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1 Introduction

In this introductory chapter we give some background material, necessary for
the understanding of the results in this thesis. The results will be summarised
in Chapter 2.

1.1 Background

The mathematical theory of domains started with the works of D. S. Scott
[27, 28] and Y. L. Ershov [6, 8]. It has by now developed into a rich subject
with applications in many fields of science. Thus we restrict this background
to the particular aspects of domain theory we study in the thesis. We will
focus upon domain theory as a theory of approximation and as a theory of
computability on mathematical structures via approximations. Foundational
work in these areas have been made by V. Stoltenberg-Hansen and J.V. Tucker.
For references, see [36, 33, 37, 31] and the two handbook chapters [34, 35].

1.1.1 Background on approximations

In this section we give a background to domain theory as a theory of approxi-
mations. A reference for this material is [30].

We first consider the problem of approximation abstractly. Let P be a set of
approximations of elements of a structure X. Suppose that for each x € X we
have a unique set of approximations approx(x) in P, and that there is a unique
element L€ P such that | € approx(x) for each x € X. Suppose further that
we have a partial ordering = on P such that for all a,b € approx(x) there is a
better approximation ¢ € approx(x) in the sense that a = ¢ and b C ¢. Then
(P,C) is called an approximation structure for X.

We now “complete” P by adding the points of X. Each point x € X is added
S0 as to respect the approximation ordering C. As a result we obtain the ideal
completion D of (P,C). That is, D is the set of ideals of (P,C), ordered by the
inclusion ordering. Then D is a directed complete partial order or a domain.
We see that there is both an injection of X into D and an injection of P into D.
Thus D can be considered as a topological space which admits a very natural
notion of approximation in that it contains each x € X, together with the subset

approx (x).



Now consider the problem of approximating a topological space. Recall
that a topology on a set X is a family of subsets T C 2%, characterised by the
closure under union and finite intersections of elements from 7. Suppose that 7
is a Tp-topology. A domain D approximating (X, 7) is then obtained by letting
D be the ideal completion of the approximation structure (B, D), where By is
a topological base for 7.

A topology on X can also be described by a so-called convergence class
of nets on X, since there is a natural one-to-one correspondence between the
topologies and the convergence classes on X. (See Chapter 2 of [16] for a
detailed treatment.) Let S : (£, <) — (X, 7) be a net and recall that S converges
to x € X with respect to 7 if the image of S is eventually in each O € 7 such
that x € O.

Let — be a binary relation between nets on X and elements of X. Then — is
a convergence class for X if it, besides a property that guarantees the existence
of iterated limits, satisfies the following generalisation [5] of the Kuratowski
limit space axioms [18], for each net S on X and each x € X:

1. § — x, if S is constantly equal to x.
2. If S — x and ' is a subnet of S then S’ — x.
3. If S — x then there is a subnet " of S such that for each subnet S” of S’ we

have that §” - x.

It is easy to see that convergence in a topological space generates a conver-
gence class for X. To each convergence class we associate a topology in the
following way. For each subset A C X we define the closure A C X of A by
x € A if and only if there is a net S on A such that S — x. This describes a
closure operator on X, and hence there is a unique topology 7 on X associated
with X such that § — x if and only if S converges to x with respect to 7. Thus
it is a natural approach to the problem of approximating (X, 7) to consider the
convergence class associated with 7.

In Paper III we in particular focus on the case when the convergence class
can be characterised by a collection of nets for which there is some cardinality
Kk such that all index sets have cardinality less than or equal to k. These spaces
we call x-net spaces. We investigate the x-net spaces via a new notion of an
admissible domain representation. We present different admissible domain
representations and attempt to characterise the topological spaces that can be
represented by them. We also show that there is a natural cartesian closed
category of Tp-spaces that have a countably based and countably admissible
domain representation.

Our goal to construct cartesian closed categories of spaces with different
types of admissible domain representations leads us to also consider non-
topological spaces. In Paper IV we consider a generalisation of the Kura-
towski limit spaces to a class of spaces called weak x-convergence spaces.
We prove that the category of weak x-convergence spaces is cartesian closed.
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We also show that there is a natural cartesian closed subcategory of weak
K-convergence spaces having an admissible domain representation. Analo-
gous results are obtained for the associated cartesian closed categories of k-
convergence spaces and weak convergence spaces.

1.1.2 Background on computability

In this section we give a background to domain theory as a theory of com-
putability.

A fundamental question in mathematics is when a function on the natural
numbers is “computable”. The answer is intuitively clear: f: N — N is
computable if we for all inputs n € N can compute the result f(n) in finite
time, using some mechanical device as an existing computer.

To make a mathematically precise definition of the term computable func-
tion is more troublesome. The different sensible suggestions made all define
the same class of functions as computable, namely the recursive functions.
This lead to the generally accepted Church-Turing thesis: Every computable
Sfunction belongs to the class of recursive functions. Thus the study of com-
putability on N is the study of the recursive functions [24, 21].

The Church-Turing thesis tells us what computability theory we should use
on the natural numbers, and hence what can in principle be computed with
help of a digital machine. We wish to extend this computability notion to
uncountable mathematical structures. Consider an algebraic structure such as
a ring. Suppose that we have an indexing or numbering of the elements of
the ring with elements in N. Then we transform questions of computability of
functions on and between rings to questions of existence of recursive functions
on and between the subsets of N that index the rings. This approach was first
used by Frohlich and Shepherdson [12] and later developed by Rabin [23] and
Mal’cev [19]. The theory of numberings has then been thoroughly developed
by Ershov (in for example [7], [9] and [11]).

We now apply the theory of numberings on domain theory. Let X be a
structure and let D be the ideal completion of an approximation structure P
for X. Suppose that all the basic relations on P, such as C, is at least recur-
sively enumerable. If P is countable then we encode the finite elements of
the domain and the relations between them with help of a numbering and use
recursive functions to represent operations on and between domains. Then D
is an effective domain. As an example of an effective domain for the real num-
bers we can take the ideal completion of the set of rational intervals, partially
ordered by reverse inclusion. The basic relations are recursive, since they are
expressed in terms of comparison of rational numbers.

One reason this approach to computability theory on uncountable struc-
tures is useful is that there are many natural cartesian closed categories of



domains. If we consider a cartesian closed category of effective domains we
can lift the notion of computability to higher orders. An early example of this
is Ershov’s representation [10] of the Kleene-Kreisel functionals [17] from
constructive mathematics by the pure type structure over the flat domain of
natural numbers. In Paper I and Paper II we consider the problem of defining
large categories of effective continuous cpos that are cartesian closed.

1.2 Domain theory

In this section we recall some preliminary notions of domain theory. Standard
references for this material are the textbook [32] and [1].

1.2.1 Basic definitions

Let D = (D;C, 1) be a partially ordered set with least element L. A non-
empty set A C D is directed if for each x,y € A there is z € A such that x,y C z.
D is a complete partial order (abbreviated cpo) if whenever A C D is directed
then |_|A (the least upper bound or supremum of A) exists in D. A function
f:D — E between cpos is continuous if f is monotone and for each directed
setACD

FUA) = L 17() s x e a).
For cpos D and E we define the function space [D — E|] of D and E by
[D— E]={f:D— E | f continuous}.

We order [D — E] by
fE g+ (VxeD)(f(x) Eg(x)).

Then [D — E] is a cpo where, for a directed set .# C [D — E] and x € D,

7)) =, {7 x): £ € 7).

We form a category whose objects are cpos and whose morphisms are con-
tinuous functions between cpos. It is well-known and easy to prove that this
category is cartesian closed, where the exponent is the function space and the
product of cpos D and E is given by

DXE ={(x,y):xeD,ycE}

and ordered by

(x,y) C (z,w) «<=xCpzandyCg w.



Definition 1.2.1. Let D = (D;C, L) be a cpo.

1. For x,y € D we say that x is way below y, denoted x < y, if for each
directed set A C D,

YC| JA= (Fz€A)(xC2).

2. a € Dis said to be compact if a < a. The set of compact elements in D is
denoted D,.

Itis easily verified thatx <y = xCy,and thatzCx < yCw = z<w.

Definition 1.2.2. Let D = (D;C, L) be a cpo. Then D is continuous if
1. the set {y € D:y < x} is directed (w.r.t. C); and
2. x={yeD:y<x}.

We use the notation {x = {y € D:y < x} and Tx = {y € D:x < y}. Similarly
welet [x={yeD:yCx}and fx={yeD:xCy}.

As observed above, the way below relation < is reflexive only for com-
pact elements. However, for continuous cpos it satisfies the following crucial
interpolation property.

Lemma 1.2.3. Let D be a continuous cpo. Let M C D be a finite set and
suppose that M < y. Then there is x € D such that M < x < y.

It follows that if D is a continuous cpo then |y is directed with respect to <
for each y € D.
Let D = (D;C, 1) be a cpo. A subset B C D is a base for D if for each
xX€eD,
approxz(x) ={a € Bra < x}

is directed and | |approxz(x) = x. Thus all information about the cpo D is
contained in a base.

Proposition 1.2.4. A cpo is continuous if, and only if, it has a base.

Also continuous functions between continuous cpos are determined by their
behaviour on the bases.

Proposition 1.2.5. Let D and E be continuous cpos with bases Bp and Bg
respectively. A function f:D — E is continuous if, and only if, f is monotone
and for each x € D,

(Vb € approxg, (f(x)))(3a € approxg, (x)) (b < f(a)).

Definition 1.2.6. A cpo D is algebraic if the set D, of compact elements is a
base for D.



Thus the algebraic cpos make up a subclass of the continuous cpos. An
algebraic cpo is in general a simpler structure to deal with than a continuous
cpo, since the way below relation < coincides with C on its canonical base
of compact elements. This is particularly useful when dealing with effectivity.
Nonetheless, for each continuous cpo D there is an algebraic cpo E such that
D is a projection of E.

Let D and E be cpos. Then a pair of functions e:D — E and p:E — Dis a
projection pair from D to E if they are continuous and

poe=idp and eopLCidg

where id is the identity function.

Let P = (P,<) be a preorder. A set I C P is an ideal if directed and if x € 1
and y <xtheny € I. Let Idl(P, <) be the set of ideals ordered under inclusion.
It is easily verified that Idl(P, <) is an algebraic cpo.

Let D be a continuous cpo with a base B and let E = Idl(B;C). Define
e:D — E and p:E — D by

e(x) =approxg(x) ={a € B:a<x} and p(I)=| |pl.

Proposition 1.2.7. The pair (e, p) is a projection pair from D to E.

1.2.2 The function space
In this section we review the fact that the categories of consistently complete
continuous cpos and consistently complete algebraic cpos are cartesian closed.

Definition 1.2.8. A cpo D = (D;C, 1) is consistently complete if whenever
x,y € D is bounded from above (or consistent) then x LIy, the supremum of x
and y, exists in D.

Given cpos D and E with bases Bp and B we want to construct a base for
the function space [D — E]. It turns out that such a base, under appropriate
conditions, can be taken as finite suprema of step functions determined from
Bp and Bg. Here is the definition of a step function.

Definition 1.2.9. Let D= (D;C, 1) and E = (E;C, L) be cpos. For a € D and
b € E, define (a;b):D — E by

b ifa<<x
(a;b)(x) = .
1 otherwise.

It is easily verified that each step function is continuous. Recall that if a is
compact then a < x <= a C x.

Proposition 1.2.10. Let D and E be cpos and let a € D and b € E.

6



1. Suppose f:D — E is continuous. Then
b< fla) = (a;b) < f.

2. If D and E are continuous cpos with bases Bp and Bg and f:D — E is
continuous then

f= |_|{<a;b>:a € Bp, b€ Bg, (a;b) < f}.

In important cases (i) is an equivalence. For example, if a and b are compact
then (a;b) is compact and (a;b) C f <= b C f(a).

The characterisation in the following proposition is important when we con-
sider the effectivity of the function space construction.

Proposition 1.2.11. Let D be a continuous cpo, E a consistently complete cpo,
andletay,...,a, € Dandby,...,b, € E. Then

{{a1;b1),...,{an;bn)} is consistentin |[D — E]

if, and only if,
vIC{l,... ,n}(ﬂTa,- #0 = {bi:i €I} consistent).

icl

Using Proposition 1.2.10 (ii) it is straightforward to prove that the cate-
gories of consistently complete continuous and algebraic cpos are cartesian
closed.

Theorem 1.2.12. Let D and E be continuous cpos with bases Bp and Bg. If E
is consistently complete then [D — E| is continuous and consistently complete.
A base Bjp_g) for [D — E] is
{|_|<a,~;b,-) ta; € Bp, b; € Bg, {{a1;b1),...,{an;b,)} consistent}.
i=1

For consistently complete algebraic cpos we let the bases be D, and E,.. For
a € D and b € E, the step function (a;b) is compact. It follows that Bjp_ g
is a base for [D — E] consisting only of compact elements. This shows that
[D — E] is a consistently complete algebraic cpo.

1.2.3 Bifinite domains and the Plotkin power domain

In this section we review bifinite domains and the Plotkin power domain con-
struction. Let &77(A) denote the set of finite subsets of a set A and let Z7;"(A)
denote the set of non-empty finite subsets of A.



Definition 1.2.13. Let D be a continuous cpo and let Bp be a basis for D.
The Plotkin power domain Pp(D) of D is defined as Idl(#}(Bp), <gum), where
< gum is the continuous Egli-Milner preorder defined by

A<KgyB & VbeBdacAakhb
AN YaeAdbeBa<khb.

The structure (Pp(D); C, 1) is a continuous cpo. It has a basis consisting of
principal ideals of the form [A] = {B € @}(Bp) : B <pm A}, for A € @(Bp).
If D is an algebraic cpo then Pp(D) is an algebraic cpo, but not necessarily a
consistently complete algebraic cpo even if D is consistently complete.

There is a large class of algebraic cpos that is closed both under function
spaces and Plotkin power domain construction, namely the bifinite domains.
We here give a standard definition. In Paper I and Paper II we consider a
non-standard definition.

Definition 1.2.14. Let (D;C, 1) be an algebraic cpo. Given A € f¢(D.), let
mub(A) denote the set of minimal upper bounds of A. Define mub”(A) for
n € N by

1. mub’(A) := A.

2. mub""!(A) := U{mub(B) : B € @r(mub”"(A))}.

Definition 1.2.15. Let (D;C, 1) be an algebraic cpo. We say that D is a bifinite
domain if for all A € @y (D) it holds that

1. for all upper bounds x of A there is b € mub(A) such that b C x.
2. mc(A) :=U,eomub™(A) is finite.

Note that if D is a consistently complete algebraic cpo and A Cy D, then
mc(A) = mub' (A).

Theorem 1.2.16. If D is a bifinite domain then Pp(D) is a bifinite domain.

This was first proved in [22]. The bifinite domains form a maximal full
cartesian closed subcategory of the algebraic cpos [15].

1.2.4 Effectivity

In this section we give some basic definitions and results concerning com-
putability for domains. We base our computability theory on the Mal’cev-
Ershov-Rabin theory of numberings in order to extend computability from the
natural numbers to domains. This computability concept is concrete, in the
sense that computations may in principle be coded and executed on a digital
computer.
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We use the following fundamental concepts of recursion theory. We choose
a primitive recursive pairing function (-,-): @ x ® — @ along with its primitive
recursive projections 7; and 7.

Let A be a set. A numbering of A is a surjective function oc: @ — A. It
should be thought of as a coding of A by natural numbers. A subsetS C A is a-
semidecidable if a~1(S) is recursively enumerable (r.e.) and S is a-decidable
if o= 1(S) is recursive.

Suppose o: @ — A is a numbering of a set A. Then let a*: @ — Z?¢(A) be
the numbering defined by a*(e) = a[K,], where K, C o is the finite subset
with canonical index e. If 8 is a numbering of B then & x 3: @ — A x B is the
numbering defined by

o x f(n) = (a(m(n)), B(m(n)).

Definition 1.2.17. A continuous cpo D = (D;C, 1) is weakly effective if D has
a base B for which there is a surjective function

o.w— B

such that the relation o(n) < a(m) is a recursively enumerable relation on ®.

We denote a continuous cpo weakly effective under a numbering o by
(D, o). Implicit in this notation is a fixed base B = a[w]. We will use the
notation B for such a base. Thus we let approxy(x) = {a € B:a < x}.

Computable elements are those that can be effectively approximated. A
function is said to be effective if it can be effectively approximated.

Definition 1.2.18. Let (D, ) and (E, ) be weakly effective domains.
1. Anelement x € D is a-computable if the set

{ncw:an) <x}=a '(approx,(x))

is r.e. An r.e. index for the set a~!(approxy(x)) is an index for x. The set of
o-computable elements of D is denoted by Dy 4.
2. A continuous function f:D — E is (o, B)-effective if the relation

B(m) < f(e(n))
is r.e. Anr.e. index for the set {(m,n): B(m) < f(a(n))} is an index for f.

For the work in this thesis we need a stronger notion than that of a weakly
effective domain, since a goal is to construct cartesian closed categories of
effective domains, and the function space of two weakly effective domains is
not necessarily a weakly effective domain. We here present a standard defi-
nition of effectivity for consistently complete algebraic cpos, from which one
obtains a cartesian closed category.



Definition 1.2.19. A consistently complete algebraic cpo D = (D;C, 1) is
effective if there is a numbering o: @ — D, such that the following relations
are recursive:

1. a(m)C a(n);

2. Fk(a(m),a(n) C a(k)); and

3. a(m)Ua(n) = a(k).

Let (D, ) and (E, B) be effective consistently complete algebraic cpos. By
Theorem 1.2.12, [D — E], is the set
n
{|_|<ai;bi> ta; € D, b; € E., {(a1;b1),...,{an;b,)} consistent}.
i=1

Furthermore,
n m m
|_|<al'abi> C |_|<Cj7dj> (1,, l |_| C]7
i=1 j=1 j=1
and
m
(|_|<cj, |_|{dj cj Cxt.
j=1

The characterisation in Proposition 1.2.11 shows that D, x E, is (& x f8)*-
decidable. Thus we obtain a numbering y of [D — E], such that the relations
in Definition 1.2.19 are recursive.

Theorem 1.2.20. Let (D, ) and (E,B) be effective consistently complete al-
gebraic cpos. Then |D — E| is an effective consistently complete algebraic
cpo with a numbering obtained uniformly from o and .

1.3 Nets and convergence spaces

In this section we present the underlying definitions for nets and convergence
spaces. General references for this material are [16] and [5].

1.3.1 Basic definitions

LetX:=(X,<y) and ¥’ := (¥, <y) be two directed sets. The product ¥ x ¥/
of £ and Y/ is the directed set (X x X', <) where < is the product ordering
defined by (a,d’) < (b,b’) ifand only if a <y b and a’ <y D'.

Let X be a set. A net on X is a function §: X — X, where £ = (£,<) is a
directed partial order. (Note that the definition of a net in [16] is for X being
a directed preorder.) X is called the index set of the net. We sometimes write
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{xs : 0 € L} or (x5)gex for the net S, where xo = S(0). If f: X — Y isa
function, then we define the net f oS := (f(x5))oecx.

Anet §': (Y, <') — X is a subnet of a net S: (£,<) — X if there is a
function f : ¥’ — X such that for all 6’ € ¥’ we have S(f(c’)) = §'(c’) and
such that the following condition holds:

(Vo €X)(3o) € ¥) (Vo' >’ op)(f(o) > o).

For each o € X we define the special subnet S>¢ 1= (x5/)g/>5. We call S>¢
the tail of S from ©.

The net S on X is eventually in a set A C X if there is oy € ¥ such that
xg € A for all 6 > 0y. In other words, S is eventually in A from oy if and only
if S>6, = {x6 : 0 > 0p} C A. Similarly, S is frequently in A if for all 6 € X
there is 6’ € £ such that 6’ > ¢ and x4 € A.

Let (X, 1x) and (Y, 7y) be topological spaces and suppose that f: X — Y is
a continuous function. If S is a net on X such that S converges with respect to
Tx to x € X then f oS converges with respect to Ty to f(x).

1.3.2 k-convergence spaces

In this section we present our cardinality restricted version of convergence
spaces or £ *-spaces [5].

Let X be a set and let —y be a relation between nets S on X and elements x
in X. We then call —x a convergence relation on X and the pair (X, —x) a set
with convergence relation.

Let k be an infinite cardinal. A k-nef on X is anet S on X such that the index
set of S is of cardinality less than or equal to k. A subnet S’ of a k-net S is a
K-subnet if §' is a K-net. A convergence relation —x on X is a k-convergence
relation (or k-limit relation) if the convergence relation is a relation between
k-nets S on X and elements x € X. For each x € X we let (x), denote any
K-net with constant value x.

Definition 1.3.1. Let X be a set and let — be a k-limit relation on X. Then
(X,—) is a K-convergence space if — satisfies the following properties, for
each x-net S on X and each x € X:

1. (x)q — x for each infinite cardinal o < k;

2. if S — x and §' is a k-subnet of S then S’ — x; and

3. if § - x then there is a k-subnet S’ of S such that for all k-subnets S’ of
S’ we have §" - x.

A convergence relation —x on X satisfying axioms 1 and 2 above induces
a reasonable topology on X. A set U C X is open if whenever x € U and S is a
net such that if § —x x then S is eventually in U. The set of open sets in X is
denoted 7_,, and is called the induced topology on (X, —x).
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A topological space (X, 7) induces a convergence relation —; on X, defined
by S —¢ x if and only if S is eventually in each U € 7 such that x € U. We call
a convergence relation obtained in this way topological. Note that we have
that (X, —7) is a convergence space.

The topology 7_., induced by a k-convergence relation —x on a set X is k-
sequential in the sense of [20], which means that 7_,, can be described by nets
indexed by sets of at most cardinality k. Thus (X, 7_.,) is a k-net space in the
terminology of Paper III. Conversely, a k-net space (X, T) can be considered
as a k-convergence space (X, —yx) under a k-convergence relation induced by
the topology. More precisely, we let —x be the x-limit relation obtained by
restricting the induced topological convergence relation —; to k-nets.

1.3.3 Continuous functions

In this section we consider functions between sets with convergence relations.

Definition 1.3.2. Let (X, —x) and (¥, —y) be two sets with convergence rela-
tions and let f : X — Y be a function.
1. f1is k-continuous (with respect to (X, —x) and (Y, —y)) if § —x x implies
foS —y f(x), for all k-nets SonX and x € X.
2. fis continuous (with respect to (X, —yx) and (¥, —y)) if the condition in
1 holds for each cardinal k.

We also define the x-continuous and continuous functions when X = (X, 1)
is a topological space. We let f be k-continuous if f is continuous with respect
to (X, —x) and (Y, —y), where —y is the x-limit relation induced by 7. Then
f is continuous if f is k-continuous for each cardinal k.

We let [X = Y] ([X — Y]) be the set of k-continuous (continuous) functions
from X to Y. There is a natural convergence relation on [X 5 Y], related
to the notion of continuous convergence, first defined for w-sequences by H.
Hahn in [14]. Let 7:T — [X 5 Y] and S : £ — X be nets. Define the net
T[S]|:TxX—YbyT[S|(y,0):=T(y)(S(0)).

Definition 1.3.3. Let 7 : T’ — [X — Y] be anet and let f € [X 5 Y.
1. T converges continuously to f if for each net S on X and x € X such that
S —x x we have T[S] —y f(x).
2. Suppose that T is a k-net. Then T converges k-continuously to f if the
condition in 1 holds for each x-net S.

1.3.4 Weak k-convergence spaces

In this section we weaken the axioms for a K-convergence space and obtain a
new and larger class of spaces containing the k-convergence spaces. This is
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inspired by [25]. We need the following convergence relation. Let x € X and
let S: (£,<) — X be a k-net on a set with convergence relation (X, —yx) such
that S —y x € X. We define the directed set £ := XU {rz }, where the ordering
on X is < extended with ¢ < s for each o € X. Define the convergence
relation — on X in the following way. Let R : (I',<') — £ be a net. Then
R —5 ty if for all 0 € X there is p € I such that for all y € T such that y >’ ¥
we have R(y) > o. Furthermore, if R is eventually equal to ¢ then R —5 ©.

Definition 1.3.4. Let X be a set and let — be a k-limit relation on X. Then
(X,—) is a weak K-convergence space if — satisfies the following properties
for each k-net §: (X,<) — X and x € X:

1. (x)q — x for each infinite cardinal o < k;

2. if § — x then the function g : (£, —5) — (X, —), defined by gs(0) = x4
for o € ¥ and gs(fz) = x, is kK-continuous; and

3. if S5 — x for some ¢ € X then § — x.

If (X, —x) is a weak k-convergence space then we call —x a weak k-limit
relation. The function gg is called the function induced by S.

The natural extension of the .#*-spaces is the following.

Definition 1.3.5. Let X be a set and let —x be a limit relation on X. Then
(X,—x) is a weak convergence space if —x satisfies the three conditions of
Definition 1.3.4, for each cardinal x.

1.4 Admissible domain representations

In this section we describe domains with totality and domain representations.
In particular we present the notion of an admissible domain representation, an
important tool for the study of k-net spaces and weak k-convergence spaces
carried out in Paper III and Paper IV. Reference material for this section can
be found in [3, 4, 26].

1.4.1 Basic definitions

Let D be a domain and let DX C D. We call the pair (D,DR) a domain with
totality. We will speak of DR as the set of representing elements of D. Let
(D,DR) be a domain with totality, let X be a set and let ¢ : DR — X be a
surjective function. Then ¢ is called a representing function from DX to X.
We now review different notions of a domain representation. Let A and
K be infinite cardinals. A A-continuous domain representation of a set with
convergence relation (X, —y) is a triple D = (D, DX, ¢), where (D,DR) is a
domain with totality and ¢ : (DX, —p) — (X,—x) is a A-continuous repre-
senting function, —p being the convergence relation obtained from the Scott
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topology on D. We call D a domain representation of X if D is a A-continuous
domain representation of X, for each cardinal A.

The domain representation D = (D, DR, ¢) is consistently complete if D is
a consistently complete algebraic cpo. It is k-based if |D.| < k and locally
Kk-based if |approx(x)| < K for each x € D. It is dense if DX is topologically
dense in D, i.e. if DR intersects every Scott-open set in D. We then call (D, D)
a domain with dense totality.

Let (X, ) be a topological space. Then D = (D,D®, ¢) is a domain repre-
sentation of X if D is a domain representation of the associated convergence
space (X,—). Note that this is equivalent to ¢ : D — X being continuous
in standard topological sense. This notion of domain representation is used in
Paper III.

1.4.2  Admissible domain representations

In this section we present the notion of an admissible domain representation.

Definition 1.4.1. Let A and k be infinite cardinals and let D = (D, DR, ¢)
be a A-continuous domain representation of a set with convergence relation
X, —x).

1. Dis a x-admissible A-continuous domain representation of (X, —y) if for
each k-based domain with dense totality (E,ER) and each A-continuous
function ¢ : ER — X there is a continuous function ¢ : E — D such that
¢ (x) = @ o ¢(x) holds, for each x € EX.

2. D is an admissible A-continuous domain representation of (X,—x) if D is
a k-admissible A-continuous domain representation of X, for each cardinal
K.

3. We say that D is a locally x-admissible A-continuous domain representa-
tion of (X, —y) if the condition in 1 holds for each locally x-based domain
with dense totality (E, EX).

If (X, —x) has a x-admissible domain representation then it follows that
there is a K-admissible domain representation D of X such that the domain D
is consistently complete.

Proposition 1.4.2. Let D = (D, D, ¢) be a k-admissible, A-continuous and
a-based domain representation of a set with convergence relation (X,—x).
Then there is a K-admissible, A-continuous and o-based consistently complete
domain representation of X.

We will sometimes exclusively consider domains with dense totalities.

Proposition 1.4.3. Let (D, DR) be a domain with totality. There is a subdomain
D' of D such that DX is dense in D' and such that the relative topologies on
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DR induced by D and D' are identical. Furthermore, if D is a consistently
complete algebraic cpo then D' is a consistently complete algebraic cpo.

It follows that if D = (D,DX,¢) is a k-admissible, A-continuous and -
based consistently complete domain representation of a set with convergence
relation (X,—y) then there is a dense, x-admissible, A-continuous and o-
based consistently complete domain representation D' = (D', DX, ¢) of X.

1.4.3 Representing functions

In this section we consider the representability of functions between sets with
convergence relations that have a x-admissible domain representation. The
basic definition is the following.

Definition 1.4.4. Let (X, —x) and (Y, —y) be sets with convergence relations
and let D = (D,DR ¢) and E = (E,ER, y) be k-continuous domain repre-
sentations of X and Y respectively. A function f : X — Y is representable
with respect to D and E if there exists a continuous f : D — E such that
(vx € DR)(f(0(x)) = Y(F(x))).

We then say that f represents f.

The striking fact is that if we have suitable x-admissible and k-continuous
domain representations of two weak x-convergence spaces X and Y then we
have representability of exactly the k-continuous functions from X to Y.

Theorem 1.4.5. Let (X,—x) and (Y,—y) be weak Kk-convergence spaces and
suppose that D = (D,DR, @) and E = (E,ER y) are x-admissible and x-
continuous domain representations of X and Y and that D is a dense and k-
based domain representation. Then f : X — Y is representable if and only if f
is K-continuous.

In Paper III we prove the corresponding theorem for topological spaces.

Theorem 1.4.6. Let X and Y be topological spaces and suppose that D =
(D,DR @) is a dense, k-admissible and k-based domain representation of X
and that E = (E,ER, v) is a x-admissible domain representation of Y. Then
f:X —Y is representable if and only if f is K-continuous.

We obtain a natural surjection onto [X Sy | as a result of these theo-
rems. Let (X,—yx) and (Y, —y) be weak k-convergence spaces and let D =
(D,DR,¢) and E = (E,ER,y) be dense, k-admissible, k-continuous and k-
based consistently complete domain representations of X and Y respectively.
Note that we may by Propositions 1.4.2 and 1.4.3 assume that the domain rep-
resentations are dense and consistently complete. Then [D — E] is a k-based

15



consistently complete algebraic cpo. Define the set of representing elements
[D — E|R as follows. Let g € [D — E|® if and only if g[D¥] C EX and

(Vx,y € D®)(@(x) = @(y) = yog(x) = wog(y)).

By Theorem 1.4.5 there is a surjective function x : [D — EJf — [Xx 5 ],
defined by x(g) = f if g represents f. Correspondingly, if X and Y are topo-
logical spaces then y : [D — E]® — [X 5 Y] is a surjection by Theorem 1.4.6.

We close this background chapter by noting that a fundamental step in the
proof of cartesian closure for the categories considered in Paper III and Paper
IV is the following theorem (and its analogous formulation for topological
spaces), showing in particular that the function y is k-continuous.

Theorem 1.4.7. Let (X,—x) and (Y,—y) be weak K-convergence spaces and
let D= (D,D®,¢) and E = (E,ER,y) be dense, k-admissible, k-based and
K-continuous consistently complete domain representations of X and Y. Then
(D — E],[D — ER, x) is a k-admissible, k-based and k-continuous consis-

tently complete domain representation of ([X = Y], —xEy] ).
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2 Overview of thesis

In this chapter we summarise the main results. The thesis consists of four
papers, which can be viewed as two pairs. The first pair is two papers on
the problem of constructing large cartesian closed categories of effective con-
tinuous cpos, while the second pair deals with the concept of an admissible
domain representation.

2.1 Summary of Paper I

Paper 1 is joint work with Viggo Stoltenberg-Hansen. It develops two different
notions of effectivity on continuous cpos. We consider a notion of an effective
bifinite domain, which is a generalisation of the notion of an effective consis-
tently complete algebraic cpo. We also consider effectivity on continuous cpos
induced by effectivity on algebraic cpos via projection pairs.

2.1.1 Effective bifinite domains

We use the following, slightly original, definition of a bifinite domain. First
our definition of a complete set and complete cover. An inspiration for this
definition can be found in [13].

Definition 2.1.1. Let (P;C, 1) be a partial order with a least element.
1. B C Pis a complete set (in P) if

(VCCB)(YxJC)(IbeB)(CCbLx).
2. A family .# = {B, :i € I} of finite subsets of P is a complete cover of P
if each B; is complete and for each A C¢ P there is i € I such that A C B;.

What we require of a bifinite domain is that each finite subset of compact
elements be covered by a finite complete set of compact elements.

Definition 2.1.2. D is a bifinite domain if D is an algebraic cpo and D, has a
complete cover.

We note that, according the standard definition of bifinite domains, we have
that {mc(A) : A € @;(D.)} is a complete cover of D.. Thus it is easy to see
that our definition is equivalent with the standard ones.
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The compact elements of the function space of two bifinite domains can
be obtained from finite sets of step functions {<a;;b;> : i € I}, characterised
mainly by the requirement that the first coordinates {q; : i € I'} form a complete
set. Hence we have a natural definition of an effective bifinite domain.

Definition 2.1.3. A bifinite domain D is an effective bifinite domain if there is
a numbering a: @ — D, such that

1. the relation at(n) C a(m) is recursive, i.e. C is o-decidable; and

2. there is a complete cover .% of D, such that . is o*-decidable.

The major result we prove is that the function space [D — E] of two effec-
tive bifinite domains (D, &) and (E, ) is again an effective bifinite domain.
This follows in an elegant way, since it suffices to consider step functions
obtained from an o*-decidable cover of D,.

Theorem 2.14. Let (D,o) and (E,B) be effective bifinite domains. Then
[D — E| is an effective bifinite domain with a numbering obtained uniformly
from o and B.

It follows that the category of effective bifinite domains with effective con-
tinuous functions is cartesian closed.

2.1.2  Smyth effective domains

The theory of effectivity on algebraic cpos induces a theory of effectivity on
continuous cpos via projection pairs. We show that if we start with a carte-
sian closed category of effective algebraic cpos then we obtain in this way a
cartesian closed category of effective continuous cpos. This was first done by
Smyth in [29], where effective consistently complete algebraic cpos were con-
sidered. Using Theorem 2.1.4 we extend Smyth’s result and obtain a cartesian
closed category of projections of effective bifinite domains.

We here need to review some of the terminology used in the paper. Let E be
an algebraic cpo, let D be a cpo, and let (e, p) be a projection pair from D to
E. Recall that one element in a projection pair (e, p) from D to E determines
the other. Thus we let (E, p,D) denote that p: E — D is a projection onto D
and we then denote the corresponding embedding by e. We say that (E, p, D)
is an AP-domain if E is an algebraic cpo.

Definition 2.1.5. Let (e;, p;) be a projection pair from D; to E; for i = 1,2.
Define & [Dl — Dz] — [El — Ez] and 2. [El — Ez} — [Dl — Dz] by

&(g) =erogopiand Z(f)=profoey.

Then (&, 2) is a projection pair from [D; — D»] to [E; — E»]. Now we
define a relation < on E, X E by

a<x<=aCep(x).
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It is via this relation that we define effectivity on the AP-domains.

Definition 2.1.6. 1. Let (E, p,D) be an AP-domain. Then ((E, p,D), @) is
Smyth effective if o: @ — E, is a numbering such that the relation < on E,
is a-semidecidable.

2. Let ((E, p,D), o) be Smyth effective. Then x € D is a-Smyth computable
if the relation a < e(x) is @-semidecidable.

3. Let ((E1,p1,D1),a) and ((Ez, p2,D2),B) be Smyth effective. Then a
continuous function f:D; — D, is («,B)-Smyth effective if the relation
b<&(f)(a)is (a,B)-semidecidable.

Here is the main theorem. As a result, we can build Smyth effective type
structures over continuous cpos as long as they are projections of bifinite do-
mains.

Theorem 2.1.7. Let ((Ey,p1,D1), ) and ((E2, p2,D2),B) be Smyth effective
AP-domains and suppose that (Ey,a) and (Ea,[3) are effective bifinite do-
mains. Then there is a numbering 7y of [E) — E,|, obtained uniformly from
o and B, such that (([E\ — Ez], Z,[D1 — D3)),y) is a Smyth effective AP-
domain and (|[E| — E3|,7) is an effective bifinite domain.

2.2 Summary of Paper II

This paper presents two categories of effective continuous cpos. We define a
new criterion on the basis of a cpo as to make the resulting category of con-
sistently complete continuous cpos cartesian closed. We also generalise the
definition of a complete set, used as a definition of effective bifinite domains
in Paper I, and investigate what closure results that can be obtained.

2.2.1 Cartesian closure for almost algebraic cpos

It seems necessary to impose extra requirements on a basis for a continuous
cpo in order to obtain a characterisation of the basic relations on the function
space in terms of the relations on the base domains. We therefore make the
following definition.

Definition 2.2.1. Let D = (D;C, 1) be a continuous cpo. A basis B of D is
called almost algebraic if the following hold for all a,b € B:
1. There is a sequence (a,)new € B withag > a; > - > a.
If b > a then there exists n € ® such that b > a,.
2. faCth=bCa.

The assumption of a base being almost algebraic is sufficient to prove the
following crucial lemma characterising the way-below relation between step
functions and continuous functions.
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Lemma 2.2.2. Let D and E be consistently complete continuous cpos with
bases Bp and B and suppose that Bp is almost algebraic and that Bg is count-
able. Let f € [D — E|, a € Bp and b € Bg. Then <a;b> < f < b < f(a).

Lemma 2.2.2 is important in the proof of the following theorem. We con-
sider a notion of effectivity for consistently complete continuous cpos, which
is a natural adaption of Definition 1.2.19 to continuous cpos by requiring <
to be recursive on a basis B. Note that B then have to be closed in the sense
that for all b,c € B we have blLic € B.

Theorem 2.2.3. The category of effective consistently complete continuous
cpos with closed and almost algebraic bases and effective continuous functions
as morphisms is cartesian closed.

2.2.2 Effective C-bifinite domains

We generalise the definition of an effective bifinite domain in Paper . First, the
straightforward generalisation of the definition of a complete set and complete
cover.

Definition 2.2.4. Let (D;C, 1) be a cpo.
1. B C D is a wa-complete set if

VCCBVx>C3beB(x>bC).

2. A family .# = {B,; : i € I} of finite subsets of B is a way-above-complete
cover of B if each B; is wa-complete and for each A Cr B there is i € I such
that A C B;.

Then this is our generalisation of a bifinite domain to continuous cpos.

Definition 2.2.5. Let (D;C, 1) be a continuous cpo. We say that D is a c-
bifinite domain if there is a basis B such that B has a wa-complete cover. B is
then called a c-bifinite basis for D.

One can show that any algebraic cpo with c-bifinite basis is bifinite, and that
any consistently complete continuous cpo is c-bifinite. Thus we have a natural
extension of both categories. We have been unable to prove the existence of a
non-algebraic c-bifinite domain which is not consistently complete.

We also prove the analogue of Lemma 2.2.2 for c-bifinite domains. As
in the case for consistently complete continuous cpos, this lemma plays a
fundamental role in the proof of the next theorem.

Theorem 2.2.6. Let D and E be c-bifinite domains with c-bifinite bases Bp and
Bg, respectively. Suppose that Bp is almost algebraic and that B, is countable.
Then [D — E] is a c-bifinite domain.
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The open problem is whether it is possible to obtain an almost algebraic
basis Bip_E for [D — E| from almost algebraic and c-bifinite bases Bp and
Bg. If this is possible, then we will have a cartesian closed subcategory of the
c-bifinite domains.

One pleasing aspect of the c-bifinite domains is that they are closed under
the Plotkin power domain construction.

Theorem 2.2.7. Let D be a c-bifinite domain with a c-bifinite basis B. Then
Pp(D) is a c-bifinite domain with c-bifinite basis Bp,p) := {[A] : A € @}(B)}.

We also show that if B is an almost algebraic basis for D then Bp,(p) is an
almost algebraic basis for Pp(D).

We finish by giving the following natural notion of effectivity for c-bifinite
domains, generalising Definition 2.1.3.

Definition 2.2.8. Let (D;C, 1) be a continuous cpo and let B be a c-bifinite
basis for D. We say that B is effective if there is a numbering o : @ — B such
that
1. C on B is a-decidable;
2. < on B is ¢-decidable; and
3. there is an a*-computable wa-complete cover .# of B, i.e. the relation
o(m) € a*(n) is recursive.

We call (D, ) an effective c-bifinite domain if D has an effective c-bifinite

basis. With this definition we prove effective versions of Theorems 2.2.6 and
2.2.7.

2.3 Summary of Paper III

This paper considers admissible domain representations of topological spaces.
We show two major results. The first is a characterisation theorem of when a
topological space has an admissible representation, while the second presents
a cartesian closed category of topological spaces with a dense, countably
based and countably admissible domain representation.

2.3.1 The characterisation theorem

In this section we present the characterisation theorem. As a tool in the proof
we define the notion of a k-net base. An origin of the concept of a k-net base
can be found in [2].

Definition 2.3.1. Let (X, 7) be a topological space. A k-net base %8 C 2X is a
family such that for all O € 7, for all x € O and for all k-nets S — x, there is
B € % such that x € B C O and such that S is eventually in B.
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Let k¥ and A be two infinite cardinals such that k¥ < A.

Theorem 2.3.2. A topological space (X,T) has a K-based and locally A-
admissible domain representation if and only if (X, 7T) is a Ty-space and has
a A-net base of cardinality less than or equal to K.

The proof in one direction is straightforward. Define the x-net base for
X as Bp :={¢[tanDX] :a € D}, if D = (D,DR,9) is a k-based and lo-
cally A-admissible domain representation of X. The Ty-property is obtained
as a consequence of the relatively small actual number of continuous func-
tions between two domains £ and D, compared with the potential number of
continuous functions from E into a non-7y-space X.

The proof in the other direction is carried out by constructing a domain
representation of X from a x-net base % for X as D = 1dl(#). An elegant
step is showing that D is locally A-admissible. Let (E,ER) be a locally A-
based domain with dense totality and let ¢ : ER — X be a continuous function.
Suppose that D is not locally A-admissible. Then it is possible to construct a
net S : ¥ — ER with index set £ = E,. x 4, for which the application of ¢ on §
leads to a contradiction, showing that D is locally A-admissible.

2.3.2 Cartesian closure

In this section we present a cartesian closed category of spaces with a dense,
countably admissible and countably based domain representation.

Definition 2.3.3. Let ®ADM be the category with objects (X, D) where X =
(X,7) is a topological space and D = (D,D¥, ¢) is a countably based, ®-
admissible and consistently complete dense domain representation of X. Let
(X,D) and (Y,E) be objects in ©ADM. The morphisms [f] : (X,D) — (Y,E)
are equivalence classes of functions f € [D — E]R, where two functions f and

g are equivalent if and only if x(f) = x(g).

The topology 7, on [X Ly ] we consider is obtained from the subbase

xLy)

By _y ={MESU{xHU):S—xAU € 1y }.

Here S varies over k-nets on X and M(A,B) := {f € [X = Y] : f|[A] C B}. We

show that convergence with respect to Tx Sy and x-continuous convergence

are equivalent on [X - Y] when k = @, which is necessary in order to show
that @ADM is cartesian closed. Then ([X - Y], [D — E]') is the exponential in
©ADM, where the domain representation [D — E|’ is obtained via Proposition

1.4.3 from the natural domain representation [D — E] of [X = Y] obtained in
Theorem 1.4.7.
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Theorem 2.3.4. wADM is cartesian closed.

It is straightforward to show that the function ¥ : [D — E]® — [X 2 Y] pre-
sented in Section 1.4.3 is continuous. This is because [D — E] is a countably
based domain, which means that it suffices to show that y is sequentially con-
tinuous. To show ®-admissibility, let (F,FR) be a countably based domain
with dense totality and let ¢ : F® — X be continuous. We then define a con-
tinuous function v : F¥ x DR — ¥ by v(z,w) = ¢ (z)(¢(w)). Thus we obtain a
continuous ¥ : F X D — E, by the k-admissibility of £. Then the continuous
function curry(0) : F — [D — E] witnesses that [D — E] is k-admissible.

2.4 Summary of Paper IV

This paper considers admissible domain representations of sets with conver-
gence relations. We present two major results. The first is that the categories
of weak K-convergence spaces and weak convergence spaces are cartesian
closed.

Theorem 2.4.1. The category w.Z;: of weak K-convergence spaces with con-
tinuous functions as morphisms is cartesian closed.

The proof is similar to the proof in [5] of that the category of .Z*-spaces
is cartesian closed. The critical ingredient is showing that if (X,—y) and
(Y,—y) are weak k-convergence spaces then ([X Ky l,—
K-convergence space.

The second result is Theorem 2.4.3 below, which characterises some carte-
sian closed categories of weak k-convergence spaces with an admissible do-
main representation. First the precise definition.

[XﬁY]) is a weak

Definition 2.4.2. Let AADM aw. % be the category with objects (X, D), where
X is a weak k-convergence space and D is a dense, A-admissible, a-based and
k-continuous consistently complete domain representation of X. The mor-
phisms between two objects (X,D) and (Y,E) of AADMaw.Z; are the con-
tinuous functions f: X — Y.

Theorem 2.4.3. Let o, A and K be infinite cardinals such that @ < A > K.
Then AADMow £ is a cartesian closed category.

The proof of Theorem 2.4.3 is similar in style to the proof of Theorem
2.3.4, noting that the notion of continuity on weak k-convergence spaces can
be viewed as tailor-made to make the proof work for each cardinality. As
a corollary of Theorem 2.4.3 we obtain analogous results for the associated
categories of k-convergence spaces and weak convergence spaces.
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3 Summary in Swedish

3.1 Effektiva domédner och admissibla doménrepresen-
tationer !

Denna avhandling &r inom omradet doménteori. En domén dr en partiellt
ordnad mingd med ett minsta element, dir méngden innehéller den minsta
Ovre grinsen till alla riktade delmidngder. Avhandlingen kan delas in i tva
delar.

Vi studerar i avhandlingens forsta tva artiklar effektiva doméner, det vill
sdga vi anvinder Mal’cev-Ershov-Rabins teori for numreringar for att ge en
uppriakning av miangden baselement i en domin och relationer pa den. Detta
ger ett berdkningsbarhetsbegrepp for oupprikneliga strukturer. Vi definierar i
den forsta artikeln en kartesiskt sluten kategori av effektiva bifinita doméner
och anvinder den for att inducera effektivitet pa kontinuerliga doméner via
projektionspar. I den andra artikeln definierar vi tva kategorier av effektiva
kontinuerliga dominer och studerar vilka slutenhetsegenskaper de har.

I avhandlingens andra del studerar vi doménrepresentation av olika klasser
av matematiska strukturer. En gemensam nidmnare for manga av de typer
av strukturer och doménrepresentationer som undersoks &r att deras utseende
ar kopplade till ett eller flera odndliga kardinaltal. Speciellt undersoker vi
dominrepresentation av de strukturer X, vilkas utseende beskrivs av en famil]
av nit pa X ddr indexméngden har begrinsad kardinalitet. Den tredje artikeln
behandlar fallet nir X &r ett topologiskt rum. Det viktigaste resultatet vi visar
ar att det finns en naturlig kartesiskt sluten kategori i vilken objekten &r par
(X,D), ddr X ér ett Ty-rum och D &r en upprékneligt baserad och upprikneligt
admissibel domdnrepresentation av X. Att en doménrepresentation D av X
ar upprikneligt admissibel betyder visentligen att varje annan upprikneligt
baserad doménrepresentation £ av X kan reduceras till D via en kontinuerlig
funktion fran E till D. Vi visar ocksa en karakterisering av de topologiska rum
vilka har A-admissibla och x-baserade doménrepresentationer, dér k och A &r

!nstruktionerna for den obligatoriska svensksprikiga sammanfattningen talar om att syftet ir
att sprida ny kunskap ut i det svenska samhillet, samtidigt som nivan pa sammanfattningen ska
ligga pa ungefir samma niva som sjéilva avhandlingen. Dessa tva malsittningar stér till viss
del i konflikt med varandra, da det inte finns nagon svensksprakig person med de nodvindiga
matematiska forkunskaperna som saknar de nddvindiga elementéra kunskaperna i engelska
vilka kriivs for att forsta avhandlingstexten. Diarfor delas denna sammanfattning upp i tva delar,
varav en populdrvetenskaplig.
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tva odndliga kardinaltal.

Den fjirde artikeln behandlar fallet ndr X #r en miangd med en tvastillig
konvergensrelation mellan nit och element pa X. Vi introducerar och be-
handlar frimst den kartesiskt slutna kategorin av vad vi kallar for svaga k-
konvergensrum, vilka kan ses som en generalisering av en forsvagning av de
tre axiomen for Kuratowskis limitrum for ett godtyckligt odndligt kardinaltal
k. Vart huvudresultat i denna artikel &r att klassen av svaga k-konvergensrum
som har en A-admissibel, x-kontinuerlig och o-baserad dominrepresenta-
tion dr kartesiskt sluten om o < A > k. Som en naturlig foljd av dessa
satser fas analoga resultat for de relaterade kartesiskt slutna kategorierna av x-
konvergensrum och svaga konvergensrum. Inte heller dessa kategorier verkar
ha behandlats explicit i litteraturen tidigare.

3.2 Populirvetenskaplig sammanfattning

Denna avhandling handlar om hur man kan studera matematiska strukturer
genom att approximera eller representera dem med domdiner.

Bland de forsta tal man brukar léra sig finns de naturliga talen 0,1,2,3,. ..
De naturliga talen dr sma och létthanterliga i den meningen att varje tal kan
skrivas med ett dndligt antal siffror. Dessutom &r N, mdngden av alla naturliga
tal, en liten méngd i betydelsen att den dr upprdknelig. Med det menas att vi
kan rikna upp de naturliga talen i en foljd ett efter ett, och sidga "det hir dr
det forsta, andra, tredje naturliga talet" och sa vidare, och vi kommer for varje
naturligt tal n inom en dndlig tidsrymd ha ridknat upp n, &ven om det totalt sett
finns o#ndligt ménga naturliga tal. Ddrmed kan de naturliga talen i princip
beskrivas av en dator.

Manga matematiska strukturer innehéller element som &r svarhanterliga i
den meningen att de innehaller “manga” element som &r “stora”. Ett klassiskt
exempel dr R, de reella talen (i vardagligt tal dven kallad rallinjen). Det finns
reella tal vilka det behovs odndligt manga siffror for att skriva. Ett vanligt
exempel dr w ~ 3,14159... Dessutom finns det s méanga reella tal att R inte
ar en uppréiknelig miangd. Den ir alltsa sa stor att vi inte direkt kan anvinda
de reella talen till att rikna med i véara datorer. Vi maste istillet anvinda repre-
sentationer eller approximationer av reella tal nér vi till exempel ska rikna ut
multiplikationen 7 x 2. Det finns dock ett sitt att beskriva ett reellt tal som en
uppriknelig f6ljd av tal fran en uppriknelig delméngd av R, ndmligen méing-
den Q, de rationella talen (eller braktalen som de ocksa har kallats). Denna
observation ligger till grund for konstruktionen av en domin som represen-
terar R.

Lat [a,b] beteckna intervallet av alla reella tal fran och med a till och med b.
Attett intervall [a, b] innehaller ett reellt tal r uttrycks av formeln r € [a, b], och
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vi sdiger da att r dr ett element i [a, b]. Ett siitt att representera ett reellt tal r 4r
som en uppriknelig f61jd av minskande intervall [a;, b;] vilka alla innehéller r.
Det betyder att vi rdknar upp intervall [ag, bol, [a1,b1], ... [ai, bi], [@it1,Dit1], - -
sa att for alla i € N giller det att [a;41,b;+1] dr inkluderat i eller en delmingd
av [a;,b;|. Hér dr [a;+1,b;41] en delmingd av [a;,b;] om det for alla x giller
att om x € [a;11,b;+1] sé x € [a;,b;]. For varje steg i uppriakningen far vi da en
allt bittre approximation av var pa tallinjen det reella talet befinner sig. Om vi
dessutom viljer dndpunkterna a; och b; i intervallen som rationella tal sddana
att a; < a;y1 < rochb; > b;1 > rsakan vi gora intervallet [a;, b;] godtyckligt
litet och énda vara sikra pa att r finns i [a;, b;].

Vi betraktar nu mingden P = {[a,b] : a < boch a,b € Q} av alla intervall
med rationella @andpunkter. Vi tanker oss att vi placerar intervallen som punk-
ter pa ett papper framfor oss, sd att ett intervall 7 ordnas ovanfor ett annat
intervall J pa papperet om och endast om 7 &r en delmingd av J. Vi far en
tvadimensionell struktur, dér vi séger att en punkt / dr en bittre approxima-
tion dn en annan punkt J om / ordnas ovanfor J pa papperet.

Vi ldgger till en punkt lingst ner pa papperet. Denna punkt &r tinkt att
motsvara det intervall som utgors av hela tallinjen (vilken saknar dndpunkter
och darfor inte finns med i P). Vi ldgger ocksa till Gverst pa papperet en punkt
for varje reellt tal r. Dessa punkter placeras sa att ett reellt tal » ordnas ovanfor
precis de intervall I € P sadana att r € I. Framfor oss pa papperet har vi da
den sa kallade intervalldomdinen for de reella talen. For den géller att ett reellt
tal r approximeras av ett intervall / om r € I.

Vi vill dessutom kunna representera en berikning pa de reella talen, det
vill sdga en reell funktion som tar ett reellt tal » och enligt nigon matematisk
beskrivning f ger som resultat ett (eventuellt annat) reellt tal f(r). En funktion
ger alltsa alltid samma resultat f(r) varenda gang man tillimpar den pa r. Med
hjdlp av intervalldoménen &r det mojligt att ge en domén som representerar en
stor mdngd [F av ofta anvinda reella funktioner.

Om nu D ir intervalldominen for R, sa kan vi konstruera en domdéin av
funktioner [D — D] vilken representerar IF, likt D representerar R. Och efter-
som D kan beskrivas genom att ge en upprikning av elementen i P och den
ovan beskrivna inklusionsordningen mellan dessa sa kan vi i princip beskriva
D genom ett datorprogram. Doménen D &r i detta fall exempel pa en effek-
tiv domdin. Vi kan alltsa "koda" D pa var dator och utfora berdkningar pa R
genom att generera bittre och bittre approximativa svar med hjélp av intervall-
dominen. En bonus &r att denna metod kan anvédndas for att 16sa vissa problem
dir den normalt anvinda metoden for datorberdkningar av reella funktioner
inte fungerar.

Studiet av intervalldoménen ir en viktig ingrediens inom domdinteorin, det
omrade av den matematiska logiken som denna avhandling behandlar. Vi
behandlar speciellt problemet med att konstruera kartesiskt slutna kategorier
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av olika specialtyper av doméner. En kartesiskt sluten kategori K av doméner
har bland annat den 6nskvirda egenskapen att givet tva domédner D och E
i K sa giller att [D — E] dr i K. Kartesiskt slutna kategorier av doméner
har bland annat dven anvénts for att studera vissa matematiska aspekter av
programmeringssprak, sa kallad denotationssemantik.

De specifika resultaten i avhandlingen kan delas in i tva delar. Den forsta
behandlar problemet att hitta stora kartesiskt slutna kategorier av effektiva
doméner. Den andra giller problemet att beskriva vissa matematiska struk-
turer vi kan kalla for konvergensrum. Ett konvergensrum X dr en midngd punk-
ter tillsammans med ett forhallande eller en relation R mellan delméingder S av
X och element x € X. Vi kallar S for ndt, eftersom vi kan ténka oss relationen
R som beskrivande vilka punkter x € X som "fangas in" av nétet S. Vi visar
att om vi stéller vissa krav pa utseendet av konvergensrummen, bland annat
genom att begrinsa storleken pa niten, sa kan vi hitta ett antal olika klasser
av konvergensrum vilka pa ett naturligt sétt kan representeras med hjélp av
kartesiskt slutna kategorier av doméner.
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