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Abbreviations

AUC area under plasma concentration time curve
Bmax maximum bacterial concentration
CDD case deletion diagnostics
cfu colony forming units
CL clearance
CLcr creatinine clearance
CRP C-reactive protein
CysC cystatin C
EC50 concentration giving one-half the maximum achievable eff ect
Emax maximum achievable eff ect
GFR glomerular fi ltration rate
IIV interindividual variability
IL-6 interleukin 6
IOV interoccasion variability
kdeath rate constant for natural death of bacteria
ke rate constant for eff ect-delay
kgrowth rate constant for growth of bacteria
LC liquid chromatography
LLOQ lower limit of quantifi cation
MIC minimum inhibitory concentration
MS mass spectrometry
OFV objective function value
PD pharmacodynamics
PK pharmacokinetics
RF risk function
SAA serum amyloid A
Scr serum creatinine
T>MIC time with concentration above minimum inhibitory concentration
%T>MIC percent of dosing interval with concentration above minimum inhibitory 

concentration
V volume of distribution
V1 central volume of distribution
V2 peripheral volume of distribution
WT body weight
XV cross validation
γ sigmoidicity factor
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Introduction

Background
For more than half a century, antibiotics have been available for the treatment of 
bacterial infections. Although the use of antibiotics is well established in clinical 
practice according to data from the World Health Organisation infection was 
the second most common cause of death, causing 25 % of deaths worldwide in 
1998 [1]. Th e use and development of antibiotics are far from uncomplicated. 
When performing clinical trials with antibiotics it can be diffi  cult to measure a 
clinical endpoint. In some diagnoses it is possible to measure if the pathogen has 
been eradicated but often a subjective cure/not cure judgement is the only available 
endpoint measurement [2]. In addition, the development of bacterial resistance is 
an increasing problem that necessitates dosing strategies to be adapted to situations 
where the pathogen susceptibility has been altered.

In decision-making on treatment with antibiotics a number of diff erent factors 
need to be taken into consideration. Th e fi rst is whether antibiotics are needed at all. 
Most infections are viral and do not respond to antibiotics. However, the clinical 
diff erentiation between viral and bacterial infections can sometimes be diffi  cult. 
Secondly, if a bacterial infection is suspected, an antibiotic with the appropriate 
antibacterial spectrum should be chosen. Th irdly, the dose and dosing interval needs 
to be considered. Th e dose size and dosing interval should result in an exposure 
of antibiotic concentration that is suffi  cient to eradicate the infecting pathogen. 
However, the level of side eff ects has to be tolerable. Due to variation between patients 
diff erent individuals might have diff erent shapes of the concentration-time exposure 
of the drug following administration. Some of the variability can often be explained 
by diff erent patient factors and can therefore be accounted for in individualized 
dosing strategies [3-5]. Lastly, the treatment duration needs to be decided upon. For 
most infections, treatment guidelines include a standardized length of treatment. 
However, the evidence base for these recommendations is often weak. Th e optimal 
length of treatment will depend on many factors including the type of infection, 
the patient’s condition and underlying diseases and especially the status of the host 
defence mechanisms. For example, a healthy young patient probably does not need 
the same treatment length as a neutropenic elderly patient. To decide the time 
point when the drug should be discontinued, the support of validated biomarkers 
associated with the bacterial infection would be of great value.
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PK-PD principles
Giving a patient a drug results in a concentration of the drug in the body. Th e shape 
of the concentration-time profi le is dependent on both the given dose size and how 
the body absorbs, distributes, metabolizes and eliminates the drug. Th is is called 
pharmacokinetics (PK) and is routinely described by mathematical models. Th e study 
of the action or eff ects the drug has on the individual is called pharmacodynamics 
(PD) and is also routinely described by mathematical models. As one would expect, 
the PD of a drug are infl uenced by the PK of that drug and this relation (the PK/PD 
relation) is also often described mathematically. One benefi t of using mathematical 
models to describe the PK, PD and PK/PD relationship of a drug is that it is not 
only possible do describe what happens in the studied patient population, but also 
possible to predict concentration and eff ect in new individuals during settings other 
than those studied.

MIC distribution
Antibiotic PK/PD integrates the complex relationship between organism 
susceptibility and patient pharmacokinetics. Th e most routinely, as well as the 
clinically used method for determining pathogen susceptibility is minimum 
inhibitory concentration (MIC) testing [6]. Th is is performed in vitro where bacteria 
are exposed to a constant concentration of antibiotics for between 16-20 hours. Th e 
lowest concentration at which visible growth does not occur, usually determined 
in two-fold dilutions, is defi ned as the MIC. Th is is a point estimate that does 
not take the time course of the killing into consideration. One strain of bacteria 
might have diff erent values of MIC depending on measurement methodology 
and measurement error, however, most diff erences will be due to the diff erent 
susceptibility to the specifi ed drug between individual strains belonging to the 
same species. By combining the result of large number of MIC determinations from 
individual strains it is possible to describe the distribution of MIC for the species. 
Th is is exemplifi ed in Figure 1 where wild type MIC distributions for Escherichia 
coli and Streptococcus pneumoniae respectively are dislayed. Th e distributions are 
obtained from the EUCAST database [7]. A micro-organism is defi ned as wild type 
for a species by the absence of acquired and mutational resistance mechanisms to 
the drug in question. Th e reference distributions from EUCAST is the result of 
aggregated MIC data where the individual MIC distributions are obtained from 
publications in international journals, national breakpoint committees, reference 
laboratories, international antimicrobial surveillance systems and antimicrobial 
susceptibility testing device manufacturers.
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Figure 1. Wild type MIC distributions of Escherichia coli and Streptococcus pneumoniae obtained 
from the EUCAST database.

PK/PD indices
During PK/PD studies of antibiotics it is common to investigate diff erent relations 
between pharmacokinetic exposure of the drug and outcome. Commonly studied 
relations are to correlate area under the plasma concentration curve (AUC) 
normalized by MIC (AUC/MIC) to outcome, maximum concentration normalized 
by MIC (Cmax/MIC) and the time that the serum concentration of a given agent 
exceeds the MIC (T>MIC). Th ese are called the pharmacodynamic indices, and the 
antibiotic drugs are often classifi ed into one of these groups of relations [8]. Th ese 
classifi cations are simplifi cations of the complex nature of a bacterial system. Th is 
can be exemplifi ed by applying this train of thought to an example where a constant 
infusion of a drug is given where T>MIC is important for outcome. If the infusion 
results in a concentration just below MIC this would have the consequence of giving 
no antibiotic eff ect. However, by increasing the infusion rate just slightly, resulting 
in a concentration above MIC, a full eff ect would suddenly appear. In this example, 
increasing the infusion rate further would not give any more treatment benefi ts. Th e 
biology in this example is certainly more complex, and our treatment of the system 
is a simplifi cation; there might be several factors that are of importance for outcome. 
However, although they are simplifi cations, the pharmacodynamic indices provide 
useful tools when designing dosing strategies for antibiotics. 

In vitro experiments
Compared to many other drugs it is relatively easy to perform in vitro experiments for 
antibiotics [9]. In these experiments bacteria can be exposed to antibiotics of either 
constant concentration or diff erent concentration time profi les. Th is provides the 
possibility of mimicking the human pharmacokinetics of a drug making it possible 
to compare diff erent dosing strategies without using in vivo studies [10]. In vitro 
studies are easy to perform, allow more fl exibility in the design of the studies and 
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the results are unaff ected by factors that may contribute to the pharmacodynamic 
variability in vivo, such as drug disposition, disease burden and immune defence. 
Th e eff ect is usually recorded as the change in concentration of bacteria (colony 
forming units (cfu)/mL)

During PD studies of antibiotics it is common to measure the eff ect at one 
predefi ned time point during the experiment and relate this to the diff erent PD 
indices. However, an attractive complement to this is studying the entire time course 
of the eff ect, which often is referred to as time kill curves [11-13]. Th ese studies 
may support the development of more complex models that better can describe and 
predict the effi  cacy after drug exposure compared to only using PK/PD indices. Data 
from time kill curves has been used to support semi-mechanistic PK/PD models for 
describing the time course of the eff ect of diff erent antibiotics in vitro [14-20]. Th e 
models can thereafter be used to explore the time course of eff ect following diff erent 
dosing strategies with antibiotics using computer simulations [21].

Estimation of dosing strategies
When developing drug dosing strategies the benefi ts and disadvantages of the 

treatment are considered, i.e. the desired eff ects have to be weighed against the 
potential side eff ects. Th ere is usually an association between the magnitude of 
the drug exposure and the eff ect; a too low dosage may result in insuffi  cient eff ect 
and too high dosage may lead to adverse eff ects. By weighing the eff ects, a target 
concentration associated with the greatest probability of treatment success (i.e. 
eradication of bacteria) – suffi  cient clinical eff ect with tolerable side eff ects - can be 
identifi ed. Subsequently, dosing strategies can aim at reaching this target and the 
need for individualisation based on a patient characteristic such as body weight, sex 
or a biomarker can also be assessed. In addition to consideration of the drug eff ects/
side eff ects, there may be further aspects to take into account in the establishment 
of a dosing strategy. For example, using a higher dosing rate than necessary to 
achieve a suffi  cient clinical response results in higher drug costs and, for parenterally 
administered drugs, it may also imply a logistic problem; the more frequent dosing, 
the more time and personnel is required for administration of the drug. 

With the use of a PK and PD model it is possible to evaluate diff erent dosing 
schedules by stochastic simulation and, based on a predefi ned criterion, judge which 
of the diff erent schedules is preferred [22, 23]. However, to simulate all possible 
dosing schedules to fi nd the optimal dosing schedule is not feasible. An alternative 
approach is to estimate an optimal dosing strategy by minimizing a risk function 
describing the seriousness of deviations from the target at which treatment aims. 
Th is method has been used when aiming at various PK and PD targets [24-30]. 

Infectious disease biomarkers
During infectious diseases the levels of many endogenic markers are up or down-
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regulated in the body. By correlating the time-course of the markers to the progression 
of a bacterial infection they might be able to be useful for monitoring the progress 
of bacterial infections. Body temperature and the changes in body temperature are 
two of the oldest observations used in relation to infectious diseases. Th e set-point 
is up-regulated during infections, probably mediated through increasing levels of 
prostaglandin E2 due to infl uence of pyrogens and cytokines [31-33].

Interleukin-6 (IL-6) is an important mediator of acute phase response, which 
increases rapidly as a result of infectious challenges [34]. Increases in cytokines can 
be detected one to two hours after a challenge with endotoxin in a sepsis model [35]. 
It has been shown that the IL-6 levels peak at 4-12 hours post surgical procedure 
[36-38] and that the half-life of IL-6 is approximately 1 hour in humans [39]. 

During bacterial infection, IL-6 stimulates the hepatocytes to synthesize the 
acute phase proteins serum amyloid A (SAA) and c-reactive protein (CRP) and as 
a result the levels of these two biomarkers increases 100-1000 fold [34]. Th e levels 
of these two biomarkers peak at 24-72 hours after surgery or challenge with steroid 
pyrogen etiocholanolone or infl uenza virus [40-42]. Th e elimination half-life for 
CRP in vivo has been estimated to be approximately 5 hours in mice [43] and 20 
hours in humans [44, 45]. However, the actual half-life during bacterial infections 
in patients has been reported to be 3.3 days [46] since the infl ammatory stimuli 
continue the production of CRP and the change of levels will be dependent on both 
the production and the elimination of the biomarker.

Renal function 
Th e kidneys are important for elimination of many drugs and metabolites and will 
therefore be a source of pharmacokinetic variability. Most antibiotics are removed by 
renal elimination. Th e elimination consists of glomerular fi ltration rate (GFR) and 
active secretion. When renal function is measured it is usually only the GFR that is 
considered. Th e golden standards for estimation of renal function are measurements 
of clearance of exogenous substances such as inulin, iohexol, 51Cr-EDTA, 99mTC-
labeled diethylenetriamine pentaaceticacid (DTPA) or 125I-labeled iothalamate [47, 
48]. However, these measurements are both expensive and time-consuming and are 
often not applicable in clinical routine practice where endogenous biomarkers are 
preferred. Th e level in plasma of a biomarker will be the result of the production and 
the elimination of the compound. An optimal endogenous marker of glomerular 
fi ltration rate should be produced at a constant rate and be eliminated only by 
glomerular fi ltration [49]. 

Creatinine
Creatinine is formed by non-enzymatic dehydration of creatine in muscle cell and 
the elimination is mainly renal fi ltration [49]. By collecting urine during a time 
period of 24 hours and measuring the content of creatinine in urine and plasma it 
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is possible to calculate creatinine clearance (CLcr) [49]. However, collecting urine 
for 24 hours is cumbersome. Since production of creatinine is dependent on muscle 
mass and elimination is almost exclusively dependent on renal function numerous 
diff erent formulae’s have been developed to be able to calculate the CLcr based 
on measurement of serum creatinine (Scr) without collecting urine [50]. Th ese 
formulae’s compensates for the fact that diff erent body composition will result in 
diff erent production rate of creatinine. Th e most widely use formulae is the developed 
by Cockcroft and Gault in the 1970 ś [51] and is displayed in Equation 1 

Equation 1

where k=1.23 for men and 1.04 for women However, Scr in particular is not an 
optimal renal function biomarker and tend, in particular for patients having strongly 
impaired kidneys, to over-estimate glomerular fi ltration rate [52].

Cystatin C
Cystatin C (CysC) is an endogenous protease inhibitor that is produced in all 
nucleated cells [53] and seems to be freely fi ltered by the glomerulus [54]. Th e 
substance is thereafter reabsobed and completely metabolized in the proximal 
renal tubular cells [55]. Th erefore CysC levels can not be found in urine and it 
is not possible to measure CysC clearance using urine sampling. A meta-analysis 
has shown that CysC is superior to creatinine in prediction of renal function [56]. 
Furthermore, a few reports have appeared in the literature showing that plasma 
levels of drugs that are renally cleared may be better predicted using CysC than 
using either of creatinine and CLcr[57-59]. Formulae’s exist that can convert plasma 
levels of CysC to an estimate of glomerular fi ltration rate [60].

Cefuroxime
Cefuroxime has been used worldwide since the 1970 ś. It is a second generation 
cephalosporin that is active against a variety of bacterial infections. It is by far 
the most used parenteral administered antibiotic in Sweden (Figure 2) and is 
commercially available at 250, 750 and 1500 mg doses. It is also available as a 250 
mg tablet and as an oral solution.

)/(
)()140(

min)/(
Lmolcreatinineserum

kkgbodyweightage
mLCLcr
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Figure 2. Defi ned daily doses for the ten most used intravenously administered antibiotics in 
Sweden during 2005. Sales statistics from Apoteket AB

Chemical analysis
When investigating the pharmacokinetics of a drug it is necessary to have access to 
an accurate and precise analysis method. Th e method needs to be selective, especially 
when studying patients, since endogenic as well as exogenic compounds might result 
in erroneous results. Earlier publications describe methods for analysis of cefuroxime 
in serum or plasma samples using high performance liquid chromatography (LC) 
with UV-detection [61-67] or microbiological techniques [68-70]. Both UV-
detection and microbiological techniques might give erroneous results depending 
on interaction with other compounds and the latter technique is also very time-
consuming. In addition, two examples of qualitative mass spectrometric analysis of 
cefuroxime has been published [71, 72]

Pharmacokinetics
Th e pharmacokinetics of cefuroxime has been shown in numerous publications. 
Th e half-life of cefuroxime has been reported to be 0.8-22.3 hours, the volume of 
distribution 11.6-29.6 L and clearance 0.9-10.1 L/h depending on renal function 
where the fraction of drug excreted unchanged in urine is > 90 % [61, 66, 68, 69, 
73-77]. Approximately 35 % of the drug is bound to serum proteins [74, 78] and 
following an intravenous dose of cefuroxime the plasma concentration exhibits 2-
compartment pharmacokinetics [68, 73, 75]. 
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Pharmacodynamics
Th e pharmacodynamics of cefuroxime is not very well described in literature but the 
mechanism of actions has been suggested, as for other cephalosporins, inhibition 
of the transpeptidase and carboxypeptidase enzymes that are required for cell wall 
biosynthesis [79-81]. During treatment with cephalosporins, time above minimum 
inhibitory concentration is important for outcome [9]. For optimal outcome the 
concentration should be above MIC but there is no benefi t with concentrations 
higher than MIC. In vivo as well as in vitro studies indicate that it is not necessary 
to attain unbound concentrations above MIC for 100 % of the dosing interval but 
instead 50 % of the dosing interval is suggested to be a breakpoint for full eff ect for 
cephalosporins [8, 82, 83]. 

Dosing strategies for cefuroxime
Due to the renal elimination of cefuroxime the recommended dosing individualisation 
is based on Scr or CLcr [78, 84]. Based on the pharmacodynamic principle that time 
above MIC is important for outcome, a number of authors have suggested dosing 
with continuous infusion for other beta-lactam antibiotics [85-87] as well as for 
cefuroxime [88]. Th e recommended dosing strategy at Uppsala University Hospital 
is based on CLcr and is presented in Table 1.

CLcr (mL/min) > 80 41-80 21-40 < 20

Dose (mg) non sepsis 750 x 3 750 x 3 750 x 2 750 x 1
Dose (mg) sepsis 1500 x 3 750 x 3 750 x 2 750 x 1

Nonlinear mixed eff ects modelling
PK-PD relations are very useful in drug product development [89]. Th is is often 
done using non-linear mixed eff ects modelling. Th e technique involves simultaneous 
estimation of mean and variance parameters using merged data from all studied 
individuals. Th is makes it possible to use sparse data from each individual but 
instead requires a number of individuals [90]. Th ere are several software packages 
that provide nonlinear mixed eff ects modelling capabilities [91] but the most widely 
used is NONMEM [92].

Using mixed eff ects modelling the jth observation in individual i can be described 
by

yij=f(xij,Pi)+εij

where f(…) is the individual prediction described by a linear or nonlinear function 
with parameter vector Pi and independent variables xij (time, dose) εij is the random 

Table 1. Recommended dosing strategy for cefuroxime at Uppsala University Hospital. 
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eff ect describing the discrepancy between individual prediction and the observation. 
Th e discrepancy refl ects analytical measurement error, erroneous recorded sampling 
time and/or model mis-specifi cation. εij is assumed to be normally distributed with 
zero mean and an estimated variance σ2.

Th e next level of variability explains diff erences in individual pharmacokinetic or 
pharmacodynamics parameters exemplifi ed with 

pki = θk + ηki

pki = θk · ηki

where pki is the kth individual parameter in Pi and θk the typical value of pk. ηki 
denotes the diff erence between the individual and typical value of pki and is assumed 
to be normally distributed with a mean zero and a variance of ωk

2. Often parts of 
the diff erence between individual and typical value of pki can be described by patient 
factors, often called covariates. Th en the individual parameter will be a function of 
both typical value of parameter and the covariate. When introducing an informative 
covariate into the model the inter individual variability (IIV) is usually decreased. 
Often a parameter is changing over time and if this not can be explained by a time 
dependent function of a covariate the intra-individual variability is estimated as the 
inter occasion variability (IOV) which can be introduced as an additional random 
eff ect [93].

NONMEM uses a parametric maximum likelihood method where the estimated 
parameters maximize the likelihood of the observations given the model. Th is is 
done by minimizing the extended least squares objective function value (OFV), 
which is proportional to –2 log likelihood of the data. For hierarchical models an 
OFV drop of 3.83, 6.63 and 10.83 units designates an improved fi t at p < 0.05, 
p < 0.01 and p < 0.001, respectively, for a one-parameter diff erence [94]. 
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Aims

Th e aim of the present thesis was to characterize the pharmacokinetics and 
pharmacodynamics for the cephalosporin cefuroxime and, based on these 
pharmacokinetic and pharmacodynamic principles, develop a dosing strategy for 
cefuroxime. 

Th e specifi c aims were to 

• Develop a sensitive, accurate and fast chemical assay for determination of 
cefuroxime in human serum 

• Characterize the pharmacokinetics of cefuroxime, including inter- and 
intra-individual variability, and to evaluate the infl uence of covariates on the 
pharmacokinetics 

• Characterize the time course of the biomarkers interleukin-6, serum 
amyloid A and C-reactive protein during bacterial infection in relation to 
duration of illness and to correlate the time course of these biomarkers to 
the length of cefuroxime treatment

• To develop a dosing strategy using a risk function based on pharmacokinetic 
and pharmacodynamic principles

• To develop and validate a semi-mechanistic model, describing the time-
course of the anti-infective eff ect of fi ve diff erent antibiotics, including 
cefuroxime, on Streptococcus pyogenes in vitro, that may aid in the 
development of improved dosing strategies
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Materials and methods

For more detailed information of the diff erent methods and materials, consult the 
diff erent papers.

In vivo study
One in vivo study was conducted in the thesis project and the results from this study 
are presented in paper II and paper III. In the fi rst paper the pharmacokinetics of 
cefuroxime is investigated and in the latter paper the time course of biomarkers 
associated with bacterial infections are investigated. Approval was obtained from 
the Swedish Medical Products Agency and the ethics committees, Faculties of 
Medicine, Uppsala University and Örebro University, Sweden. All patients signed 
an informed consent form prior to inclusion.

Patient study
Th e patients were included from the Departments of Infectious Diseases and 
Nephrology, Uppsala University Hospital, Uppsala, Sweden and the Department 
of Nephrology, Karlstad Central Hospital, Karlstad, Sweden. In total, 97 patients 
were included with a variety of diagnoses such as sepsis, pneumonia, bronchitis, 
pyelonephritis, skin- and soft tissue infections and fever of other origin.

Th e patients were treated with cefuroxime or cefuroxime in combination with 
tobramycin. Th e dosing strategy for cefuroxime was based on the calculated plasma 
creatinine clearance and is presented in Table 1. Cefuroxime was administered as an 
intravenous injection over a period of 5-15 minutes. Th e tobramycin dose was also 
based on creatinine clearance and body weight. Patients with creatinine clearance 
> 80 mL/min, 41-80 mL/min and 20-40 mL/min were given 6.0 mg/kg, 4.5 mg/
kg and 2.2 mg/kg tobramycin respectively once daily as an intravenous infusion. 
Most of the patients were only given one dose of tobramycin. Th e patients were not 
allowed to have had intravenous treatment of antibiotics within 2 weeks prior to 
inclusion or treatment with prednisolon at a dose of more than 10 mg daily.

Sampling
Blood samples of 5 mL were withdrawn pre dose and at 5 diff erent time points 
from 1 to 72 hours after start of treatment according to a fl exible sparse data 
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sampling schedule (see Table 2). In paper II, three additional samples per patient 
were withdrawn 5 to 40 minutes after dose in a subgroup of 12 of patients (n=2, 2, 
4 and 4 in the CLcr intervals <20, 21-40, 41-80 and >80 respectively). Th e samples 
were centrifuged at 2000g for 10 min and serum was stored at -20 °C in Ellerman 
tubes until analysis. 

Table 2. Schedule for serum sampling during in vivo study 
Sampling time post dose (h)

Pat ient n o 1 0 2 5 12 24 72
Pat ient n o 2 0 3 6 8 20 72
Pat ient n o 3 0 1 4 16 30 72
Pat ient n o 4 repeat  from  patient 1

When studying the biomarkers associated with bacterial infection, the duration of 
the illness was defi ned as each patient’s estimation of the duration of symptoms 
related to the infection before admission (>24 h or <24 h). Patients who were 
included, but change was made to other intravenously administered antibiotic, were 
retrospectively removed from the fi nal dataset. Patients whose intravenous treatment 
was stopped or changed to oral antibiotic therapy within 3 days were defi ned as early 
step-down, whilst the other patients were defi ned as late step-down.

Chemical assay
Diff erent substances were chemically analyzed in the thesis project.

Cefuroxime (paper I)
Th e method for the analysis of cefuroxime in the in vivo study was developed using 

a Quattro Ultima triple-quadropole mass spectrometer (Micromass Manchester, 
UK). Cefuroxime and cefotaxime were purchased from Sigma-Aldrich (St Louis, 
MO, USA). Acetonitrile (Lichrosolve) and formic acid (extra pure) were purchased 
from Merck (Darmstadt, Germany). Drug free human serum and plasma were 
obtained from University Hospital Blood Bank, Uppsala, Sweden. Th e water was 
purifi ed by a Milli-Q Academic system (Millipore, Bedford, MA, USA).

Th e serum samples were precipitated using acetonitrile and cefotaxime was added 
as internal standard. After centrifugation the supernatant was diluted with a mobile 
phase consisting of 24 % acetonitrile in 5 mM formic acid and thereafter injected 
on a Zorbax SB-CN column (4.6 x 150mm, Agilent Technologies, Wilmington, 
DE, USA). Detection was performed in electrospray negative ion mode. MS 
control and spectral processing were performed using MassLynx softvare, version 
4.0 (Micromass, Manchester, UK). Th e MS/MS transitions m/z 423.0 -> 317.9 for 
cefuroxime, and m/z 454.0 -> 238.9 for cefotaxime, were monitored. Calibration 
graphs were constructed using a linear regression of the test compound peak area 
/ IS peak area ratio (Y) to nominal serum concentration of the test compound (X, 
μg/mL). Th e standard curve was forced through the origin.
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Intra-day precision and accuracy were determined by analyzing quality control 
samples (n=6) at four concentrations during one day. Th e precision of the method 
was investigated by calculating the relative standard deviation (coeffi  cient of 
variation, CV) at each concentration. Accuracy was determined as the percent 
deviation of analyzed concentration from the added concentration. Th e lower 
limit of quantifi cation (LLOQ) was determined from the lowest concentration of 
samples (n=6) that could be analyzed with CV<20 % and accuracy <±20 %. Th e 
highest quality control sample was diluted 5 times with blank serum before sample 
preparation in order to fall within the standard curve range. Th e inter-day precision 
and accuracy were determined by analyzing, on three separate occasions, duplicate 
quality control samples interspersed with unknown clinical samples.

Biomarkers
Th e biomarkers used in paper II (Scr and CysC) and paper III (IL-6, CRP 

and SAA) were analyzed using methods available at the Department of Clinical 
Chemistry, Uppsala University Hospital. Th e analysis of creatinine was performed on 
an Advia 1650 (Bayer Corp., Tarrytown, NY, USA). Th e total analytical imprecision 
of the method was 3 % at 89 and 167 μmol/L. CysC and SAA measurements 
were performed by latex enhanced reagent (N Latex Cystatin C, Dade Behring, 
Deerfi eld, IL, USA) using a Behring BN ProSpec analyzer (Dade Behring). Th e 
total analytical imprecision of the method for CysC was 4.8 % at 0.56 mg/L 
and 3.7 % at 2.85 mg/L and for the SAA method it was 5.9 % at 12.8 mg/L and 
3.2 % at 81.7 mg/L. Analysis of CRP was performed by turbidimetry on an Advia 
1650 (Bayer HealthCare Diagnostics, Tarrytown, NY, USA). Th e total analytical 
imprecision of the CRP method was less than 9 % at 35 mg/L. IL-6 was measured 
using an enzyme-linked immunosorbent assay (ELISA) method (R&D Systems, 
Minneapolis, MN, USA). Th e total analytical imprecision of the IL-6 method was 
less than 7 %.

Pharmacokinetic data analysis (paper II)
Th e pharmacokinetic modelling in paper II was performed using mixed eff ects 

modelling within the NONMEM version VIβ using fi rst order conditional 
estimation with log-transformed data. Th e search for appropriate models was guided 
by the OFV as well as by graphical inspection within the Xpose program version 
3.11 [95].

Structural and stochastic model
Firstly the structural and stochastic models were developed. One-, two- and 

three-compartment models, using ADVANS 1, 3 and 11 and TRANS 2 and 4, were 
considered. IIV was assessed on all pharmacokinetic parameters and in addition 
correlations between those terms were evaluated. In order to accurately characterize 
the residual variability in the model combined additive and proportional error models 
were tested. Th ereafter the signifi cant covariates were included as described below. 
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Finally IOV was assessed as and tested on the parameters for which an IIV term was 
signifi cant. Each evaluated parameter was kept in the model if the inclusion resulted 
in a drop of at least 10.83 in OFV.

Covariate model
Covariates available in the analysis are specifi ed in Table 5. In addition to use 

the recorded renal function biomarkers as such in the covariate analysis, diff erent 
relationships of those were evaluated. Since the relationship between CysC and renal 
function has previously been suggested to be described as GFR = 77.237 · CysC-

1.2623, this relationship was included in the analysis [60]. Th e following covariates 
for renal function were hence tested on CL: Scr, 1/Scr, CLcr, CysC, 1/CysC and 
77.237 · CysC-1.2623. Th e rational for testing the inverse of Scr and CysC is that 
those markers are inversely correlated to the kidney function. Th e evaluated 
covariate relations are centered around the median value of the covariate, and are 
parameterized for continuous relations as

pki = θk ·(1+covariate eff ect ·(covariate value – median covariate value))

where pki is the individual parameter value of parameter k, θk is the typical 
population parameter value of k. Th e covariates were introduced one at the time. 
Th ese linear relationships were initially tested and if such an inclusion resulted in 
a signifi cantly improved model fi t non-linear relationships, in terms of piecewise 
linear splines, were evaluated for the covariate in question. Biomarkers for renal 
function and functions of these were expected to be strongly correlated and therefore 
only the covariate giving the highest drop in OFV was used and the remaining 
covariates for renal function were not re-evaluated. Furthermore, since Scr and 
CysC were measured at two diff erent occasions during the study period, they were 
considered in the model in diff erent ways. Th e fi rst alternative was to use the fi rst 
measurement during the entire time period during which the patient was studied. 
Th e second alternative was to use the fi rst measurement until the next measurement 
was done and thereafter use the second covariate value. Th e third alternative was to 
use a linear function between the two measurements and thereafter use the second 
measurement of the renal biomarker. In three of the patients no body weight (WT) 
was recorded and therefore the median WT for the population was used instead. In 
11 of the patients the second measurement of CysC and Scr was missing and only 
the fi rst measurement of the renal function biomarker was used. 

Th e covariates age, WT and sex were fi rst assessed on all pharmacokinetic 
parameters in the model, one at a time, and ranked according to the drop in OFV 
associated with their inclusion. Variables were then stepwise tested in the model, in 
descending order. 

When no more covariates could be included creating a drop in OFV of more than 
10.83, a backwards deletion was carried out retaining only covariates associated 
with an increase in the OFV of more than 10.83 on their exclusion.
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Biomarker data analysis (paper III)
Th e graphics were plotted and the statistics were calculated using S-PLUS® 7.0 for 
Windows (Insightful Corp., Seattle, USA). Th e smoothes in the plots are locally 
weighted linear regression curves as implemented in the S-PLUS function loess. 
ANOVA was used when comparing the diff erent biomarker values at the baseline. 
Due to the fl exible sample schedule it was not possible to statistically investigate 
diff erences in levels of the biomarkers at any other time point than the baseline.

Estimation of dosing strategies (paper IV)
When the number of dose sizes available is limited, the dosing strategies 

estimated comprise a discrete number of dosing categories, i.e. diff erent dose rates 
are assigned to subpopulations of the treated population. Th e treated population 
is then categorized in the dosing strategy using cut-off  values (CO) of the patient 
characteristic used for individualisation.

Th e methodology used for estimation of dosing strategies has been previously 
described [27, 28] and involves several foundations; i) a population PK model and 
a description of covariate distributions in the target population, ii) the defi nition of 
the therapeutic target in terms of target variable and risk function, iii) the estimation 
procedures including constraints involved, and iv) an assessment of estimated dosing 
strategies. Th is section will describe the issues necessary to consider one by one.

Description of the target population
Th is investigation aimed at establishing a dosing strategy for an adult population 

with bacterial infection treated with cefuroxime. Th e population pharmacokinetic 
model from paper II was used for the description of the pharmacokinetic fate of 
cefuroxime in the target population, however CysC was replaced with CLcr as 
covariate on CL and new parameter estimates were obtained. Based on empirical 
covariate distributions (WT and CLcr) descriptive of the target population and the 
modifi ed PK model, individual PK estimates for one large population (N=5000) were 
simulated and used during the dose estimation. Th e pharmacokinetic parameters 
were constrained within ±3SD of the unexplained interindividual variability about 
the expected values based on CLcr, for CL, and WT, for V. Data for the empirical 
covariate distributions of WT and CLcr were obtained from 110 consecutively 
registered cefuroxime treated hospitalized adult patients. 

Defi nition of the therapeutic target
Aspects related to reaching suffi  cient effi  cacy, in terms of cefuroxime exposure, 

as well as the amount of cefuroxime administered, were taken into account by 
incorporation in the target and risk function defi ned as follows.
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Th e dose estimation was performed using the underlying model 

(Equation 2)

where Predi is the individual prediction of Target based on individual pharmacokinetic 
parameters, covariates and the estimated dosing strategy. εi is the individual deviation 
from the target with variance of σ2 which is minimized during estimation. Th e 
optimal dosing strategy was defi ned as the one minimizing the deviations from the 
target overall, i.e. the one minimizing the risk function. Quadratic risk functions on 
the linear (RLIN) and log (RLOG) scale are described in equation 3. 

(Equation 3)

Initially, the time of cefuroxime exposure above MIC (i.e. effi  cacy) in relation to 
the amount of cefuroxime administered was considered in the defi nition of the target 
variable and the risk function. Th e aim with treatment from an effi  cacy point of view 
was to expose the individuals to concentration above MIC for 50 % of the dosing 
interval. Th e MIC was set to a fi xed value during the estimation. Th e time during 
which cefuroxime concentrations were above MIC (T>MIC) was calculated for each 
individual during the minimization, as a function of the individual pharmacokinetic 
parameters, the fi xed MIC value and the estimated dosing strategy. 

For each individual the percentage of the dosing interval with concentrations above 
MIC (%T>MIC) was calculated as %T>MIC = 100·T>MIC/estimated dosing interval. It 
was assumed that cefuroxime bound to serum proteins is inactive and that reported 
MIC values represents unbound concentrations. Th e fraction unbound cefuroxime 
was assumed to be 65 % [74, 78] in the estimations. 

Th e second aspect; amount of drug administered; was taken into account when 
the effi  cacy target was reached, i.e. the individual prediction of %T>MIC was greater 
than 50 %. In that situation the target variable was switched to the relative amount 
of drug administered in excess to reach %T>MIC = 50 % on an individual level 
(hereafter called drug in excess) set to the value 0. Drug in excess was obtained 
according to Equation 4 

(Equation 4)
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where τDose,i is the dosing interval resulting in %T>MIC = 50 % for each dose size 
for each individual in the simulated population and τ the estimated dosing interval. 
Accordingly, a τ shorter than τDose,i would result in giving drug in excess. 

Due to the low rate of serious adverse eff ect from cefuroxime, diff erent penalties 
in the construction of the risk function was assigned, based on the reasonable 
assumption that giving too low dosing is worse than too high dosing. Dosing 
strategies resulting in predictions below the effi  cacy target, i.e. %T>MIC = 50 %, 
was penalized according to a quadratic function on the log scale. When %T>MIC 
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> 50 % predictions with respect to drug in excess were penalized by a quadratic 
function on a linear scale. Th e two diff erent penalties were weighed so that %T>MIC 
= 25 % gave the same penalty as the administration of 100 % drug in excess to reach 
%T>MIC = 50 %. Th e risk function (RF1) is described graphically in Figure 3. Even 
if the target T>MIC = 50 % is reached, τ can become very long (e.g. 48 hours) for the 
sub-populations of patients with low renal function, thereby increasing the risk for 
re-growth of bacteria as the time the patient is exposed to concentrations below 
MIC is considerable. Th erefore, an alternative risk function (RF2) was developed 
in which a quadratic loss on the linear scale was added when the individual was 
exposed to a concentration below MIC for longer than 4 hours per dosing interval. 
Th e function was weighed so that six hours below MIC resulted in the same penalty 
as %T>MIC = 25 % (Figure 3). 
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Figure 3. A graphical representation of the risk functions used in the estimations, where the solid 
black line (Time below MIC = 4 hours) represents RF1 and the other lines RF2. %T>MIC is the 
fraction of the dosing interval an individual is exposed above MIC, Drug in excess is the relative 
amount of drug given in excess to reach %T>MIC = 50 % and time below MIC is the hours of con-
centration below MIC in each dosing interval.

Estimation of the dosing strategy
Th e dosing strategies estimated for cefuroxime assumes that only a discrete number 

of dose sizes are available. A dosing strategy consists of the dose size(s), the dosing 
interval(s) and the creatinine clearance COs at which the dose rate should be in- or 
decremented. In this study, a series of dosing strategies individualized on the basis 
of CLcr, comprising up to fi ve dosing categories were estimated. In the estimations 
the dosing intervals and the COs were the dosing aspects estimated, while the dose 
sizes were fi xed. All dosing strategies were estimated using the following fi xed MIC 
values: 0.25, 1, 8 and 16 mg/L. Th e dose size was fi xed to 250 or 750 mg for the 
2 lower MIC values and to 750 or 1500 mg for the 2 higher MIC values. Th e 
estimation was a stepwise search in which the COs were restricted to take on values 
that were multiples of 10 mL/min as described previously [28]. For each stepwise 
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search the estimation resulting in the lowest OFV was considered as the best dosing 
strategy.

All estimations were performed for steady state conditions using NONMEM 
although the estimations do not require a nonlinear mixed eff ects computer 
program.

Assessment of estimated dosing strategies
To assess whether an estimated dosing strategy was suffi  cient and to compare 

dosing strategies, evaluations related to the target defi nitions were performed as 
follows. Th e distribution of %T>MIC and, when estimated dosing intervals were 
long, the distribution of the time of drug exposure below MIC was obtained for the 
simulated population to evaluate the dosing strategies from the effi  cacy viewpoint. 
Similarly, the distribution of drug in excess was calculated to judge the non-
benefi cial side of cefuroxime treatment. Th e distributions of these three variables 
were calculated using wild type MIC distributions for two diff erent species of 
bacteria representing typically infecting pathogens, E.coli and S.pneumoniae. In the 
calculations each individual in the simulated population was randomly assigned one 
MIC value from each of the MIC distributions. Th e wild type MIC distributions 
for E.coli and S.pneumoniae were obtained from the EUCAST database[7] and 
displayed in Figure 1.

In vitro study (paper V)
A total of 135 kill curve experiments were conducted during the study period. Th e 

experiments were performed in 10 mL glass tubes with 4 mL TH broth. S.pyogenes 
from a 6 hour logarithmic growth phase culture were added to obtain a start inoculum 
of 106 cfu/mL. Antibiotics were added to obtain concentrations corresponding to 
0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 16 and 64 x MIC for benzylpenicillin, cefuroxime 
and erythromycin, 0.25, 0.5, 1, 1.5, 2, 4, 16 and 64 x MIC for vancomycin and 
0.25, 0.5, 1, 2, 4, 16 and 64 x MIC for moxifl oxacin. Each time-kill experiment 
was carried out in duplicate or triplicate on separate occasions. At least one growth 
control experiment without addition of antibiotics was performed each day. For 
the growth control experiments start inoculums lower then 106 cfu/mL were also 
used. Th e stability of the antibiotics during the experiments was measured during 
separate experiments showing degradation for benzylpenicillin and cefuroxime 
which was accounted for in the PD model building. Th e eff ective concentration 
of the antibiotics benzylpenicillin, cefuroxime, erythromycin, moxifl oxacin and 
vancomycin in the in vitro study were determined with conventional microbiological 
agar diff usion method [96].
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PD model building
Th e model building was performed using NONMEM (version VIβ). Th e PD 

model consisted of 2 compartments where the bacteria are either in the drug sensitive 
compartment (S) or in the resting compartment (R). Th e concentration of bacteria 
in S over time without drug exposure can be described according using equations 
the describe growth rate (kgrowth), the rate constant for natural cell death (kdeath), the 
transfer from S to R and from R back to S. Th e transformation from the growing 
state into the resting state is triggered by the total amount of bacteria in the system 
and the transformation could be described using a linear function with the transfer 
rate (kSR) being equal to a proportionality constant times the total amount of bacteria 
in the system (S+R). In the parameterization of the model however, it was chosen 
not to estimate this proportionality constant but the more easily comprehensible net 
result from this function i.e. the number of bacteria in the system when stationary 
phase is reached (Bmax). Th us, the transfer back to the susceptible state (kRS) was 
assumed to be negligible and was fi xed to 0.

Th e antimicrobial eff ect of the drugs was incorporated into the bacterial system 
to increase the rate constant for bacterial death using an indirect response model for 
concentration. Th e antimicrobial eff ect was assumed to be nonlinearly dependent 
on the concentration of the antibacterial agent in the eff ect compartment and was 
modelled using an ordinary sigmoidal Emax model. Emax is the maximal achievable 
increase in kdeath with a certain drug treatment, EC50 is the antibiotic concentration 
giving one-half the maximum achievable eff ect and γ is the sigmoidicity factor 
defi ning the shape of the concentration eff ect relationship. Th e semi-mechanistic 
model is presented schematically in Figure 4.
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Figure 4. Schematic illustration of the PK/PD model. Th e PK model is a one compartment model 
(C) with fi rst order elimination due to degradation of the drug (kdeg) and a biophase compart-
ment (Ce) with a fi rst order rate constant (ke) accounting for a possible delay in the observed eff ect. 
Th e PD model include one proliferating and drug susceptible compartment (S) and one resting 
and drug insusceptible compartment (R). Th e bacterial system is described with fi rst order rate 
constants for multiplication of bacteria in the susceptible compartment (kgrowth), for degradation 
of bacteria in both compartments (kdeath), and for the transfer between the compartments (kSR 
and kRS). Th e total bacterial content in the system (S+R) stimulate transference from the normally 
growing state into the resting state (kSR). Th e antibiotic concentration in the biophase compart-
ment is assumed to stimulate the rate of killing of bacteria in the susceptible state according to en 
Emax model (DRUG).
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Model validation
An internal model validation was performed using internal cross validation (XV) 
and case deletion diagnostics (CDD). During the XV, data from experiments with 
the same concentration were excluded and the model parameters were estimated 
from the remaining data. Th e excluded experiments were thereafter predicted by 
the model using the model parameter values from the result where data had been 
excluded. Th e procedure was repeated until data from each set of concentrations 
had been excluded. Th e observed values were plotted versus the predicted values and 
presented graphically.

Th e CDD was divided into two parts. During the fi rst part, data from one 
experiment (one tube) at a time was excluded and the parameter values were re-
estimated and compared with the estimates from the model developed using the 
full dataset. Th e procedure was repeated until data from all experiments had been 
excluded one time from the full dataset. During the second part of the CDD data from 
one day’s experiments at a time were excluded from the full dataset. Th e parameter 
values were re-estimated and compared with the estimates from the model based 
on the full dataset. Th e procedure was repeated until data from each day had been 
excluded one time from the full dataset. Th e diff erence in percent between the CDD 
estimates and the full dataset estimates was calculated and presented graphically.
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Results

Chemical analysis of cefuroxime
Th e analytical method for analysis of cefuroxime concentration in human serum 
was sensitive and selective. Th e method was able to suffi  ciently analyze samples in 
the range 0.025 μg/mL to 50 μg/mL with a retention time of 8 minutes (Figure 5). 
It was also shown that samples containing higher concentration could be diluted 
with blank serum and thereafter analyzed successfully. Th e precision and accuracy 
were never worse than ≤ 9.1 % and ≤ ±7.1 % (table 3 and table 4). No interfering 
peaks were detected and the internal standard response was constant.

  Conc. added n Conc. found CV  Accuracy
  μg/mL)   μg/mL) (%) (%)

QCL 0.207 6 0.222 9.4 7.1
QCML 4.15 6 4.13 2.6 -0.35
QCMH 41.5 6 39.8 2.9 -4.0
QCH 166 6 173 2.9 4.2

Table 4. Inter-day precision and accuracy for serum samples.

 Conc. added n Conc. found CV Accuracy
 μg/mL)  μg/mL) (%) (%)

QCL 0.207 5* 0.217 7.5 4.6
QCML 4.15 6 4.20 5.0 1.3
QCMH 41.5 6 41.4 2.9 -0.050

*One sample lost due to system failure.

Table 3. Intra-day precision and accuracy for serum samples..
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Figure 5. Typical chromatograms of standard serum sample, 10 mg/mL (top), patient sample with-
drawn 3 h post dose (middle) and blank serum sample (bottom).
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Th e pharmacokinetics of cefuroxime

A total of 427 serum samples for determination of cefuroxime were collected after 
start of treatment and available for the pharmacokinetic analysis. None of the samples 
collected prior to start of treatment contained any traces of cefuroxime. Eighteen 
of the samples were excluded due to unrealistic concentrations or uncertainty 
in sampling times and therefore the fi nal data set consisted of 409 cefuroxime 
concentrations from 97 individuals. Th e majority of the samples were collected 
within the fi rst 24 hours after the start of therapy (n=321, Figure 6). Demographics 
of the studied patients are shown in Table 5.
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Figure 6. Observed cefuroxime concentration (circle) and model predicted (line) during the fi rst 24 
hours of treatment for each dosing group

Table 5. Demographics of the cefuroxime pharmacokinetics studied patients 

A linear two-compartment model described the data well. Before the candidate 
covariates were considered in the model, the most favourable inter-individual 
variability structure was obtained when IIV was allowed on clearance, the central 
volume of distribution (V1) and the peripheral volume of distribution (V2). Allowing 
IIV on intercompartment clearance did not off er any further improvement. Diff erent 

CLcr (mL/min)
median range median range median range median range

Creatinine (mmol/L) 97  69-131 101  61-177 127 97-350 295 110-1160
Cystatin C (mg/L) 1,12 0.743-1.5 1,18 0.727-3.78 2,05 0.978-6.06 4,51 2.15-6.18
Weight (kg) 85 60-115 74 54-107 70 50-100 68 35-137
Age (years) 56 24-75 74 35-90 82 44-95 78 67-94

< 2041-80> 80 21-40



34

Anders Viberg

variance/covariance structures of IIV were assessed but the model did not benefi t 
from any block structure. Th e residual error was suffi  ciently described by only a 
proportional component.
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Figure 7. Observed cefuroxime concentration vs. model predicted concentration. Left panel popula-
tion model prediction, right panel individual population model prediction. 

Inclusion of the factor 1/CysC generated a drop in OFV of 154.0 units compared 
to the model without covariates. When CLcr or 1/Scr were integrated in the basic 
model a drop of 131.4 units and 75.4 units, respectively were obtained (Table 6). 
Th e IIV decreased from 70.2 % to 29.7 %, 33.8 % and 46.8 % respectively when 1/
CysC, CLcr or 1/Scr were included. Moreover, it was found that using only the fi rst 
measurement of any of the renal function markers was suffi  cient and that no further 
information about the clearance of cefuroxime was obtained when taking also the 
second measurement into consideration. Th e model fi t was further improved when 
CL and V1 were allowed to covary with WT. Finally, it was found to be benefi cial to 
allow IOV on CL. Th e parameter estimates in the fi nal model are specifi ed in Table 
7 and observed concentration versus model predicted concentration is presented in 
Figure 7.

Table 6. Change in OFV after inclusion of renal function covariate on CL

CL covariate ∆OFV
Creatinine -22.9
Creatinine Clearance -131.4
1/Creatinine -75.9
Cystatin C -92.4
1/Cystatin C -154.0
77.237·Cystatin C-1.2623 -153.3

*Diff erence in objective function value compared to structural model without covariate.
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Table 7. Parameter estimates in the fi nal modela. Standard errors of the estimates within brackets.

Covariate effects
Parameter Estimate IIV (%) IOV (%) 1/CYS (%/mg/L) WT (%/kg)
CL (L/h) 6,00 (3.2) 27 (20) 16 (52) 1,43 (3.7) 1,08 (27)
V1 (L) 11,4 (5.3) 18 (60) - - - - 0,97 (23)
V2 (L) 5,11 (11) 48 (36) - - - - - -
Q (L/h) 3,65 (21) - - - - - - - -
Proportional error (%) 15,5 (15) - - - - - - - -

a In the fi nal population model CL and V1 are implemented as CL (L/h) =6.00 · (1 + 1.43· [1/CysC 
(mg/L) - 0.758]) · (1 + 1.08· [WT (kg) –74]) and V1 (L) =11.4 · (1 + 0.97· [WT (kg) - 74]) L

Time course of infectious disease biomarkers 
Th e demographics of the biomarker studied patients are shown in Table 8. None 

of the baseline biomarker values diff ered statistically signifi cantly between early and 
late step-down groups or between the 2 groups of duration of illness. Neither did 
the diff erences in baseline values for body temperature, SAA or CRP show statistical 
signifi cance between the diff erent groups of diagnoses, but IL-6 baseline values 
were signifi cantly higher in the sepsis group (p < 0.05) (Table 8). Th ere were no 
correlations between any of the biomarkers and WT or age. 

Table 8. Biomarker values at baseline divided into diagnosis group. Values represents median values 
(range within brackets). n DI is number of patients with duration of illness >24 h or <24h

Th e body temperature of the patients declined during the fi rst 24 hours, but 
thereafter no substantial change was observed (Figure 8). Th ere was a weak trend for 
the temperature drop to be larger in the groups of patients who had early step-down 
in comparison to the patients who had late step-down (Figure 9). However, when 
the data points from the fi rst 24 hours of treatment were used in a linear regression 
analysis, there was no statistical diff erence between patients with early step-down 
and late step-down. Th e duration of the illness had no impact of the time course of 
the body temperature (Figure 9).

Th e time course for SAA and CRP showed an increased trend up to approximately 
24 hours after onset of treatment (Figure 8). After 24 hours, the levels of SAA and 
CRP showed a decreasing trend. Th e plot was divided into subplots according to 
time since start of symptoms, i.e. duration of illness < 24 hours or > 24 hours. Th e 
fi rst group exhibited increasing levels during the fi rst 24 hours whereas the patients 
in the second group did not, as displayed in Figure 10 and Figure 11.Th e change of 
levels showed a similar pattern when comparing patients with early and late step-
down (Figure 10 and Figure 11). Th e changes over the time of observation were 
similar when comparing the two diff erent biomarkers.

Diagnose
n DI 
<24h

n DI 
>24h

Sepsis 1 3 39.3 (38.3-39.9) 150 (10-479) 436 (38-1870) 1294 (90-1970)
Pneumonia 3 15 38.8 (37.5-40.1) 170 (53-661) 650 (109-1720) 115 (7-3879)
Bronchitis 1 8 38.3 (36.5-39.8) 131 (41-231) 339 (125-865) 39 (18-338)
Pyelonephritis 8 15 38.8 (37.1-40.0) 176 (31-439) 501 (120-1510) 94 (9-276)
Skin- soft tissue 0 18 38.2 (36.5-40.5) 185 (5-579) 609 (28-1720) 128 (8-1200)
Fever other origin 3 6 38.4 (37.6-39.8) 147 (3-332) 550 (4.8-2650) 38 (9-536)

Body temp 
(°C)

CRP 
(mg/L)

SAA 
(mg/L)

IL6 
(ng/L)
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Figure 8. Th e biomarkers body temperature (top left), C-reactive protein (bottom left), Interleukin-
6 (top right) and Serum Amyloid A (bottom right) versus time.        is individual values and        is 
loess smooth.
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Figure 9. Body temperature vs time after start of treatment for patients with late step-down (top 
panels) and early step-down (bottom panels). Left panels are patients with duration of illness < 24 h 
before start of treatment and right panels are patients with duration of illness > 24h.
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Figure 10. Serum amyloid A vs time after start of treatment for patients with late step-down (top 
panels) and early step-down (bottom panels). Left panels are patients with duration of illness < 24 h 
before start of treatment and right panels are patients with duration of illness > 24h.
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Figure 11. C-reactive protein vs time after start of treatment for patients with late step-down (top 
panels) and early step-down (bottom panels). Left panels are patients with duration of illness < 24 h 
before start of treatment and right panels are patients with time since start of illness > 24h.

Th ere was a trend towards decreasing levels of IL-6 during the fi rst 24 hours, but 
the inter-patient variability was great (Figure 8). Th ere was no diff erence between 
the levels when the plot was divided into subplots according to duration of illness or 
early/late step-down. 
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Estimation of dosing strategies
Generally, increasing the fi xed MIC value in the dosing strategy estimation 

resulted in shorter estimated dosing intervals. Furthermore, the consequence of 
using the lower dose size compared with the higher dose size was shorter dosing 
intervals. It was possible to estimate dosing schedules for all tried settings but it 
was a clear diff erence in the assessment of the various strategies depending on the 
wild type MIC distribution used. Th erefore, the result section is organized with 
respect to dosing strategies evaluated for each of the two distributions used in the 
assessment of the dosing strategies. Th e traditionally used dosing schedule resulted 
in %T>MIC < 50 % for 23 % of the E.coli infections but only 0.06 % of the treated 
S.pneumoniae infections. 

Dosing strategies with respect to E.coli infections
Using the fi xed MIC value 8 mg/L and 750 mg dose size in the estimation 

resulted in a large proportion of individuals exposed to %T>MIC < 50 % Figure 12. 
Th is proportion diminished and the distribution of individuals below target was 
shrunken towards the target when the number of dosing categories was increased, i.e. 
fewer individuals were exposed to very low %T>MIC with increasing number of COs. 
Reversely, the proportion of individuals that were given drug in excess increased 
when the proportion of individuals below target decreased, i.e. with increasing the 
number of COs.

When the fi xed MIC value was increased to 16 mg/L and 750 mg dose size was 
used, good target attainment was obtained but the estimated dosing intervals was 
very short (2 hours). When the 1500 mg dose size was used, only a small proportion 
of the individuals were exposed to %T>MIC < 50 % and, consequently, a large 
proportion was exposed to drug in excess (Figure 12). In accordance with the results 
for MIC 8 mg/L, by increasing the number of COs the width of the distribution 
of %T>MIC and drug in excess decreased. For all dosing strategies, and in particular 
when using 4 dosing categories (3 COs) the dosing interval for the patients with best 
renal function was very short. (Table 9)

To achieve acceptable effi  cacy one of the dosing strategies resulting from using 
MIC 16 mg/L in the minimization would be chosen (Table 9). When comparing 
effi  cacy and drug in excess among the diff erent dosing strategies the benefi ts with an 
increasing number of dosing categories is limited and therefore 2 dosing categories 
would be considered suffi  cient. Setting the dosing intervals to practical numbers (6 
and 12 hours) when using 2 dosing categories, and only estimating CO resulted in 
the same CO (50 mL/min) and similar distributions of effi  cacy and drug in excess 
was obtained. 
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Figure 12. Distributions of the fraction of time with concentration above MIC per dosing interval 
(%T>MIC) and drug in excess, assessed using the wild type distribution of E.coli for the dosing strate-
gies using a fi xed MIC value of 8 mg/L and the dose size 750 mg (upper panel) and using a fi xed 
MIC value of 16 mg/L and the dose size 1500 mg (lower panel). Results are shown for dosing strate-
gies with 2 dosing categories

Table 9. Estimated dosing strategies with 2, 3 and 4 dosing categories, respectively, using the dose 
size 1500 mg. A fi xed MIC value of 16 mg/L was used in the estimation.
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2 dosing categories 3 dosing categories 4 dosing categories
CLcr

(mL/min)
Dosing interval

(h)
CLcr

(mL/min)
Dosing interval

(h)
CLcr

(mL/min)
Dosing interval

(h)
≤ 50 12.04 ≤ 30 17.61 ≤ 30 17.61
> 50 5.28 30-80 9.51 30-50 9.50

> 80 5.29 50-70 6.23
> 70 4.19

Dosing strategies with respect to S.pneumoniae infections
Very long dosing intervals were estimated when using the fi xed MIC value 

0.25 mg/L and dose size 250 mg in the minimization, exemplifi ed in Table 10. A 
large proportion of the individuals were exposed to T>MIC < 50 % and, in addition, 
many of them were exposed to concentration below MIC for longer than 4 hours 
(Figure 13) but only a few individuals were exhibited high values of drug in excess. 
However, when incorporating the risk of being below MIC for more than 4 hours 
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in the estimation, i.e. using RF2 in the minimization, the resulting dosing intervals 
were shorter (Table 10), the proportion of individuals below target and number of 
individuals with concentration below MIC for more than 4 hours were considerably 
reduced, but the number of individuals over treated increased (Figure 13). 

An overall assessment of effi  cacy (%T>MIC and the risk of being below MIC for 
more than 4 hours) and drug in excess resulted in only small benefi ts using more 
than 2 dosing categories. Hence, the estimated dosing strategy with two dosing 
categories using RF2 was re-estimated with the dosing intervals fi xed to 12 and 24 
hours. Th is resulted in a somewhat lower CO (30 mL/min) but similar effi  cacy and 
drug in excess was obtained.
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Figure 13. Distributions of the fraction of time with concentration above MIC per dosing interval 
(%T>MIC), drug in excess and time below MIC per dosing interval assessed using the wild type dis-
tribution of S.pneumoniae for the dosing strategy estimated using a fi xed MIC value of 0.25 mg/L, 
the dose size 250 mg and risk function 1 (upper panels) and risk function 2 (lower panels). Results 
are shown for dosing strategies with 2 dosing categories.

Table 10. Estimated dosing strategies using fi xed MIC value 0.25 mg/L, the dose size 250 mg and 
risk function 1 (RF1) and risk function 2 (RF2), respectively.

RF1 RF2 
Clcr 

(mL/min) 
Dosing 

interval (h) 
Clcr  

(mL/min) 
Dosing 

interval (h) 
≤ 40 43.3 ≤ 40 19.35 
> 40 19.9 > 40 11.6 
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In vitro PK/PD model
Th e fi nal PK/PD model describes well the growth and killing of the studied 
bacterial system both without drug exposure and when exposed to a wide range of 
concentrations of the fi ve antibacterial agents used in the study. All parameters were 
estimated simultaneously and parameter estimates with relative standard errors are 
presented in Table 11 for the bacterial specifi c parameters and in Table 12 for the 
drug specifi c parameters. A sigmoidal Emax model gave a signifi cantly better fi t than 
the ordinary Emax model (where the sigmoidicity factor, γ, is equal to 1) for all fi ve 
antibiotics. For erythromycin, γ was estimated to be less than 1 (0.77), indicating a 
more shallow concentration eff ect relationship than for benzylpenicillin, cefuroxime 
and moxifl oxacin. Vancomycin shows a very steep concentration eff ect relation and 
the sigmoidicity factor was estimated to very high value (>50). Since such high values 
do not seem mechanistically plausible and might result in mathematical problems 
during minimization the sigmoidicidy factor for vancomycin was fi xed to the lowest 
value that did not have a detri-mental eff ect on the fi t, which in this case was found 
to be a value of 20.
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Figure 14. Goodness of fi t plots with observed and model predicted bacterial concentrations. 
Included are lines of identity.

Model validation
Th e cross validation shows that the model has good predictability (Figure 15). Th e 
fi rst part of the CDD, where one experiment at the time was excluded from the 
dataset, revealed that one of the parameters, ke for benzylpenicillin, was strongly 
infl uenced by one of the experiments (Figure 16). When the data from that single 
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Table 11. Parameter estimates of the bacterial system specifi c parameters with the typical values and 
the relative standard error (RSE).

Parameter Estimate RSE (%)
kgrow th (h

-1) 1.35 5.4
kdeath(h

-1) 0.179 6.5
Bmax (cfu/ml) 4.15 ·108 9.2
fmix1 (-) 0.747 16
fpers (-) 0.0529 48
 (%) 98 20
rep l (%) 47 9.3

Table 12. Parameter estimates of the drug specifi c parameters with the typical values and the 
relative standard error in parentheses.

 
Drug Emax (h

-1) EC50 (mg/L) γ(-) ke (h
-1)

benzylpenicillin 2.44 (8.6) 0.00438 (7.7) 1.29 (10) 1.00 (9.6)
cefuroxime 3.30 (6.1) 0.00829 (6.6) 1.69 (8.5) 0.861 (17)
erythromycin 2.03 (6.4) 0.0276 (15) 0.769 (19) 100 (-)
moxifloxacin 3.20 (4.6) 0.0747 (3.0) 1.59 (7.2) 0.644 (20)
vancomycin 1.36 (5.5) 0.384 (0.9) 20 (-) 100 (-)

experiment was excluded from the analysis, ke increased drastically, hence indicating 
that no time-delay was evident from the data. Th e model was therefore re-fi tted with 
ke for benzylpenicillin fi xed to a high value (100 h-1). Th is procedure resulted in an 
increase in the OFV of 18 units and no or only limited change of the remaining 
parameters (EC50 underwent the largest change, i.e. 11 %). For this reason the 
estimated ke was kept in the fi nal model. When experiments from one day were 
excluded, no parameter estimate changed substantially.
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Figure 15. Results from cross validation. Goodness of fi t plots with observed and model predicted 
bacterial concentrations.
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Figure 16. Results from the case deletion diagnostics (CDD), part 1. Data from one experiment at 
a time excluded and the parameter values are re-estimated and compared with the estimates from 
the full model. Th e meanings of the suffi  x used in the fi gure are as follows: mox, moxifl oxacin; ben, 
benzylpenicillin; van, vancomycin; cef, cefuroxime; ery, erythromycin.
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Discussion

Although antibiotics have been established in clinical practice for more than 60 years, 
there are still large knowledge gaps regarding their dosing. Th e optimal situation 
would be to individualize both dose size and dosing interval for each patient. Th is 
is not feasible and therefore dosing strategies are developed for sub-populations 
of patients. By characterizing the pharmacokinetics and identifying patient 
characteristics that covary with the pharmacokinetics it is possible to recommend 
dosing that minimizes the variability in exposure of the drug within a group of 
individuals. By gaining more knowledge of the interaction between antibiotics and 
bacteria, the dosing may also be individualized based on the pathogen’s susceptibility 
to the drug. 

To be able to characterize the pharmacokinetics of drugs it is necessary to have 
access to a reliable method for analysis of the concentration of the substance. Th e 
method should not only be sensitive, it also has to be selective. By combining mass 
spectrometric detection with liquid chromatography it is possible achieve this for 
the analysis of exogenic (as well as endogenic) substances. Preferably, the method 
should also be easy to perform. Th e simpler work-up procedure that is required and 
the shorter retention time the better since then a large number of samples can be 
analyzed each day. Th e method presented for analysis of cefuroxime in this thesis 
is not only more sensitive compared to other published methods [61-70], it also 
consists of a simple work up procedure. Th is, in combination with short retention 
time, makes it possible to analyze up to 100 samples daily. Validation of this method 
showed that it had good precision and accuracy. Because no interfering peaks were 
detected when analyzing blank samples from patients, and because the variability in 
response of the internal standard cefotaxime was limited, it can be concluded that 
the method is stable and reliable and therefore useful for analyzing serum samples 
containing cefuroxime.

Th e pharmacokinetic analysis of cefuroxime was based on data from 97 
hospitalized patients. Th e number of patients is larger compared to the previously 
published PK studies on cefuroxime and the range of renal function among the 
studied patients was wider [61, 66, 68, 69, 73-77]. Th e patients were included in a 
clinical setting and represent patients typically found at an infectious disease ward 
and the sampling schedule was designed to capture the complete dosing interval 
and repeated dosing. Since optimal treatment with cephalosporins is thought to be 
obtained when time above MIC is maximized makes it important to also characterize 
the distribution phase. Th is was obtained by adding samples withdrawn within the 
fi rst 40 minutes post administration of dose and the data could satisfactory support 
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a 2-compartment model. Th is has only been performed in a few published studies 
previously [68, 73, 75] including a low number of patients. Th is was the fi rst time a 
population PK model was published for cefuroxime.

Th e fi nal model included CysC as covariate on CL. Compared to CLcr this does 
not require measurement of body weight or any calculations and it is suggested that 
CysC is an attractive alternative instead of using CLcr. Th is result could possibly be 
applicable to other renally eliminated drugs.

For common bacterial infections, treated with antibiotics in the community, 
guidelines include standard length of treatment. For more severe infections 
in hospitalized patients, the length of treatment is often individualized. Due to 
limitations in the availability of hospital beds, it is especially important to monitor 
the clinical progress of the bacterial infection in order to be able to determine when 
intravenous antibiotic treatment is no longer necessary. Th is decision is mostly 
based on clinical signs and symptoms, but might be supported by biomarkers. 
However, no surrogate marker has been validated for prediction of the time-course 
of bacterial infections following antibiotic treatment. In this study, the kinetics of 
several biomarkers (interleukin-6, serum amyloid A and C-reactive protein) were 
studied during bacterial infections treated with cefuroxime in an attempt to evaluate 
whether they could be useful to diff erentiate between responders/non responders 
and if they were correlated to the length of intravenous cefuroxime treatment 
Th e data generated in this study did not make it possible to diff erentiate between 
responders and non responders to the antimicrobial treatment since most treated 
patients were considered to respond to treatment (the treatment was changed to 
other intravenously administered antibiotics in only a few individuals). 

It was expected that there should be a diff erence in time course of SAA and CRP 
due to their diff erent kinetics. However, a striking similarity was observed between 
the SAA and CRP time courses. Th e increase in levels immediately after start of 
antibacterial treatment was explained by the time of illness and was not associated 
with longer treatment times. However, it is of importance to take time of illness 
into account when evaluating these biomarkers. After 24 hours the levels decreased 
in a similar way regardless of the duration of illness. Due to the regulation of the 
biomarkers, it is not surprising that the levels increase during the initial treatment 
when the duration of illness is short. Th e levels of IL-6 decreased during the fi rst 24 
hours regardless of duration of illness, compared with SAA and CRP. None of the 
biomarkers helped in diff erentiating between patients having an early or late step-
down; neither did they show any substantial change during the initial treatment 
with cefuroxime. A major diffi  culty in studies of antimicrobial treatment is the 
lack of established response endpoints. For some infections it is possible to measure 
bacterial eradication (i.e. urinary tract infection), but mostly the judgement of 
response is based on the clinician’s opinion. Th ere is a need for new objective and 
validated endpoint measurements for clinical trials of antibiotics to be able to further 
investigate the use of infectious disease biomarkers in relation to clinical treatment. 
However, further studies are needed to evaluate if the biomarkers studied in this 
thesis could be of use to early diff erentiate between responders/non-responders to 
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bacterial treatment or if they could be of use as surrogate endpoints during clinical 
trials.

By use of the previously suggested PK/PD principles regarding eff ect and side-
eff ects for cefuroxime, and by combining this with knowledge regarding the 
pharmacokinetics of the drug, it was shown that individualized dosing strategies can 
be estimated based on a risk function. From an effi  cacy perspective the aim was to 
establish a dosing strategy resulting in exposing individuals to concentration above 
MIC for 50 % of the dosing interval. For cefuroxime, concentration dependent 
toxicity is limited and it can be argued that using a high enough dosing strategy 
resulting in all patients reaching the effi  cacy target would be appropriate. However, 
both from an economical as well as an ecological/resistance perspective it is also 
important to minimize the amount of drug administered in excess of reaching the 
effi  cacy target. A major diffi  culty in the construction of the risk function was to 
weigh these aspects against each other. Th e choices made should preferably have a 
scientifi c basis but will also contain value judgments, as exemplifi ed in this study. 
However, it illustrates the approach of estimating optimal dosing strategies based 
on data-based models and decision-based risk functions. Th is was the fi rst time 
estimations of dosing strategies using a risk function when time above a threshold 
concentration is important for outcome. Further, this was also the fi rst time multi-
dimensional risk functions were used.

Th e risk function was based on the knowledge of PK/PD for cefuroxime and 
MIC distributions of wild type bacteria, obtained from the EUCAST database [7]. 
Using the simplifi ed PK/PD indices is of course not optimal in dosing strategy 
development. Arguing that %T>MIC = 50 % is optimal without any constrains would 
result in that multiple small doses can be considered equal to giving one extremely 
large dose per week (assuming that both dosing strategies results in T>MIC = 50 % 
of dosing interval). Th is is of course not true. However, by applying the calculation 
of drug given in excess and introducing the absolute time below MIC in the risk 
function this problem was overcome.

Th e individualisation was based on CLcr instead of the previously proposed renal 
function marker CysC. Th is was done since no correct distribution of CysC values 
was available for cefuroxime treated patients. Further, using CLcr makes the results 
more applicable to a clinical situation since most hospitals do not have access to 
methods for analysis of CysC yet.

Depending on the MIC value for the pathogen intended to be treated, the 
estimated dosing strategies were very diff erent and therefore diff erent dosing 
strategies are presented for infections caused by either E.coli or S.pneumoniae. By 
knowing the species of the infected pathogen, and therefore the MIC distribution it 
originates from, the dosing can be individualized far beyond what is done today.

Th e PK/PD indices for beta-lactam antibiotics, like cefuroxime, are fairly 
well characterized. However, as described above, claiming that T>MIC is the only 
important variable for effi  cacy for beta-lactam antibiotics is a simplifi cation. When 
developing dosing strategies for new antibiotics it would be preferred to expand 
the PK/PD principles into more complex models. Th ese models should not only 
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be able to describe the eff ect seen in the performed experiments that the model 
is based on, but also be able to predict eff ect during conditions diff erent from 
those studied. In the semi-mechanistic model that is presented in this thesis, the 
concentration eff ect relation of several diff erent drugs was estimated simultaneously 
and the model accurately describes the biphasic kill often observed during exposure 
of antibiotics. Th e model was validated using internal validation and was shown to 
be robust and predictive. By being able to characterize the complete time course of 
a bacterial system, the semi-mechanistic model might be very useful for in silico 
studies. By combining the PK/PD model with knowledge regarding drug toxicity, 
antibiotic resistance and human pharmacokinetics it should be possible to search for 
more optimal usage of the antibacterial agent. Since the drug and bacterial specifi c 
parameters were separated this gained knowledge of the bacterial system could be 
used when investigating new bacterial agents and therefore fewer experiments might 
be needed when examining new drugs. 

Th e diff erent aspects of individualisation of the dosing of antibiotics brought up 
in this thesis includes development of a method for chemical analysis and a covariate 
analysis of the pharmacokinetics of cefuroxime, studies of the time-course of 
biomarkers related to bacterial infections and how dosing strategies can be developed 
using risk functions based on pharmacokinetic and pharmacodynamic principles. 
Further, the thesis includes an example of how the time course of a bacterial system 
exposed to antibiotics can be described by a semi-mechanistic model.
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General conclusions

Characterisation of the pharmacokinetics of a drug requires access to a sensitive 
and accurate chemical assay for determination of the drug concentration in the 
relevant matrix. A new method for determination of cefuroxime in human serum 
was developed using liquid chromatography in combination with mass spectrometry 
detection and a simple work-up procedure. Th e fi nal assay was shown to accurately, 
precisely and rapidly determine cefuroxime.

Th e identifi cation of patient characteristics that signifi cantly covary with 
pharmacokinetic parameters is important since this knowledge may aid in the 
development of dosing strategies. Most frequently used surrogates for renal function 
are serum creatinine or creatinine clearance and therefore dosing of renally cleared 
drugs are often based on those markers. For the renally eliminated drug cefuroxime it 
was shown within the presented work that cystatin C is markedly better than serum 
creatinine and at least as good as creatinine clearance for use as biomarker in the 
prediction of individual clearance. Furthermore, compared to creatinine clearance, 
the use of cystatin C off ers the advantage of being easier to use in the clinical setting. 
Th e use of cystatin C instead of serum creatinine or creatinine clearance in the 
individualisation of drug treatment might be applicable also to other drugs that are 
renally eliminated.

Time courses of the concentration of infection biomarkers may refl ect the 
progression of a bacterial infection already early after start of therapy and may 
thus provide a tool in the decision regarding the strategy therapy. By using a sparse 
sampling strategy, the time courses of interleukin-6, serum amyloid A and C-
reactive protein during bacterial infection were within the present work successfully 
characterized in relation to the duration of bacterial infection in a hospitalized 
patient population receiving cefuroxime therapy. However, although the studied 
markers might be valuable at a later stage of treatment, from the present results it 
appears that they fail to refl ect the early change in status of infectious disease in 
relation to treatment time. Further studies are needed to evaluate their usefulness in 
relation to therapeutic outcome.

Drug dosing strategies should preferably be based on the integrated relation 
between pharmacokinetics and pharmacodynamics. For cephalosporins the eff ect 
has been suggested to be optimised if the serum concentration exceeds the minimum 
inhibitory concentration for 50 % of the dosing interval. Using cefuroxime as an 
example it was shown how these PK-PD principles could be used to estimate dosing 
strategies considering both eff ect and risk of giving drug in excess. Furthermore, 
the possibility of using multiple aspects of the dosing by using a multi-dimensional 



49

Using PK/PD for Individualising Antibiotic Dosing

risk function in the estimation was shown. Th e estimated dosing strategies were 
evaluated using the PK-PD principles and MIC distribution of diff erent strains of 
bacteria and thereafter improved dosing strategies could be suggested. 

Th e relation between antibiotic exposure and eff ect is usually simplifi ed into PK/
PD indices. Th ese have comprised important tools in the evolution of appropriate 
dosing approaches for antibiotics. However, more complex PK/PD models that 
perform well in describing the time-course of the antibiotic eff ect may be useful in 
the design of improved dosing strategies. By using all data simultaneously, collected 
from in vitro kill curve experiments where a bacterial system was exposed to fi ve 
diff erent classes of antibiotics, a semi-mechanistic model was developed. Th e fi nal 
model diff erentiates between system and drug specifi c parameters and includes 
relevant components that are important factors for the rate of change of bacteria 
in the studied system. Furthermore, internal validation showed that the model was 
predictive and robust. Th e semi-mechanistic model may, after some refi nement and 
external validation, be part of the future development of treatment strategies.
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Future perspectives

Cystatin C was shown to be a good biomarker for clearance of the renally eliminated 
drug cefuroxime. However, since nature never is simple there are probably situations 
when cystatin C is not a good biomarker. Future studies are needed to evaluate if 
and when cystatin C should not be used. Th ere is also a need to develop dosing 
strategies based on cystatin C rather than creatinine and creatinine clearance.

Th ere is a need to develop better models for concentrations eff ect relations for 
antibiotics. Both the complexity and variety of relations has to be explored. Although 
the semi mechanistic model presented in this thesis accurately describes the time 
course of a bacterial system exposed to constant concentration of antibiotics there is 
still a lack of knowledge of PK/PD relations describing what is happening when the 
model is applied to a kinetic system or when repeated dosing is performed. Th ese 
models also need to be used in development of better dosing strategies. Often new 
models are only presented in the literature and never used to further improve the 
dosing of antibiotic agents.

Th e interaction between the immune system and antibiotics needs to be further 
investigated. Th e pre-clinical development of antibiotics is usually performed in vitro 
or in neutropenic animals. Th ere is a need to investigate how the dosing strategies 
should be designed to optimally interact with the immune system. Further, the PK/
PD relations might be changed when bacteria are developed into resistant strains. 
Th is requires further PK/PD studies.

Th e biomarkers studied in this thesis do not seem to provide any information 
about the clinical progression of a bacterial infection. Th e study did not evaluate the 
possibility to distinguish between responders and non-responder and further studies 
are needed to investigate their usefulness. Also, other biomarkers associated with the 
infectious disease progression needs to be evaluated. Such markers could not only 
provide tools for the clinician to monitor the treatment of a patient but also act as 
surrogate markers for outcome during clinical trials of new antimicrobial drugs.
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