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Abstract

Verotoxin-producing Escherichia coli (VTEC) of serotype O157:H7 is a pathogen causing illness
in humans worldwide. The path and nature of transmission from and among cattle is important
knowledge when it comes to preventing cases of disease in humans. Two concepts potentially
playing an important role in transmission of VTEC O157:H7 are super-shedding and super-
spreading. Super-shedders are individuals (here calves) shedding a high amount of bacteria.
Super-spreaders are individuals (here calves) spreading the disease in a higher extent
compared to the rest of the population investigated. Little is known about these phenomenons’
effect on transmission as well as the relation between them. Therefore, it is important to
investigate this further.

The purpose of this master thesis was to get a better understanding of how super-spreaders
can be identified. One way to identify super-spreaders and explore the transmission of a
pathogen is to investigate molecular data using computational methods. Here, a literature study
with a systematic approach was conducted in order to scan the literature for such methods. In
this first phase of the master thesis three methods, all constructing transmission trees, were
identified as relevant methods for the second phase. These methods are called outbreaker2,
phybreak and TransPhylo.

In the second phase of the master thesis, 32 whole genome sequences of VTEC O157:H7
collected from four different cattle farms were investigated using the methods outbreaker2 and
phybreak. Both methods were able to identify samples infecting more secondary cases
compared to the rest of the investigated population. Some of these samples came from the
environment, possibly shedding light on the importance of the pathogen's ability to survive
outside of the host, and therefore playing an important role in transmission of the disease. The
rest of the samples infecting more secondary cases were from calves, and a minority of these
were super-shedders. From this the importance of the relation between super-shedders and
super-spreaders can neither be confirmed nor denied.

Outbreaker2 suggested that the spread of the pathogen is frequently occurring between the four
neighbouring farms, while phybreak instead suggested that the spread mostly occurs within the
farms. From this, a scenario explaining that the transmission possibly occurs within farms is
presented.
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Popularvetenskaplig sammanfattning

Superspridare dr ett begrepp som i sparen av coronapandemin knappast undgatt nagon.
En superspridare definieras som en individ som sprider smittan vidare till fler jamfort
med andra infekterade individer. Da en superspridande individ kan ligga bakom en bety-
dande del av smittspridningen av ett sjukdomsutbrott dr det viktigt att kunna identifiera
dessa, for att 1 sin tur kunna begrinsa smittspridningen. Ett annat begrepp som ibland
nimns i1 samband med superspridare dr superutsondrare. Dessa individer utsondrar en
stor médngd smittodmne, och det har foreslagits att individer som utsondrar 1 hog grad
loper storre risk att bli en superspridare.

Syftet med detta examensarbete var att fa en bittre forstaelse for hur superspridare kan
bli identifierade. Den forsta fasen bestod av en litteraturstudie med en systematisk an-
sats. Dir undersoktes det vilka slags metoder som forskare anvinder sig av for att un-
dersoka forekomsten av superspridare vid utbrott av olika infektionssjukdomar. Den
andra fasen bestod av att applicera relevanta metoder pa ett dataset med helgenomse-
kvenser av Verotoxinproducerande Escherichia coli (VTEC) O157:H7, fran fyra svens-
ka gardar med notkreatur. Helgenomsekvenser dr den data som beskriver en organisms
arvsmassa. Arvsmassan bestar av deoxyribonukleinsyra (DNA) som &r en unik kod upp-
byggd av fyra olika baser; A, T, C och G. Genom denna unika kod kan man sérskilja pa
olika arter, men dven pa individer inom en art.

I litteraturstudien identifierades tre lovande metoder for att undersoka forekomsten av
superspridare; outbreaker2, phybreak och TransPhylo. Dessa metoder anvinder helge-
nomsekvenser och datum for provtagning for att generera sa kallade transmission trees.
Transmission trees beskriver smittspridningstillfidllen mellan infekterade virdar och kan
pa sa sitt avsloja vem som har smittat vem. I den andra fasen applicerades helgenom-
sekvenserna fran VTEC-proverna, samt datum for dess provtagning, i outbreaker2 och
phybreak. Aven om outbreaker2 och phybreak har samma input och output finns det vis-
sa skillnader metoderna emellan. Den storsta skillnaden ir att phybreak tar hdansyn till att
genomuppsittningen av patogenerna inom en infekterad vird dr mangfaldig, samtidigt
som outbreaker2 antar att alla patogener har samma genomuppséttning.

Resultatet fran outbreaker2 foreslog att smittspridningen mestadels sker mellan de olika
provtagna gardarna, medan phybreak foreslog att smittspridningen mestadels sker inom
gardarna. Bada metoderna identifierade potentiella superspridare och av dessa totalt elva
superspridare var tva superutsondrare. Det faktum att det finns stora skillnader mellan
metoderna gor att resultaten om individuell smittspridning skall tolkas med forsiktighet.
Dirfor kan inte heller relationen om superspridning och superutsondring faststéllas eller
dementeras i detta examensarbete.
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2 Background

1 Introduction

Verotoxin-producing Escherichia coli (VTEC) of serotype O157:H7 is a zoonotic pathogen
causing illness worldwide. This type of E. coli causes symptoms like diarrhea in hu-
mans, which sometimes can develop into the severe condition hemolytic-uremic syn-
drome (HUS). (Kaper & O’Brien, 2014) Humans most often get infected via contami-
nated food or via direct environmental exposure. In order to establish health-care mea-
surements to prevent illness, more knowledge about the route and nature of the trans-
mission of the pathogen is needed. The usual reservoir for VTEC O157:H7 is cattle and
the calves and cows carrying the pathogen are usually asymptomatic, making it difficult

to detect the presence of the pathogen and therefore hinder transmission. (L. Gally &

P. Stevens, 2016)

One way to investigate the transmission of a pathogen is to explore the sequences of
the whole genome of the pathogen. All organisms has a genome consisting of a unique
code, called deoxyribonucleic acid (DNA). DNA consists of four bases; A, T, C and G.
Whole genome sequencing (WGS) is a method that can determine the order of these
bases, revealing the unique genome sequence of an organism. (CDC, 2019b) WGS
methods have become much faster and cost efficient in the last decades, making them
more accessible (NHGRI, 2021). In response to a lot of data being generated, methods
used to analyze this kind of data are being continuously developed and more routinely
used for outbreak investigations.

2 Background

2.1 Introduction to VTEC

VTEC O157:H7 is as mentioned before a zoonotic pathogen causing illness in humans
worldwide. It is a bacteria that causes diarrhea, sometimes with severe complications
like HUS. This syndrome is characterized by three components; renal failure, hemolytic
anemia and thrombocytopenia (Nataro & Kaper, 1998). This pathogen was first dis-
covered in the late 70s and early 80s and it was discovered independently by two dif-
ferent research groups. In 1977 Konowalchuk et al. discovered an E. coli that pro-
duced toxins against vero cells, therefore calling it verotoxin-producing E. coli (VTEC)
Konowalchuk et al. (1977). In 1983 O’Brien & LaVeck discovered the same toxin,
but they discovered that it could be neutralized with antitoxin prepared against Shiga
toxin produced from Shigella dysenteriae, making them call the pathogen Shiga toxin-
producing E. coli (STEC) O’Brien & LaVeck (1983). O’Brien et al. (1983) later showed
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that these toxins in fact were the same, and since then the names has been used inter-
changeably (O’Brien et al., 1983). For the rest of this report the term VTEC will be
used since that is traditionally the term that has been used within the veterinary field.

Another term frequently used when talking about pathogenic E. coli is enterohemor-
rhagic E. coli (EHEC). EHEC is a group of E. coli causing bloody diarrhea and severe
complications, such as HUS, in humans. EHEC is therefore a subset to VTEC, since
all EHEC are considered to be pathogens, but not all VTEC are considered pathogens
(Nataro & Kaper, 1998).

VTEC consists of different subtypes, and in 2008 Manning et al. defined nine evolu-
tionary different clades using a single nucleotide polymorphism (SNP) typing system
(Manning et al., 2008). One of the subtypes that causes severe disease in humans is the
subtype clade 8. Clade 8 is the main cause of food borne outbreaks in Sweden, making
it an important subtype to keep track of. (Soderlund et al., 2014).

2.2 Reservoir and Transmission of VTEC

The usual reservoir for VTEC O157:H7 is cattle. The infected animals do not show any
symptoms of disease, which makes it difficult to detect if the pathogen is present on a
farm. Humans can be infected via direct or indirect contact with an infected animal,
from the environment or from contaminated food or water. Transmission from person
to person could also occur. (Ameer et al., 2021) Therefore, the transmission among
cattle plays an important role for the transmission to humans as well. The prevalence of
VTEC O157:H7 on farms in Sweden has increased which contributes to a higher risk
of infection in humans. (Eriksson et al., 2005; Soderlund et al., 2014). By reducing the
transmission among cattle on farms, the transmission to humans could also be reduced.

The transmission among cattle has been associated with several different risk factors.
Examples of such risk factors are; the introduction of new animals to an already existing
herd (Wilson et al., 1998), redeployment of individuals within a herd of animals (Chase-
Topping et al., 2008), densely grouped animals, large groups of animals, (Vidovic &
Korber, 2006) the spread of slurry on grazing land and having pigs in close contact with
a herd of cattle (Gunn et al., 2007). Even though several risk factor have been identified,
more knowledge about the transmission among cattle is needed in order to reduce the
transmission, both between cattle but also to humans.
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2.3 Super-shedders vs Super-spreaders

Super-shedders, i.e. cattle shedding more than 103 colony forming units/g feces, have
been proposed to play an important role in the prevalence and transmission of VTEC
O157:H7 (Spencer et al., 2015). It is not yet known exactly what factors are responsi-
ble for super-shedding, although several studies have been performed to understand the
phenomenon (D. Munns et al., 2015). While the concept of super-shedding has received
attention, another concept also playing a potentially important role in the transmission
of VTEC, has received less attention; super-spreaders. Super-spreaders are defined as
individuals that have more opportunities to infect others with some kind of pathogen,
both through direct and indirect contact (D. Munns et al., 2015). The concepts are
closely related, for example super-shedding may increase the risk of super-spreading,
but it may be possible to be a super-shedder but not a super-spreader. Individual differ-
ences, such as behavior or social contacts, may be more important than the amount of
bacteria shed, for becoming a super-spreader.

A model related to this subject is the so called 20/80 rule, which suggests that 20% of a
host population contributes to 80% of the spread of some infectious disease (Woolhouse
et al., 1997). This is a rule that seems to be applicable to a variety of different infec-
tious diseases, and in the case with the transmission of VTEC O157:H7 it would mean
that 20% of the calves shedd 80% of the bacteria. This brings additional light on the
importance of being able to identify super-shedders as well as super-spreaders in order
to control and hinder the transmission of infectious diseases.

2.4 Transmission Trees

Sequences from the genome of pathogens together with epidemiological data can be
used to create so called transmission trees. These kind of trees can provide information
on how strains of the pathogen, sampled from different individuals, is related. There-
fore information of who infected whom can be interpreted as well as information on the
nature of the outbreak. Transmission trees reveals the history of the host, carrying the
pathogen, which means that they illustrate the event of transmission that occurs between
a primary and secondary case of infection. This tree differs from a phylogenetic tree,
which instead describes the ancestral relationship of pathogens that are sampled and do
not reveal who infected whom. (Didelot et al., 2021) These different trees should there-
for not be confused. The major differences between these trees is how the nodes and
leaves should be interpreted. In transmission trees the nodes correspond to the event of
transmission (where a leaf is only transmitted but does not transmit), while in a phy-
logenetic tree the leaves corresponds to the sampled pathogens and the internal nodes
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corresponds to the most recent common ancestor (TMRCA). Another difference is that
the timing of the nodes in a transmission tree reveals the time point of transmission,
whereas in phylogenetic trees it corresponds to the coalescent events the takes place
before the transmission. (Ypma et al., 2013)

2.5 Methods for Generation of Transmission Trees

Two methods used to create transmission trees are outbreaker2 and phybreak. These
are flexible and relatively recently developed methods designed to manage a variety of
different pathogens. The packages are available in R (R Core Team, 2021) and use
sequencing data and sampling dates as their input while the output is a transmission
tree.

2.5.1 outbreaker2

Outbreaker2 (Campbell et al., 2018) is an extended version of outbreaker (Jombart et al.,
2014) and it is a discrete-time stochastic model that construct a transmission tree (the
output) based on the genetic data of some pathogen and date of collection (the input).
This framework is flexible and it provides a tool that researchers can use to reconstruct
outbreaks of some infectious pathogen. It is a method implemented in a Bayesian frame-
work, taking in different parameters, likelihood and movement functions and describe
prior distributions for these. It uses a Markov chain Monte Carlo (MCMC) method to
update the parameters implemented in the Bayesian framework and does so from one
iteration to the other. Advantages of this method is that it can infer different R numbers
(the basic reproduction number describing how many individuals that can be infected by
an infectious individual (Holme & Masuda, 2015)) at an individual level, allowing the
discovery of heterogeneous transmission and therefor the detection of super-spreaders.
Another advantage is that this method allows for multiple introductions of the pathogen
to some population. Introductions can be identified as genetic outliers, the problem
though is that they could also arise due to some other reason, such as sequencing errors
or recombination. This means that the interpretation of this should be made carefully.
Also assuming that all different introductions of the pathogen is genetically different is
not correct, since they could come from closely related lineages. A way of dealing with
this in outbreaker? is the feature that known introduction cases can be fixed. Additional
limitation of this method is that it requires the outbreak to be densely sampled (cannot
detect unobserved cases), and is not suitable to apply to diseases where asymptomatic
carriers are a common phenomenon. Other limitations is that the method assumes a sin-
gle pathogen lineage within the host as well as that the date of the event of transmission
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is not inferred. (Campbell et al., 2018)

2.5.2 phybreak

Phybreak is a method that, like previous described method, uses genetic data and sam-
pling dates as input, while the output is a transmission tree. It also uses a Bayesian
framework and MCMC as previously described. Out of the two methods described,
phybreak is the most novel and refined. It takes into account the transmission, case
observation, within-host pathogen dynamics and mutation, which outbreaker2 does not.
The transmission model assumes that all cases have been sampled as well as that the
outbreak is over, and therefore the mean number of secondary cases is one. To inter-
pret this in phybreak, a gamma distribution of the generation period, the time interval
between a primary and secondary case of infection, is constructed. The case observa-
tion parameter also consists of a gamma distribution for the sampling interval, which is
the time period between the onset of the infection and the sampling. The within-host
pathogen dynamics is a model that lets us model the dynamic of the pathogen within the
host, and it is modeled to simulate coalescence events. Therefore assuming clonal lin-
eages and eventually this model ends up in a bottleneck at transmission of one lineage.
The mutation model is a parameter that takes in the mutations rate per site per time unit
and is based on a Jukes-Cantor model. (Klinkenberg et al., 2017)

Advantages with phybreak is that it is a fast method and that it can be used for dif-
ferent kinds of pathogens as well as several different settings. Disadvantages with this
method is that, as mentioned with the transmission parameter, all cases needs to be sam-
pled and the outbreak has to have come to an end. If not all cases have been sampled
and included, this could limit the identification of transmission clusters, and paths of
transmission could be obscured due to missing cases in the data. The method does not
either take heterogeneous infectiousness between individuals into account. (Klinken-
berg et al., 2017)

2.6 Project Aims

This master thesis was performed at the Swedish University of Agricultural Sciences
(SLU) in Uppsala. The purpose of the project was to get a better understanding of
how super-spreaders can be identified. This was done in two steps. Phase one in-
cluded reviewing previous efforts to investigate the occurrence of super-spreaders. The
aim of this part was to provide an overview of previous studies investigating super-
spreading using molecular methods (pathogen examined and methods used). This was
done through a literature study based on a systematic approach. The second phase
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included using whole genome sequence data from an outbreak of VTEC O157:H7.
The aim of this second part was to explore the presence of super-spreaders of VTEC
O157:H7 in this dataset to provide insight on whether super-spreading is a phenomenon
that one specific individual obtains or if it is a state that different individuals can obtain
at different time points during an outbreak. The results from the literature study were
also used to provide input for choice of methods in the second phase of the study.

3 Methods

3.1 Phase 1 - Literature Study with a Systematic Approach

The first phase of this master thesis was to conduct a literature study with a systematic
approach. The course of action is visualized as a flowchart in Figure 1.

3.1.1 Formulate Research Question

The very first step of the literature search was to define the research question. To be
able to define this, some simple searches were performed and a variety of articles on
the subject were read. This preparatory searching and reading did not only contribute to
formulating a research question but also gave a good perception on what search terms
to use. In order to formulate a demarcated and well defined research question, different
frameworks can be used. Two popular frameworks are PICO (Population, Intervention,
Comparison, Outcome) and PEO (Population, Exposure, Outcome) where the first one
is usually used for quantitative questions and the later for qualitative questions (Karolin-
ska Institutet, 2022). None of these frameworks could be followed meticulously, due to
that not all parts of the frameworks could be applied to the research question, but were
used as an inspiration for the formulation of the research question, presented below.
Research question: What characterizes studies investigating super-spreading in hu-
mans or animals of any infectious pathogen using molecular sequence data?

3.1.2 Find Search Terms, Create Search Blocks and Conduct the Search

Search terms for the search were decided on from doing multiple different searches,
so called test searches. Reading particularly important articles for the subject, called
key articles, also contributed to finding the suitable search terms. For this subject, the
articles describing “outbreaker” (Jombart et al., 2014) and “phybreak” (Klinkenberg
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et al., 2017) were considered key articles, since they describe the methods to be used
unless more specific and relevant methods appeared from the literature study. Also
investigating words that are important and frequently occurring in relevant abstracts and
titles laid the foundation in building the search. Lastly all terms that were decided to
be used for the search were placed in so called search blocks, in order to achieve a
structured final search and these blocks were combined with boolean operators, such as
AND and OR. (Karolinska Institutet, 2022)

The final search, with the corresponding search blocks, that were carried out in PubMed
and Web of Science (WoS) (all databases), can be found in Table 1 and 2 in Appendix A.
These two databases were chosen due to that they are relevant for this subject, as well as
both can be accessed through Uppsala University. Both searches were performed in the
advanced search field in the respective databases. This made the search more specific by
searching for MeSH terms and for Title/Abstract in PubMed as well as for Topic (TS)
in WoS. In order to find more variants of a word, truncation using asterisks were used.
The search was performed on February 22nd 2022. No filters were applied. The full list
of articles resulting from the search can be found in Appendix B.

3.1.3 Define Inclusion and Exclusion Criteria

To define, delimit and decide what articles to include to the more thorough examination,
called characterization (3.1.5), inclusion and exclusion criteria were decided. These
criteria were used as guidelines when scanning through the results from the search.
(Redaktionen, 2022)

The inclusion and exclusion criteria used for this study were the following;

Inclusion: Studies that aim to identify super-spreaders of infectious pathogens using
genomic data.

Exclusion: Studies that only investigate models based on simulated outbreaks and that
do not use real life genomic data.

3.1.4 Screening for Relevance

After the search the results were reviewed. In the first step of reviewing, a more simple
screening for relevance was performed. This screening included going through the titles
and abstracts of all hits from all databases. From here, based on relevance and the pre-
defined inclusion and exclusion criteria, the articles were either included or excluded
to the next step of validation, the characterization. A rule of thumb usually used for
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systematic literature searches is that about 10 % of the articles from the search should
be of relevance and included (Redaktionen, 2022). See Table 3 in Appendix C for a list
of what articles that were included or excluded.

3.1.5 Characterization

The second part of the reviewing was the characterization. This step was more com-
prehensive compared to the first step and for this all included articles were read as a
whole. There were 14 articles included from the screening and therefore reviewed in
the characterization. For this, a number of questions were asked and answered for every
article, see Table 4 and 5 in Appendix D, to find different trends and patterns among the
articles.

Identify the issue and
formulate a research
question

Find search terms
and create search
blocks

Perform the search

Screening for
relevance

Characterization

Figure 1: A flowchart representing the workflow for the literature study.

3.2 Phase 2 - Exploring Super-spreaders of VTEC O157:H7

In the second phase of the project a statistical analysis was performed in R using out-
breaker2 and phybreak. Data from 32 cases, taken from four different cattle farms with
an aggressive type of VTEC O157:H7, were used in both methods. The sequences
used were previously sampled by Dr. Lena-Mari Tamminen and were a part of a larger
dataset, with samples collected from a total of 12 cattle farms. This larger dataset has
been used in a study investigating the behaviour of dairy calves and the animal welfare,
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in order to explore risk factors and what factors that possibly drives the colonisation
of VTEC O157:H7 in calves (Tamminen et al., 2020). However, these sequences has
not previously been used to investigate the presence of super-spreaders, which is what
will be investigated in this master thesis. Both samples from the environment and from
calves were used. A table compiling this information, as well as information about if
the calf was a shedder or not and the date of the sampling, can be found in Appendix E,
Table 6.

Hybrid assemblies were generated from short and long reads. The hybrid assemblies
were created using Unicycler v. 0.4.8 (Wick et al., 2017) by applying default parame-
ters. The short reads were trimmed using Trimmomatic v. 0.36 (Bolger et al., 2014) and
the long reads were trimmed using the short reads as a reference.

3.2.1 outbreaker2

In outbreaker2 both genetic information and temporal information about the outbreak
is needed. Here, the 32 whole genome sequences of VTEC O157:H7 was stored as
DNAbin objects and the sampling dates corresponding to the DNA sequences was stored
as a vector of dates. In addition to this data, information about the distributions of the
incubation period as well as the generation time of VTEC O157:H7 was needed. The
distribution used to model these time periods are typically gamma distributions and were
used here accordingly. (Thibaut, 2018) If nothing else is stated, the default values has
been used to run outbreaker?2.

The incubation period is defined as the time between exposure to the pathogen and
symptom onset (Awofisayo-Okuyelu et al., 2019). This kind of data do not exist for
calves infected with VTEC O157:H7 since cattle do not show symptoms, but it does
exist for when VTEC O157:H7 infects humans. Since we assume that the time it takes
for the E. coli bacteria to establish itself in the gastrointestinal system is the same in
humans as in calves, this data is used. For humans the incubation period is usually be-
tween 3-4 days, but can span from 1-10 days (CDC, 2019a), and this information was
used to create a gamma distribution for the incubation period. A gamma distribution
can be created using two parameters; the shape and scale parameters. These were gen-
erated from the mean values and standard deviation from the incubation period interval.
For the incubation period the parameters were; shape = 0.30 and scale = 18.15. This
distribution was then used in the function outbreaker_data and applied to the f_dens pa-
rameter. An additional distribution, using a shape value of 3 was also performed. This
was done in order to be able to compare the trees generated from outbreaker2 with the
trees generated from phybreak.
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The generation time is defined as the time between a primary and secondary infection
(Thibaut, 2018). The generation time of VTEC O157:H7 is estimated to be between
2-8 days (Spencer et al., 2015). The mean and standard deviation from this interval
was used to create the gamma parameters shape and scale, which were used to created
a gamma distribution. For the generation time the parameters were; shape = 0.19 and
scale = 26.79. This distribution was then used in the function outbreaker_data and ap-
plied to the w_dens parameter. An additional distribution, using a shape value of 3 was
also performed. This was done in order to be able to compare the trees generate from
outbreaker2 with the trees generated from phybreak.

Additional parameters that can be specified in the method can be found in the cre-
ate_config function in outbreaker2 (Thibaut et al., 2021). Here three parameters were
specified for the run and the rest were set to default values. The first parameter to be
specified was the number of iterations that should be used for the MCMC, and this was
set to 10°. The second parameter to specify was what tree should be used to initialize
the MCMC in outbreaker. The tree "random” was selected, meaning that the ancestors
were randomly selected from the preceding cases. Lastly the initial value for the muta-
tion rate of VTEC O157:H7 was specified. Different sources presents different values
for this and thereby two different rates were used and compared. From Gibson et al.
(2018) 1.44~7 mutations per site per year was presented as the mutation rate of E. coli.
This number was divided by 365 days to get 3.957'° mutations per site per day which
were the number used in outbreaker2. Reeves et al. (2011) presented 2.26 " mutations
per site per year as the mutation rate for E. coli. This number was also divided by 365
days to get the correct number and unit; 6.197° mutations per site per day.

3.2.2 phybreak

In phybreak, just as in outbreaker2, genetic information and temporal information about
the outbreak is needed. The same sequences and sampling times were used in phybreak
as in outbreaker2. They were also stored in the same way, as a DNAbin and vector of
dates respectively. In phybreak four additional parameters to the function also called
phybreak has to be defined. These are the transmission model, the sampling model, the
within-host model and the mutation model, all briefly described in the background. If
nothing else is stated, the default values have been used to run phybreak.

The transmission model describes the time interval between a primary and secondary
case of infection. This is the same definition as the generation time used in outbreaker2.
Therefore the same interval, 2-8 days (Spencer et al., 2015) was planned to be used
for phybreak. This however did not work, due to that the shape value generated from
the gamma distribution, which is the input needed in phybreak, could not be handled
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in the following generation of transmission trees. Due to this the default value for this
parameter was used; gen_shape = 3. (Klinkenberg et al., 2017)

The sampling model describes the time between onset of infection and the time for sam-
pling, slightly different from the incubation period in outbreaker2, which was defined
as the time between onset of infection and symptoms. For this project though they were
assumed to be the same, and the interval 1-10 days was therefore planned to be used
for phybreak. Unfortunately this value did not work either, due to that the shape value
generated from the gamma distribution, which is the input needed in phybreak, could
not be handled in the following MCMC iterations. Due to this the default value for this
parameter was used as well; sample_shape = 3. (Klinkenberg et al., 2017)

The within-host model is the model that describes the phylogenetic mini-trees inside
each host, which is an interpretation of how the E. coli population grows over time
within the host. For this project model number three was chosen. This model assumes
that the within host population of E. coli grows linearly, and for this an initial value for
that slope has to be provided. The values used were wh.model = 3 and wh.slope = 1.

The values used for the mutation model in phybreak were the same values used for the
mutation rate in outbreaker2; 3.957 1% mutations per site per day (Gibson et al., 2018)
and 6.1971° mutations per site per day (Reeves et al., 2011).

After storing all the necessary data and setting all parameters (priors) needed, MCMC it-
erations were run in order to sample from the posterior. First a burnin (burnin.phybreak)
iteration was run for 5000 cycles, and thereafter a sample (sample.phybreak) iteration
were run for 25’000 cycles. The burnin only return a phybreak object (updated priors),
while the sample method also samples from the chain and return the samples stored in
the phybreak object (posterior). After the MCMC iterations, the results were analyzed
and a transmission tree was created. First a summary of the phybreak object contain-
ing the posteriors were created using the “edmonds” method in the transtree function.
Thereafter the “edmonds” method was once again used, but in the plotTrans function,
in order to plot the created transmission tree. The method “edmonds” selects the infec-
tor (transmitting a pathogen) of a infectee (receiving a pathogen) that is most frequently
sampled in the MCMC, therefore having the highest support. (Klinkenberg et al., 2017)
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4 Results

4.1 Phase 1 - Literature Study with a Systematic Approach

4.1.1 The Result in Numbers

From the literature study, a total of 74 articles were yielded from the search; 16 from
Web of Science and 58 from PubMed. After removal of duplicates, a total of 62 articles
were left for the screening for relevance. From the screening for relevance, 48 articles
were excluded, based on the previously decided inclusion and exclusion criteria. Reason
for exclusion could for example be that they did not investigate super-spreaders or that
they only did some kind of modeling not using any real molecular data. See section
3.1.3 for inclusion and exclusion criteria and Appendix C for a list of what articles that
were excluded/included. This left 14 articles for the characterization, about 23% of all
articles. See Figure 2 for an illustration of the results from the literature study.

16 articles from Web of

58 articles from PubMed :
Science

62 articles remained after removal of duplicates

48 articles were excluded
——» i
after screening for relevance

Y

Figure 2: A flow diagram of the results from the literature study.

The two articles considered to be key articles were found in the search and were both
included from the screening for relevance to the characterization.
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The majority of the articles, 9 out of 14, were published 2020 or later, see Figure 3.
This suggests that this is an area of research that is expanding and receiving more atten-
tion. This could be due to that this kind of data is more routinely being produced and
investigated when an outbreak of some infectious disease occurs, but also the Covid-19
pandemic has most likely contributed to a lot of articles being published on the subject.

Number of articles

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Years

Figure 3: A bar chart representing the distribution of included articles published over time.

Another pattern found among the articles included for the characterization were that Se-
vere Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) and Mycobacterium
tuberculosis were by far the most common pathogens investigated among the results,
see Figure 4. The many articles about SARS-CoV-2 is most likely a direct cause of the
Covid-19 pandemic. The many M. tuberculosis could be due to that this disease is often
carefully monitored when detected. This often provides a lot of epidemiological data
useful in these kind of studies, making it available for research. Interestingly, no articles
on E. coli were found among the included articles.
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Number of articles
L]

SARS Foot- and Mycobacterium Mycobacterium SARS-CoV-2
mouth-disease Bovis Tuberculosis
Pathogen

Figure 4: A bar chart representing the number of articles investigating each pathogen.

4.1.2 The Data and Software

All articles included in the characterization used WGS data for their investigations. In
addition to the molecular data all articles included also used some kind of epidemiolog-
ical data in combination with the genetic data. Types of epidemiological data that could
be used were temporal and spacial data about the outbreak, as well as information about
contacts to create contact networks.

Most articles (11/14) constructed a phylogenetic tree using some software. A list of
all articles with their output and what software they used can be found in Appendix D,
Table 4. The software listed were not all used for the construction of a phylogenetic tree
or the corresponding output, but were also used for alignments, to study geographical
data, to visualize and annotate trees etc. The other outputs generated from the resulting
articles were transmission trees and networks of transmission events.

Some of the studies (#2 for example) used code and packages written in house, but most
of the studies used a variety of different widely available software in order to analyze
their data and construct some kind of network/tree. Most of the workflows appeared
to be rather specific and tailored for the data available as well as the settings of the
article. Two of the studies (#6 and #7) each presented a newly developed tool, both
implemented as a package in R. The presented tools were outbreaker (Jombart et al.,
2014) and phybreak (Klinkenberg et al., 2017), both widely applicable for a variety of
different infectious pathogen outbreaks. Among the software in Table 4 an additional
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tool, also being widely applicable and a package implemented in R like outbreaker and
phybreak was found; TransPhylo (Didelot et al., 2021) found in article #12.

There were mainly two different kinds of studies identified. The first kind was stud-
ies that investigated an outbreak of some infectious disease and were interested in the
patterns of transmission and if super-spreaders could be identified. The second kind of
study were about developing/testing a method (that possibly could be used for studies
like in the first category) and therefore were more interested in how the method per-
formed. This was then applied to simulated and/or data from existing studies to validate
the efficiency of the methods. The studies belonging to the first category were; #1, #2,
#4, #5, #9, #10, #11, #12, #13, and #14 and the studies belonging to the second category
were; #3, #6, #7 and #8, also see Table 5 in Appendix D.

4.1.3 The Super-spreaders and Super-shedders

All but one study (#8) were able to identify super-spreaders, see Table 5. The identi-
fication could be either that they identified one or several super-spreaders in the inves-
tigated outbreak, or that they found that their method of interest were able to identify
super-spreaders.

In all but one articles investigating an outbreak (#2), the effect super-spreaders had on
the outbreak were mentioned. For example in study #1 super-spreading, in combination
with some socioeconomic factors, could explain the high prevalence of disease in the
investigated population. Another study, #5, identified that the super-spreaders had an
effect on the spread on the investigated hospital. They found that 80% of the cases
of transmission were caused by 21% of the individuals, the 20/80 rule. In study #10,
they suggest that super-spreaders can have an effect on what lineages of the pathogen
(SARS-CoV-2) that becomes most successful in the spread of the disease.

Two of the studies (#1 and #5) addressed the relationship between being a super-spreader
and shedding/having a high bacillary load. In study #1 they found that individuals who
were considered to be super-spreaders also had a significant bacillary load of M. fu-
berculosis. In study #5 they found indications that increased shedding of the pathogen,
SARS-CoV-2, would also increase the likelihood of that individual becoming a super-
spreader.

4.1.4 The Summary of Phase One

In this literature study, patterns indicating that articles answering the stated research
question is being published more frequently in the last couple of years were found.
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A pattern over what pathogens that were more frequently investigated (SARS-CoV-
2 and M. tuberculosis) were also found. Another pattern found was that the most
common output of the articles were phylogenetic trees, but that transmission trees also
occurred. These were produced using a variety of different methods and software. Most
of the articles identified super-spreaders, some articles also looked at the effect of super-
spreaders but only two articles looked at the relation between super-spreaders and super-
shedders. Since no study investigating super-spreaders among individuals infected with
VTEC O157:H7 were found, the more general methods; outbreaker, phybreak, were
considered good options to apply to the molecular data for the second phase of this
project. In addition to these two methods, another general method, TransPhylo, was
identified and could have been a possible option for the second phase.

4.2 Phase 2 - Exploring Super-spreaders of VTEC O157:H7

In the second phase of this master thesis, 32 sequences of VTEC O157:H7 were ex-
plored for super-spreaders using different software, identified in the first phase.

4.2.1 outbreaker2

Outbreaker is a package first presented in 2014 and has since then been updated, nowa-
days called outbreaker2. Therefore, outbreaker2 is the name used for this method
throughout the project.

Outbreaker2, as mentioned before, generates transmission trees as its output. In the
transmission tree the circles represent the samples, the ID written next to it shows which
sample it is and the colors represents different samples. The arrows represent the path
of transmission, where a bigger arrow indicates a higher probability of that transmission
event compared to a smaller arrow (the support is also illustrated in Figures 12 - 15 in
Appendix F). In Appendix E, Table 6, a list of all samples and their ID, what farm they
belong to, if the sample was an environment or individual sample, if they were super-
shedders as well as the date of sampling can be found. The four trees generated can be
seen in Figure 5 - 8.

Figure 5 and 6 shows the transmission trees where the generation time and incubation
period were used to create the gamma distribution. Figure 5 shows the transmission tree
generated when using the mutation rate 3.9571° mutations per site per day and Figure
6 shows the tree generated when using the mutation rate 6.1971° mutations per site per
day. As seen by following the arrows, the trees in Figure 5 and 6 show the exact same
events of transmission. This indicates that the two different mutation rates used do not
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generate any differences in the path of transmission. In Figure 5 and 6 three different
samples which infect three secondary cases were identified; F5-env-2, F9-env-2 and
F9-2466-2. Two samples taken from the environment and one sample taken from a calf
which was not a super-shedder.

F7-346-2

&
F9.5827-2 5149941 F7-1992:2

5 Fl-enw.2 < j Q FT-env-1
F7-347-1 F82466-2
F9.5823-1
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F1-14724 4
{ l F9.2465-2
J

F 3 Fo€nvg

”
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35 o P Q
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v/ W F9-2465-1
F1-1875-1
X F1-3431-1
: F5-ew2
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Q . 4 o
thas Fo-env-1
J F7-346-1
F9.2471-2 Q
F1-1467
) N
\ &
F5-1495-1 8
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\J Q
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Figure 5: Transmission tree generated from outbreaker2 using the mutation rate 3.95 % mutations per
site per day and using the generation time and incubation period to create the gamma distribution.
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Figure 6: Transmission tree generated from outbreaker2 using the mutation rate 6.19~'° mutations per
site per day and using the generation time and incubation period to create the gamma distribution.

In Figure 7 and Figure 8 the trees generated using the default parameters for the gamma
distribution is shown. Figure 7 shows the transmission tree generated when using the
mutation rate 3.95~° mutations per site per day and Figure 8 shows the tree generated
when using the mutation rate 6.197° mutations per site per day. No differences in the
path of transmission could be identified between these trees generated using different
mutation rates, also an indication that these mutations rates do not generate any differ-
ences in the path of transmission. In Figure 7 and 8 three different samples which infect
three secondary cases were identified; F9-2466-2, F5-8366-1 and F1-1475-1, where F9-
2466-2 and F5-8366-1 were not super-shedders, but F1-1475-1 was a super-shedder.
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Figure 7: Transmission tree generated from outbreaker2 using the mutation rate 3.95~'° mutations per
site per day and using the default gamma shape to create the gamma distribution.
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Figure 8: Transmission tree generated from outbreaker2 using the mutation rate 6.19~'° mutations per
site per dayand using the default gamma shape to create the gamma distribution.

From the transmission trees generated by outbreaker? it can be identified that the trans-
mission of VTEC O157:H7 follows no specific pattern, but transmission both within
farms and between the different farms were observed. In Figure 11, found in Appendix
E, the distances between the four different farms are illustrated. These rather small
distances between the farms makes it possible to identify all the farms as one epidemi-
ological unit.

As stated, the transmission trees generated from different mutations rates were identical
in their path of transmission. When comparing the path of transmission between the
trees generated from different gamma distributions, it was found that these trees were
not identical.

Some events stayed consistent between the different trees. These events were;
F5-1499-1 transmitting to both F9-5827-2 and F7-348-1,
F9-2466-2 transmitting to F7-1992-2, F7-346-2 and F9-5823-1 and
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F9-5823-1 transmitting to F7-env-1.

Individuals infecting more secondary cases compared to others were found in the two
different resulting trees, but only one of these, F9-2466-2, were found in both.

In some cases, the direction of the transmission were the opposite between two cases
between the tree generated from the two different gamma distributions. Example of
events like this can be found in Figure 5 where F1-1459-1 transmit F9-5826-1, but in
Figure 7 F9-5826-1 transmit F1-1459-1.

In Appendix F, Figure 16 - 19 plots of the probability of the generation time and incuba-
tion period for the different gamma distributions. From Figure 16 and Figure 17 one can
see that both the generation time and incubation period have the highest probabilities
between 0 and 10 days.

In Figure 18 and Figure 19 the highest probability of the generation time is between 40
and 60 days, whereas for the incubation period the highest probability is seen between
day 25 and day 55.

In Appendix F, Figure 12 - 15, plots representing the support for the consensus ancestry
for the four transmission trees can be found. The x-axis shows the support and the y-
axis shows the number of transmission events. It is the support for each transmission
event that is plotted. These plots shows that almost all events has rather high support.

4.2.2 phybreak

The output from phybreak is also transmission trees. The transmission trees generated
from the 32 sequences can be found in Figure 9 and 10. In the transmission trees, the
IDs to the right corresponds to the sample, the grey blobs shows the median posterior
generation interval distribution, the black crosses shows when the samples were taken
and the colored arrows indicate a transmission event where the different colors indicate
different posterior infector probability; purple arrow <100 %, red arrow <80 %, yellow
arrow <60 % and green arrow <20 %. (Klinkenberg et al., 2017)

21



F9-env-1
F9-2466-2
F9-env-2
F9-5826-1
F9-2471-2
+ F9-2465-2
F9-5802-1
F9-5823-2
©+ F9-5823-1
- F9-2465-1
F5-8366-1
F5-env-2
- F5-1499-1
F5-1495-1
- F5-env-1
-+ F9-5827-2
- F9-env-3
F1-env-1
© F1-147241
© F1-1467-1
F1-1475-1
© Fl-env-2
F1-3431-1
F1-1459-1
F7-351-1
F7-348-1
F7-1992-2
F7-346-2
F7-346-1
F7-env-1
- F7-349-1
- F7-347-1

T T T T T
2015-06-14 2015-08-03 2015-09-22 2015-11-11 2015-12-31

Time

Figure 9: Transmission tree generated from phybreak with mutations rate 3.95~'° mutations per site per
day.

F9-2465-2
F9-2466-2
-- F9-env-2
» F9-5826-1
F9-5823-2
- F9-5823-1
=+ F9-2465-1
- F9-env-3
F9-5827-2
F9-5802-1
F5-8366-1
F5-env-2
F5-1499-1

. F5-1495-1
B S it F1-3431-1
e —————— - Moo F1-1467-1
A —— ), F7_1992-2
e —— F7-351-1
-------- b 3 -+ F7-348-1
.......................... Woorerrennnnes Feny-1
F1-1475-1

) A e~ - F1-env-2
. _*_‘ ..... T F1-1459-1

W F1-1472-1
¥ e —— [ ]_opy.-{

k‘v.*w ..................... X F7-346-2
= * © F7-346-1

e pre—_——— F7.env-1

R — 7 3401

Vs £7.347 4

I I T T
2015-03-06 2015-06-14 2015-09-22 2015-12-31

Time

Figure 10: Transmission tree generated from phybreak with mutations rate 6.19~ % mutations per site per
day.



4  Results

For phybreaker, trees were only generated with a gamma distribution based on default
gamma parameters. Two different mutation rates were used. In Figure 9 the generated
transmission tree using the mutation rate 3.95~ 1% mutations per site per day can be found
and in Figure 10 the tree generated using the mutation rate 6.19'° mutations per site per
day can be found. Unlike in the case using outbreaker2, differences between the trees
generated from different mutations rate were identified for phybreak. These differences
were mostly a change in the order of the samples in the trees (eg. F9-env-2 being the
third case from the top in Figure 9, but the fifth case from the top in Figure 10). Another
difference was that some cases transmitted to different individuals in the different trees,
the infector and infectee changed. Examples of such differences are;

F1-1467-1 transmitting to F1-1472-1 in Figure 9 but

F1-1467-1 transmitting to F1-3431-1 in Figure 10.

Another such case is;

F1-1459-1 transmitting to F1-3431-1, F1-1467-1 and F7-346-2 in Figure 9 but
F1-1459-1 transmitting to F1-env-2 and F1-1472-1 in Figure 10.

In the phybreak trees, some samples infecting more secondary cases compared to others
were found. In Figure 9 such identified cases were;

F9-5802-1, F5-env-1, F1-1459-1, F7-346-2 and F7-env-1.

In Figure 10 such cases were;

F9-2465-1, F9-5802-1, F5-env-1 and F1-1459-1.

Three of these cases were found in both trees; F9-5802-1, F5-env-1 and F1-1459-1.
Among these F9-5802-1 shedd bacteria.

In the transmission trees generated from phybreak it can be found that the samples from
the different farms cluster with samples from the same farm, observing only a few events
of transmission between farms.

From the MCMC iterations, information on the parsimony score is presented, see Figure
20 - 23 in Appendix G. The parsimony score describes the minimum number of muta-
tions that can describe the generated transmission tree (or the tree at the different state of
the iteration). The dataset of 32 sequences used here contains 719 SNPs, therefore the
most parsimonious tree should have a parsimony score of 719. None of the generated
trees reach this score, but reached a parsimony score of 1312 and 1314 respectively.
This is an indication that the generated trees do not fully converge.

4.2.3 Comparison between outbreaker2 and phybreak

The biggest differences between the transmission trees generated form the different
methods were that phybreak generated trees where the time of sampling were visualized
whereas outbreaker?2 generated transmission trees in a network form, not visualizing the
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sampling time of the sequences.

The resulting transmission trees generated from outbreaker2 and phybreak differed. The
results from outbreaker2 suggested that the spread of the disease were local and trans-
mission occurred between the farms. The results from phybreak on the other hand
suggested that the spread of the disease mostly happened within the farms, with only a
few cases of transmission identified between the farms.

Even though the transmission trees generated from the two methods were different,
some events still seem to be somewhat linked. Showing that even though the same
events of transmission were not identified in the different methods, there were some
close connections between the infected individuals from the different methods. For
example in outbreaker2, see Figure 7, F5-8366-1 transmit F9-5826-1, F9-env-2 and F9-
env-3 while in phybreak, see Figure 9, F9-5826-1 transmitt F9-env-2.

Both outbreaker2 and phybreak could identify samples transmitting more secondary
cases compared to the rest of the samples. When investigating these samples between
the trees generated from outbreaker2 and phybreak, completely different samples were
suggested to spread the disease more than the rest of the samples. A such example
is F9-5802-1, which in phybreak causes three secondary cases (see Figure 9) while in
outbreaker2 cause no secondary case (see Figure 7).

5 Discussion

5.1 Phase 1 - Literature Study with a Systematic Approach

The aim of the first phase of this project was to provide an overview of previous studies
investigating super-spreading using molecular methods. This was accomplished through
a literature study with a systematic approach. The articles resulting from the search
were few, but many of them were relevant to the stated research question. The reason
that relatively few articles were found could either be because that relatively few studies
have been published on the subject, or that the search did not manage to capture all of
the relevant studies.

The two considered key articles were found in the search, which is a good indication
on that relevant studies were captured in the search. However, two relevant articles
presenting outbreaker2 and TransPhylo respectively, were not captured by the search.
This is an indication that the search was too narrow, not capturing all relevant articles
on the subject. Another indication that the search was too narrow was that the yield of
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articles included for the characterization were higher than recommended, 23 % instead
of 10 %.

An additional result from the literature search was that no articles investigating the
spread of E. coli were found. This indicates that more research within this field is
needed in order to gain more knowledge about the transmission of VTEC O157:H7 and
to fight the spread of it.

Other limitations with the literature study were that the search was performed in English,
only getting articles written in English as the result. Though this could be a problem,
other languages would not be of interest in this master thesis, due to language barrier.
The search was limited to the databases PubMed and WoS. This contributes to the risk
of relevant studies, present only in other databases, not being identified.

Limitations like this would be expected from a literature study with a systematic ap-
proach. In order to deal with these limitations a more thorough literature search would
have to be performed, a systematic literature review. A complete search like this could
however not be performed within the frames of this master thesis. One reason for this
was that there was not enough time to perform a more thorough search (e.g. including
more databases would generate more hits, would mean more articles to scan through,
which there were no time for). Another parameter in a systematic literature review is
that several people have to go through the resulting articles, which were not possible in
this master thesis.

The two key articles describing outbreaker and phybreak were known before the litera-
ture search, and were planned to be used if no more relevant methods were found from
the search. Considering that the most promising methods found in the search were out-
breaker, phybreak and TransPhylo, it is appropriate that two of these were used in the
second phase of the project.

5.2 Phase 2 - Exploring Super-spreaders of VTEC O157:H7

The aim of the second phase of this project was to explore the presence of super-
spreaders of VTEC O157:H7 in a dataset. This was done using outbreaker2 and phy-
break, also identified from previous studies in the literature review.

In outbreaker2, four different transmission trees were generated. The trees with different
mutation rates did not show any differences in events of transmission, but the trees
generated with different gamma distributions parameters did show differences in the
transmission events. It could possibly be that the difference in mutation rate were to
small to create an effect in outbreaker2, while the gamma distribution parameters had a
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quite large difference, causing an effect on the transmission tree. In a transmission point
of view, this could mean that the incubation period and generation time of a pathogen
effect the transmission more compared to the mutation rate, at least with the different
values used in outbreaker? in this project.

In phybreak, two transmission trees were created. Here, the only difference between the
two generated trees were the mutation rate. Interestingly, in phybreak this change did
have an effect on the events of transmission. This could indicate that phybreak is a more
sensitive method, at least when it comes to the sensitivity to change in mutation rate.

In outbreaker2, a total of five cases were found to transmit more secondary cases com-
pared to the other samples. In Figure 5 and 6 two environmental samples and one
individual sample were identified. That two environmental samples were found to con-
tribute a lot to the transmission could possibly be an indication on the importance of
the pathogens presence in the environment. In Figure 7 and 8 three individual samples
were identified, one of them being a super-shedder. One of the individual samples were
found in both Figure 5 and 6 as well as in Figure 7 and 8. The fact that one out of five
potential super-spreaders identified in outbreaker2 were a super-shedder is interesting
results. However, it can not be considered an indication that super-spreaders also are
super-shedders, but the relation between the two phenomenons can not be dismissed
either.

In phybreak a total of six samples infecting more secondary cases compared to the
others were identified. Among these, two samples came from the environment and four
were samples from individuals. Among the individual samples, only one shedd bacteria.
From these results the hypothesis that super-spreaders also are super-shedders can not
be established nor dismissed, just like in outbreaker?2.

These cases infecting more secondary cases compared to the rest are potential super-
spreaders. But this is only an indication and it cannot be determine whether they are
actual super-spreaders or not from the results generated in this study.

The environmental samples suggested to play an important role of the transmission
could possibly be bacteria that are shedded from super-shedders. If that would be the
case, the importance of the environmental samples could possibly indicate an important
role of super-shedders as well. In contrast to this, a study by Spencer et al. (2015) sug-
gests that shedding individuals have a limited influence on the transmission and that it
instead is the environment samples themselves that work as a reservoir for the infection
and therefore effect the transmission. A limitation to discuss in this context is that the
dataset used in this master thesis consists of rather few samples, taken only at a few dif-
ferent time points. This does not give a full representation of the outbreak. A snapshot
of the transmission on a farm could possibly look very different at different time points,
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especially if shedding is a dynamic phenomenon. Therefore it cannot be stated from
these results whether it is the super-shedders or the environmental samples that plays an
important role of transmission or not.

The results from outbreaker2 suggest that the transmission of VTEC O157:H7 occurs
between farms as well as within farms. This indication of local transmission of the
pathogen could be explained by that the four farms investigated are located close to
each other, and can be considered an epidemiological unit. A previous study by Lena-
Mari Tamminen et al. (2019) identified this local transmission of the pathogen when
investigating 80 farms on a Swedish island. Tamminen ef al. (2019) The result from
outbreaker2 potentially strengthen the results found in this study.

On the other hand, the results from phybreak suggests that the spread of the disease
mostly occurs within the different farms, with only a few cases of between farm trans-
mission identified in the transmission trees. This result suggest the opposite compared to
the result generated from outbreaker2. One explanation for this could be that phybreak
takes the within-host diversity into consideration. Phybreak could potentially therefore
catch smaller differences in the investigated genomes and interpret this in the generated
transmission tree. This implementation of within-host diversity could possibly be the
reason why the change in mutation rate affect the trees in phybreak.

A possible scenario, explaining the results in both outbreaker2 and phybreak, is that
most of the transmission occurs within farms and that only phybreak with its within-host
diversity feature can distinguish it. An explanation for this could be that if two cases
from the same clone of bacteria start an outbreak on two different farms they will spread
and diversify on those two different farms. These bacteria will diversify in different
directions, but by chance they could diversify in the same direction. As a result to
this, their genome would be very similar and from this they could possibly be identified
as event of transmission when in reality they have just evolved in the same direction.
Potentially, outbreaker2 is a method that can not distinguish these small differences, but
phybreak can due to taking the within-host diversity of a pathogen into consideration.
Interestingly, the results from the MCMC iterations in phybreak indicates that some
homoplasy is occurring in the trees. Homoplasy is when similar traits of two different
species or lineages has evolved independently (Campbell et al., 2015). Exactly what the
above scenario describes.

There are several limitations of these methods and results that has to be discussed.
Firstly, both methods assumes that all cases of infection are sampled. Since this is
not the case, both methods will find infectors and infectees in this dataset that are not
true infectors and infectees in real life.
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5 Discussion

In the MCMC iterations performed in phybreak, the parsimony score did not decrease
to the SNP value. This is an indication that the method did not fully converge, another
indication of homoplasy (as discussed above). (Klinkenberg et al., 2017)

In phybreak only one gamma distribution were used, the one using default parameters.
This was due to that the gamma parameter called shape, based on the generation time
and incubation period of VTEC O157:H7, could not be run in phybreak without crash-
ing. An explanation to why this happened could be that the parameter values were to
small, since testing bigger values worked but smaller values did not work. Using default
values creates pretty wide distributions, therefore being less informative. This will of
course affect the resulting trees in phybreak, and as seen in Figure 9 and Figure 10 the
majority of arrows showing the transmission events have a rather low posterior infection
probability. Therefore the results should be interpreted carefully.

The information used to the generate gamma distributions of the incubation period and
generation time were approximated from existing literature. Since calves do not show
any symptoms when infected with this pathogen, it is difficult to generate this kind of
data. Information about the incubation period were therefore taken from data describing
the infection in humans. This is not a representation of the dynamics and time frames
in a calf or on a farm, but as stated an approximation. The generation time was also ap-
proximated from the literature based on data how many days passed between infections
of VTEC O157:H7 in calves on a farm. It is important to take these approximations,
as well as the fact that the transmission trees are just results of statistical modelling, in
mind when interpreting the results of this project. The results do not tell the truth about
the transmission on and between the farms, but use statistics to model likely scenarios.

5.3 Future Work

In future work, it would be interesting to apply the dataset to TransPhylo as well, and
compare its result with the results from outbreaker2 and phybreak. Since outbreaker2
and phybreak came up with very different results, it would be interesting to see what
results a third method would generate.

It would also be interesting to generate phylogenetic trees from the dataset and com-
pare with the transmission trees. In the results from the literature search a lot of studies
generated phylogenetic trees to investigate the spread of some infectious disease. Phy-
logenetic trees and transmission trees do not say the same thing, but it would still be
interesting to investigate if transmission trees are better at revealing super-spreaders and
tell us stories about who transmitted whom, or if phylogenetic trees also could be a good
approach for this.
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In future investigations it would be interesting to perform some more extended error
search of the phybreak method, in order to be able to run it with the gamma parameters
generated from the incubation period and generation time. The default values used
generate a wide distribution and it would be interesting if the distribution became less
wide using the distribution parameters from the incubation period and generation time.

In the future, it would also be interesting to compare the findings of super-spreaders
with the findings from the study from Lena-Mari Tamminen et al. (2020), to see what
traits and behaviours calves identified as super-spreaders have. It would also be inter-
esting to further investigate the relation between super-shedders and super-spreaders, in
connection with calves behaviour and animal welfare.

6 Conclusions

From the literature study performed in the first phase of this master thesis, relevant
articles answering the research question were found. From scanning through and vali-
dating these articles it was recognized that outbreaker2, phybreak and TransPhylo were
the most suitable methods to apply to the second phase of the project.

In the second phase, from exploring the sequences of VTEC O157:H7 using outbreaker2
and phybreak, interesting findings can be presented. Firstly, it is clear that the different
methods provide different transmission scenarios and the differences implicate different
transmission dynamics between nearby farms. This is likely a result of the within host
variation modelled in phybreak and due to the large impact on the most likely trans-
mission tree this effect should be further explored in future studies. Secondly, there
were indications of super-spreading events among the calves. However, these were
relatively rare and often associated with environmental samples. Thus, the role of in-
dividual super-spreaders and the association between super-shedding requires further
investigation.

7 Ethical Approval

The samples used in this master thesis were previously collected by Dr. Lena-Mari
Tamminen. The sampling and handling was carried out in accordance with the ethical
approval granted by the regional ethical committee (Uppsala Djurforsoksetiska Namnd,
Dnr: C 85/15). All methods were carried out in accordance with relevant guidelines and
regulations. (Tamminen et al., 2020)

29



References

8 Acknowledgement

This project would not have been possible without my fantastic supervisor, Lena-Mari
Tamminen. Thank you for guiding me throughout this project and helping me when
I needed it. I would also like to give thanks to my subject reviewer Ulf Emanuelson,
my deputy supervisor Robert Soderlund, my examinator Johan Aqvist and my oppo-
nent Jenny Eriksson. Also thank you Lena Henriksson, coordinator of this course, for
everything you do and have done for us students on X.

I would like to thank my family, for always supporting and believing in me. Additional
thanks to my little brother, Carl Wallskog, for helping me with LaTeX.

TWDG, thank you for all late study nights. Thank you for all the unforgettable moments
and all memories we have created during my six years at the university. Here’s to the
future.

Till alla jag har fatt priviligeriet att lara kdnna i Uppsala under mina sex ar; stort tack
for alla tankar, kinslor och minnen!

References

Ameer MA, Wasey A, Salen P. 2021. Escherichia coli (E Coli O157 H7). In: StatPearls
[Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan—. PMID: 29939622.

Awofisayo-Okuyelu A, Brainard J, Hall I, McCarthy N. 2019. Incubation Pe-
riod of Shiga Toxin-Producing Escherichia coli. Epidemiologic Reviews doi
10.1093/epirev/mxz001.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for [llumina
sequence data. Bioinformatics 30: 2114-2120.

Campbell F, Didelot X, Fitzjohn R, Ferguson N, Cori A, Jombart T. 2018. outbreaker?2:
a modular platform for outbreak reconstruction. BMC Bioinformatics 19: 363.

Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson
RB. 2015. Biologi A Global Approach, volume 10th. PEARSON.

CDC. 2019a. Questions and Answers | E. coli | CDC. URL:
https://www.cdc.gov/ecoli/general/index.html. Retrieved 2022-04-26.

30



References

CDC. 2019b. Whole Genome Sequencing (WGS) | PulseNet Methods| PulseNet | CDC.
URL: https://www.cdc.gov/pulsenet/pathogens/wgs.html. Retrieved 2022-05-19.

Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M. 2008. Super-Shedding
and the Link Between Human Infection and Livestock Carriage of Escherichia coli
O157. Nature reviews. Microbiology 6: 904-912.

D Munns K, Selinger LB, Stanford K, Guan L, R Callaway T, A McAllister T. 2015. Per-
spectives on Super-Shedding of Escherichia coli O157:H7 by Cattle. FOODBORNE
PATHOGENS AND DISEASE 12: 89-103.

Didelot X, Kendall M, Xu Y, White PJ, McCarthy N. 2021. Genomic Epidemiology
Analysis of Infectious Disease Outbreaks Using TransPhylo. Current Protocols 1:
e60.

Eriksson E, Aspan A, Gunnarsson A, Vagsholm I. 2005. Prevalence of Verotoxin-
Producing Escherichia coli (VTEC) O157 in Swedish Dairy Herds. Epidemiology
and Infection 133: 349-358. Publisher: Cambridge University Press.

Gibson B, Wilson DJ, Feil E, Eyre-Walker A. 2018. The distribution of bacterial dou-
bling times in the wild. Proceedings of the Royal Society B: Biological Sciences 285:
20180789.

Gunn GJ, McKendrick 1J, Ternent HE, Thomson-Carter F, Foster G, Synge BA. 2007.
An investigation of factors associated with the prevalence of verocytotoxin producing
Escherichia coli O157 shedding in Scottish beef cattle. The Veterinary Journal 174:
554-564.

Holme P, Masuda N. 2015. The Basic Reproduction Number as a Predictor for Epidemic
Outbreaks in Temporal Networks. PLoS ONE 10: e0120567.

Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. 2014. Bayesian Re-
construction of Disease Outbreaks by Combining Epidemiologic and Genomic Data.
PLOS Computational Biology 10: €1003457. Publisher: Public Library of Science.

Kaper JB, O’Brien AD. 2014. Overview and Historical Perspectives. Microbiology
Spectrum 2: 2.6.16. Publisher: American Society for Microbiology.

Karolinska Institutet. 2022. Systematisk litteraturdversikt som examensarbete | Karolin-
ska Institutet Universitetsbiblioteket.  https://kib.ki.se/soka-vardera/systematiska-
oversikter/systematisk-litteraturoversikt-som-examensarbete. Retrieved 2022-02-01.

Klinkenberg D, Backer JA, Didelot X, Colijn C, Wallinga J. 2017. Simultaneous infer-
ence of phylogenetic and transmission trees in infectious disease outbreaks. PLOS
Computational Biology 13: €1005495. Publisher: Public Library of Science.

31



References

Konowalchuk J, Speirs JI, Stavric S. 1977. Vero response to a cytotoxin of Escherichia
coli. Infection and Immunity 18: 775-779. Publisher: American Society for Micro-
biology.

L Gally D, P Stevens M. 2016. Microbe Profile: Escherichia coli O157 : H7 — notorious
relative of the microbiologist’s workhorse. Microbiology 163: 1-3.

Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM, Mladon-
icky JM, Somsel P, Rudrik JT, Dietrich SE, Zhang W, Swaminathan B, Alland D,
Whittam TS. 2008. Variation in virulence among clades of Escherichia coli O157:H7
associated with disease outbreaks. Proceedings of the National Academy of Sciences
105: 4868—4873. Publisher: Proceedings of the National Academy of Sciences.

Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clinical Microbiology
Reviews 11: 142-201. Publisher: American Society for Microbiology.

NHGRI. 2021. DNA Sequencing Costs: Data. URL: https://www.genome.gov/about-
genomics/fact-sheets/DNA-Sequencing-Costs-Data. Retrieved 2022-04-18.

O’Brien AD, LaVeck GD. 1983. Purification and characterization of a Shigella dysente-
riae 1-like toxin produced by Escherichia coli. Infection and Immunity 40: 675-683.

O’Brien A, Lively T, Chen M, Rothman S, Formal S. 1983. ESCHERICHIA COLI
0157:H7 STRAINS ASSOCIATED WITH HAEMORRHAGIC COLITIS IN THE
UNITED STATES PRODUCE A SHIGELLA DYSENTERIAE 1 (SHIGA) LIKE
CYTOTOXIN. The Lancet 321: 702.

R Core Team. 2021. R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.

Redaktionen UUB. 2022. Uppsala universitetsbibliotek - Uppsala universitet. URL:
https://libguides.ub.uu.se/c.php?g=693032p=4969441 Retrieved 2022-05-07.

Reeves PR, Liu B, Zhou Z, Li D, Guo D, Ren Y, Clabots C, Lan R, Johnson JR, Wang
L. 2011. Rates of Mutation and Host Transmission for an Escherichia coli Clone over
3 Years. PLoS ONE 6: €26907.

Spencer SEF, Besser TE, Cobbold RN, French NP. 2015. ‘Super’ or just ‘above av-
erage’? Supershedders and the transmission of Escherichia coli O157:H7 among
feedlot cattle. Journal of the Royal Society Interface 12: 20150446.

Soderlund R, Jernberg C, Ivarsson S, Hedenstrom I, Eriksson E, Bongcam-Rudloff
E, Aspan A. 2014. Molecular Typing of Escherichia coli O157:H7 Isolates from
Swedish Cattle and Human Cases: Population Dynamics and Virulence. Journal of
Clinical Microbiology 52: 3906-3912.

32



References

Tamminen LM, Hranac CR, Dicksved J, Eriksson E, Emanuelson U, Keeling LJ. 2020.
Socially engaged calves are more likely to be colonised by VTEC O157:H7 than
individuals showing signs of poor welfare. Scientific Reports 10: 6320.

Tamminen LM, Soderlund R, Wilkinson D, Torsein M, Eriksson E, Churakov M,
Dicksved J, Keeling L, Emanuelson U. 2019. Risk factors and dynamics of vero-
toxigenic Escherichia coli O157:H7 on cattle farms: An observational study combin-
ing information from questionnaires, spatial data and molecular analyses. Preventive

Veterinary Medicine 170: 104726.

Thibaut J. 2018. Ebola simulation part 2: outbreak reconstruction - RECON
learn. URL.: https://reconlearn.org/post/practical-ebola-reconstruction.html Retrieved
2022-05-02.

Thibaut J, Finlay C, Rich F  2021. Set and check pa-
rameter  settings of  outbreaker = —  create_config. URL:
https://www.repidemicsconsortium.org/outbreaker2/reference/create_config.html.
Retrieved 2022-05-02.

Vidovic S, Korber DR. 2006. Prevalence of Escherichia coli O157 in Saskatchewan
Cattle: Characterization of Isolates by Using Random Amplified Polymorphic DNA
PCR, Antibiotic Resistance Profiles, and Pathogenicity Determinants. Applied and
Environmental Microbiology 72: 4347-4355.

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome
assemblies from short and long sequencing reads. PLOS Computational Biology 13:
€1005595. Publisher: Public Library of Science.

Wilson JB, Renwick SA, Clarke RC, Rahn K, Alves D, Johnson RP, Ellis AG, McEwen
SA, Karmali MA, Lior H, Spika J. 1998. Risk factors for infection with verocyto-

toxigenic Escherichia coli in cattle on Ontario dairy farms. Preventive Veterinary
Medicine 34: 227-236.

Woolhouse M, Dye C, Etard JF, Smith T, Charlwood J, Garnett G, Hagan P, Hii J,
Ndhlovu P, Quinnell R, Watts C, Chandiwana S, Anderson R. 1997. Heterogeneities
in the transmission of infectious agents: Implications for the design of control pro-
grams. Proceedings of the National Academy of Sciences of the United States of
America 94: 338-342.

Ypma RIJF, van Ballegooijen WM, Wallinga J. 2013. Relating Phylogenetic Trees to
Transmission Trees of Infectious Disease Outbreaks. Genetics 195: 1055-1062.

33



A Literature Study - The Search

A Literature Study - The Search

Table 1: A table showing the search block applied in PubMed. The column ”Number” describes the order
that the blocks were done in, block number 11 being the final search. The column ”Query” displays the
words and boolean operators applied, the column Filters” shows if any filters were applied, and lastly
the column “Results” shows how many hits the query yielded.

Number| Query

| Filters| Results

11

(((((’disease transmission, infectious”’[MeSH
Terms]) OR  (Pcarrier state”[MeSH  Terms]))
OR (’super-spread*”’[Title/Abstract] OR
superspread*[Title/Abstract] OR ’super
spread*”[Title/Abstract] OR  “high risk con-
tact*”’[Title/Abstract])) AND (’transmission
dynamic*”’[Title/Abstract] OR “transmis-
sion pattern*”’[Title/ Abstract] OR “transmis-
sion cluster*”’[Title/ Abstract] OR “transmis-
sion event®”’[Title/ Abstract] OR transmis-
sion driver*”[Title/Abstract] OR ’spreader
event*”’[Title/Abstract])) AND ((Whole genome
sequencing[MeSH Terms]) OR (”genome sequenc-
ing whole”[Title/Abstract] OR “sequencing whole
genome”’[Title/Abstract] OR  7Complete Genome
Sequencing”[Title/Abstract] OR “genome sequenc-
ing  complete”[Title/Abstract] OR  ’sequencing
complete genome”[Title/Abstract] OR “molecular
data”’[Title/Abstract] OR “"WGS”[Title/Abstract] OR
”whole genome sequenc*”’[Title/Abstract] OR “genetic
data”[Title/Abstract] OR “genome data”[Title/ Abstract]
OR 7dna sequenc*”[Title/Abstract] OR “genomic
data’[Title/Abstract]))) AND (’identif*”’[Title/Abstract]
OR “understand*”’[ Title/Abstract] OR ’pin-
point*”’[Title/Abstract] OR “recogni*”’[Title/Abstract]
OR 7explor*”[Title/Abstract])

None

58

10

“identif*”’[ Title/Abstract] OR “under-
stand*”[Title/Abstract] OR “pinpoint*”[Title/Abstract]
OR “recogni*”’[Title/Abstract] OR ’ex-
plor*”’[Title/Abstract]

None

6,033,313

Continued on next page
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Continued from previous page

Number| Query

| Filters| Results

9 ((((’disease transmission, infectious”[MeSH | None | 78
Terms]) OR  (Pcarrier state”[MeSH  Terms]))
OR (’super-spread*”’[Title/Abstract] OR
superspread*[Title/Abstract] ’super
spread*”’[Title/Abstract] OR risk  con-
tact*”’[Title/Abstract])) AND (’transmission
dynamic*”’[Title/Abstract] “transmis-
sion  pattern*”[Title/Abstract] OR  “transmis-
sion cluster*”’[Title/ Abstract] OR “transmis-
sion event®”’[Title/ Abstract] ’transmis-

sion driver*”’[Title/Abstract]
event*”’[Title/Abstract]))
sequencing[MeSH Terms]) OR (”genome sequenc-
ing whole”’[Title/Abstract]
genome’’[Title/Abstract]
Sequencing”’[Title/Abstract] OR “genome sequenc-
ing  complete”[Title/Abstract]
complete genome”[Title/Abstract]
data’[Title/Abstract] OR “"WGS”[Title/Abstract] OR
”whole genome sequenc*”[Title/Abstract] OR “genetic
data”[Title/Abstract] OR “genome data”[Title/ Abstract]
OR 7dna sequenc*”[Title/Abstract] OR “genomic
data”’[Title/Abstract]))

AND

OR
OR

OR ’spreader
((Whole  genome

”sequencing whole
”Complete  Genome

OR molecular

’sequencing

8 (Whole genome sequencing[MeSH Terms]) OR | None | 164,404

data”’[Title/Abstract])

("genome sequencing whole”[Title/Abstract] OR ’se-
quencing whole genome”[Title/Abstract] OR ”Complete
Genome Sequencing”’[Title/Abstract]
sequencing complete”[Title/Abstract] OR “sequencing
complete genome”[Title/Abstract]
data”[Title/Abstract] OR “WGS”[Title/Abstract] OR
”whole genome sequenc*”[Title/Abstract] OR “genetic
data”[Title/Abstract] OR “genome data”[Title/Abstract]
OR 7dna sequenc*”[Title/Abstract] OR “genomic

OR molecular

OR “genome

35

Continued on next page



A Literature Study - The Search

Continued from previous page

Number| Query

| Filters| Results

7 “genome sequencing whole”[Title/Abstract] OR se- | None | 155,094
quencing whole genome”’[Title/Abstract] OR “Complete
Genome Sequencing”’[Title/Abstract] OR “genome
sequencing complete”[Title/Abstract] OR “sequencing
complete genome”[Title/Abstract] OR “molecular
data”[Title/Abstract] OR “WGS”[Title/Abstract] OR
“whole genome sequenc*”[Title/Abstract] OR “genetic
data”’[Title/Abstract] OR ”genome data”[Title/Abstract]
OR ”dna sequenc*”[Title/Abstract] OR “genomic
data”[Title/Abstract]

6 Whole genome sequencing[MeSH Terms] None | 14,696

5 (((’disease transmission, infectious”’[MeSH | None | 1,366
Terms]) OR “carrier  state”’[MeSH  Terms]))
OR (super-spread*”’[Title/Abstract] OR
superspread*[Title/ Abstract] OR ’super
spread*”’[Title/Abstract] OR  “high risk con-
tact*”’[Title/Abstract])) AND (’transmission
dynamic*”[Title/Abstract] OR “transmis-
sion pattern*”[Title/ Abstract] OR transmis-
sion cluster*”[Title/Abstract] OR ’transmis-
sion event®”’[Title/Abstract] OR ’transmis-
sion driver*”[Title/Abstract] OR ’spreader
event*”’[Title/Abstract])

4 ”transmission dynamic*”[Title/Abstract] OR | None | 8,042
“transmission pattern*”’[Title/Abstract] OR “trans-
mission cluster*”[Title/Abstract] OR trans-
mission event®”’[Title/ Abstract] OR ’trans-
mission  driver*”[Title/Abstract] OR  “spreader
event*”’[Title/Abstract]

3 ((’disease transmission, infectious”’[MeSH | None | 99,834
Terms]) OR “carrier  state”[MeSH  Terms]))
OR (super-spread*”’[Title/Abstract] OR
superspread*[Title/Abstract] OR ’super
spread*”’[Title/Abstract] OR  “high risk con-
tact*”’[Title/Abstract])

Continued on next page
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Number| Query | Filters| Results
2 ”super-spread*”’[Title/ Abstract] OR su- | None | 767
perspread*[Title/Abstract] OR ’super

spread*”’[Title/Abstract] OR  “high risk con-
tact®”’[Title/Abstract]

1 (’disease transmission, infectious”’[MeSH Terms]) OR | None | 99,198
(carrier state”’[MeSH Terms])




Table 2: A table showing the search block applied in Web of Science. The column "Number” describes
the order that the blocks were done in, block number 7 being the final search. The column “Query”
displays the words and boolean operators applied, the column Filters” shows if any filters were applied,
and lastly the column “Results” shows how many hits the query yielded.

Number| Query

| Filters| Results

7

#5 AND #6

None

15

6

TS=(Identif* OR understand* OR pinpoint* OR
recogni* OR explor*)

None

12,951,756

W

#3 AND #4

None

17

TS=("genome sequencing whole” OR “sequencing
whole genome” OR ”Complete Genome Sequencing”
OR ”genome sequencing complete” OR ”sequencing
complete genome” OR “molecular data” OR "WGS”
OR ”whole genome sequenc*” OR genetic data”
OR ”genome data” OR ”dna sequenc*” OR “genomic
data”)

None

414,652

#1 AND #2

None

147

TS=("transmission dynamic*” OR ”transmission pat-
tern*” OR “transmission cluster*” OR “transmis-
sion event*” OR “transmission driver*” OR spreader
event*”)

None

12,716

TS=("super-spread*” OR “superspread*” OR super
spread*” OR "high risk contact*”)

None

1,102
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Table 3: The resulting articles with information on authors, year of publication, database, and if the article
was excluded or included to the characterization.

Author | Year | Database | Included/Excluded
Abbasi, Ibrahim et al. 2019 PubMed Excluded
Alisjahbana, Bachti et al. 2021 PubMed Excluded
Alvarez, Gonzalo G. et al. 2021 PubMed, WoS Included
Anderson, Laura F et al. 2014 PubMed Excluded
Auty, Harriet K. et al. 2012 PubMed Excluded
Balaji, Aakash. et al. 2019 PubMed Excluded
Bataille, Arnaud et al. 2012 PubMed Excluded
Bhowmick, Biswajit et al. 2019 PubMed Excluded
Boehmer, Merle M. et al. 2020 PubMed, WoS Excluded
Borland, Erin M. et al. 2016 PubMed Excluded
Bousali, Maria et al. 2021 PubMed, WoS Included
Buckley, Cameron et al. 2018 PubMed Excluded
Chow, Nancy A. et al. 2018 PubMed Excluded
Clarke, J. R. et al. 2004 PubMed Excluded
Colijn, Caroline et al. 2014 PubMed, WoS Included
Crellen, Thomas et al. 2019 PubMed Excluded
Croucher, Nicholas J. and | 2015 PubMed Excluded
Didelot, Xavier

Delwart, E. L. et al. 1995 PubMed Excluded
Donskey, Curtis J. et al. 2018 PubMed Excluded
Du, Jiteng et al. 2020 PubMed Excluded
Gardy, Jennifer L. et al. 2011 PubMed, WoS Included
Gehre, Florian et al. 2013 PubMed Excluded
Giovanetti, Marta et al. 2019 PubMed Excluded
Giske, C. G. et al. 2019 PubMed Excluded
Gorrie, et al. 2017 PubMed Excluded
Harris, Simon R. et al. 2013 PubMed Excluded
Hassan, Brekhna et al. 2021 PubMed Excluded
Henderson, Alasdair D. et al. | 2021 PubMed Excluded
Holt, Deborah C. et al. 2021 PubMed Excluded
Humphreys, H. and Coleman, | 2019 PubMed Excluded
D.C.
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Author | Year Database | Included/Excluded
Illingworth, Christopher J. R. | 2021 PubMed, WoS Included
etal.

Jajou, Rana et al. 2019 PubMed Excluded
Jombart, Thibaut et al. 2014 PubMed, WoS Included
Klinkenberg, Don et al. 2017 PubMed Included
Komissarov, Andrey B. et al. | 2021 PubMed Excluded
Kong, Ling Yuan et al. 2019 PubMed, WoS Excluded
Lau, Max S. Y. et al. 2019 PubMed, WoS Included
Leavitt, Sarah V. et al. 2020 PubMed Excluded
Lee, Robyn S. et al. 2020 PubMed, WoS Included
Letizia, Andrew G. et al. 2020 PubMed Excluded
Loftus, R. W. 2018 PubMed Excluded
Lopez, Mariana G. et al. 2021 WoS Included
Mekonnen, Daniel et al. 2019 PubMed, WoS Excluded
Mollentze, Nardus et al. 2014 PubMed Excluded
Nurjadi, Dennis et al. 2021 PubMed Excluded
Nutman, A. and Marchaim, | 2019 PubMed Excluded
D.

Pinholt, Mette et al. 2019 PubMed Excluded
Rice, Benjamin L. et al. 2016 PubMed Excluded
Roe, Chandler C. et al. 2016 PubMed Excluded
Santibanez, S. et al. 2017 PubMed Excluded
Stimson, James et al. 2019 PubMed Excluded
Stucki, et al. 2016 PubMed Excluded
Tasakis, Rafail Nikolaos et al. | 2021 WoS Included
Thiemann, T. C. et al. 2012 PubMed Excluded
van Tonder, Andries J. ef al. 2021 PubMed, WoS Included
Vasconcelos Dos Santos, Thi- | 2019 PubMed Excluded
ago et al.

Wittwer, Matthias et al. 2018 PubMed Excluded
Yan, Zhongqiang et al. 2019 PubMed Excluded
Yang, Chongguang et al. 2018 PubMed Excluded
Yang, Xuemei et al. 2020 WoS Included
Zeller, Mark et al. 2021 WoS Included
Morelli, Marco J. et al. 2012 PubMed Excluded
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Table 4: Topics from the characterization concerning what pathogen was investigated, what kind of data
was used as well as the output and software used.

# | Author (Year) | Pathogen (Host) | Output

| Software

1

Alvarez, Gon-
zalo G. et al
(2021)

Mycobacterium
Tuberculosis
(Human)

Phylogenetic
trees

Maximum likelihood
method (using a
Tamura-Nei model),
Interactive Tree Of
Life, SMALT version
0.7.6, SAMtools
version 1.4, Free-
Bayes version 1.1.0,
SAMtools mpileup

Bousali, Maria
etal. (2021)

SARS-CoV-2
(Human)

Phylogenetic
trees

IQ-TREE, TreeTime,
Nextstrain’s “augur”
pipeline(involves
sequence alignment
with MAFFT), in
house written pro-
grams in R to analyze
the phylogenetic tree,
utilized the libraries
“ape”, “phang-
7, “ggtree” and
tidyverse package.

Colijn, Car-
oline et al
(2014)

Mycobacterium
Tuberculosis
(Human)

Phylogenetic
trees

orn”,
Matlab’s seqpdist
and seqneighjoin
functions, Classifi-
cationKNN.fit  and
SVMrtrain methods in
Matlab, “phyloTop”
and ”e1071” package
in R, Burrows-
Wheeler Aligner,
samtools mpileup.

Continued on next page
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Continued from previous page

# | Author (Year) | Pathogen (Host) | Output | Software

4 | Gardy, Jennifer | Mycobacterium Phylogenetic Maximum  Likeli-
L. et al. (2011) | Tuberculosis trees hood method GARLI

(Human) at the CIPRES portal,
Bayesian Markov
chain Monte Carlo
method MrBayes
3.14 as  imple-
mented in Geneious
4.7.6, SSAHA v.21,
ClustalX 2.0.

5 | lllingworth, SARS-CoV-2 Maximum A2B-COVID  soft-
Christopher J. | (Human) likelihood trans- | ware package,
R. etal. (2021) mission networks | SQL  v18.5.1 and

FoodChain-Lab.

6 | Jombart, SARS (Human) Transmission MUSCLE, DiscrSI
Thibaut et al. trees and the | from the R package
(2014) method out- | EpiEstim.

breaker in R

7 | Klinkenberg, Mycobacterium Transmission -
Don et al | Tuberculosis trees, phyloge-
(2017) (Human, ani- | netic trees and the

mals) method phybreak
in R
8 | Lau, Max S. Y. | Foot- and mouth- | Model-diagnostc | -

et al. (2019)

disease
mals)

(Ani-

framework  for
phylodynamic

models

Continued on next page
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Continued from previous page

# | Author (Year) | Pathogen (Host) | Output | Software
9 | Lee, Robyn | Mycobacterium Maximum likeli- | IQ-Tree v.1.6.8, In-
S.et al. (2020) | Tuberculosis hood trees teractive Tree of Life,
(Human) FastQC v.0.11.5,
Trimmomatic v.0.36,
miniKraken, Se-

qtk v.1.2, Burrows
Wheeler Aligner
MEM algorithm

v.0.7.15, Sam-
tools v.1.5, Picard
MarkDuplicates

v.2.9.0, Genome
Analysis ToolKit,
snpEff v.4.3t, custom
Python scripts v.3.6,
Tablet v.1.17.08.17,
snp-sites -c v.2.4.0,
snp-dists v.0.6, Stata
v.15.

Continued on next page
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Continued from previous page

# | Author (Year) | Pathogen (Host) | Output | Software
10| Lopez, Mari- | SARS-CoV-2 Maximum likeli- | IQ-Tree with GTR
ana G. et al | (Human) hood trees model, iTOL tool,
(2021) pipeline based on
IVAR (Kraken,

fastp v 0.20.1, bwa
and IVAR v 1.2 ,
MultiQC, MAFFT,
MEGA software,
QGIS v.3.14.16-Pi,
TempEst v 1.5.3,
Beast 2.6, LogCom-
biner v 2.6.3, Treean-
notator v 2.6.3,
FigTree v 1.4.3,
TreeSlicer, Tracer
v 1.7.1, R packages

3 bh)

ape”, “treeio”,
“doParallel”, “fore-
ach”,  “geosphere”,
“lwgeom”, “sp”,
“sf”,  “rgeos” and
“ggplot2”.
11| Tasakis, Rafail | SARS-CoV-2 Time-scaled phy- | IQ-TREE, VIR-
Nikolaos et al. | (Human) logenetic trees ULIGN, R (4.0.2)
(2021) script, pangolin, R

stats package and
Tidyverse v. 1.3.0,
pheatmap v. 1.0.12,
dendextent v. 1.14.0,,
msa, treeio  and
ggtree packages from
R.

Continued on next page
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Continued from previous page

# | Author (Year) | Pathogen (Host) | Output | Software

12| van  Tonder, | Mycobacterium Maximum 1Q-tree v1.6.5,
Andries J. et | Bovis (Cattle, | likelihood phylo- | SpoTyping v2.0,
al. (2021) Badger) genetic trees RD-analyzer v1.0,

Trimmomatic v0.33,
BWA mem v0.7.17,
SAMtools vl.2
mpileup, BCFtools
vl.2, pairsnp Vv1.0,
R library iGRAPH,
TransPhylo, R library
“phytools”, BEAST
v1.8.4, LogCombiner
v1.8.4, TreeAnnota-
tor v1.8.4, R library
TIPDATINGBEAST,
R library coda ,
EAST2 package
BASTA, pyjar, R
libraries treeio and
ggtree, PostgreSQL,
R library geosphere,
R libraries maps and

mapdata.
13| Yang, Xuemei | SARS-CoV-2 Phylogenetic tree | RAXML ver-
et al. (2020) (Human) sion 8.2.4, iTOL,

Nextstrain  pipeline
(MAFFT, I1Q-TREE,

Treetime, Au-
gur, Auspice and
Inkscape 0.91),
MAFFT v7.310,
Snippy.

Continued on next page
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# | Author (Year) | Pathogen (Host) | Output | Software
14| Zeller, Mark et | SARS-CoV-2 Maximum likeli- | HKY nucleotide
al. (2021) (Human) hood tree substitution model,
BEAST v1.10.5pre,
Apache Spark v2.4.6,

PySpark v2.4.6, R
package “Epidemia”,
“outbreak.info.

Table 5: Topics from the characterization concerning super-spreaders and super-shedders as well as the
objectives of the study.

# | Identification | Effect of | Relation be- | Objective
of super- | super- tween super-
spreaders? spreaders? spreaders
and super-
shedders?
1 | Yes Yes Yes Outbreak investigation
2 | Yes No No Outbreak investigation
3 | Yes Yes No Method development
/testing
4 | Yes Yes No Outbreak investigation
5 | Yes Yes Yes Outbreak investigation
6 | Yes No No Method development
/testing
7 | Yes No No Method development
/testing
8 | No No No Method development
/testing
9 | Yes Yes No Outbreak investigation
10| Yes Yes No Outbreak investigation
11] Yes Yes No Outbreak investigation
12| Yes Yes No Outbreak investigation
13| Yes Yes No Outbreak investigation
14| Yes Yes No Outbreak investigation
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Table 6: Table showing information about the whole genome sequences of VTEC O157:H7 used in this
master thesis. In total 32 sequences from 4 different cattle farms were used, both environmental (8) and
samples from calves (24) were sequenced and used.

Sequence | Farm Environment | Calf Super- Date of sampling
ID sequence sequence | shedder
(cfu/g
feces)

F9-env-1 Farm9 | X 2015-10-13
F1-1472-1 | Farm 1 X 2015-10-26
F1-1475-1 | Farm 1 X X (16000) | 2015-10-26
F1-3431-1 | Farm 1 X 2015-10-26
F1-1467-1 | Farm 1 X 2015-10-26
F1-1459-1 | Farm 1 X 2015-10-26
Fl-env-1 Farm1 | X 2015-10-26
Fl-env-2 | Farm1 | X 2015-10-26
F9-5826-1 | Farm 9 X X (900) 2015-10-27
F9-2465-1 | Farm 9 X 2015-10-27
F9-5823-1 | Farm 9 X X (15100) | 2015-10-27
F9-5802-1 | Farm 9 X X 2015-10-27
F9-env-2 | Farm9 | X 2015-10-27
F9-env-3 Farm9 | X 2015-10-27
F7-env-1 Farm7 | X 2015-11-03
F5-env-1 Farm5 | X 2015-11-04
F5-env-2 | Farm5 | X 2015-11-04
F5-1499-1 | Farm 5 X 2015-11-17
F5-1495-1 | Farm 5 X X (143000) | 2015-11-17
F5-8366-1 | Farm 5 X 2015-11-17
F7-351-1 | Farm 7 X 2015-11-18
F7-349-1 | Farm 7 X 2015-11-18
F7-348-1 | Farm 7 X 2015-11-18
F7-347-1 | Farm 7 X 2015-11-18
F7-346-1 | Farm 7 X X (185000) | 2015-11-18
F9-2465-2 | Farm 9 X 2015-11-30
F9-2466-2 | Farm 9 X 2015-11-30
F9-2471-2 | Farm 9 X 2015-11-30

Continued on next page
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Sequence | Farm Environment | Calf Super- Date of sampling
ID sequence sequence | shedder

(cfu/g

feces)
F9-5823-2 | Farm 9 X X (28500) | 2015-11-30
F9-5827-2 | Farm 9 X 2015-11-30
F7-1992-2 | Farm 7 X 2015-12-14
F7-346-2 | Farm 7 X 2015-12-14

Tamminen.

%

Farm 7

Farm 1

4.9 km

e £

Figure 11: Distances between the four different farms. Illustration used with permission from Lena-Mari
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Figure 12: Consensus Ancestry Support for the transmission tree generated from outbreaker2 found in
Figure 5.
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Figure 13: Consensus Ancestry Support for the transmission tree generated from outbreaker2 found in
Figure 6.
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Consensus ancestry: support
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Figure 14: Consensus Ancestry Support for the transmission tree generated from outbreaker2 found in
Figure 7.
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Figure 15: Consensus Ancestry Support for the transmission tree generated from outbreaker2 found in
Figure 8.
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Generation time distribution
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Figure 16: Generation time distribution, (a gamma distribution) based on the generation time interval.
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Figure 17: Incubation period distribution, (a gamma distribution) based on the incubation period interval.
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Figure 18: Generation time distribution, (a gamma distribution) based on the default gamma shapes
values.
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Figure 19: Incubation period distribution, (a gamma distribution) based on the default gamma shapes
values.
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> PostPhybreak <- burnin.phybreak(PostPhybreak, ncycles = 5000)
keepphylo = 0.2

cycle logLik mu gen.mean sam.mean parsimony (nSNPs = 719)
1118 -6173810.22 3.43e-07 12.8 29.6 1312

2319 -6173801.31 3.13e-07 12.2 32.8 1312

3521 -6173810.16 3e-07 15.1 28 1312

4696 -6173804.93 3.08e-07 14.7 35.1 1312

Figure 20: Result from the MCMC burnin iteration in phybreak, using the mutation rate 3.95~ % muta-
tions per site per day.

> PostPhybreak <- sample.phybreak(PostPhybreak, nsample = 25000)
keepphylo = 0.2

sample logLik mu gen.mean sam.mean parsimony (nSNPs = 719)
1173 -6173807.37 2.9%e-07 13.5 32.5 1312
2366 -6173809.59 2.64e-07 16.4 38.6 1312
3530 -6173806.59 2.63e-07 15.4 48 1312
4716 -6173814.42 2.7e=-07 16.2 32.3 1312
5895 -6173802.98 2.51e-07 15.7 40.1 1312
7090 -6173811.91 2.42e-07 17.2 40.7 1312
8243 -6173802.35 2.33e-07 14.9 48 1312
9340 -6173808.05 2.55e-07 19 42 1312

10503 -6173804.43 2.3%e-07 14.8 46 1312
11682 -6173813.7 2.51e-07 20.8 29.5 1312
12860 -6173810.6 2.4e-07 16.5 41.2 1312
14027 -6173808.66 2.56e-07 15.2 35.6 1312
15198 -6173805.56 2.37e-07 15.6 44.6 1312
16360 -6173799.79 2.54e-07 19.7 43.1 1312
17530 -6173802.7% 2.48e-07 15.7 46.5 1312
18700 -6173805.09 2.4e-07 17.3 40.6 1312
19890 -6173810.12 2.52e-07 19.4 43.4 1312
21077 -6173801.64 2.55e-07 14.5 36.8 1312
22226 -6173797.52 2.37e-07 21.1 39.4 1312
23408 -6173800.33 2.4e-07 23.5 45.3 1312
24565 -6173799.01 2.46e-07 18.8 32.5 1312

Figure 21: Result from the MCMC sample iteration in phybreak, using the mutation rate 3.95~° muta-
tions per site per day.
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> PostPhybreak <- burnin.phybreak (PostPhybreak, ncycles = 5000)
keepphylo = 0.2

cycle logLik mu gen.mean sam.mean parsimony(nSNPs = 719)
1154 -6173864.99 1.24e-07 43.7 66.9 1316
2318 -6173841.07 1.17e-07 32.8 84.8 1316
3524 -6173841.15 1.17e-07 40.1 77.3 1316
4690 -6173843.74 1.26e-07 39.2 66.8 1314

Figure 22: Result form the MCMC burnin iteration in phybreak, using the mutation rate 6.197'° muta-
tions per site per day.

> PostPhybreak <- sample.phybreak (PostPhybreak, nsample = 25000)
keepphylo = 0.2
sample logLik mu gen.mean sam.mean parsimony (nSNPs = 719)

1147 -6173845.21 1.1%e-07 36.3 82.1 1314
2316 -6173842.12 1.21e-07 36.1 98.7 1314
3411 -6173840.66 1.17e-07 33.4 98.7 1314
4487 -6173845.01 1.22e-07 38.7 84.2 1314
5631 -6173824.88 1.22e-07 40.6 74.5 1314
6803 -6173838.11 1.26e-07 35.4 72.7 1314
7983 -6173835.43 1.24e-07 43.4 63.9 1314
9116 -6173855.74 1.14e-07 39.8 74.6 1314
10258 -6173843.13 1.13e-07 35.3 83.8 1314
11405 -6173844,95 1.28e-07 51.3 75.5 1314
12551 -6173847.32 1.27e-07 40.7 81 1314
13600 -6173839.73 1.26e-07 44 80.3 1314
14588 -6173847.09 1.22e-07 37.6 93.8 1314
15329 -6173837.89 1.28e-07 33.1 98 1314
15962 -6173843.25 1.32e-07 47.5 73.6 1314
16815 -6173823.45 1.32e-07 39 81.3 1314
17555 -6173839.81 1.28e-07 36.3 78.2 1314
18500 -6173831.59 1.23e-07 42.7 85.1 1314
19323 -6173836.2 1.22e-07 35.9 69.7 1314
20182 -6173837.86 1.16e-07 35.2 101 1314
21089 -6173841.64 1.27e-07 38.8 68.2 1314
22093 -6173852.03 1.22e-07 43.4 64.8 1314
23192 -6173837.42 1.22e-07 40.2 92.9 1314
24267 -6173844.28 1.18e-07 41.9 68.6 1314

Figure 23: Result from the MCMC sample iteration in phybreak, using the mutation rate 6.19~° muta-
tions per site per day.
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