( ). In the unique symmetric SFE, this total cost is N times the cost of each 

symmetric producer. Hence, 

./ NNCSNCC itot

Thus

./ NCCtot  (18) 

Combining (16) and (18), the equilibrium price of the unique SFE can be written as 

0.if11
1

N
tot

N
N

x
dxxCNpp
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The cost function is twice continuously differentiable and strictly convex. Thus .0totC

Now, using integration by parts, the equilibrium price can be rewritten to yield 

.
0

1

1

1

1
0

111

dxxC
x

CCp

dxxC
x

xC
x

pp

tot

N

tot

N

tot

tot

N

tot

NN

 (19) 

It is evident that all terms are positive and that the first and last term decrease with N, unless

. The middle term is not influenced by N at all. Hence, for every positive demand below 

, the equilibrium price of the unique SFE decreases when the number of symmetric 

producers increases. From equation (19), it can also be noted that the equilibrium price 

approaches the marginal cost of the marginal unit as the number of symmetric producers 

approaches infinity.

What happens if entrants increase total capacity? This can be viewed as a combination of 

an increase in the number of producers and an increase in the total capacity and it has been 

established that both decrease the equilibrium price for every positive demand.  

From equation (19) it is easy to verify that 000 CCp tot , which is also proven by 

Klemperer & Meyer [14]. Hence, the equilibrium price equals the marginal cost of the 

marginal unit for zero demand. The intuition behind this is that firms’ first units are not price-

setting for any other units. Thus the first unit is sold under Bertrand competition. The first unit 

in private value models of uniform-price auctions is also offered at marginal cost [16].  

4.3. The slope of the equilibrium price 
Using (16) and integration by parts it can be shown that 

.,0/1/1

/1/11

1

2

1

2

122
1

2

N

N

N

N

N
N

N
N

N

N

x
dxNxC

N
NNCpN

NCN
x

dxNxCNpNp

 (20) 
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Thus p0  for ,0 . What happens if 0+? For N=2, p
0

lim , as 

0C   and .
0 x

dx  For N>2, the limit is of the type 0 , but it can be written in the 

form . Hence, the limit can be calculated by means of l’Hospital’s rule [1]:   

.
2

01
2

/1
lim

/1lim/1limlim

1

1

0

1201

2

00

NN
CN

NN

NCN

x
dxNxC

N
N

x
dxNxC

N
Np

N

N

NNN

N

 (21) 

Thus p0  for N>2, as the cost function is strictly convex and twice continuously 

differentiable by assumption.   

5. BALANCING MARKETS 

Relative to production costs, storage of electric energy is expensive. As a result, stored 

electric energy is negligible in most power systems and power consumption and production 

must be roughly in balance at all times. Because most electric power is sold on forward 

markets or with long-term agreements but neither consumption nor production is fully 

predictable, adjustments have to be made in real-time in order to maintain balance. The 

balancing market is an important component in this process. It is an auction in which the 

independent system operator (ISO) can buy additional power (increments) from producers or 

sell power back (decrements). The latter occurs if contracted production exceeds the realised 

total demand. A producer can offer decrements if his contracted production is larger than his 

current inflexible power production, which can not be regulated in real-time.  

That the ISO’s demand can be both negative and positive in the balancing market ensures 

that the support of demand’s probability density includes zero demand, which was assumed in 

Section 2. Moreover, the demand is particularly inelastic in real-time. Further, unexpected 

failures in power plants may result in real-time demand exceeding the supply, especially as 

only a fraction of the power production is sufficiently flexible to be regulated in real-time. 

Thus the derived unique SFE should be of particular relevance to real-time and balancing 

markets.  
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Decrements can be analysed analogously to increments, but require slightly different 

assumptions. Namely, Si(p) must be right continuous for negative supply. In addition, in the 

case where a perfectly inelastic segment of total (negative) supply coincides with negative 

perfectly inelastic demand, the highest price will be chosen, i.e. the best price of the ISO. The 

total decrement capacity is denoted by . This reflects contracted flexible production which

can be bought back and turned off. Producers will not buy back power if the price exceeds the 

marginal cost. Instead they will use their market power to lower price below marginal cost. As 

a result, a price floor, p , is needed for decrements. It is assumed that 
N

Cp . One can use 

arguments analogous to the increment case to show that a unique, symmetric SFE also exists 

for decrements.  

0if
0if
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/1

1
1

1

1
1

1

N
N

N

N

N
N

N

N

x
dxNxCN

p
x

dxNxCNp

p (22)

In Section 4.2 it was verified that p(0)=C’(0) for all symmetric SFE. Thus the equilibrium 

price is continuous at =0.

6. A NUMERICAL ILLUSTRATION OF THE UNIQUE SFE

When the cost function is polynomial in form, it is straightforward to analytically calculate 

the equilibrium price as a function of the demand by means of (22). Here the equilibrium is 

illustrated with a simple example of a quadratic cost function, i.e. linear marginal costs: 

kxcxCtot 0)( . 

The result for N>2 is 
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Demand is negative in sales auctions and positive in procurement auctions. Both are relevant 

for balancing markets. Equation (23) is used in Figure 6 to illustrate the effect of the number 

of producers on the equilibrium price. For positive (negative) demand, more producers 

implies reduced mark-ups (mark-downs). In Section 4.2, this was proven for all strictly 
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convex and twice continuously differentiable cost functions. For N=100, the market price is 

very close to marginal cost, except near the capacity constraints. In  general, residual demand 

is less elastic and mark-ups more extreme close to the capacity constraints. This is in 

agreement with the inverse elasticity rule in (14). For negative demand (decrements), the 

market price is below marginal cost. Oligopoly producers use their market power to buy back 

power at a price below their marginal cost. Note also that in all cases, price equals marginal 

cost at zero supply/demand.  

Demand ( )

Pr
ic

e 
( p

)
p

p

N=3

N= 6
N= 10

N= 100
c 0

Figure 6. The unique symmetric supply function equilibrium for linear marginal costs (N= 

number of symmetric producers). Demand is negative in sales auctions and positive in 

procurement auctions. 

7. CONCLUSIONS 

Multiplicity of equilibria is one basic criticism of the supply function equilibrium (SFE), an 

established model of strategic bidding in electricity markets. It is well known that capacity 

constraints reduce the set of SFE [4,9,18]. Genc & Reynolds [8] have recently shown that the 

range of SFE can be reduced even further by considering pivotal suppliers [8], at least for 

perfectly inelastic demand, symmetric firms, constant marginal costs, and a specific load 

function (which corresponds to a specific probability density of demand). This paper allows 

general cost functions, a general probability density of demand, and constrains the range of 

SFE even further. It is argued that there is always a risk of power shortage, and it is shown 

that this leads to a unique SFE. The uniqueness result is sensitive to the support of the 
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probability distribution of the demand, but the unique equilibrium is otherwise insensitive to 

the probability density. An arbitrarily small risk of power shortage is enough to yield 

uniqueness. In real-time, demand may exceed the market capacity in any delivery period due 

to demand shocks or sufficiently many unexpected simultaneous failures in power plants. 

Whilst such events are very unlikely, they are not zero-probability events. As some demand 

outcomes are very unlikely, this may result in a long learning period before the market finds 

the unique SFE.   

Reservation prices, i.e. price caps, are used in most electric power markets. The market 

price in the unique supply function equilibrium reaches the price cap, i.e. reservation price, 

exactly when the capacity constraints bind. Hockey-stick bidding in some US electricity 

auctions [13] lends empirical support to the end-condition of the unique equilibrium. This 

phenomenon means that some firms offer their last units of power at an extremely high price, 

such as the price cap. In the European Union, abuse of market power is illegal and it is 

plausible that firms do not dare to bid with extreme mark-ups. However, the price cap can be 

interpreted more generally, for example, as the highest price acceptable without risking 

interference by the regulator. In this case, monitoring by the regulator is needed to ensure that 

no capacity is withheld from the market. Otherwise, firms might be tempted to withhold 

power, increasing the risk of power shortages and the probability that the market price equals 

the true price cap.

If the price cap is decreased or capacity constraints increased, the equilibrium price 

decreases for each positive demand outcome. That is, changing these constraints affects prices 

also for outcomes when the constraints are non-binding. Increasing the number of producers 

also decreases the equilibrium price for every level of positive demand. Mark-ups are zero at 

zero supply and positive for every positive supply.  

Perfectly inelastic demand is a realistic assumption for real-time markets and helps 

simplify the analysis. However, the uniqueness result is expected to hold also for elastic 

demand. Symmetry is not required to achieve a unique equilibrium, but as two recent papers 

demonstrate, asymmetry is likely to change the characteristics of the equilibrium [10,11]. In 

particular, asymmetric equilibria will typically include supply functions with kinks and 

vertical and horizontal segments. This paper rules out such irregularities for symmetric firms 

with smooth cost functions.  

Continuous SFE, analysed in this paper, has been criticized for not considering the quantity 

discreteness of real electricity auctions. To address this issue, von der Fehr and Harbord 

introduced an alternative model with stepped supply functions [7]. Whilst their critique is 
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partly justified, empirical studies are needed to determine which model is actually best suited 

to represent strategic bidding in electricity auctions. The conclusion might very well depend 

on the auction design. Two recent empirical studies of ERCOT (a balancing market in Texas) 

suggest that the bids of the two to three largest firms do indeed match the first-order condition 

of the continuous SFE [12,21].
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APPENDIX 

Proof of Lemma 1: 

The result follows from the symmetric first-order condition in (15). If 0A  — i.e. 

0
N
ApSi — then ,0 pSm i  where m is a number independent of . Thus 

pSi

1  is 

bounded for positive supply bounded away from zero.  

If transition to 00pSil  is smooth from the left, then pSi  is twice continuously 

differentiable and monotonically increasing in some interval below, but arbitrarily close to p0.

From the argument above it follows that 
pSi

1  is bounded for p arbitrarily close to p0. Thus 

a smooth transition to 00pSi  from the left can be ruled out. With similar reasoning it can 

be shown that there are no smooth transitions from the right to a perfectly inelastic supply if 

the positive supply is bounded away from zero.   

Proof of Proposition 1:

Assume that there is an equilibrium )( pS Z
i , in which producer i offers production for sale 

below marginal cost, i.e. there are some prices p, for which .ppSC Z
i Denote this set of 

prices by . Then there exists a profitable deviation for producer i. Adjust the supply of 
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producer i such that units previously offered below their marginal cost are now offered at their 

marginal cost. Formally, ppSC i for all p , where pSi  is the adjusted supply 

function. The supply is unchanged for all other p, i.e. ppSpS Z
ii . pSi  is non-

decreasing like ,pS Z
i  as C() is strictly convex and increasing. The contribution to expected 

profits from units that are offered at or above their marginal costs are not negatively affected 

by the deviation. Their contribution might even increase as the equilibrium price increases for 

some imbalance outcomes. Now consider a unit that was previously offered below its 

marginal cost c0. Let 0 denote the imbalance for which the market price reaches c0 in the 

assumed equilibrium. After the deviation, the price will reach c0 at an imbalance 0.

Moreover, market prices will not decrease for any positive imbalances. Thus the positive 

contribution of the considered unit to the expected profit is either increased or unchanged. 

Furthermore, after the deviation, the unit is never sold below marginal cost.  The same 

reasoning is true for all units offered below their marginal cost. Thus the deviation increases 

the expected profit of producer i and, in equilibrium, no production is offered below its 

marginal cost. 

Proof of Proposition 2 
Consider a symmetric SFE candidate with perfectly elastic segments at p0 p . Denote 

supply functions following the equilibrium candidate by iS . Thus 

0000 pSpSpS iii and .00pS i All considered supply functions are 

twice continuously differentiable in some price interval ,, 0pp  see Section 2. The market 

supply is elastic just below p0. Thus 00 pSil . Further, a sufficiently large p- can be 

chosen such that pSi0  for all ., 0ppp

Now consider unilateral deviations Si(p) of player i, where all his bids above p0 and below 

p  are unchanged. Let pSpS , 0pS  and .00 pSpS  For 

demand outcomes , , the supply at p0 has to be rationed somehow. The accepted 

ration of the perfectly elastic supply of producer i is given by 00 ,, pSpSR ii ,

where .- 00 pSpS ii
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To keep the equilibrium candidate, 0pSi must be the best response of the considered 

deviation strategies. The best response can be derived from

.

10s.t.

Max

0pppp
pS

upu

FdfpSCppS

i

ii
p

  (24) 

The final value of the optimal control problem, F(), returns the contribution to the expected 

profit from the rationed supply at p0.

dfSSRpSC

pSSRpSF

iii

iii

,-,

,-,

0

00 (25)

The slope constraints 
pS

u
i

10 might bind for ,  if there is a profitable 

deviation from pSi , i.e. pSi  is not an equilibrium component. However, as in Section 

3.1, the slope constraints can be disregarded when a necessary condition for pSi  is derived 

under the assumption that pSi  is a SFE.

The Hamiltonian, the Max H condition and the equations of motion are the same as for the 

optimal control problem in (7) [17]. In particular, 0  for , as in (10). The

transversality condition associated with the terminal constraint at the right end-point is [17] 

.0,,, FpuH (26)

The first term is the marginal value of increasing .  The second term, which is negative, 

represents the marginal loss in final value. It is known that 0pp and

.0,,0 ii SSR  These relations, combined with (8), (10), (25) and (26), imply13

.1

,-,
1,,,

210

0

dfRRCp

df
d

SSdR
CpFpuH ii

(27)

                                                
13 Note that the first term in (8) cancels out one of the terms given by Leibniz’ theorem [1] when differentiating 
the integral in (25). 
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Costs are strictly convex and Proposition 1 ensures that there are no equilibria with negative 

mark-ups. Thus Cp0 for ,  and Cp0 for .  Thus the combination of (2) 

and (27) implies that 

0,,, FpuH . (28)

For the equilibrium candidate, the marginal value of continuing, i.e. increasing ’, is larger 

than the marginal loss in final value. The reason is that by slightly undercutting p0, as in 

Figure 3, producer i can sell significantly more. The relation in (28) is true as long as producer 

i has a perfectly elastic supply remaining at p0. Hence, equilibria of the type pSi  can be 

excluded.

Proof of Proposition 3
Use the same notation as in Proposition 2, but now consider the case when aggregate 

supply is perfectly inelastic just below p0. Denote supply functions following the equilibrium 

candidate by the superscript H. Isolated perfectly inelastic points are ruled out by Lemma 1.

Thus the equilibrium supply must be perfectly inelastic in a price interval below p0. Consider

the following deviation: producer i can offer some units previously offered at p0 at the price 

p0- , where is positive and infinitesimally small. As in Proposition 2, the perfectly elastic 

aggregate supply starts at ’. Let H''  in the potential equilibrium. The optimal 

,'' H  is then given by

.,-,

,-,

Max

0

00

000

dfSSRpSC

pSSRpS

dfpSCppS

H
i

H
i

H
i

H
i

H
i

H
i

H
i

H
i

H

Thus14

.
,-,

1 0

000

000

dfCp
d

SSdR

fpSCppS

fpSCppS

H
i

H
i

H
i

H
i

H
i

H
i

                                                
14 Recall that .0,,0 00 pSpSR ii
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In order to keep the potential equilibrium with discontinuous supply functions at p0, ’= ’H

must be optimal. 

HH

dfCpRRfpS H
H
iH 0210 1  (29) 

The first term is negative but infinitesimally small, as is infinitesimally small. It is known 

from the proof of Proposition 2 that the second term is positive and bounded away from zero. 

Thus .0
'H

Hence, producer i will find it profitable to deviate by slightly reducing 

the price of his perfectly elastic supply at p0, i.e. ’> ’H for the optimal ’. Accordingly, 

symmetric supply function equilibria with perfectly elastic segments can be ruled out when 

supply functions are perfectly inelastic just below p0.

Proof of Proposition 4

Consider a symmetric equilibrium candidate with a discontinuity in the price at .0L

Denote its upper price by pU and its lower by pL. Denote the equilibrium candidate by iS~ . All 

considered supply functions are twice continuously differentiable in some price interval 

,, Lpp  see Section 2. Equilibria with perfectly elastic segments are ruled out in Section 

3.2. Furthermore, smooth transitions to a perfectly inelastic supply are ruled out in Lemma 1. 

Thus Lil pS~0 . Further, a sufficiently large p- can be chosen such that pSi
~0

for all ,, Lppp  i.e. neither of the slope constraints bind just below pL.

Now consider the following deviation strategy for producer i: leave the supply above pU

and below p- unchanged, increase the bids for the production units offered at and just below 

pL and offer them at a price ULD ppp ,  instead. If it is optimal to change the bids for a 

positive number of units, the deviation is more profitable than the equilibrium strategy and the 

equilibrium can be knocked out. Whether this occurs can be investigated using an optimal 

control problem similar to (7) but with an added final value. The final value considers the 

contribution to expected profit from units sold at the price pD.
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~
10s.t.

~~Max

L

i

ii
p

pppp
pS

upu

FdfpSCppS

 (30) 

where

.~~L

dfpSCppSF LiDLi (31)

The slope constraints 
pS

u
i

~
10 may bind for ,  if there is a profitable 

deviation from pSi
~ , i.e. pSi

~  is not an equilibrium. However, as in Section 3.1, the slope 

constraints can be disregarded when a necessary condition for pSi
~  is derived under the 

assumption that pSi
~  is a SFE.

The Hamiltonian, the Max H condition and the equations of motion are the same as for the 

optimal control problem in (7) [17]. In particular 0  for ., The transversality 

condition associated with the terminal constraint at the right end-point is [17] 

.0,,, FpuH

From (8), (10), and (31) we get 

.~~

~~,,,

fpSCppS

fpSCppSFpuH

LiDLi

LiLLi

The relation must be true for ,L  otherwise pSi
~ cannot be part of an equilibrium:   

.0~,,,
0~

LDL

pS

LiLL fpppSFpuH

Li
L

Thus the transversality condition cannot be fulfilled for equilibrium candidates with a 

discontinuity in the price. The marginal value of continuing, i.e. increasing ’, is less than the 

marginal loss in final value.  Thus, as in Figure 4, any producer will find it profitable to 

decrease ’ and raise the price for some production units offered just below pL.
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1. INTRODUCTION 

Electric energy is expensive to store compared to its production cost. As a result, stored 

energy is negligible in most electricity power systems and power consumption and production 

have to be roughly in balance at all times. Most electric power produced is traded on forward 

markets or with long-term agreements. However, because neither consumption nor production 

is fully predictable, adjustments need to be made in real-time to maintain balance. The real-

time market, also called a balancing market, is an important component in this process. The 

market functions as an auction — often a uniform-price auction — in which the independent 

system operator (ISO) can buy additional power (increments) from power producers.3 Each 

bidder submits a non-decreasing supply function to the real-time market before the start of the 

delivery period for which bids are valid. Hence, the imbalance —demand of the ISO — is not 

known when bids are submitted. The delivery period is typically an hour, as in California, 

Pennsylvania-New Jersey-Maryland (PJM), and the Nordic countries, or half an hour as in 

Britain.  

The Supply Function Equilibrium (SFE) under uncertainty was introduced by Klemperer & 

Meyer [10]. The set-up of the model is similar to the organisation of most electricity markets, 

and SFE is now an established model of bidding behaviour in electricity auctions [1-9,11-13]. 

In the non-cooperative Nash equilibrium of the static game, each producer commits to the bid 

that maximises his expected profit given the bids of competitors. Klemperer & Meyer show 

that all smooth supply function equilibria are characterised by a differential equation, which 

in this paper is called the KM first-order condition

In general, a continuum of possible equilibria exists. But the presence of capacity 

constraints can often drastically reduce the set of SFE candidates, at least when demand is 

perfectly inelastic [5]. If extreme demand outcomes are allowed for, i.e. demand exceeds total 

capacity with a positive probability, then there is a unique, symmetric equilibrium for 

symmetric producers with strictly convex cost functions [8]. A reservation price, i.e. a price 

cap, is needed to limit the equilibrium price and clear the market in the case of a power 

shortage. Risk of extreme demand outcomes, perfectly inelastic demand and reservation 

prices are all realistic assumptions for a real-time market [8].  

3 If power production is too high, the ISO sells back power to the producers (decrements). The analysis in this 
paper focuses on increments, but as in [8] analogous results can be derived for decrements. 
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The assumption of symmetric producers is convenient as it allows straightforward 

calculation of SFE for general cost functions [1,5,12]. However, firms in electric power 

markets are typically asymmetric. In order to assess efficient antitrust policy and merger 

control, models that can analyse asymmetric markets are important.  

The case of linear SFE for asymmetric firms with linear marginal costs was analysed by 

Green [7]. Baldick et al. [2] extended this concept to piece-wise linear SFE that can be used to 

analyse asymmetric firms with asymmetric intercepts. However, both linear and piece-wise 

linear SFE are problematic in the presence of capacity constraints [2], an important feature of 

electricity markets.

Newbery [11] and Genc & Reynolds [5] derived SFE for two producers with identical 

constant marginal costs but asymmetric capacities. This essay extends the framework to 

multiple asymmetric producers. In addition, the model is generalised to consider partly 

vertical and horizontal supply functions—i.e. binding slope constraints—and supply functions 

with kinks. There are three reasons for this extension. First, the supply function of a producer 

is vertical when his capacity constraint binds and horizontal when the price cap binds. 

Second, such segments are useful deviation strategies that can be used to rule out some SFE 

candidates. Third, given the market structure in this paper of perfectly inelastic imbalances 

that might be zero, excluding kinks and horizontal and vertical segments would rule out all 

SFE candidates. Rudkevich makes a similar observation in his analysis of a market with zero 

marginal costs [13]. The extension of the strategy space in this paper does, however, 

complicate the analysis as more SFE candidates have to be ruled out to yield a unique 

equilibrium. 

To avoid horizontal and vertical segments in the supply function of a firm with non-

binding capacity constraint, its residual demand must be smooth.4 In the case of a duopoly 

with elastic demand and no price cap, as studied by Newbery [11], this implies that the 

capacity constraint of the smaller firm must bind after a smooth transition to a perfectly 

inelastic demand.  In markets with more than two firms, such transitions are not necessary. 

This paper shows that a continuous elasticity of residual demand for firms with non-binding 

capacity constraints can also be guaranteed if all of these firms discontinuously increase the 

elasticity of their supply at the price for which the capacity constraint of another firm starts to 

bind.

4 This follows from the inverse elasticity rule of a monopolist; the mark-up is inversely proportional to the 
elasticity of the (residual) demand [14].  Thus a continuous mark-up requires a continuous elasticity of the 
(residual) demand  
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Genc & Reynolds’ framework considers a duopoly facing perfectly inelastic demand and a 

price cap. Kinks are avoided with the assumption that demand is always above some positive 

level, providing an extra free parameter. The assumption is reasonable for forward markets, 

but not for balancing markets where imbalances are generally close to zero.

The model in this paper assumes that extreme demand outcomes occur with a positive 

probability. I show that a unique SFE exists for multiple producers with identical and constant 

marginal costs but asymmetric capacities, and that the unique SFE is piece-wise symmetric. 

Any two producers will have the same supply function until the capacity constraint of the 

smaller firm binds. At this price, the larger firm has a kink in its supply function. The capacity 

constraint of the second largest firm binds when the price reaches the price cap. Thereafter, 

the largest firm sells its remaining capacity at a price equal to the price cap. The piece-wise 

symmetric nature of the equilibrium is a specific result of piece-wise symmetric costs. With 

this exception, the derived properties of the equilibrium are believed to be true for a general 

class of cost functions. By means of this conjecture, asymmetric SFE can be numerically 

calculated for increasing marginal costs [9].  

The structure of the paper is as follows. Notation and assumptions are introduced in 

Section 2 and the unique SFE is derived in Section 3. In equilibrium, a firm has perfectly 

inelastic supply segments only when its capacity constraint binds, and a perfectly elastic 

segment only when the price cap binds. All producers will offer their first unit at marginal 

cost. Thus, in equilibrium, the supply function of a producer must fulfil the KM first-order 

condition from marginal cost up to the price where either the capacity constraint or price cap 

binds. It is also shown that an equilibrium must have the following properties: (i) the price 

must be a continuous function of demand up to the price cap, (ii) no producer can face a 

perfectly inelastic residual demand, and (iii) only one producer can have a perfectly elastic 

supply at the price cap.  These properties yield the end-condition of the system of differential 

equations, namely, the capacity constraint of the second largest producer starts to bind at the 

price cap.

A unique SFE candidate exists that satisfies the end-condition and the KM first-order 

condition. I verify that the candidate is an equilibrium, i.e. no firm will find it profitable to 

deviate. In Section 4, the unique SFE is numerically illustrated for the case of three 

asymmetric producers. In Section 5, the unique SFE is calculated for 153 firms in the 

Norwegian real-time market and Section 6 concludes.
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2. NOTATION AND ASSUMPTIONS 
The analysis in this paper is similar to that in my previous paper [8]. However, symmetric 

producers with strictly convex cost functions are replaced by producers with identical 

constant marginal costs c and asymmetric capacities. The analysis is confined to real-time and 

balancing markets with positive imbalances but corresponding results can be readily derived 

for negative imbalances, as in [8].   

There are N 2 producers, all of whom have different production capacities. The bid of an 

arbitrary producer i consists of a non-decreasing supply function Si(p). Aggregate supply of 

his competitors is denoted S-i(p) and total aggregate supply is denoted S(p).  In the original 

work by Klemperer & Meyer [10], analysis was confined to twice continuously differentiable 

supply functions. Here, as in [8], the set of admissible supply functions is extended to allow 

for price intervals with perfectly inelastic supply and discontinuities in the supply function 

Si(p), i.e. perfectly elastic segments. Kinks in the piece-wise twice continuously differentiable 

supply functions are also allowed. It is required that all supply functions are left continuous.5

Let i be the capacity constraint of producer i. Without loss of generality, firms can be 

ordered according to their capacity, i.e. .21 N  Total capacity is designated by ,

i.e. .
1

N

i
i Denote demand by and its probability density function by f( ). The density 

function is continuously differentiable and has a convex support set that includes zero demand 

and .6 By means of forced disconnection of consumers, the ISO ensures that demand is zero 

above the price cap. Thus, in the case of ,  the market price equals the price cap. The 

market design is such that when total supply is partially perfectly inelastic and coincides with 

perfectly inelastic demand, then the best price for the ISO is chosen, i.e. the lowest price.  

Let qi(p, ) be the residual demand that firm i faces for .pp As long as the supply 

functions of his competitors are non-horizontal at p, firm i’s residual demand is given by 

pSpq ii ,    if .pp  (1) 
                                                
5 Consider a supply function  Si(p) with a discontinuity at p*. It is assumed that firm i is willing to produce any 

supply in the range *,* piSpiS if the price is p*.  Thus the left continuous supply function is actually 

just a representation of a correspondence. The same is true for the right continuous supply function of Genc & 
Reynolds [5]. 
6 To get a unique SFE, it should be enough to assume that the support set includes zero demand and 

.1
1

1
N

N

i
i  In equilibrium, this would imply that the capacity constraints of the N-1 smallest firms bind with 

a positive probability. This corresponds to the uniqueness criterion used by Newbery in his study of two 
asymmetric firms [11].  
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If more than one producer has a supply function with a perfectly elastic segment at some 

price p0, supply rationing at this price is necessary for some demand outcomes. This 

possibility is addressed in a previous paper [8].

3. THE UNIQUE ASYMMETRIC SFE 
The KM first-order condition is a differential equation whose derivation can be found in the 

existing literature [5,10]. It must be fulfilled by all elastic supply functions in any price 

interval in which all supply functions are smooth, i.e. twice continuously differentiable. 

Irregular supply functions do not necessarily fulfil the KM first-order condition and have 

perfectly elastic segments even if the price cap does not bind or perfectly inelastic segments 

even if the capacity constraint does not bind.

In Section 3.1, the system of differential equations is solved for a price interval where all 

supply functions are smooth. The solution contains some undetermined integration constants 

but is nonetheless useful when irregular SFE candidates are ruled out in Sections 3.2 to 3.5. It 

is a long proof that involves the seven propositions illustrated in Figure 1.  

In Section 3.2, it is proven that no power is offered below marginal cost or withheld from 

the auction (Proposition i). The latter means that all market capacity is offered at or below the 

price cap. It is further shown that no firm will have an elastic supply in a price interval for 

which residual demand is perfectly inelastic (Proposition ii).     

Perfectly elastic segments below the price cap (Proposition iii) and discontinuities in the 

equilibrium price (Proposition iv) are ruled out in Section 3.3. Proposition iii also proves that 

at most one firm can have a perfectly elastic segment at the price cap. Section 3.4 shows that 

all producers will offer their first unit of power at marginal cost (Proposition v) which 

provides an initial condition for the system of differential equations given by the KM first-

order condition. Thus, in equilibrium, the supply function of each firm must fulfil the KM 

first-order condition from marginal cost up to the price at which either the capacity constraint 

or the price cap bind. 

Section 3.5 proves that any two supply functions of an equilibrium are identical up to the 

price at which one supply function becomes perfectly inelastic (Proposition vi). Using this 

result it is possible to show that firms with non-binding capacity constraints do not have 

vertical segments in equilibrium (Proposition vii).   
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Figure 1. Graphical illustration of Propositions i-vii, the necessary properties of a supply 

function equilibrium with constant marginal costs.   
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The integration constants in the solution of the first-order condition are determined in 

Section 3.6. Any two producers will have the same supply function until the capacity 

constraint of the smaller firm binds (see Proposition vi and Proposition vii). At least two firms 

must have non-binding capacity constraints up to the price cap (see Proposition ii and iv) and 

only one firm can have a perfectly elastic segment at the price cap (see Proposition iii). Thus 

the end-condition is that the capacity constraint of the second largest firm must start to bind at 

the price cap. The remaining capacity of the largest firm is sold with perfectly elastic supply 

at the price cap. Only one SFE candidate satisfies both the KM first-order condition and the 

end-condition.

Section 3.7 verifies that the unique candidate is indeed an equilibrium. If the competitors 

of firm i follow the SFE candidate, then the profit of firm i is globally maximised for every 

demand outcome if it also follows the SFE candidate. This is a sufficient condition for a SFE.

3.1. The first-order condition for smooth parts of the supply functions 

Given the bids of competitors, each producer submits his best supply function out of the class 

of admissible supply functions. Now consider a price interval ,, pp  in which all supply 

functions pSi of an equilibrium are twice continuously differentiable, i.e. no firm has kinks 

or perfectly elastic supply in the interval. Denote equilibrium supply functions by .pSi

Assume that there are M 2 firms with elastic supply in the interval. Let E be a set of all firms 

belonging to this group. Firms not belonging to E have 0pS j ppp , . It can be 

shown that within the price interval, the supply function of each producer with elastic supply 

is given by the KM first-order condition [8]7

.0cppSpS ii  (2) 

Thus the supply functions of firms belonging to E are given by a system of differential 

equations.  The system can be solved with a two-step approach. First, the total supply function 

of the M producers, ,pSe  is calculated. Second, individual supply functions can be derived. 

We start with the first step. The supply function of each firm in the set E follows a differential 

equation as in (2). Summing these equations yields 

.01 pScpMpScppSpS ee
Ei

i
Ei

i

                                                
7 The first-order condition derived by Klemperer & Meyer is more general, as it allows for general cost functions 
and elastic demand [10]. 
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The differential equation is separable and has the following solution, 
1/1 M

e cpS , (3) 

where 0  is an integration constant. Now, we can proceed with the second step. For any 

producer i belonging to the set E, (2) can be written in the following form: 

.0pSpScppS iei

Rewriting it by means of (3) yields 

.
1

1/1 M
ii cp

M
cppSpS

Thus, it follows from the product rule of differentiation that 

.
1

1/1 M
i cp

M
cppS

dp
d

Integrating both sides yields

.1/1

cp
cp

M
pS iM

i (4)

Note that all of the M firms with elastic supply have the same in the interval pp , . On 

the other hand, they have individual specific constants i. Nevertheless, the individual 

solutions in (4) must add up to the aggregate solution in (3). Thus 

  .0
1

M

i
i (5)

It follows from (3) that the slope of the aggregate supply function in the interval pp ,

is given by

.
1

1/2 MM
e cp

M
pS

Thus

.111 1/2 MM

e

cpM

pS
dp
d

p (6)

3.2. Basic properties of the supply function equilibrium 

Proposition i: In equilibrium, no units are offered below marginal cost or withheld. The 

latter means that all units are offered at a price equal to or below the price cap.  

Proof: See proof of Proposition 1 and 5 in [8]. 



10

No power is offered below its marginal cost in equilibrium. A profitable deviation is 

always to offer this power at its marginal cost. The deviation would cut losses without 

reducing the contribution from profitable outcomes. Similarly, no power is withheld in 

equilibrium. It is better to offer this power at the price cap. The deviation will not affect the 

market price negatively and the firm can increase supply for some demand outcomes. 

Proposition ii: In equilibrium, there is no price interval pp , , in which a producer with 

elastic supply faces perfectly inelastic residual demand.  

Proof: Assume that firm i has an elastic supply in pp , , while its residual demand is 

perfectly inelastic in this interval. Without losing accepted supply, all units previously offered 

in the range pp ,  could be offered at a price arbitrarily close to, but still below, .p  Thus 

firm i would deviate.

Lemma i below proves a technicality that will be useful in later proofs.

Lemma i: An equilibrium with a smooth transition to a perfectly inelastic or perfectly 

elastic aggregate supply is not possible if the price *p  is above marginal cost c.  In the 

perfectly inelastic case, the result applies also for .* cp  In the perfectly elastic case, the 

result is valid both for individual firms and in aggregate. 

Proof: See Appendix. 

Given the left continuous and piece-wise smooth properties of supply functions, 

Proposition ii and Lemma i together imply the following corollary. 

Corollary i: For every p>c, one can find a sufficiently high p-<p such that all supply 

functions are twice continuously differentiable in the interval ., pp  Either no firm or at 

least two firms have elastic supply in the interval.   
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3.3. Ruling out SFE with perfectly elastic segments and discontinuities in the 

equilibrium price

Proposition iii: In equilibrium, no firm has a perfectly elastic segment below the price cap. 

At most, one firm can have a perfectly elastic segment at the price cap.  

Proof: See Appendix. 

For p>c, the intuition of the proof is the same as for the Bertrand equilibrium in which 

producers undercut each others’ perfectly elastic bids as long as price exceeds marginal cost. 

If p=c, it can be shown that a firm will gain by increasing the price for some of the units 

offered at c.8

Lemma i shows that there are no smooth transitions to perfectly elastic supply for p>c.

Thus it follows from Proposition iii that pSi  can be ruled out for every pcp , . This 

leads to the following corollary. 

Corollary ii: For every pcp ,  one can, in equilibrium, find a sufficiently large p- and a 

sufficiently low p+ such that all supply functions iS  are twice continuously differentiable in 

the intervals pp ,  and ., pp  Furthermore, all supply functions are continuous at p.

Proposition iv: There are no discontinuities in the equilibrium price. 

Proof: Analogous to the proof of Proposition 4 in [8].  

Assume that there is a discontinuity in the equilibrium price at L , at which the price 

jumps from pL to pU, that is, aggregate supply is perfectly inelastic in this price interval.  Then 

any producer with bids just below pL can increase expected profit by deviating. With a slight 

sales reduction, the price for units offered at and just below pL can be significantly increased 

to just below pU instead. Isolated prices for which all supply functions are perfectly inelastic 

are ruled out by Lemma i. Thus Propositions ii and iv imply the following: 

8 Note that equilibria with pSi
cp

lim  cannot be ruled out if .0lim piS
cp
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Corollary iii: From the lowest bid to the price cap, there must be at least two firms with 

elastic supply in each price interval. Moreover, p  is finite for ,0 .

3.4. Every firm offers its first unit of power at marginal cost 

In Lemma ii (below) it is shown that at least two producers will offer their first unit of power 

at p=c. This result is employed in Proposition v to prove that all producers must offer their 

first unit of power at p=c. The intuition underlying this result is that the bid of the first unit is 

never price-setting for other units of a firm. Thus the first unit is sold under Bertrand 

competition.  

Lemma ii: In equilibrium, the first unit of power is offered at c.

Proof: Denote the lowest offer in the total supply by p*. Assume that p*>c. According to 

Proposition iii, at most one producer has a supply function with a perfectly elastic segment at 

the price cap. Thus c< p*< .p There are three additional implications from Section 3.3. First, 

perfectly elastic segments at p* can be excluded, according to Proposition iii. Second, 

Corollary ii implies that a price p+ can be found such that all producers have twice 

continuously differentiable supply functions in the interval pp ,* . Third, according to 

Corollary iii, at least two firms have elastic supply in the whole interval if p+  is sufficiently 

small. The aggregate supply of the firms with elastic supply is given by (3). Thus p*>c can be 

excluded as it would imply .0*pSe  Thus p*=c according to Proposition i.

Proposition v: In equilibrium, there must be some p+>c such that all producers have 

elastic supply functions in the interval ., pc

Proof: Assume that there is a potential equilibrium in which producer i offers his first unit 

at the price p*>c. Denote the aggregate supply and the equilibrium price of the potential 

equilibrium by SA(p) and pA( ). It follows from Lemma ii that pA(0)=c.  Now consider the 

following deviation. Producer i reduces the price for an infinitesimally small unit of power so 

that his first unit of power is offered at the price *, pcp . For each unit of deviated power, 

the deviation leads to the following marginal change in expected profit: 
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.
*

dfcp
pS

pS

A
A

A
 (7)  

It follows from Corollary iii that 0pS A  for *, ppp . Thus 0* pSpS AA  and 

the deviation is profitable. Accordingly, equilibria where producer i offers his first unit of 

power at a price p*>c can be eliminated. Supply functions with a perfectly elastic segment at c

are excluded by Proposition iii. Thus the first unit of power of producer i must be offered with 

an elastic supply function in some interval pc, , which is true for all producers.  

3.5. Each producer has an elastic supply, unless his capacity constraint binds  

In this section, it is shown that a firm has perfectly inelastic segments in its supply function 

only when its capacity constraint is binding.9 The intuition behind this result is somewhat 

involved. Assume that no producer with a non-binding capacity constraint has perfectly 

inelastic supply below pL. Assume further that supply of producer i and possibly some of his 

competitors becomes perfectly inelastic just above pL. According to Corollaries ii and iii, 

there must be at least two producers with elastic supply functions that follow the KM first-

order condition just above pL. Denote this set of elastic supply functions by S. It follows from 

the KM first-order condition in (2) that any supply function in S must face a continuous 

derivative of its residual demand at the price pL. Thus to compensate for the switch to 

perfectly inelastic supply by producer i, the elasticity of supply functions in S must increase 

discontinuously at pL. Likewise, this increases the elasticity of the residual demand of 

producer i discontinuously at pL. As a result, the producer wants to sell more units just above 

pL.  Accordingly, he deviates unless his capacity constraint binds.

To accomplish the proof, it is first shown that any two firms have identical supply 

functions up to the price at which either has a perfectly inelastic segment.  

Proposition vi: In equilibrium, any two producers have identical supply functions in the 

interval ,, pc  where ,pp  if neither of them have supply functions with perfectly inelastic 

segments in this interval.  

                                                
9 A similar result is proven by Baldick & Hogan for strictly elastic demand and general cost functions [3]. 
However, they only consider cases where the residual demand is smooth.  
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Proof: Without loss of generality, denote the two producers by 1 and 2. According to 

Proposition iii, neither producer has a supply function with perfectly elastic segments in the 

interval pc, . As it is also assumed that neither have perfectly inelastic segments in the 

interval, the supply functions of both producers follow the KM first-order condition in the 

whole interval. The number of competitors with elastic supply may change in the interval, but 

the supply functions of firm 1 and 2 continue to be piece-wise solutions of the type in (4) over 

the whole interval pc, . Proposition v implies that the two firms have the same initial 

condition 0cSi  and according to Corollary ii both supply functions are continuous. Thus 

firm 1 and 2 will have identical i  over the whole interval pc, .

Proposition vii: There is no equilibrium for which the supply function of a producer is 

perfectly inelastic in an interval ,, UL pp  where ,pppc UL  unless his capacity 

constraint is binding. 

Proof: Denote the potential equilibrium by the superscript B. Let I be a set with firms that 

have supply functions with perfectly inelastic segments before their capacity constraints bind. 

Define pL by the following: no firm in I has a perfectly inelastic segment below pL, but at least 

one firm in I starts being inelastic at pL. Assume that producer i is one of these firms and that 

its supply is perfectly inelastic for UL ppp , . Proposition vi implies that all producers with 

a non-binding capacity constraint must have identical supply functions in the interval Lpc, .

According to Corollary iii, there must, for every price UL ppp , , be at least two 

producers — not necessarily the same over the whole interval — with elastic supply.  Thus 

for a subinterval ,,, ULIII pppp where a firm j i has an elastic supply function, its 

supply function must satisfy (2), i.e. 

.,0 III
B

j
B
j pppcppSpS

Because producer i has perfectly inelastic supply in the interval ,, UL pp  it follows that 

pSpS B
j

B
i for ., III ppp Furthermore, as ,L

B
iL

B
j pSpS pSpS B

i
B
j  for 

III ppp , . Thus 

.,0 III
B
i

B
i pppcppSpS (8)

Now consider the following deviation. Producer i decreases the price for an infinitesimally 

small unit of power previously offered at the price pU and offers it at Lp instead. The supply 
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function is unchanged above pU and below pL. Per marginal unit of deviated power, the 

deviation leads to the following marginal change in firm i’s expected profit: 

.dfppScpE
U

B

L
B

pS

pS

B
L

B
i

B
i  (9) 

The first term is due to increased sales and the second term due to the reduced price in the 

demand interval. As the supply of producer i is perfectly inelastic in the interval under 

consideration, (9) can be rewritten in the following way:  

.df
pS

pS
cpE

U
B

L
B

pS

pS L
B
i

L
B

iB
i

There is a producer ij with an elastic supply at each UL ppp , . Hence, it follows from 

(8) that 0iE , and a profitable deviation exists. In equilibrium, firm i cannot have a 

perfectly inelastic segment in the interval UL pp ,  unless its capacity constraint binds. 

Proposition vii rules out perfectly inelastic segments in the supply of a firm unless its 

capacity constraint binds so the following corollary can be concluded by means of 

Propositions iii, v and vi.   

Corollary iv: The supply of each firm is (i) elastic, (ii) has no perfectly elastic segments, 

(iii) follows the KM first-order condition in (2), and (iv) is identical to the supply of the 

largest firm from marginal cost up to the price at which either its capacity constraint or the 

price cap binds. 

3.6. A unique SFE candidate that satisfies the necessary conditions 

Let pi denote the price at which the capacity constraint of firm i starts to bind. Recall that 

N21 . Thus Proposition iii and Corollaries iii and iv together imply the 

following: 

Corollary v: The supply function of the largest firm has a perfectly elastic segment at the 

price cap and .11 pppc N
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An intuitive explanation of the result that the capacity constraints of small firms bind at lower 

prices is that small firms have less market-power and lower mark-ups for any percentage of 

their capacity, including full capacity.  

Consider the first price-interval 1, pc , where all producers have non-binding capacity 

constraints. As all have identical supply functions within the interval, it follows from (4) and 

(5) that all firms have 0i in the interval. Thus (4) yields  

N
cppS

N

j

1/1
1      for j=1, 2,…,N. (10) 

The subscript 1 on  is used to indicate that the constant is valid for the first price interval.  

In the next price-interval 21, pp , there are N-1 remaining producers with non-binding 

capacity constraints. Following the line of argument used for the first interval, one can 

conclude that 0i  also in this interval. With M=N-1 it follows (4) from that  

....2and,if,
1 21

2/1
2 Njppp

N
cppS

N

j

Analogously, the solution for the price interval nn pp ,1  is 

,...and,if,
1 1

/1
Nnjppp

nN
cp

pS nn

nN
n

j (11)

where 11 Nn  and p0=c. The latter is relevant for n=1. Combining the end-condition 

ppN 1  with (11) yields

.2 1
1 cp

N
N (12)

Thus 1N can be uniquely determined. To avoid discontinuities in the supply functions and 

equilibrium price — which would violate Corollaries ii and iii, respectively — the following 

relations must be fulfilled at the boundary between two price intervals:  

.
1

1/1
1

/1

nN
cp

nN
cppS

nN
nn

nN
nn

nj

Thus

cnNp
nN

n

n
n

1

1
(13)

and

.1 /11/1
1

nN
cpnN nNnN

nn
n (14)
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Accordingly, starting with (12), all n  can be uniquely determined by iterative use of (13) 

and (14). Thus there is only one candidate that satisfies the necessary conditions for a SFE. 

3.7. The only remaining equilibrium candidate is a SFE  

Consider an arbitrary producer i. Assume that his competitors follow the only remaining SFE 

candidate, i.e. their total supply equals .pS i Then it must be a best response of producer i

to follow the equilibrium candidate, otherwise the candidate is not an equilibrium. To show 

best response, it is sufficient to show that pSi  maximises firm i’s profit for every demand 

outcome.  

For , producer i will sell all capacity at the maximum price, as long as no power is 

withheld. Thus, for these outcomes, no profitable deviation from the equilibrium candidate 

exists.  Given pS i , for ,i  there is some sufficiently low price p~  such that the 

capacity constraint of producer i binds if his last unit is offered at or below p~ . It is never a 

profitable deviation for producer i to push down the price below p~ , as the firm’s supply 

cannot increase beyond the capacity constraint. Thus for ,i , the optimal market price 

for producer i must be in the range ppp ,~ . For ,,0 i one can set ,~ cp  as it 

is never optimal to offer power below its marginal cost (see Proposition i).  

Competitors follow the only remaining equilibrium candidate. Hence, according to 

Corollary iv, competitors do not have supply functions with perfectly elastic segments below 

the price cap. Thus for ,,~ ppp residual demand of an arbitrary producer i is given by 

(1). Hence, for given demand and price, the profit of producer i is 

pppcppSp
iS
ii ,~if,, . (15) 

Thus

.,~if,
,

ppppScppS
p

p
i

S
i

i

i

(16)

With left-hand derivatives, the result is also valid for .pp It follows from (2) that 
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.,if,0 pcpcppSpS NN (17)

,if iiN pcppSpS and .,if0 ppppS ii Thus subtracting (17) from (16) 

yields:

.,if,

,~if,
,

ppppScppSpS

ppppSpS

p
p

iNN
S

i

iN
S

i

i

i

i  (18) 

As supply functions are piece-wise symmetric, it follows from (17) that  

,
1M
pS

pScp N
N

where M 2 is the number of elastic producers in the interval. Thus (18) can be written

.,if,
1

,~if,
,

ppp
M

pS
pSpS

ppppSpS

p
p

i
N

N
S

i

iN
S

i

i

i

i
 (19) 

Accordingly, 
p
pi ,  is monotonically decreasing in p within the interval pp ,~ . Thus 

for outcomes ipS , producer i maximises profit by choosing the price such that 

.0
,

p
pi  This is achieved by following ,pSi see (19), as  pSpS Ni  for .ipp

For ipS , it follows that .~
ipp In this case, ,0

,
p
pi  as iN pS  for 

.,~ ppp Then producer i maximises profit by maximising  
p
pi ,

. According to 

(19), this is achieved by following ,pSi  as ii pS  if .ipp

Now, consider producer N and the case ,pS .10 It follows from (19) that 

0
,

p
pN  for ppp ,~ and that 0

,
p
pNl  (the left derivative). However, 

                                                
10 Recall that supply functions are left continuous. Thus pS  does not include the largest firm’s perfectly elastic 
supply at the price cap.  
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profit cannot be raised as price cannot be increased beyond the price cap. Therefore, producer 

N cannot do better than follow  pS N .

The conclusion is that given ,pS i  where i=1,2,…,N, the unique equilibrium candidate 

pSi globally maximises the profit for every demand outcome . Thus the unique 

equilibrium candidate is a SFE. 

4. EXAMPLE 1 — THREE ASYMMETRIC PRODUCERS

Consider a market with three producers. The producers have identical and constant marginal 

cost c. Assume that the producers have 6
1 , 3

1  and 2
1  of total capacity  and that .3cp

Order the producers according to their production capacity so that producer 1 has the smallest 

capacity.

Firms 2 and 3 are symmetric up to the price cap, at which the capacity constraint of firm 2 

starts to bind, i.e. .
332 pSpS  The remaining capacity of firm 3 is sold at the price 

cap. Thus 

.
23

 when ,3 3Scpp  (20) 

2  can be calculated from (12): 

.
32

3/2
2 cc

Thus according to (11), 

,,if,
6 132 ppp
c

cppSpS  (21) 

where p1 is the price at which the capacity constraint of firm 1 binds. By means of (13) it can 

be shown that .21 cp  Now (14) can be used to calculate 1:

.
22

3
2/1

2/1
2

1 c
c

According to (11) 

.,if,
6 1

2/1

321 pcpc
cppSpSpS  (22) 

The unique SFE, which is characterised by equations (20) to (22), is presented in Figure 2. 

All supply functions are symmetric up to the price p1, at which point the capacity constraint of 
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the smallest firm binds. Above this price, firms 2 and 3 have symmetric supply functions up 

to cp 3 , at which point the capacity constraint of producer 2 binds. The remaining supply of 

producer 3 is offered with perfect elasticity at .pp  The equilibrium is piece-wise 

symmetric as in the SFE derived by Newbery for a duopoly facing linear demand [11].  

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 0,1 0,2 0,3 0,4 0,5

Firm 1
Firm2
Firm 3

p/c

iS

Figure 2. The unique supply function equilibrium is piece-wise symmetric if firms have 

identical constant marginal costs c.  The capacities of the firms are such that .321

The supply functions of firm 2 and 3 have kinks at p1; their elasticities increase 

discontinuously at this price. This compensates the kink in the supply of firm 1 and ensures 

that the elasticity of the residual demand of both producer 2 and 3 is continuous at p1.

In Figure 2 we can note that the supply functions of all producers become perfectly elastic 

at the point where the price approaches c in the limit. By differentiating (10), it is straight-

forward to verify that this is a general result for identical and constant marginal costs. The 

intuition for this result is that when the producers sell their first unit, its price will not 

influence the profit from other units. Thus, competitors undercut each others’ bids for the first 

unit down to marginal cost, as if under Bertrand competition.  

1 2

1p

3
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5. EXAMPLE 2 — THE NORWEGIAN REAL-TIME MARKET 

More than 99 percent of electric power production in Norway is hydroelectric. Because nearly 

all power is produced with the same technology, the Norwegian real-time market is a suitable 

application of the model in this essay. At present, Norway shares a common electric power 

market with the other Nordic countries, but in this simplified example it is assumed that 

Norway has a power market of its own, as it did before 1996. It is also assumed that all power 

is sold in real-time, i.e. forward and futures markets are ignored.   

The marginal cost of hydropower is very small, roughly c=50 NOK/MWh ( 6 €/MWh). 

But water is a limited resource. Thus hydropower bids are often driven by opportunity cost, 

the revenue from selling a unit of hydropower at a later day/hour. To avoid this complication, 

we consider an hour in the late spring when the alternative to power production is to spill 

water. The price cap is 50 000 NOK/MWh ( 6000 €/MWh). The calculation of the SFE is 

based on the installed capacity of the 153 largest hydropower producers in Norway. The 

remaining firms and non-hydroelectric power are not included in the sample.  The 10 largest 

producers in Norway and their share of the installed capacity are listed in Table 1. 

Table 1: Share of installed hydroelectric capacity of Norway’s 10 largest power producers

Company 
Share of installed 

capacity  HHI 
Statkraft  31,7% 1001,986 
E-CO  7,3% 53,02816 
Lyse  5,6% 31,04265 
BKK  5,6% 30,92214 
Norsk Hydro  4,8% 23,3467 
Agder Energi  4,3% 18,37795 
Skagerak Kraft 3,8% 14,52085 
Otra Kraft  3,1% 9,856047 
Trondheim Energiverk 2,7% 7,246727 
Nord-Trøndelag Elverk 2,0% 4,20108 
Rest (143 firms) 29,1% 27,2 
Total 100% 1222 
Source: Data provided by the Norwegian Water Resources and Energy Directorate (NVE).

Cross-ownership in Norway is extensive. Statkraft has a majority stake in Skagerak Kraft 

and Trondheim Energiverk, Agder Energi has a majority stake in Otra kraft, and Norsk Hydro 

has a majority stake in Røldal-Suldal Kraft. As there is no available theory for the treatment 

of cross-ownership in a SFE analysis, all cross-ownerships are disregarded even though they 

may be relevant for mark-ups. 



22

The Herfindahl-Hirschman index (HHI) is a commonly used measure of market 

concentration and is given by the sum of market shares (in percentages) squared [14]. The 

Norwegian electric power market has HHI=1222 which corresponds to slightly less than 8 

symmetric firms (HHI=1250). In a traditional Cournot model with certain demand, the market 

mark-up would be the same for 8 symmetric firms as for the 153 asymmetric firms [14]. Thus 

it is interesting to compare the supply function equilibria of these two cases. By means of the 

formulae in Section 3.6, it is straightforward to calculate the supply of all asymmetric firms 

and the 8 symmetric firms. In the symmetric case, the capacity constraint of all firms will start 

to bind at the price cap [8].

10

100

1000

10000

100000

0% 20% 40% 60% 80% 100%

NOK/MWh

153 asymmetric firms 
with HHI=1222

8 symmetric firms with 
HHI=1250

Demand as share of total 
market capacity

Figure 3. The unique supply function equilibrium of the real-time market in Norway 

compared to a case with 8 symmetric firms.    

For the asymmetric model, Figure 3 shows that mark-ups are modest, less than 10 percent 

for the first 44 percent of capacity. For the last 52 percent of the capacity, mark-ups are 

excessive, larger than 100 percent. For small demands, competition is much tougher in the 

asymmetric case than the symmetric case, as most asymmetric firms have non-binding 

capacity constraints. On the other hand, the competition is tougher in the symmetric case for 

large demands when most asymmetric firms have binding capacity constraints. Assuming that 

this intuition also holds for non-constant marginal costs, it is likely that the symmetric model 
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will overestimate mark-ups during a summer night, when demand in Norway is, on average, 

30 to 35 percent of installed capacity. On the other hand, it is likely that the symmetric model 

will underestimate mark-ups during a winter day, when demand is, on average, 60 to 70 

percent of installed capacity.  

6. CONCLUSIONS 

A unique Supply Function Equilibrium (SFE) is derived for an electric power market in which 

producers have identical and constant marginal costs and production capacities are 

asymmetric. I assume that there is a positive probability that demand exceeds total market 

capacity.11 The unique equilibrium is piece-wise symmetric; two arbitrary producers have the 

same supply function until the capacity constraint of the smaller firm binds. The constraint of 

the producer with the second largest capacity starts to bind at the price cap, while the capacity 

constraints of smaller firms bind below the price cap. The largest firm offers its remaining 

capacity as a perfectly elastic supply at the price cap.

At the price at which the capacity constraint of a small firm starts to bind, the elasticity of 

the supply of larger firms will increase discontinuously. This ensures that larger firms face a 

continuous elasticity of their residual demand. The unique equilibrium has supply functions 

with kinks and vertical and horizontal segments. This implies that one cannot limit attention 

to smooth supply functions, as is routinely done in the SFE literature.

The equilibrium will only be piece-wise symmetric if costs are. However, in other aspects 

the qualitative properties of the asymmetric SFE are conjectured to hold  for a more general 

class of cost functions [9]. This understanding can be used to numerically calculate valid SFE 

— with non-decreasing supply functions — for asymmetric firms with increasing marginal 

costs as in [9]. Without this conjecture it has proven to be difficult to numerically calculate 

asymmetric SFE [3].   

Compared to a symmetric SFE with the same Herfindahl-Hirschman Index (HHI), the 

asymmetric SFE is much more competitive for small demand outcomes when the capacity 

constraints of few asymmetric firms bind. On the other hand, the asymmetric SFE is less 

competitive for large demand outcomes when the capacity constraints of many asymmetric 

firms bind. Intuitively, this result should also hold for increasing cost functions.   

                                                
11 It is enough to assume that the capacity constraints of all but the largest firm bind with a positive probability.  
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APPENDIX 

Proof of Lemma i: Consider a smooth transition from the left. According to the assumed 

properties of the supply functions, a sufficiently large p- can be chosen such that all supply 

functions are twice continuously differentiable in the range ., *pp  In addition, p- can be 

chosen such that each supply function is either monotonically increasing in the whole range or 

perfectly inelastic in the whole range. If all supply functions are perfectly inelastic in the 

interval ,, *pp  smooth transitions are not possible. Thus according to Proposition ii there 

must be M 2 producers with monotonically increasing supply functions in the 

range *, ppp .

It follows from (6) that one can find numbers 0m  and m such that ,mpm

for every *, ppp  if p->c. For the upper boundary this is true also when p- c. Thus 

smooth transitions from the left to a perfectly elastic aggregate supply are not possible if 

cp* . This is valid for individual producers as well, as 0p  if the marginal bidder has 

a perfectly elastic supply. Similarly, smooth transitions from the left to a perfectly inelastic 

aggregate supply are not possible if cp* .
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Analogous proofs can be performed to rule out smooth transitions from the right. 

Proof of Proposition iii. The proposition can be divided into three claims:  

 a) In equilibrium, two or more firms cannot have supply functions with perfectly elastic 

segments at the same price .,* pcp

b) In equilibrium, no producer has a supply function with a perfectly elastic segment at the 

marginal cost c.

c) In equilibrium, one firm cannot have a perfectly elastic segment at pcp ,* .

Proof of a) Due to Corollary i, the proof is almost identical to the proofs of Proposition 2 

and 3 in [8].

Proof of b) Assume that in equilibrium, producer i offers 0lim pScS Q
icp

Q
i  units 

of power with perfectly elastic supply at the constant marginal cost c. The aggregate supply of 

his competitors at this price is denoted by 0cSQ
i . Thus producer i may be the only firm 

with a perfectly elastic segment at c.

Assume first that aggregate supply is elastic just above c.  Then Corollary i implies that 

M 2 firms are elastic just above c.  The assumed properties of the supply functions ensure 

that a sufficiently low p+ can be chosen so that in equilibrium, all supply functions are twice 

continuously differentiable in the interval pc, , and the same M 2 producers have an 

elastic supply in the price interval. The other N-M producers have a perfectly inelastic supply 

over the whole interval. The supply functions of the M producers are given by (2). The 

aggregate supply of this group is denoted by Se
Q(p). It follows from (3) that 

1/1 MQ
e cppS . (23) 

Thus Se
Q(p) approaches zero as the price approaches c. Accordingly producer i and any other 

producers with a perfectly elastic segment at c cannot belong to the group with elastic supply 

in the interval pc, . Hence, their supply is perfectly inelastic in this interval.  

Now consider the following marginal deviation of producer i. The price of an 

infinitesimally small unit, previously offered at c, is increased to the price pcp ,* . The 

marginal change in expected profit is given by 



27

.
*

dfcppcSE
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QQQ
ii
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Q

The first term reflects an increased price and the second term reflects reduced sales in the 

demand interval. By means of (6), the integral can be written as 
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ii

Q
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Q

The value 
112 MMQ cp can be made arbitrarily large for sufficiently small pQ>c.

Thus 0iE  for a sufficiently small p*. Accordingly, there are profitable deviations. 

Equilibria where 0cSQ
i  can be ruled out if aggregate supply is elastic just above c.

Next consider the case where total supply is perfectly inelastic just above c. Smooth 

transitions to a perfectly inelastic supply are ruled out by Lemma i. Thus if p+ is chosen 

sufficiently small, the bids of all producers are now perfectly inelastic over the whole price 

range pc, . Denote by 0 the demand outcome for which the last unit offered at the price c

is sold. For the assumed equilibrium there is no contribution to expected profit from demands 

below 0. Now consider the following unilateral deviation of producer i. Increase the price for 

the cSQ
i units to .,* pcp  This action increases the expected profit of producer i for 

demand outcomes below 0. Supply above p+ is not affected, nor is the contribution to 

expected profit from demands above 0. As a result, the deviation increases expected profit of 

producer i. Accordingly, equilibria where a producer offers 0cSQ
i units of power at the 

constant marginal cost c can also be excluded if aggregate supply is perfectly inelastic just 

above c. � 

Proof of c: Denote the potential equilibrium by the superscript W. It is assumed that 

,*ppW  if and only if .,  Let firm i be the producer with the perfectly elastic 

segment. 

All firms cannot have perfectly inelastic supply just above p*, as,  in that case, firm i would 

deviate. The price of the perfectly elastic segment can be increased without losing sales. 

Furthermore, smooth transitions to an aggregate perfectly inelastic supply are excluded by 
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Lemma i. Thus it follows from Corollary i that at least two producers have an elastic supply 

just above p*, i.e. 0*pSW
ir  (the right-hand derivative). However, any competitor ij

with an elastic bid just above p* would find it profitable to deviate. He can slightly reduce the 

price of his units offered just above p* and instead offer them just below p*. The marginal 

change in expected profit of producer j from deviating by one, infinitesimally small unit is 

.* dfcp

The deviation is profitable because .* cp �
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uncertain demand has been realised. In the Supply Function Equilibrium (SFE), every firm 

commits to the bid that maximises its expected profit, given the bids of competitors.  In the 

case of asymmetric producers with general cost functions, previous work has shown that it is 

very difficult to find valid SFE candidates. This paper presents a new numerical procedure that 

provides a solution. It is comprised of numerical integration and an optimisation algorithm that 

searches for an end-condition. The procedure is illustrated by an example with three 

asymmetric firms.  

Keywords: supply function equilibrium, uniform-price auction, numerical integration, 

oligopoly, asymmetry, capacity constraint, wholesale electricity market  

JEL codes: C61, D43, D44, L11, L13, L94 

1 I would like to thank my supervisor Nils Gottfries and co-advisor Chuan-Zhong Li for valuable comments, 
discussions and guidance. Comments by Börje Johansson, mail correspondence with Robert Wilson and the 
suggestions of seminar participants at Uppsala University in February 2005 are also very much appreciated. I am 
grateful to Meredith Beechey for proof-reading this paper. The research has been financially supported by the 
Swedish Energy Agency and Ministry of Industry, Employment and Communication.  
2 Department of Economics, Uppsala University, P.O. Box 513, SE-751 20 Uppsala, Sweden, phone +46 18 471 
76 35, fax +46 18 471 14 78. E-mail: par.holmberg@nek.uu.se. 



2

1. INTRODUCTION 

Klemperer & Meyer introduced the Supply Function Equilibrium (SFE), in which producers 

submit bids to a uniform-price auction in a one-shot game [8]. In the non-cooperative Nash 

Equilibrium, each producer commits to the supply function that maximises his expected profit 

given the bids of competitors and the properties of uncertain demand. Since Bolle [2] and 

Green & Newbery [5] observed that the framework is similar to the organisation of most 

electricity markets, the equilibrium has often been applied to model bidding behaviour in 

electric power auctions. More broadly, the SFE can be applied to any uniform-price auction 

where costs/valuations are certain and common knowledge among bidders, quantity 

discreteness is negligible — that is, objects are divisible [11] — and the demand/supply of the 

auctioneer is uncertain.  

Klemperer & Meyer showed that all smooth SFE are characterised by a differential 

equation, in this paper labelled the KM first-order condition.  In the general case, there exists a 

continuum of possible supply function equilibria that fulfil this first-order condition [8]. 

However, by considering capacity constraints, the set of SFE candidates can be drastically 

reduced [4], at least in the presence of perfectly inelastic demand. The set of SFE can be further 

reduced by allowing for the risk of extreme demand outcomes, i.e. situations when the capacity 

constraints of all but the largest firm bind with a positive probability. It is then possible to show 

analytically that a unique equilibrium exists in at least two specific cases. One such case is that 

of symmetric producers with strictly convex cost functions [6]. The other involves producers 

with identical constant marginal costs but asymmetric capacities [7]. A reservation price, or 

price cap, is needed to limit the equilibrium price. Perfectly inelastic demand, a reservation 

price and the possibility of extreme demand outcomes are all realistic assumptions for electric 

power markets, especially so for balancing markets [6].  

In reality, however, firms typically have both non-constant marginal costs and asymmetric 

production capacities. In this general case, the KM first-order conditions — one for each 

firm — constitute a system of non-autonomous ordinary differential equations. To solve this 

system analytically is not only very difficult, but likely to be impossible. Baldick & Hogan [1] 

calculate approximate asymmetric SFE by numerically integrating the system of ordinary 

differential equations. They note that it is difficult to find solutions that do not violate the 
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requirement that supply functions must be non-decreasing.3 Three exceptions to this are as 

follows: symmetric firms with identical cost functions, cases with affine solutions — i.e. affine 

marginal costs and no capacity constraints — and small variations in demand.  

In this paper, I suggest a new numerical algorithm to find a valid SFE. It is intended for

N 2 asymmetric firms and cost functions more general than the three special cases identified 

by Baldick & Hogan. The equilibrium consists of piece-wise smooth supply functions and is 

inspired by the unique equilibrium derived for asymmetric producers with constant marginal 

costs [7].  Several of the analytically derived properties are conjectured to also be valid for 

increasing marginal costs. First, large firms have more market power and larger mark-ups for 

any percentage of total capacity. Hence, capacity constraints of smaller firms bind at lower 

prices. Second, the capacity constraint of the second largest firm starts to bind at the price cap, 

p . Let pi be the price at which the capacity constraint of firm i starts to bind. Arranging the 

producers according to size, starting with the smallest firm, these two properties can be stated 

as ,0 11 pppC N  where C() is the aggregate cost function. Third, the largest 

producer offers its remaining capacity NS  with perfectly elastic supply at the price cap. 

Lastly, all firms offer their first unit of power at marginal cost, which is in agreement with 

general results for uniform-price auctions [9]. 

To ensure an equilibrium with the conjectured properties, the following two assumptions are 

made. First, the larger of any two firms has weakly larger marginal cost for any share of 

capacity.4 Second, all firms have the same marginal cost at zero supply.5  The constants 

221 ,,, NN pppS  are so far unknown. Given these constants, the end-conditions of the 

system of KM first-order conditions are known and the supply functions of all firms can be 

solved by numerical integration. The numerical integration starts at the price cap and proceeds 

in the direction of decreasing prices. The integration is terminated as soon as any supply 

function violates the two requirements that a supply function must be non-decreasing and non-

negative. The criterion function NN Spp ,, 21  is equal to the terminated price. In theory, 

all considered SFE candidates should fulfil 0,21 CSpp NN . In practice, however, 

one has to be somewhat forgiving due to numerical errors.  If a unique equilibrium exists, 

3 Non-decreasing supply functions are required by most electricity auctions. 
4 It should be possible to numerically calculate asymmetric SFE for more general cost functions. However, then 
adjustments of the conjecture might be needed, i.e. the order in which the capacity constraints bind.     
5 It should also be possible to numerically calculate asymmetric SFE when firms have different marginal costs at 
zero supply, but in this case firms may offer their first units of power at different prices. Further, the firm with the 
lowest marginal cost at zero supply is expected to have a supply function with a perfectly elastic segment at the 
second lowest marginal cost at zero supply.   
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which would be expected from the previous analytical models in [6,7], it can be found by an 

optimisation algorithm minimising .

The structure of the paper is as follows. Section 2 introduces the notation and assumptions 

used in the analysis. Section 3 presents a set of systems of differential equations and a 

numerical algorithm that can be employed to calculate the conjectured SFE. In Section 4, the 

numerical algorithm is applied to an example with three firms. The algorithm returns one 

solution that approximately fulfils the first-order condition and the non-decreasing requirement.  

It is graphically verified that no firm will find it profitable to deviate from the equilibrium 

candidate. The accepted production of the equilibrium is inefficient because mark-ups are 

asymmetric. The paper is concluded in Section 5.  

2. NOTATION AND ASSUMPTIONS 

Except for firms’ capacities and costs, the notation and market assumptions are the same as in 

previous papers by Holmberg [6,7]. There are N asymmetric producers. The bid of each firm i

consists of a piece-wise smooth — i.e. piece-wise twice continuously differentiable — non-

decreasing and left continuous supply function Si(p) .6 The aggregate supply of firm i’s

competitors is denoted S-i(p) and total supply is denoted S(p).

Let i be the capacity constraint of producer i. Without loss of generality, firms can be 

ordered according to their capacity, i.e. .21 N  Total capacity is designated by ,

i.e. .
1

N

i
i Let pi denote the price at which firm i chooses to offer its last unit, i.e. 

.iii pS

Denote the perfectly inelastic demand by and its probability density function by f( ). I

assume that demand is always non-negative.7 The density function is continuously 

differentiable and has a convex support set that includes zero demand. To yield a unique 

equilibrium, extreme demand outcomes are permitted, i.e. such that pS occurs with 

6 Consider a supply function Si(p) with a discontinuity at p0. It is then assumed that firm i is willing to produce any 

supply in the range ,
00

pSpS
ii

, if the price is p0.  Thus the left continuous supply function is actually just 

a representation of a correspondence.
7 As in [6], it is straightforward to extend the analysis to negative demand, which is relevant for balancing 
markets.
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positive probability.8 In equilibrium, this implies that the capacity constraints of the N-1

smallest firms bind with a positive probability. The reservation price p  ensures that demand is 

zero above the price cap. Accordingly, the market price equals the price cap when , if 

such demand outcomes occur.  

 All firms have increasing, strictly convex and twice continuously differentiable cost 

functions. Denote the aggregated cost function of all firms by C(S). For the cost functions of 

the individual firms, it is assumed that jjii SCSC  if 
j

j

i

i SS and i>j. Furthermore, 

.00 ji CC  These assumptions are made to ensure an equilibrium with the conjectured 

properties. For more general cost functions, adjustments of the conjecture might be necessary. 

Residual demand of an arbitrary producer i is denoted by qi(p, ). As long as the supply 

functions of his competitors are not perfectly elastic at p, residual demand is 

pSpq ii , . (1) 

3. THE CONJECTURED SFE 

For symmetric producers and producers with asymmetric capacities and identical constant 

marginal costs, it has been shown that there exists a unique equilibrium with the following 

properties:

All producers offer their first units of power at the price 0C .

All supply functions are twice continuously differentiable, except at points where the 

capacity constraint of at least one producer starts to bind.

There are no supply functions with perfectly elastic segments below the price cap and 

only firm N (the largest firm) can have a perfectly elastic segment at the price cap. This 

implies that all supply functions Si(p) are continuous below the price cap. 

A firm’s supply function does not have perfectly inelastic segments below pi, where the 

firm’s capacity constraint starts to binds.   

Below the price cap, all supply functions with non-binding capacity constraints fulfil 

the KM first-order condition.

.0 121 ppppC N

                                                
8 Note that pS  does not include ,NS  as supply functions are left continuous. 
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It is conjectured that these properties are true also for the asymmetric firms studied in this 

paper.9 The conjecture is the basis of the numerical algorithm developed below.  

3.1. Necessary conditions 

Assuming that competitors do not have perfectly elastic supply functions below the price cap, 

the residual demand of an arbitrary producer i is given by (1). Hence, for given demand and 

price, the profit of producer i is 

.andif, ppSpSCppSp iiii

S

ii

i

(2)

In the traditional SFE literature, see Klemperer & Meyer [8] for example, the KM first-order 

condition is derived by simply differentiating (2) with respect to p. That is,

.0' pSCppSpS iiii  (3) 

Below the price cap, all supply functions with non-binding capacity constraints fulfil the KM 

first-order condition. This implies that all SFE candidates are given by N-1 systems of 

differential equations. The first system has N differential equations and is valid for the price 

interval 1,0 pC . The second system has N-1 differential equations and is valid for the price 

interval 21, pp  and so on. The continuity assumption links the end-conditions of the systems 

of differential equations.  Including the end-conditions, the N-1 systems of differential 

equations are as follows: 

NNN

NN

NNNN

NNN
N

NNNN

NNNN

NNN

NNNN

NNN

NNN

NN

NNNNNN

SpS
pS

pSCpSpS

CpSpS
ppp

pSpS
pSpS

pS

pSCpSpS
CpSpS
CpSpS

ppp

pSpS

pS

pSCpSpS

pSCpSpS
pCp

111)1(1
2

22

2121

222

1)1(1

2)2(2

23

11

1111111

1

0

0
,

0
0
0

,

0

0
,0'

 (4) 

Given a set of values ,,,, 221 NN Sppp  the N-1 systems of differential equations can be 

solved backwards.  One must start with the price interval ,,2 ppN for which all end-

conditions are known, i.e. NNNNN SpSpS and11 . Thus SN(p) and SN-1(p) can 

                                                
9 It is likely that they can be proven by means of the analytical tools used in previous work [1,6,7]. 
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be calculated for ppN ,2 . This solution can then be used to determine the end-conditions for 

the price interval 23 , NN pp . After solving the system of differential equations associated 

with this price interval, one can proceed recursively to the interval 34 , NN pp  and so on.

The integration of the systems of ordinary differential equations starts at the price cap and 

proceeds in the direction of decreasing prices. It terminates as soon as any supply function 

violates the non-decreasing and non-negativity constraints. The criterion function 

NN Sppp ,,, 221  returns the terminating price. According to the conjecture, all 

producers will, in equilibrium, offer their first unit of power at 0C . Thus, theoretically all 

SFE candidates must fulfil 0,,, 221 CSppp NN .

Figure 1. The integration starts at the price cap, proceeds in the direction of decreasing 

prices and is terminated as soon as any supply function becomes invalid.  is defined by the 

terminating price.

3.2. A sufficient condition 

The first-order condition and 0,,, 221 CSppp NN  are necessary conditions for a 

SFE, as they ensure a local extremum. When competitors follow strategies implied by the 

candidate, it is still not clear that the globally best response for a producer is to follow the SFE 

candidate. A sufficiently strong second-order condition is that the market price of the 

equilibrium candidate globally maximises pi , for every , given that the competitors 

follow the candidate.  

S

Firm 3Firm 2 Firm 1 
p

S3
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3.3. The numerical algorithm 

For asymmetric producers with general cost functions, it is difficult and likely impossible to 

calculate SFE analytically.  Nevertheless, the system of differential equations in (4) can be 

solved by numerical integration, given NN Sppp ,,, 221 . By gridding the space and/or 

employing optimisation algorithms, values NN Sppp ,,, 221  that (nearly) fulfil  

0C  can be found. In practice, because of numerical errors, SFE candidates that almost 

fulfil 0,,, 221 CSppp NN  can not be ruled out. The second-order condition can be 

checked graphically or numerically.  

4. AN EXAMPLE WITH THREE ASYMMETRIC FIRMS 

The numerical procedure to find valid SFE is illustrated by an example with three firms. Their 

production capacities are: ,
7

1
7
2

2  and .
7
4

3  The marginal cost function of all 

firms is linear, 
i

i
i

S
cC 1 , up to the capacity constraint. Assume further that the price cap 

is .4cp

4.1. Necessary conditions 
The KM first-order conditions of the SFE candidates corresponding to (4) are given by the 

following set of two systems of differential equations:  

33

2

3
33

2
22

1

1313

1212

11

3
33

2
22

1
11

1

7
44

7
24

0
4

71

0
2

71
4,

7

0
4

71

0
2

71

071

,

ScS

cS

ScppSpS

ScppSpS
cpp

pSpS
pSpS

pS

ScppSpS

ScppSpS

ScppSpS

pcp

The variables can be normalised such that pcp ~  and pSpS ii
~~ , so that 
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33

2

3
33

2
22

1

1313

1212

11

3
33

2
22

111

1

~
7
44~

7
24~

0
4

~7
1~~~~~

0
2

~7
1~~~~~

4,~~

~~~~
~~~~ 7

1~~

0
4

~7
1~~~~~

0
2

~7
1~~~~~

0~71~~~~~

~,1~

SS

S

S
ppSpS

S
ppSpS

pp

pSpS
pSpS

pS

S
ppSpS

S
ppSpS

SppSpS

pp

(5)

Given a set of values ,~,~
31 Sp  the system representing the price interval 4,~

1p  can be 

solved by numerical integration (see the Appendix for details of the numerical integration). 

This solution yields end-conditions for the system of differential equations valid for 1
~,1~ pp ,

which in turn can be solved.  

The next step is to check whether the calculated supply functions violate the non-decreasing 

and non-negativity requirements. The criterion function 31
~,~~ Sp  returns the first price 

(starting from the price cap) for which any supply function violates any of the requirements.  

Figure 2. The numerical procedure to find valid SFE candidates.

An example of a parameter set that generates a non-valid SFE is 4~
1p  and .0~

3S  This 

is the boundary condition if the price cap is viewed as a public signal that coordinates bids.10

The equilibrium was suggested by Baldick & Hogan, as it yields a unique SFE for symmetric 

                                                
10 All supply functions are smooth up to the price cap, at which point all capacity constraints bind. 

Optimization algorithm

Numerical integration

of first-order condition

(System of ODE)

31, Sp
Check validity

pSi

Optimization algorithm

Numerical integration

of first-order condition

(System of ODE)

31, Sp
Check validity

pSi

31, Sp
Check validity

pSi
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producers [1]. They observe, however, that for asymmetric producers the public signal 

assumption often leads to invalid equilibria as in Figure 3. In this example, the supply functions 

violate both the non-decreasing and non-negativity requirements.  

-0,5

-0,3

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

Producer 1

Producer 2

Producer 3

p/c

iS

Figure 3. The parameter set 4~
1p  and 0~

3S  generates invalid supply functions. This is 

the boundary condition when the price cap is viewed as a public signal that coordinates bids.

To get an idea of the parameter space for which ,1~,~~
31 Sp ~ is calculated for a grid 

with 400x400 points in the space .
7
4,04,2~,~

31 Sp  The result is presented as a contour 

plot in Figure 4, which indicates that 31
~,~~ Sp  has a minimum around 3~

1p  and 

.25.0~
3S  By means of an optimisation algorithm, the minimum of 31

~,~~ Sp  is located at 

117.3~
1p  and ,2541.0~

3S and the min-value is approximately 1.005.11 005.1~  is close 

to, but still above, 1~ , which is theoretically necessary for the conjectured SFE. The 

difference can be explained by the numerical sensitivity of the solution. If a unique SFE exists, 

as should intuitively be expected based on previous SFE studies [6,7], then a unique set of 

31
~,~ Sp  exists that yields valid supply functions. Thus there is a valid, unique triple of 

trajectories associated with this set that fulfils the systems of KM first-order conditions in (5). 

The slightest deviation from this triple, due to a small numerical error, will lead to 

                                                
11 The optimisation calculation employs the fminsearch algorithm, a simplex search method of Matlab. Estimation 
of the min-value depends on tolerances used in the numerical integration. 
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.1~,~~
31 Sp The calculated supply functions for the set 2541.0~,117.3~

31 Sp  are 

plotted in Figure 5. 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0.05

0.1
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0.5

0.55

2.
2

2.
5

3.3
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Figure 4. Contour plot of .~,~~
31 Sp A minimum exists around 1.3~

1p  and .25.0~
3S

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6

Firm 1
Firm 2
Firm 3

 p/c

3
~S

iS

 p 1
~

Figure 5. The equilibrium candidate.

As shown in a previous paper, the unique asymmetric equilibrium for constant marginal 

costs is piece-wise symmetric [7]. Two arbitrary producers have the same supply function 

unless the capacity constraint of one binds. With the strictly convex cost functions assumed in 

this paper, it will be more expensive for a smaller firm to produce a given supply compared to a 

larger firm. Thus it is expected that producers with more capacity sell more at every price, as in 

1
~p

3
~S



12

Figure 5. Still it is apparent that the largest firm uses its market power extensively. More than 

40 percent of the capacity of producer 3 is not offered below the price cap.

Note that firms 2 and 3 have a kink in their supply functions at 1
~p , which compensates firm 

1’s switch from elastic supply to perfectly inelastic supply. A discontinuous increase in the 

elasticity of the supplies of firms 2 and 3 ensures that the elasticity of their residual demand is 

continuous. It follows from the KM first-order condition in (3) that this is necessary if the 

supply functions of firms 2 and 3 are to be continuous at p1.

4.2. The second-order condition 
Does the candidate fulfil the sufficient second-order condition? Denote the supply functions of 

the SFE candidate in Figure 5 by Si
X(p) and denote its market price by pX( ). Given S-i

X(p), does

pX( ) globally maximise pi , for every ? To indicate this, the isoprofit lines of all 

producers are plotted in Figures 6 to 8 together with pX( ). For a local extremum, a vertical line, 

corresponding to a constant  , should have a tangency point with a isoprofit line at pX( ). This

corresponds to the KM first-order condition and appears to be true for every demand level for 

all producers with non-binding capacity constraints. For such firms, one can also deduce from 

the shape of the isoprofit lines that profit is globally maximised at pX( ).  

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

0

-0.42
-0.72-1.14

0.24

0.42

Figure 6. Isoprofit lines of firm 1. 

/
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price
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In regions where producers cannot control the price, either due to a binding capacity 

constraint or a binding price cap, the tangency condition is not necessarily fulfilled. For 

example, due to its capacity constraint, firm 1 cannot unilaterally push the price below pX( ) for

1pS X . By increasing mark-ups, the firm is still able to increase the market price. 

However, according to Figure 6, such deviations decrease profits. Neither firm 1 nor 2 can 

control the price for pS X .12 Their capacity constraints prevent them from reducing the 

price and the price cap prevents them from increasing the price.  Firm 3 could reduce the price 

for pS X , but according to Figure 8 it would not be profitable. Thus it appears that pX( )

globally maximises pi , for every when competitors’ aggregate supply is given by  

S-i
X(p).

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

0

-0.18
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0.36

0.54

0.72

0.9

Figure 7. Isoprofit lines of firm 2.

                                                
12 Recall that pS  does not include ,NS  as supply functions are left continuous. 
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Figure 8. Isoprofit lines of firm 3. 

4.3. Welfare loss 
With symmetric cost functions as in [6], or asymmetric capacities and identical constant 

marginal costs as in [7], there are no inefficiencies because demand is perfectly inelastic and all 

firms operate at the same marginal cost. However, when marginal costs are increasing and 

large firms have larger mark-ups for every marginal cost, as in Figure 5, there is a welfare loss. 

Production is inefficient as some units with a high marginal cost are accepted from small firms 

instead of cheaper production from larger firms. For the example with three firms, the welfare 

loss is illustrated in Figure 9.   

In this example, the relative production inefficiency is largest for the demand outcome 

,1pS X  when the capacity constraint of firm 1 starts to bind. For higher demand, 

additional production from firms 2 and 3 is accepted, which is cheaper than the most expensive 

generator of firm 1, and the cost ratio decreases. Another kink in the cost ratio occurs when the 

capacity constraint of firm 2 binds. Production is optimal when the whole capacity is utilised, 

i.e. .

p/c

/
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Figure 9. Total production cost relative to optimal cost for the example with three firms.  

The problem of inefficient production has lead von der Fehr & Harbord [3] to suggest that 

electric power markets should consider Vickrey auctions instead of uniform-price auctions. The 

main advantage of the Vickrey auction is that it is optimal for producers to bid their true 

marginal costs because they are offered an information rent to do so.

5. CONCLUSIONS 

Firms typically have non-constant marginal costs and asymmetric production capacities. In this 

general case, the first-order conditions of a Supply Function Equilibrium (SFE) constitute a 

system of non-autonomous ordinary differential equations. Solving such a system analytically 

is very difficult and likely to be impossible. Nevertheless, it can be solved by numerical 

integration. One problem, however, is that electricity auctions normally require non-decreasing 

supply functions and Baldick & Hogan have observed that numerically calculated asymmetric 

supply function equilibria tend to violate this restriction [1]. The three exceptions are: 

symmetric firms with identical cost functions, cases with affine solutions — i.e. affine marginal 

costs and no capacity constraints — and when there are small variations in demand. 

This paper presents a numerical procedure that can solve the problem of invalid asymmetric 

supply function equilibria. It is conjectured that the general asymmetric SFE has properties 

similar to those found in the case of constant marginal costs, analysed in [7]. All supply 

functions fulfil the first-order condition from the lowest marginal cost up to the price at which 
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either the capacity constraint or price cap binds. The capacity constraints of small firms bind at 

lower prices compared to firms with larger capacity. The capacity constraint of the second 

largest firm starts to bind at the price cap. In turn, the largest firm has a perfectly elastic supply 

NS  at the price cap. Except for the two largest firms, the prices pi at which the capacity 

constraints of firms bind are unknown constants, as is .NS  The first-order conditions of this 

assumed equilibrium yield N-1 systems of non-autonomous ordinary differential equations. 

Given ,,,, 221 NN Sppp  the set of systems can be solved by means of numerical 

integration starting at the price cap and proceeding in the direction of a decreasing price. When 

any of the supply functions violate the restrictions that a supply function must be increasing 

and non-negative, the integration is terminated. The criterion function NN Spp ,, 21

returns the price at which the integration terminates. For a valid SFE candidate,  must in 

theory equal the marginal cost of the cheapest unit. Based on the results for asymmetric 

producers with constant marginal costs one would intuitively expect a unique SFE, which can 

be found by an optimisation algorithm minimising .

The procedure for finding asymmetric SFE candidates is illustrated by an example with 

three firms and linear marginal costs. A contour plot of  and an optimisation algorithm 

indicate that it has a unique minimum just above the marginal cost of the cheapest unit. This 

slight deviation can be expected as numerical errors would force the unique triple of SFE 

trajectories slightly off their track. Furthermore, numerically calculated isoprofit lines indicate 

that no producer will find it profitable to unilaterally deviate from the SFE candidate.  

At the price pi, for which the capacity constraint of firm i starts to bind, the elasticity of 

supply will increase discontinuously for each firm with a non-binding capacity constraint. This 

ensures that the elasticity of residual demand of all firms with non-binding capacity constraints 

is continuous at pi. Thus in equilibrium, all but the smallest firm will have kinks in their supply 

functions below their capacity constraint.

The numerical procedure can be generalised to elastic demand, any increasing and convex 

cost function and, with enough computer power, any number of firms. Thus the algorithm 

presented should be general enough to calculate supply function equilibria of real electricity 

markets.  The procedure is more likely to generate a valid SFE with the conjectured properties 

if (i) the larger of any two firms has weakly larger marginal cost for any share of capacity and 

(ii) if all firms have the same marginal cost at zero supply. With adjustments in the conjectured 

properties, for example,  the order in which firms’ capacities bind, it should be possible to 

apply the method to even more general cost functions.  In addition, if firms have different 
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marginal costs at zero supply, the supply function of the firm with the lowest marginal cost (at 

zero supply) is expected to have a perfectly elastic segment at the second lowest marginal cost. 

Given sufficiently elastic demand, a price cap is not needed in the model. In this case, the 

remaining capacity of the largest firm will be sold along the Cournot schedule, as in the 

asymmetric duopoly studied by Newbery [10].  

For asymmetric firms with increasing marginal costs, asymmetric mark-ups imply 

inefficient production. The reason for this is that large firms have greater market power. At 

every marginal cost, small firms have lower mark-ups compared to large firms. Hence, some 

output from costly generators of small firms will be accepted instead of cheaper production 

from larger firms.  
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APPENDIX 

The numerical integration is performed in Matlab. It has been observed by Newbery that the 

coupled differential equations associated with SFE are stiff and highly sensitive to the starting 

point chosen for the numerical integration [10]. The example studied in this paper has the same 

problem. Thus a robust solver is employed, the ode15s of Matlab with the backward 

differentiation option.

When using numerical integration algorithms, it is often necessary to rewrite the system of 

differential equations in the standard form .xftx  This transformation is illustrated for the 

system of differential equations below. The first-order condition is 

.0'

0' 1111

pSCppSpS

pSCppSpS

NNNN

The system can be rewritten in the following form: 

.
'

' 1
11

1

pS
pSCp

pS
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pSCp

pS

N
NN

N
(6)

Summing over all equalities yields 
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As ,pSpSpS ii  the system in (6) can now be rewritten as 
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which has the standard form .xftx A more general expression, which also considers 

elastic demand, has been derived by Baldick & Hogan [1].
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1. INTRODUCTION 

Most electric power markets are organised as uniform-price auctions (UPAs). One exception, 

however, is the balancing market for electricity trade in England and Wales, which in 2001 

switched from a UPA to a pay-as-bid auction (PABA), also known as a discriminatory 

auction. It was the belief of the British regulatory authority (Ofgem) that the reform would 

decrease mark-ups in wholesale electricity prices. Before the collapse of the California Power 

Exchange, a similar switch was also considered for this market [17].  

The balancing market allows the system operator to buy or sell last-minute power from 

power producers to keep a continuous balance of demand and supply. This paper focuses on 

market situations where more supply is needed, i.e. the system operator buys power as in a 

procurement auction. It is straightforward nonetheless to draw analogous conclusions for 

market situations where less supply is needed and the system operator sells power in the 

balancing market, as in a sales auction.

In a UPA, all accepted bids are paid the marginal bid. Thus in its procurement version, all 

infra-marginal bids are accepted at a price above their bid. In a PABA, all accepted bids are 

paid their bid. A natural, but naive, first thought is that switching to a pay-as-bid auction 

would drastically reduce mark-ups for infra-marginal units and thereby decrease the average 

electricity price. However, firms change their bidding strategy after switching to a PABA. 

Based on intuition and experience from classical auction theory, many researchers actually 

argue in favour of electricity markets being organized as UPAs, see Kahn et al. [17] and 

Wolfram [27] for example. An experiment by Rassenti et al. [22] also suggests that average 

prices are higher in PABAs.3

In classical auction theory, comprising the private-value, common-value and affiliated-

value models, demand of the auctioneer is certain whereas uncertainties relate to costs [20]. In 

contrast, electricity markets are generally characterised by known production costs. Moreover, 

the system operator’s demand is uncertain when bids are submitted as it depends on 

unexpected temperature variations as well as unexpected outages in generators, machines and 

transmission-lines. Thus in models of strategic bidding in electricity procurement auctions, 

costs are often assumed to be certain and demand uncertain. To date, most theoretical studies 

of electric power auctions have been devoted to the UPA, see e.g. [1-3,9,11,13-15,23].  Three 

3 The demand in the experiment is not revealed to the players, but is certain in each period and the players can 
deduce it while playing. As in SFE with certain demand, this set-up would lead to an enormous range of 
equilibria [18]. Thus the experimental results are very much driven by the equilibrium selection process. Further, 
it is not certain that the experiments are long enough to allow the players find an equilibrium, especially as they 
have to find out the certain demand by themselves. 
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recent exceptions [6,8,24] study bidding behaviour in electric power markets organised as 

PABAs and compare prices and welfare in PABAs and UPAs. All of these studies indicate 

that electricity consumers should prefer PABA. This paper comes to the same conclusion with 

a model that is more general in terms of number of firms and production costs.  

The model developed in this paper is very much related to the Supply Function 

Equilibrium (SFE) under uncertainty, which was introduced by Klemperer & Meyer [18]. In 

the non-cooperative Nash equilibrium of the static game, each producer commits to the supply 

function that maximises his expected profit given the bids of competitors. The set-up of their 

model is similar to the organisation of most electricity markets, with firms submitting supply 

functions to a uniform-price auction with uncertain demand, and SFE is an often used model 

of strategic bidding in electric power markets organised as UPA [1-3,11,13-15,23].  In this 

paper, the fundamental assumptions of the SFE model are employed to derive a similar model 

for a pay-as-bid auction. It is assumed that demand is perfectly inelastic and that there is a risk 

of power shortage, which is allowed to be arbitrarily small. Both assumptions are realistic for 

balancing markets [13]. As in [13], the risk of power shortage ensures a unique equilibrium. 

To facilitate an analytical solution, only symmetric equilibria are considered. As for UPAs, it 

should be possible to extend the analysis to consider asymmetric producers [14,15].  

Another contribution of this paper is the comparison of the two SFE models for 

procurement auctions. When demand follows the Pareto distribution of the second kind [16], 

the demand-weighted average price is weakly lower in PABA than in UPA.4 This probability 

distribution is not unreasonable for the balancing market, for which large imbalances are less 

likely than small imbalances. In a one-shot game with perfectly inelastic demand and 

symmetric firms, mark-ups have no implications for social efficiency. Large mark-ups do, 

however, imply substantial redistribution of income from power consumers to power 

producers, itself of social interest. Furthermore, large mark-ups lead to welfare losses in the 

long term as firms entering the market invest unnecessarily in additional capacity [11]. 

In a previous paper, Federico and Rahman [8] compare a UPA and PABA for two polar 

cases, perfect competition and monopoly, assuming that demand is elastic and follows a 

uniform probability distribution. They show that expected output decreases and expected 

consumer surplus increases after switching to a PABA. On the other hand, welfare is reduced 

in the competitive case. Under monopoly bidding, welfare is larger in PABAs if and only if 

marginal costs are sufficiently flat and demand uncertainty sufficiently low.  

4 Analogously, demand-weighted average prices in sales auctions would be higher in a PABA than a UPA.  
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Fabra et al. [6] derive a Nash equilibrium for a duopoly with constant marginal costs. The 

two firms are asymmetric in terms of both marginal costs and capacity. In their model, each 

producer must submit a horizontal (perfectly elastic) bid for its entire capacity. Demand is 

perfectly inelastic and known with certainty by the producers. Under these circumstances they 

show that average prices are lower in the PABA than in a UPA, and numerical examples 

suggest that the difference might be substantial. If demand is sufficiently high, the PABA has 

no pure strategy equilibria and only a mixed strategy equilibrium. The authors offer several 

extensions of the model, but the extensions do not lead to any definite conclusions regarding 

the comparison of the two auction types. Son et al. [24] use a similar model as Fabra et al., but 

one of the two firms has two production units with different marginal costs. Son et al. also 

conclude that average prices are lower in the PABA than in a UPA if demand is certain and 

perfectly inelastic. Simulations suggest that the conclusion may hold also for elastic demand. 

This paper is structured as follows. Notation and assumptions are presented in Section 2 

and the unique SFE of a PABA is derived in Section 3. It is shown that the first-order 

condition implies that the bid of each production unit is chosen to maximise the unit’s 

expected profit, given the bids of competitors. The risk of power shortage provides an end-

condition for the supply functions. A unique equilibrium candidate exists that satisfies both 

the first-order condition and the end-condition. Next, a second-order condition is derived. A 

unique equilibrium always exists if the demand’s probability distribution has a downward 

sloping hazard rate and marginal costs are non-decreasing. In Section 4, average prices in the 

two procurement auctions are compared. Section 5 illustrates the two supply function 

equilibria with a simple example and Section 6 presents the conclusions.

2. NOTATION AND ASSUMPTIONS 

Assume that there are N 2 symmetric producers. The bid of each producer i consists of a 

monotonically increasing supply function Si(p), where p is the price.5 The inverse of the 

supply function is denoted by pi(Si). S-i(p) and S(p) denote the combined supply of firm i’s

competitors’ and total supply in the marketplace, respectively.  The aggregate bid as function 

of total supply is denoted Sp . The average price as a function of supply, ,ˆ Sp  is called the 

equilibrium price. In a UPA, all accepted bids are paid the marginal bid, i.e. SpSp UU ,

5 Electricity auctions do not normally accept decreasing supply functions. 
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while SdxxpSp
S

/ˆ
0

 in the PABA. As in Klemperer & Meyer’s original work [18], only 

equilibria with twice continuously differentiable supply functions are considered. Thus in a 

symmetric equilibrium, pi(Si) is smooth for ,/,0 * NSi where * is the total offered 

supply of all producers. If firms are withholding capacity *  is less than , the total capacity 

of all producers. 

Denote perfectly inelastic demand by , its probability density function by f( ) and its 

distribution function by F( ). The density function is continuously differentiable and has 

support on the interval ,ˆ,0  where ˆ  is maximum demand. It is assumed that ,ˆ  i.e. the 

capacity constraints of all producers will bind with a positive probability, which is allowed to 

be arbitrarily small. Demand is zero above the reservation price (price cap) p . Therefore, in 

the extreme case where demand exceeds market capacity, the market price of the uniform-

price auction equals the price cap.  

All firms have identical cost functions C(Si), which are increasing, convex, twice 

continuously differentiable, and fulfil ./ pN)(C R denotes the sum of firms’ expected 

revenues and i denotes the expected profit of firm i.

3. THE UNIQUE SYMMETRIC SFE OF A PAY-AS-BID AUCTION 

In the SFE of a UPA, a firm chooses, conditional on residual demand, a supply function that 

maximises profit for each demand outcome [18]. This section derives necessary and sufficient 

conditions for the SFE of a PABA. In Section 3.1, the first-order condition of a PABA is 

derived. It implies that each firm chooses a supply function that maximises expected profit for 

each of its production units, given residual demand. The first-order condition is a differential 

equation which can be solved for general cost functions and the solution has one integration 

constant. In Section 3.2, this constant is identified by considering the risk of power shortage; 

the symmetric equilibrium bids of all firms must reach the price cap exactly when the 

aggregate capacity constraint binds. This forms the end-condition. 

The first-order condition and the end-condition must necessarily be satisfied in 

equilibrium. In Section 3.3, a sufficient second-order condition is also derived.  Unlike a 

UPA, it is not possible to prove that all increasing, smooth supply functions satisfying the 

necessary conditions are supply function equilibria of a PABA. In particular, it turns out that 
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if the hazard rate of demand is locally increasing and marginal costs are sufficiently flat, then 

pure strategy equilibria of a PABA do not exist. On the other hand, I show that a pure strategy 

equilibrium always exists if the hazard rate is monotonically decreasing and marginal costs 

are non-decreasing. This is fulfilled by the Pareto distribution of the second kind, which is 

used in the comparison of the UPA and PABA. Moreover, this choice simplifies the algebraic 

manipulations, as the inverse of its hazard rate is linear.  

3.1. The first-order condition 

It is assumed that firm i‘s competitors follow a symmetric equilibrium candidate. The first-

order condition derived below must necessarily be fulfilled if the strategy implied by the 

symmetric equilibrium candidate locally maximises firm i’s expected profit. To avoid 

differentiability problems, all considered deviations of firm i satisfy 00 ji pp  and 

NpNp ji // ** .ij  The profit from an accepted bid of an infinitesimally small unit 

is .dSSCSp iii Thus the expected profit of firm i is

.
ˆ /

00 0 *

** N

iiii

pS

iiiii ddSSCSpfddSSCSpf
i

The second term of this expression represents the contribution from demand outcomes 

exceeding market supply. By changing the order of integration the following can be shown:6

.1
/

0 ,

/

0

ˆ/

0

ˆ

/

0

*

**

*
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N
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iiiiii

dSSpSSFSCSp
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dSdfSCSpSp

iiii

iiii
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 (1) 

Firm i chooses the bid function pi(Si) such that its expected profit is maximised. That is, the 

firm faces a calculus of variation problem with the fixed terminal points 00 ji pp  and 

6 Note that the limits of the integrals may change when the order of integration is changed [25]. It is 
straightforward to verify the new integration limits by plotting the integrated area.   
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NpNp ji // ** . As ii Sp  does not enter the integral, the Euler equation degenerates 

to the following equation [5]:  

./,0

,01

* NS

SSpSfSCSpSpSSSpSF
p

i

iiiiiiiiiiiiii
i

i

(2)

The functional iiii SpS , represents the contribution to expected profit from an 

infinitesimally small unit. Thus, the Euler equation implies that expected profit from each unit 

is maximised, conditional on residual demand. Because only equilibria with smooth and 

increasing supply functions are considered, (2) can be written as follows:

./,0:

,01
* NpSp

pSpSfpSCppSpSpSF

i

iiiiii  (3) 

In addition, only symmetric SFE are considered, i.e. .1 pSNpS ii  Thus (3) can be 

further simplified to: 

./,0:,011 * NpSppNSfpSCppSNpNSF iiiii  (4) 

This first-order condition corresponds to the first-order condition of a UPA derived by 

Klemperer & Meyer [18]. Note that (4) implies that p>C’ if and only if Si’(p)>0.

In order to solve the differential equation, it is transformed into an equation in terms of 

p , the price of the marginal unit as a function of the demand, instead of .pSi  The same 

transformation is applied when solving the differential equation associated with the SFE of a 

UPA [1,23]. In the symmetric equilibrium, pNSi  and ,1
pN

Si  if .*  Thus 

*0,0/11 fNCp
pN

NF .

and

./111
N

fNCNFp
N

fpN

This differential equation can be solved by means of the integrating factor, 11
1 N

N
F , to 

yield

*

1

,0
1

1/1

1

1

N
N

N
N

FN

duuFufNuCNA

p , (5) 
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where A is an integration constant.  

3.2. Determining the integration constant 

Analogous to the derivation of the SFE of a UPA, the integration constant A allows for a 

continuum of potential equilibria [18]. In this section, I argue that the integration constant can 

be uniquely determined if, as in [13], the capacity constraint binds with a positive probability. 

This can occur if there is a risk of large demand shocks and/or unexpected multiple generator 

failures.7 In this case, the price of the marginal unit must reach the price cap exactly when the 

capacity constraint starts to bind.   

If ,*  some capacity is withheld from the auction. However, it cannot be optimal to 

withhold power. A producer will find it profitable to offer previously withheld units at or just 

below the price cap. Bidding with his whole capacity will increase the contribution to 

expected profit of demand outcomes ,*  while the possible profit reduction associated 

with demand outcomes *  can be made arbitrarily small.  

The highest bid in the auction must equal the price cap. Otherwise, the highest bid could be 

increased without lowering the probability that its associated unit is accepted. Moreover, as 

noted in Section 2, the analysis is confined to equilibria with twice continuously differentiable 

supply functions. Hence ,pSi  implying that 0p .8 Thus by construction supply 

functions cannot have horizontal segments at the price cap.  

In summary, the price of the marginal unit must reach the price cap but not before the 

capacity constraint binds. Hence, the integration constant can be pinned down by the end-

condition pp .9 It follows from (5) that 

,0
1

1/11

1

11 1

N
N

N
N

N
N

FN

duuFufNuCNpFN

p . (6) 

7 To avoid inconsistencies in the model, one can limit attention to production uncertainties for firms who 
exclusively have must-run production. These firms cannot bid strategically in the balancing market. Two 
examples of such firms in the British market are British Energy and British nuclear group, both of whom 
exclusively produce nuclear power.  
8 The assumption simplifies the proof but is not critical. Allowing for perfectly elastic bids does not change the 
result because, as in a Bertrand game, it is profitable to slightly undercut competitors’ horizontal bids [13].
9 The same end-condition is used to derive a unique SFE for UPAs [13]. Baldick & Hogan have suggested the 
same end-condition for UPAs but offer a weaker motivation; the price cap and capacity constraints can be 
viewed as public signals that coordinate the bids of producers [2]. 
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3.3. The second-order condition 

The only remaining equilibrium candidate is given by (6) which fulfils both the first-order 

condition and the end-condition of the PABA.  For this candidate, let p  be the price of the 

marginal unit as a function of demand. The symmetric supply functions of the candidate are 

designated by .pSi  If the aggregate supply of competitors equals ,iS  then — as shown by 

(2) — the expected profit of any unit of firm i is at a local extremum. By studying the second-

order condition, it can be verified that, under certain conditions, expected profit is globally 

maximised for each production unit of firm i. Because firms and the equilibrium candidate are 

both symmetric, this argument is true for any firm and offers a sufficient condition for a SFE.

It follows from (1) that for a given Si, the expected profit from the marginal unit of firm i is 

,1, iiiiiii dSpSSFSCpdSpS  (7) 

where p=pi(Si) is the bid of the marginal unit. Because competitors follow ,iS  (2) can be 

rewritten as 

iiiiii
ii SpSfSCppSSpSF

p
pS

1
,

or

,1,

,

/1

i

iiii

Sp

ii

SpSHSpSG

ii

ii
ii

ii SCppS
SpSf

SpSFSpSf
p

pS (8)

where G(x) is the inverse of the hazard rate H(x). Let ii Spp* . The first-order condition of 

the PABA in (4) ensures that .0
,

*pp

ii
p

pS
 As f>0 and ,0,*

iSp  the following 

two conditions would ensure that pSii , is globally maximised at the price :*p



10

0, iSp  for *,0 ppp 10  and 0, iSp  for ppp ,* . A SFE is guaranteed if 

they are both fulfilled for all NSi /,0 . On the other hand, if 0,
*pp

i
p

Sp  for 

some Si, then pSii ,  is locally minimised at the price ii Spp*  and there exists a 

profitable deviation. The conditions for the global maximum and local minimum can be used 

to show the following theorem: 

Theorem 1.

i) If ,,00G  then the equilibrium candidate in (6) is a SFE.  

ii) If 0// NCGGNCp  for some ,,0  then the equilibrium 

candidate in (6) is not a SFE, and a smooth, symmetric SFE does not exist.  

Proof: See Appendix. 

As ,2 xG
xGxH it follows from Theorem 1 that a downward sloping hazard function 

ensures a SFE. On the other hand, if the hazard function is locally upward sloping and 

marginal costs sufficiently flat, then smooth symmetric equilibria can be ruled out. There is 

some intuition behind the non-existent equilibria. In the case of a monopolist or Cournot 

player, a similar problem occurs when demand or residual demand is sufficiently convex [10].  

In the PABA, it follows from (7) that ii SpSF1 can be interpreted as the residual 

demand of the marginal unit when firm i supplies Si units of power.11 Now, differentiate 

ii SpSF1  twice with respect to p. Eliminate pS i by differentiating the first-order 

condition of the PABA in (4). Consider the case 0f , which implies an upward sloping 

hazard rate (see (8)). Then it can be shown that the residual demand, ii SpSF1 , is 

convex, if marginal costs are sufficiently flat.

                                                
10 It is never profitable to offer a unit below ,0p as the unit is always accepted at this price.
11 Previously Bulow and Klemperer [4] have noted that the probability that a bid is accepted (1-F) can be 
interpreted as residual demand. 
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The existence of equilibria is easier to guarantee in UPAs, as supply function equilibria of 

UPAs are independent of f . A symmetric SFE of a UPA exists as long as the demand 

function is concave [18].

3.4. The Pareto distribution of the second kind 

As shown below, the Pareto distribution of the second kind has ,0constxG  which 

according to Theorem 1 guarantees a SFE. Moreover, due to the linearity of the inverse 

hazard rate, it will turn out that the first-order condition becomes particularly simple. The 

Pareto distribution of the second kind has the probability distribution
11

1 xxF  (9) 

and the probability density 

.111
xxf  (10) 

Hence, the inverse of its hazard rate is  

,1 x
xf

xFxG   (11) 

where , >0.  

The parameter   determines 0f  as illustrated in Figure 1. When  is large, f has a steep 

negative slope for small arguments and a thick tail for large arguments, vice versa for small .

The density function is decreasing and strictly convex for all , >0. Thus the Pareto 

distribution of the second kind captures the important characteristic that small imbalances are 

more likely than large imbalances in a balancing market. 

With the Pareto distribution of the second kind, the first-order condition of the PABA in 

(4) can be simplified to 

,01 pSCppSNpNS iii

which resembles the first-order condition of the UPA [18], 

.01 pSCppSNpS iii
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Figure 1. The effect of  and  on the probability density function f(x).

It follows from (6) that the equilibrium marginal bid in a PABA with a Pareto distribution 

of the second kind is

.
/1

1

11
1

N
N

N
N

N
N

N

duuNuCNpN
p  (12) 

4. Comparing pay-as-bid and uniform-price auctions 

Demand is assumed to be perfectly inelastic. As a result, total production in a pay-as-bid and 

uniform-price auction are equivalent. Furthermore, only symmetric equilibria are considered. 

This means that for every demand outcome, the most cost-effective generators will be 

accepted in both procurement auctions. Hence, production costs are also the same in both 

auctions for all outcomes. Average prices and mark-ups will differ, however, and the extent of 

the difference is investigated by comparing firms’ total expected revenue in the two auctions. 

To ensure a SFE in both procurement auctions, demand is assumed to follow the Pareto 

distribution of the second kind. In the first subsection, expected revenues in the PABA are 

shown to be equal to or lower than expected revenues in the UPA when marginal costs are 

constant. This result is then used in the next subsection to prove the same inequality for non-

decreasing marginal costs.       
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4.1. Constant marginal costs 

It follows from (1) that total expected revenue for all firms in a PABA is  

.11
00

dpFdSSpSFRp  (13) 

By means of (9) and (12) it can be shown that 

0

1

1

1111

)/(1

d
N

duuNuCNNp

R
N
N

N
N

N
N

P . (14) 

Constant marginal costs are assumed in this section, i.e. ./ cNuC  For this case, 

straightforward integration yields 

,,,

1

0

00

11

11

1

1

1

dcNgcp

dcdcpR

P

P

N

N
N

N
N

 (15) 

where

.

11

11
,, 1

1

1

1

N
N

N

N

P Ng   (16) 

The following can be shown by means of integration by parts: 

.1
00

1

00

111111
dfFdd

Thus the second term in (15), 
0

11

dc , is the expected production cost, and the 

first term, ,, Ngcp P , is a measure of the mark-up.  

The equilibrium marginal bid for symmetric firms in a UPA can be calculated from [13], 

,
u

duNuCNpp N
N

N

N

U 0/1 1
1

1

.   (17) 
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The total expected revenue for firms in a UPA is12

.1
0

pFdpfR UU

The second term is the contribution from demand outcomes exceeding market capacity. 

Combining (9), (10) and (17) yields

./1
1111

0

1
1

1
1 pd

u
duNuCNpR N

N
N

N

U (18)

Assuming constant marginal costs, the expression can be simplified by means of integration 

by parts: 

,,,

d1

0

00

1
1

11

11
1

dcNgcp

dccpNR

U

N
NU

  (19)

where

.d1,,
0

11
tttNNg N

NU  (20) 

The integral can be solved by repeated use of integration by parts. Subtracting (15) from (19) 

yields the following: 

.,,,, NgNgcpRR PUPU

The contour plot of 
,,

,,,,

Ng

NgNg

U

PU
in Figure 2 illustrates the relative decrease 

of mark-ups when switching from a UPA to a PABA. The plot is not very sensitive to the 

number of firms. As the ratio is positive over a wide range of parameters, it seems that 

.0PU RR  This inequality can indeed be proven mathematically [12]. 

12 Analogously .ˆ1ˆ
0

pFdpfRp By means of integration by parts and the definition of p̂

it is straightforward to verify that this expression is equal to (13)  
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Theorem 2. With perfectly inelastic demand given by the Pareto distribution of the second 

kind and constant marginal costs, the expected revenue of symmetric firms in a pay-as-bid 

procurement auction is weakly lower than their expected revenue in a uniform-price 

procurement auction.   

Figure 2 shows that switching from a UPA to a PABA almost eliminates mark-ups in the 

area, for which both  and .1  As can be seen in Figure 3, this area correspond to a 

very low risk of power shortage. In contrast, mark-ups are nearly unchanged for either large 

(fat tail of the probability density function) or small  (small capacity), both of which imply a 

high risk of power shortage.
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Figure 2. Contour plot of 
,,

,,,,

Ng

NgNg

U

PU
 when N=2. The grey dotted lines 

indicate a region with a risk of power shortage realistic for electric power markets. 

In most electric power markets, reasonable assumptions for the likelihood of power 

shortages range from once every hundred years to 100 times per year. This range roughly 

correspond to the per hour probability of a power shortage being 10-6 to 0.01; one hour is the 

normal length of the delivery period. This region is indicated in Figure 2. Switching to a pay-

as-bid auction in an electric power market can reduce average mark-ups by 60 to 99 percent if 

1.0  and N=2; the lower the risk of power shortage, the larger the impact. The impact is 
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somewhat reduced if the number of symmetric firms increases. For N=10 and 1.0 ,

switching to a pay-as-bid auction reduces average mark-ups between 20 and 90 percent.  For 

,1  which corresponds to a more convex probability density function, there is little gain 

from switching to a pay-as-bid auction in the electric power market, regardless of the number 

of symmetric firms. 

The intuition underlying the role of  in the comparison of PABAs and UPAs is as follows. 

Equilibrium bids in UPAs are not influenced by the probability distribution of demand 

[13,18]. Bids in PABAs are, however, sensitive to . In particular, a smaller  makes low 

demand outcomes more likely. Intuitively, this increases the elasticity of residual demand for 

small Si. 13 Thus mark-ups are lower for these units in a PABA in accordance with the inverse 

elasticity rule [26]. For small values of , two effects drive down firms’ expected revenues in 

the PABA; (i) lower mark-ups for low demand outcomes and (ii) an increased probability of 

low demand outcomes. In the UPA, only the second effect drives down firms’ expected 

revenues. The same intuition may also explain why firms’ expected revenues are lower in 

PABAs than UPAs for the Pareto distribution of the second kind, which is characterised by a 

decreasing probability density. 
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Figure 3. Contour plot of 1- ,1
1

F   the probability of a power shortage. 

13 Recall that ii SpSF1  can be interpreted as residual demand of the marginal unit when firm i supplies 
Si units of power.  

Increasing risk of 
power shortage 
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4.2 Non-decreasing marginal costs 

In Section 4.1 it was shown that switching from a UPA to PABA reduces firms’ revenues if 

marginal costs are constant and demand follows a Pareto distribution of the second kind.

Using Theorem 2, this section demonstrates that the conclusion can be generalised to non-

decreasing marginal costs.  

The expected revenue in (14) is valid for non-decreasing marginal costs. The term related 

to the price cap can be rewritten in the same manner as (15): 

.
)/(1

,,
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1
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d
N

duuNuCN
NgpR

N
N

N
N

PP

By reversing the order of integration [25], it can be shown that

.
1

11
1)/(1,,

)/(1,,

,,

1

1

0

0 0

1

1

1

11
1

du
N

u
uNuCNNgp

duduNuC
N
NNgpR

uNh

P

u

Pp

P

N

N
N

NN
N

(21)

Similarly it follows from (18) and (19) that  
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The integral in uNhU ,,  can be solved analytically by repeated integration by parts. Let 

.,,,, xNhxNhxh PUN  Equations (21) and (22) now imply that 

./1,,,,
0

duuhNuCNNgNgpRRR NPUPU (23)
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Figure 4 presents a contour plot of .xh N The levels in the contour plot are very sensitive 

to N, whilst the pattern is comparatively stable.  The function xh N  appears to have profile

-|+ for N 2 and x 0, which is verified mathematically in [12]. If uh N  changes sign for 

,u  let this point be denoted u*, otherwise set .*u  Use (23) to calculate R1 for the non-

decreasing cost function ./1 NC  Next calculate R2 for the constant marginal cost 

NuCc /*
12 . Compared to ,/1 NC 2c  puts a (weakly) higher weight on negative 

xh N and a (weakly) lower weight on positive xh N . Thus 

.21 RR

From Theorem 2 it follows that .02R  Thus 01R  and RU RP  is true also for non-

decreasing marginal costs. From the reasoning above we can also conclude that R1 increases 

if the slope of 1C is increased while NuC /*
1  is kept constant.

Theorem 3. With perfectly inelastic demand given by the Pareto distribution of the second 

kind and non-decreasing marginal costs, the expected revenue of symmetric firms in a pay-as-

bid procurement auction is weakly lower than their expected revenue in a uniform-price 

procurement auction.   

Proof: See [12].
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Recall that demand is assumed to be perfectly inelastic and, accordingly, independent of 

the auction design. Thus Theorem 3 implies that the demand-weighted average price is 

weakly lower in PABAs than in UPAs. Furthermore, because only symmetric equilibria are 

considered, the most cost-effective generators will be accepted in both auctions for any level 

of demand. Thus production costs are the same in both procurement auctions and average 

mark-ups are weakly lower in PABAs than UPAs. 

It is obvious that RU=RP=0 when ,0  i.e. when market capacity is zero. It can also be 

shown that firms’ total expected revenues are the same in both auctions under perfect 

competition and monopoly. 

Theorem 4. With perfectly inelastic demand given by the Pareto distribution of the second 

kind, non-decreasing marginal costs, and N or N=1, the expected revenue of symmetric 

firms in a pay-as-bid auction is identical to their expected revenue in a uniform-price auction.   

Proof: See Appendix. 

5. EXAMPLE 

Assume N=2, =1, and linear marginal costs, xxC . The marginal bid in the PABA for 

these parameter values can be calculated by means of integration by parts and (12): 

1
2

12

122

2/1

2/1
p

p

The demand and price are normalised with respect to . In the PABA, the average price as a 

function of demand (the equilibrium price) is:

.1
24/3

11
122ˆ

2/3

2/1

0 p
dxxp

p

The equilibrium price in the UPA can be calculated by means of (17): 

.
/
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/
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Figure 5 shows pppU ˆand,,  for =0.02, 310p  and 410 . The latter 

corresponds to a risk of power shortage .10 4  The equilibrium price in the uniform-price 

auction equals C’(0) at zero demand. This is true in general for symmetric SFE of UPAs [13]. 

The unit with the lowest marginal cost still contributes to profits, as it is paid the marginal bid 

for >0. It is also true in general that the lowest bid in the pay-as-bid auction is higher than 

C’(0). If not, then the cheapest unit would not contribute to profits because accepted bids are 

always paid their bid. Therefore, the equilibrium price is higher in the PABA when demand is 

sufficiently small. In both procurement auctions, all units except for the one with the highest 

bid are offered below the price cap. Thus the equilibrium price in a PABA is always below 

the price cap. In the uniform-price auction, on the other hand, the equilibrium price equals the 

price cap when demand equals or exceeds the market capacity.  Hence, the equilibrium price 

is lower in the PABA when demand is sufficiently high.  
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Figure 5. Example for duopoly: prices as a function of demand are compared for the uniform-

price auction (UPA) and pay-as-bid auction (PABA). 

6. CONCLUSIONS 

The supply function equilibrium (SFE) framework for uniform-price auctions (UPAs) is 

similar to the organisation of most electricity markets and is often employed to model 

strategic bidding in such markets. This paper derives a SFE of a pay-as-bid auction (PABA), 

the auction used in the balancing market of Britain. In the analysis, demand is assumed to be 

/p

/
Equilibrium price=marginal bid in UPA 

Marginal bid in PABA 

Equilibrium price 
in PABA 
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perfectly inelastic and firms symmetric. Demand is also assumed to exceed market capacity 

with a positive probability, which is allowed to be arbitrarily small. This assumption rules out 

multiple equilibria. Unlike supply function equilibria of UPAs, pure strategy equilibria of 

PABAs do not always exist. In particular, it can be shown that a SFE of a PABA does not 

exist if there is a demand interval in which the hazard rate is locally upward sloping and 

marginal costs are sufficiently flat. However, a SFE always exists if the hazard rate of demand 

is monotonically decreasing and marginal costs are non-decreasing.

The equilibrium of a PABA is compared to the SFE of a UPA. It is assumed that demand is 

given by the Pareto distribution of the second kind, for which the inverse of the hazard rate is 

linear and increasing. It can then be shown that the demand-weighted average price in the 

PABA is equal to or lower than the price in the UPA.14 Equality occurs in the cases of a 

monopoly or perfect competition. For a probability density function with a low degree of 

convexity, switching from a UPA to a PABA will substantially reduce the average mark-up in 

electricity procurement auctions. With a high degree of convexity, the change in the average 

mark-up is negligible. That mark-ups are lower and consumer surplus higher in PABAs is in 

line with previous theoretical studies based on other assumptions [8,9,24]. The result 

contradicts the findings of an experimental study [22]. However, that study did not consider 

uncertain demand.   

The equilibrium price — the average price as a function of demand — is higher in PABAs 

compared to UPAs when demand is sufficiently low, but lower when demand is sufficiently 

high. This seems to be in agreement with the experimental finding that price volatility is 

lower in PABAs than UPAs [22].

A general assumption of the analysis is that firms are risk-neutral. Introducing risk 

aversion does not change the SFE of a UPA, as firms receive the best price for every demand 

outcome, given the bids of competitors. A risk-averse firm in a PABA, however, would put 

less weight on high-demand outcomes when profits are high and more weight on low-demand 

outcomes when profits are low. Hence, given the bids of competitors, risk-averse firms 

decrease their bids to increase profits for low-demand outcomes. Intuitively this would also be 

true in equilibrium. It appears that with risk-averse bidders, the advantages of PABAs are 

                                                
14 An analogous calculation would show that the demand-weighted average price in a pay-as-bid sales auction, in 
which the supply of the auctioneer follows a Pareto distribution of the second kind, is (weakly) higher compared 
to a uniform-price sales auction. Thus the auctioneer would prefer the pay-as-bid auction for positive as well as 
negative demand.  
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likely to increase.15  Another advantage of PABAs is that the risk for tacit collusion is lowered 

compared to UPAs. This is shown by both Fabra [6] and Klemperer [19].  

The larger risk for non-existent pure strategy equilibria in the PABA, shown in this paper 

and by Fabra et al. [9], could be a disadvantage. Kahn et al. [17] also point out that in a UPA 

it is optimal for small firms to simply bid their marginal costs while in a PABA, all firms 

must forecast market prices if they are to receive any contributions to profits.  This introduces 

an additional fixed cost for small firms which could be disadvantageous to competition in the 

long-run.

As small imbalances are more likely than large imbalances, the Pareto distribution of the 

second kind is a more reasonable representation of the uncertain demand in balancing markets 

than the uniform distribution employed by Federico & Rahman [8]. Nonetheless, an 

interesting topic for future research is to compare PABAs and UPAs for other distributions. 

The normal distribution is a natural choice. However, as its hazard rate is increasing, one has 

to make sure that marginal costs are sufficiently steep to ensure the existence of a SFE.  

 Lastly, this paper focuses on the case of symmetric firms. Analogous to [14], it should be 

possible to analytically derive supply function equilibria of PABAs for firms with identical 

constant marginal costs but asymmetric capacities. The unique equilibrium is expected to be 

piece-wise symmetric. For more general cost functions, asymmetric equilibria could be 

calculated numerically as in [15].  
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APPENDIX 

Proof of Theorem 1 

It follows from (8) that 

., iiiii SCppSSpSGSp  (24) 

The equality in (4) is valid for an interval of prices. Thus 

.0pSCppSpSG ii

The expression above can be used to eliminate pS i from (24). Accordingly, (24) can be 

written on the following form:  

.

,

pSCp
pSCSCpSGpSGSpSGpSCp

pSCp

SCppSGSpSGpSCp
Sp

i

iiiii

i

iiii

i
(25)

It follows from (4) that iSCp for increasing supply functions. Further, marginal costs are 

non-decreasing and G(x)>0, as the hazard rate is never negative. To prove claim i) consider 

the case when G(x) is monotonically increasing. If *,0 ppp then pSS ii

pSCSC ii and pSGSpSG ii . Thus it follows from (25) that 0, iSp

for *,0 ppp . Analogously, it can be proven that 0, iSp  for .,* ppp  The two 

conditions are fulfilled for all ,/,0 NSi which proves claim i.
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There is a local minimum if 0,*
iSp  and 0,*

iSp . It follows from (25) that a 

local minimum occurs if 0pSCpSGpSGpSCp ii , which proves claim 

ii).

Proof of Theorem 4 

It is known from (23) that 
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Thus the auctions have the same expected revenue under perfect competition, if 
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These two equalities are proven below.

It follows from (16) that 
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. Thus only t infinitesimally close to  will contribute to the 

value of the integral in (20).  
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Using (21) it can also be shown that 
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Now consider uNhN U
N

,,1lim . With the same argument as above,
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if01lim . Thus only t infinitesimally close to u  will contribute to the 

value of the integral in (22).  
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This analysis has assumed that N 2, which excludes the case of a monopoly.  In such a 

case, the inelastic auctioneer must buy from the monopolist who will offer all units at the 

price cap in both auctions (or arbitrarily close to the price cap).16  Thus, expected revenue is 

identical in the two auctions. 

                                                
16 Supply functions are assumed to fulfil .pS
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