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Abstract 

In tropical and subtropical countries with bad infrastructure there exists diseases which are often 

neglected and untreated. Some of these diseases are caused by parasitic intestinal worms which 

most often affect children severely. The worms spread through parasite eggs in human stool that 

end up in arable soil and drinking water. Over one billion people are infected with these worms, 

but medication is available. The problem is the ineffective diagnostic method hindering the 

medication to be distributed effectively. In the process of designing an automated microscope for 

increased effectiveness the solution for marking out the stool sample on the microscope slide is 

important for decreasing the time of diagnosis. This study examined the active contour model and 

four different semantic segmentation networks for the purpose of delineating the stool sample 

from the other parts of the microscope slide. The Intersection-over-Union (IoU) measurement was 

used to measure the performance of the models. Both active contour and the networks increased 

the IoU compared to the current implementation. The best model was the FCN-32 network which 

is a fully convolutional network created for semantic segmentation tasks. This network had an IoU 

of 95.2%, a large increase compared to the current method which received an IoU of 77%. The 

FCN-32 network showed great potential of decreasing the scanning time while still keeping 

precision of the diagnosis. 
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Populärvetenskaplig sammanfattning
I tropiska och subtropiska länder med dålig infrastruktur är inälvsmaskar en vanligt
förekommande sjukdom som främst skapar stort lidande för barn. Maskarna lägger ägg
i människan som sedan sprider sin avföring vidare till jorden och det riskerar även att
kontaminera vatten. Runt om i världen är ca. 1,7 miljarder människor smittade med
inälvsmaskar. Men det finns väl fungerande mediciner mot denna sjukdom. Problemet
är att det tar tid att diagnostisera sjukdomen och därmed minskar möjligheterna att få
rätt behandling vid rätt tidpunkt. Den nuvarande metoden för diagnostisering görs av
välutbildade människor genom att räkna ägg i avföringsprover med hjälp av ett mikroskop.
Därefter bestäms infektionens intensitet baserat på hur många ägg det finns per gram
avföring. Detta är en långsam metod som även är beroende av tillgången till utbildad
personal. Effektivisering av diagnostiseringen skulle bidra till snabbare vård och minskat
lidande.

För att lösa detta problem utvecklar Etteplan ett mikroskop som använder artificiell
intelligens för att räkna äggen och specificera vilken art av inälvsmaskar som äggen
kommer ifrån. Detta minskar det manuella arbetet som krävs och minskar därmed även
tiden det tar att ställa en diagnos. I processen att gå från ett avföringsprov till diagnos så
används en metod som heter Kato-Katz. Detta innebär att en viss mängd avföring överförs
på en glasskiva som sedan används i mikroskopet för att titta på äggen. En människa kan
tydligt se detta runda område med avföring och bestämma vart man vill titta närmare med
mikroskopet. Men hur får man ett automatiserat mikroskop att göra samma sak?

Den nuvarande lösning som används av Etteplan baseras på traditionell bildanalys. I
denna metod ritas en cirkel ut runt provet som är begränsningen för var mikroskopet
ska scanna. Cirkeln kan justeras manuellt innan scanningen startas. Men om provet
inte är helt runt och något utsmetat medför denna metod att mikroskopet scannar och
sparar flertalet bilder på områden där ingen avföring finns. I detta projekt jämförs 2
olika typer av metoder, en äldre mer klassisk metod kallad aktiv kontur och fyra mer
moderna djupinlärningsnätverk, med nuvarande metod i syfte att avgränsa provområdet.
En metod som automatiskt kan ringa in området och avgränsa provområdet mer specifikt
skulle medföra reducerad tid innan diagnos och därmedmer effektiv vårdmot inälvsmaskar.

Utvärderingen av modellerna gjordes på bilder tagna på glasskivor med avföringsprov
från flertalet olika studier utförda i olika länder för att samla data. De modeller som
utvärderades visade god potential till att förbättra specificiteten för avgränsningen av
provet jämfört med nuvarande metod. Allra bäst resultat visade ett av de fyra nätverken.
Resultaten från detta nätverk var inte långt ifrån att kunna jämföras med en avgränsning
markerad av en människa. Nätverket gjorde således ett bra jobb i att hitta de särdragen som
utmärkte avföringsprovet från resterande delar på glasskivan. Det tränade nätverket visade
stor potential för att hjälpa till att reducera tiden för scanningen utan att göra avkall på
precisionen för diagnostiseringen av inälvsmaskar. Med andra ord skulle nätverket kunna
se till att alla ägg räknas samtidigt som så lite bakgrundsbilder som möjligt sparas.
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1 Introduction
In tropical and sub-tropical countries there exists diseases grouped as Neglected Tropical
Diseases (NTDs). Soil-transmitted Helminthiasis (STHs) and schistosomiasis are diseases
which has been defined as NTDs. These infections are caused by parasitic intestinal
worms and can be transmitted through contaminated soil or water. The parasites spread
via human feces that contain parasite eggs and also through skin penetration by the larvae
(Cheesbrough 2005). Worldwide, there are 1.7 billion people infected with either one of the
most common STHs; roundworm (Ascaris lumbricoides), hookworm (Necator americanus
and Ancylostoma duodenale) or whipworm (Trichuris trichiura). The infections are
most common in developing countries and mainly affect children with symptoms such as
abdominal pain, diarrhea and anemia (de Silva et al. 2003; Parija et al. 2017).

There are effective medications for treatment of STH infections, however, the diag-
nostics take time and require human expertise. An effectivisation of the diagnostics of
STHs would increase the possibility of people receiving the right treatment in time. There-
fore, Johnson & Johnson have now collaborated with Etteplan in creating an automated
microscope for diagnostics of STHs. The microscope uses artificial intelligence (AI) to
classify and count parasite eggs in human stool samples. This is a solution which decreases
the manual work and speeding up the time for diagnosis.

1.1 Stool sample preparation and STHs diagnostics

For the diagnostics of STHs and schistosomiasis, studying feces samples is of interest since
this is where the parasite eggs are found. One way of preparing feces samples and looking
at the parasite eggs is by using a laboratory method called Kato-Katz (Cheesbrough 2005).
This method is recommended by the World Health Organization (WHO) for STH diagnosis
and consists of several preparation steps of the stool sample (Tankeshwar 2016).

The result of using the Kato-Katz method is ideally a round area of stool sample on
a microscope glass slide shown in Figure 1. The slide is viewed under a microscope in
order to see the parasite eggs. The eggs are classified i.e. determined which species they
belong to based on shape, size and other characteristics and they are also counted. The
counting is done to calculate the number of eggs per gram of feces, which determines the
intensity of infection (Cheesbrough 2005; Tankeshwar 2016).

Figure 1: Image of microscope slide with the stool sample to the left and information about the sample to the
right.
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1.2 Project objective

In this project, a traditional image segmentation method called active contour and segmen-
tation using deep learning networks were evaluated as methods for delineating the stool
sample from the rest of the microscope slide. The performance of the methods were also
compared to the current implementation used by Etteplan for marking out the sample. The
active contour model was also used as an automated annotation tool for annotating a larger
dataset used when training the deep learning networks.

The low resolution images of whole microscope slides, such as Figure 1, were used
in this project for boundary detection. After marking out the sample, the microscope scans
this area and collects high resolution images of the stool sample. An improved method
which marks a more precise boundary of the sample would make sure that the microscope
only collects high resolution image data of relevant parts of the microscope slide. This
would then contribute to a reduced scanning time and more effective diagnosis of STHs.

2 Background
Finding and extracting information from the relevant parts in images is a common problem.
One method used for this is image segmentation, where images are divided into different
image objects. One example of this would be to find the boundary of a football placed
on a lawn. When segmenting the image it would be split so that each pixel in that image
which belongs to the ball would be assigned with the class ball and all other pixels would
be assigned with the class lawn. This way of assigning pixels to classes is called semantic
segmentation (Thoma 2016). Semantic segmentation does not separate similar objects from
each other, e.g. multiple balls on a lawn. If objects are separated, it is instead called instance
segmentation (Figure 2) (Hafiz & Bhat 2020).

Figure 2: A visualisation of the differences between semantic and instance segmentation.

There are several classical image segmentation techniques such as thresholding, wa-
tershed, active contours and mean shift (Szeliski 2010). But newer models based on
deep learning have also been developed, resulting in an increase in performance of the
segmentation. Some of the most commonly used deep learning methods for computer
vision are convolutional neural networks (CNNs), fully convolutional networks (FCNs),
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recurrent neural networks (RNNs), encoder-decoders and generative adversarial networks
(GANs) (Hesamian et al. 2019; Minaee et al. 2020).

There are many networks created for image segmentation problems, such as U-net
(Ronneberger et al. 2015), SegNet (Badrinarayanan et al. 2017) and DeepLab (Chen et al.
2017). These networks have been trained on large datasets, one of them being ImageNet
(Russakovsky et al. 2015), and have achieved high performance results for segmentation
problems. A popular way of using deep learning networks when the amount of labeled
data is small is to use already trained networks and adapt it to your own data, this is called
transfer learning (Minaee et al. 2020).

2.1 Active contour

Active contour is an image segmentation technique used for finding boundaries, lines and
edges in images. The active contour model is also called snakes, where a snake is described
as a spline influenced by forces in the image as well as external constraint forces. The
snake tries to minimize its energy which consists of internal spline energy together with
the external constraints and the image forces. The internal spline energy contain two terms
controlled by the weights α and β (Kass et al. 1988). The active contour or snake consists
of several points connected by lines, creating a curve which can be either closed or open
(Bakoš 2007).

The active contour model is implemented as a function in Scikit-image v.0.19.1 (van der
Walt et al. 2014). The function is based on the model presented by Kass et al. (1988).
An initial guess of a contour is required and this consists of a given number of points
in a given sequence. The function also allows for setting the weights α (alpha) and β
(beta) to different values. Alpha is described as the snake length parameter and regulates
the contraction of the snake whereas beta is the snake smoothness shape parameter that
regulates the smoothness of the snake.

Further, the function also allows for regulation of attraction to brightness and to edges
with the parameters w_line and w_edge. Maximum number of iterations to optimize the
snake can also be set as well as the maximum pixel distance to move each iteration. Lastly,
there is an explicit time stepping parameter γ (gamma), boundary condition parameter and
convergence criteria parameter implemented in the function (Python documentation 2022).

2.2 Convolutional neural network

In the area of image analysis and computer vision Convolutional Neural Networks (CNNs)
are commonly used. A CNN is a neural network designed to work on image data for feature
extraction and pattern recognition. As the classical artificial neural network (ANN), CNNs
also consist of neurons that optimize weights by learning. However, the architecture of the
networks allows features specific to images to be accounted for (O’Shea & Nash 2015).
The great benefit with using CNNs on image data compared to ANNs is the reduced
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amount of parameters in the model, which reduces the computational complexity (O’Shea
& Nash 2015; Albawi et al. 2017).

A CNN is built with multiple layers such as convolutional layers, pooling layers and
there is also an input layer which holds the values of the pixels in the input image. A CNN
can also have fully-connected layers which connect all nodes from e.g. a pooling layer to
the nodes in the fully-connected layer. The fully-connected layers are placed in the ending
of the network due to its ability to be used for classification (O’Shea & Nash 2015).

The convolutional layers are where the feature extraction occurs. The features are
extracted with linear operations called convolutions. A matrix of numbers, usually of
size 3 × 3, 5 × 5 or 7 × 7, is called a kernel or filter and is applied to the input in a
convolutional layer. The kernel traverses over the input and the elementwise product is
calculated and then summed which results in a feature map (Figure 3). This operation can
be done with multiple kernels in the layer where each kernel creates its own feature map.
After performing a convolution the output is passed through a non-linear operation called
an activation function (Yamashita et al. 2018). The most common activation function is
the rectified linear unit (ReLU) (Krizhevsky et al. 2012).

Figure 3: A visual representation of a convolution step.

When the kernel is sliding over the input it moves according to the stride. The stride
determines how many pixels the kernel should move before calculating the next number
in the feature map. The stride is often set to 1, but can be altered to a higher value to
downsample the input (Albawi et al. 2017; Yamashita et al. 2018). In the convolution
step, any information that exists at the borders of the image is lost. This is due to the
inability of the convolution operation to overlap the kernel with the outermost element of
the input. This problem can be solved by something called zero padding, where zeroes are
added to the borders of the input, preventing the feature map from decreasing in size in the
convolution step (Yamashita et al. 2018).

Other than using the stride to downsample the input, one can also use pooling lay-
ers. This is used to reduce the number of learnable parameters i.e. the complexity of the
model. One of the most common pooling operations is max pooling. Max pooling layers
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often have kernels of size 2× 2 which move along the input with stride 2. At each position
the highest value is extracted to create a feature map (Figure 4) (O’Shea & Nash 2015).

Figure 4: A visual representation of a max pooling operation with kernel 2x2 and stride 2.

2.2.1 VGG-16
One CNN that showed high performance results for localisation and classification in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, a challenge with
the purpose of enabling researchers to evaluate algorithms on a high object variety labeled
dataset, is called VGG-16. The network was presented by Simonyan and Zisserman (2015)
and it is made up of 16 trainable layers and 5 max-pooling layers. The kernel sizes in the
convolutional layers are no larger than 3× 3, the stride is 1 and padding is used to keep the
spatial resolution after convolution. All hidden layers in the network are followed by the
ReLU function. The detailed network architecture is shown in Figure 5.

Figure 5: The network architecture of VGG-16.

This network is popular for image classification tasks and also for using it in transfer
learning. However, some disadvantages with VGG-16 are the size of the trained network
(500MB) and the training time. To train the network on the ImageNet dataset took 2-3
weeks (Rohini 2021).

2.3 Fully convolutional networks

A Fully Convolutional Network (FCN) has an encoder-decoder structure and is typically
used for semantic segmentation. The encoder extracts features using a CNN architecture
where the fully connected layers are replaced with convolutions. The decoder performs
upsampling by transposed convolutions (deconvolution) to transform the low resolution
feature map to full resolution. The last part of the FCN is a softmax activation function
which is applied to get the pixel-wise classification i.e. a segmentation mask. An FCN can
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take any input size and will produce a segmentation mask with corresponding size (Long
et al. 2015; Xing et al. 2020).

2.3.1 FCN-32, FCN-16 and FCN-8
Long et al. (2015) describes the FCN and proposes three different architectures of the net-
work, with and without additional connections to lower layers in a VGG-16 network. These
are called FCN-32, FCN-16 and FCN-8, where FCN-32 has no additional connections to
low level layers. In FCN-32 the output from the final layer in the CNN network is upsam-
pled 32 times to match the size of the input image. FCN-16 has one additional connection
in its’ architecture where a 1 × 1 convolutional layer is added to the output from pooling
layer 4 (pool4) and the result is summed with the result from upsampling the final layer of
the CNN. For the FCN-8, the result from the first connection is upsampled and summed
with the output from performing a 1×1 convolution on pooling layer 3 (pool3). The output
is then upsampled back to the full image size, 16 times for FCN-16 and 8 times for FCN-8.
This means that the FCN-8 architecture holds two connections while FCN-16 holds one
(Figure 6). According to the authors, these added connections enable prediction of finer
details in the upsampled output.

Figure 6: The differences in network architecture between the fully convolutional networks; FCN-32,
FCN-16 and FCN-8. Pooling layers (pool1, pool2, pool3, pool4 and pool5) are representing the five pooling
layers from the VGG-16 network.

2.3.2 SegNet
SegNet is also a fully convolutional network used for semantic segmentation. It is built with
an encoder-decoder structure where the encoder has an architecture like the VGG-16 net-
work. As the network is fully convolutional the fully connected layers have been removed
in the encoder, resulting in 13 layers. The decoder also has 13 layers, corresponding to the
layers in the encoder. In the max-pooling layers the positions of the maximum values i.e.
pooling indices are stored inorder to be used by the decoder for non-linear upsampling. By
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doing this, the network captures boundary information from the encoder layers in an effi-
cient way. Apart from the upsampling layers, the decoder also has trainable convolution
layers in an architecture corresponding to the encoder layers. The final layer in the decoder
is fed to a softmax layer to perform pixel-wise classification (Badrinarayanan et al. 2017).
SegNet is a smaller network in the sense of number of trainable parameters compared to
other networks with competing architecture (Minaee et al. 2020).

2.3.3 U-Net
Another network which has shown high performance on segmentation tasks is the U-Net.
Ronneberger et al. (2015) describes the network architecture as consisting of a contracting
part and a symmetrical expanding part. The contracting part has an architecture of a typical
CNN with convolutions followed by ReLU and pooling layers. The expanding part con-
sists of up sampling, ”up-convolutions” and regular convolutions. A concatenation is done
between the corresponding feature map from the contracting part and the step in the ex-
panding part. This creates connections between the expanding and contracting parts. They
also show that the network can be trained on a small amount of data using data augmenta-
tion to achieve high performance. This is why the network is suitable for medical image
segmentation tasks where large annotated datasets can be hard to retrieve.

2.4 Training and testing networks

When training a network model with a CNN architecture it is the kernels which are
optimized or trained. This is often done by supervised learning where there exists a
ground truth to each element in the dataset and the model tries to minimize the difference
in its output and the ground truth (Yamashita et al. 2018). When performing semantic
segmentation the ground truth is a segmentation mask with the same size as the image and
each pixel is labeled with the class it belongs to.

The learning procedure is often done with an algorithm called backpropagation (Ya-
mashita et al. 2018). Since the values in the kernels are randomized at first, the model will
probably perform badly i.e. have large errors between the output and the ground truth when
predicting an output initially. The kernel values therefore have to be updated according to
the errors during the training process. The evaluation of the difference between the output
and the ground truth is done with a loss function (Ho & Wookey 2020). Cross-entropy
is a loss function commonly used for classification problems. The values of the kernels
are updated using an optimizer algorithm which adjusts the kernel values with regards
to the loss function. Gradient descent is a common method for optimization (Yamashita
et al. 2018). However, there have been developments made to this optimizer algorithm
which has improved efficiency when working with larger datasets and models with many
parameters. One such algorithm is called Adaptive Moment Estimation (Adam) (Kingma
& Ba 2017).

Before training a model it is important to divide the available dataset. The dataset
should be divided into two or three smaller datasets, either one for training and one for
testing or one for training, one for testing and one for validation. The training set is of

17



course used for training the model. The validation set is used to tune hyperparameters and
select a model. Hyperparameters are set before the training process starts e.g. kernel size,
activation function, optimizer and number of epochs. The testing dataset is only used for
evaluating the selected model and this set should consist of data unseen by the network
inorder to perform a non-bias performance evaluation (Yamashita et al. 2018).

Other than tuning hyperparameters and selecting models, a reason for dividing datasets
into smaller sets is to detect the problem with overfitting i.e. training a model to high
accuracy and small loss on training data but receiving lower accuracy and higher loss on
the validation set. Overfitting can be handled by regularization, data augmentation and
batch normalization. It can also be mitigated by increasing the training data (Yamashita
et al. 2018). One regularization method is called dropout. The dropout technique works
by randomly setting input to zero with a certain frequency to reduce overfitting (Hinton
et al. 2012). Batch normalization is a method which normalizes layer input, this makes
the deep learning networks less sensitive to the initial values in the network and also
reduces the number of epochs needed to achieve high performance (Ioffe & Szegedy 2015).

When training a network one can decide to split the training dataset into batches.
The batches all have the same size and the size decides how much data the network can see
at each iteration. A higher batch size requires more memory when training the network.
One epoch is when all the batches have been iterated.

2.4.1 Transfer learning
Small datasets can be challenging when trying to train a generalizing network. One way
of handling this problem is by transfer learning. This is a method where you train the
network on a small dataset but with weights and kernels which are already pre trained on a
dataset. The main idea is that features learned on one task can be used on similar tasks with
additional training on smaller amounts of data. Some CNNs, like VGG16 and ResNet,
have been trained on large datasets such as ImageNet and the weights and kernels have
been made available for public use.

One way to use the pretrained CNN is by fixed feature extraction, where the fully-
connected layers in the network are removed and only the convolutional and pooling layers
are left. This allows for creating a new classifier suitade for a task that might not be as
similar to the task which the CNN was pretrained on (Yamashita et al. 2018).

2.5 Evaluation metrics

To evaluate the performance of a segmentation method, Intersection-over-Union (IoU) or
mean Intersection-over-Union (mIoU) measurements can be used. These measurements are
used when there is a ground truth image which the segmented image can be compared to.
ThemIoU is usedwhen there are several classes and is defined as the average IoU over those
classes. The IoU is defined as the area of intersection between the output segmentation map
and the ground truth divided by the area of union between the same two elements (Long
et al. 2015; Minaee et al. 2020).
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IoU =
A ∩ B

A ∪ B
(1)

The IoU value can take any value between zero and one, where values close to zero indicate
poor segmentation and values close to one indicate good segmentation. In this project
the IoU is calculated for images in a dataset, and the mean IoU within the dataset is then
referred to as the IoU of the method. Not to confuse with the mIoU measurement.

To get an estimation of how much a model overestimates and underestimates a seg-
mented area, the metrics false positive rate (FPR) and false negative rate (FNR) could be
used. They are defined as follows, were FP is false positives, TN is true negatives, FN is
false negatives and TP is true positives:

FPR =
FP

FP + TN
(2)

FNR =
FN

FN + TP
(3)

Anothermeasurement which can give an indication of performance of a segmentationmodel
is pixel accuracy. This metric is defined as the percentage of correctly classified pixels in
an image.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

3 Material and method
3.1 Libraries and tools

Image data can be represented as NumPy arrays. This allows for easy processing and ma-
nipulation of image data. It is also required for usage of libraries such as Pillow, OpenCV,
Scikit-image and Matplotlib for image processing and display. Pillow or Python Image Li-
brary (PIL) can be used to both read and write images e.g. PNG or JPEG files. Another
library with similar functions as Pillow is OpenCV. Both of these libraries were used in this
project for image processing. To display images and plot data, the libraryMatplotlib.pyplot
was used. In the deep learning part of the project keras was used. Keras is an API built on
tensorflow for enabling easy development of deep learning networks.

3.2 The data

The data in this project was made up of images of microscope glass slides with prepared
stool samples on them as well as other information regarding the samples, such as a QR
code and written text. These images were all of size 846 × 2142 × 3. Throughout the
development of the AI microscope, Etteplan has carried out studies in different countries to
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collect data. In the available database at Etteplan there were images from several studies.

It was decided to use images which were representative of the current microscope
imaging process and up-to-date. The images used were therefore extracted from study
26, 27, 29, 30 and 31. In total, 238 images were retrieved from those studies. Study 28
contained images where the sample was in a square shape. Square samples were no longer
used within the microscope project and were therefore excluded from the dataset. The
distribution of the number of extracted images in the dataset from each study was not
even since there were different numbers of images in each study to begin with (Figure 7).
Making the distribution even would have severely decreased the size of the dataset which
was why an uneven distribution was accepted.

The testing data was the set which was first retrieved in this project. This was done
to evaluate the active contour model and SampleFinder and their potential for being used
for automatic annotation. After this, additional images were retrived from the database to
create the larger dataset of 238 images. This resulted in an uneven distribution between
the datasets within one study (Figure 7). This is not optimal as the distribution within one
study would preferably be even with regards to the image percentage distribution between
the datasets.

Figure 7: Barplot of number of images from each study in the three different datasets; training, validation
and testing.

The dataset consisted of images where the stool sample had varying size and quality. With
quality meaning how distinct the sample boundary was and how well the texture of the
sample matched with the rest of the images. Images with samples which were smeared
out, uneven in thickness or had deviating texture were regarded as lower quality. A more
high quality image was characterized by a sample with a clear boundary and high contrast
between sample and background. An example of a higher quality image and one of lower
quality can be seen in Figure 8.
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(a) Higher sample quality image. (b) Lower sample quality image.

Figure 8: Two example images from the dataset, one with a higher quality sample and one with lower
quality sample.

3.3 Manual annotations of images

48 images of varying quality from the dataset were annotated using Gimp v.2.10.30. The
annotation was made using the intelligent scissor to mark the boundary of the sample. The
area inside the boundary was filled with white color and the outside (background) was
filled with black color. The resulting binary mask was saved as a 1-bit PNG image. This
meant that the pixel value of the sample area was 1 and the background had pixel value 0.

This was done both by me (the author) and one other person. The reason for anno-
tating the images twice was to make a comparison of how two humans can interpret a
ground truth in different ways. The IoU between these ground truths was calculated as
well as the mean percentage of sample pixels over the dataset, which would indicate the
differences in generosity when marking out the sample in the images. The percentage of
sample pixels was calculated by dividing the number of pixels belonging to the sample
class with the total number of pixels in the image. The mean percentage of sample pixels
was then taken over the whole dataset of 48 images.

Further in this project, my annotations were the ones used as the representation of
the ground truth to test the performance of the models.

3.4 SampleFinder

The implementation currently used by Etteplan to delineate the sample from the back-
ground is called SampleFinder throughout this project. It uses dynamic thresholding along
with dilation and erosion to separate the sample from the other parts of the microscope
slide. The first step in this model is to convert the original BGR image to an YUV image.
For values between 110 and 126 for the U-channel, with step size 2, thresholding is done
to create a binary image were the sample area is separated from the background. Dilation
and erosion is then used on the binary image to fill any holes in the sample area. For
each iteration the thresholded binary image is used together with the SimpleBlobDetector
algorithm in OpenCV to find the center point and radius of the sample. If a center point
and radius is found this is then used to create a circle which marks the sample area where
the microscope should scan.
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The current implementation was evaluated on the 48 manually annotated images.
IoU was calculated for both the circle as well as the thresholded binary image produced by
SampleFinder. The total runtime was also measured on a Nvidia GeForce RTX 2070 GPU.

3.5 Active contour

3.5.1 Parameter optimization and evaluation
The active contour function in Scikit-image inputs 11 different parameters, two of them
being the image and the initial spline which are required by the function. Before inputting
the image to the function it was converted to single channel (grayscale) and a gaussian filter
was applied. The effect that the optional parameters (alpha, beta, gamma, w_line, w_edge,
max_px_move and max_iterations) had on the performance results were evaluated. Two
parameters were not evaluated, these were boundary conditions and convergence. The
evaluation was done by calculating the IoU for the sample class according to equation 1 on
one image for different values of the parameter. This one image was of medium quality.
It had contrast to the background, but a somewhat diffuse boundary. The results were
plotted in order to find a threshold/optimal value which maximized the IoU value for each
parameter.

Other than the inbuilt parameters in the active contour model, expansion/compression
of the SampleFinder circle was also evaluated as well as the number of points in the
initial snake. The difference in performance of the function when using either one of
the three channels (red, green, blue) was evaluated as well as using OpenCV color
conversion rgb2gray which weights each channel according to the following function:
Y←0.299 · r + 0.587 · g + 0.114 · b. For the evaluation of gray scale conversion, the
SampleFinder circle was used as the initial spline for the optimized active contour model
on the 48 manually annotated images.

3.5.2 Initial spline
As an initial spline, both the circle and sample boundary in the thresholded image from
SampleFinder were evaluated with regards to both IoU and runtime on the GPU. For the
usage of the SampleFinder circle as initial spline, it was necessary to initialize an average
circle if SampleFinder did not output a circle. The average circle was calculated from the
SampleFinder circles which were found for 45 of the 48 images. This resulted in a circle
with center coordinate (920, 438) and radius 268 pixels.

A combination of using SampleFinder circle (when found) and SampleFinder threshold
boundary when no circle was found was also tested. The boundary of the sample in the
thresholded binary image was retrieved by using the find_boundary function in OpenCV.
If the function gave multiple boundaries the longest retrieved boundary was used. For
comparison reasons, the IoU for a circle placed in the center (1071, 423) of an image with
radius of 300 pixels was calculated. This circle was also evaluated as the initial spline for
the active contours function.
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3.6 Annotation of images for deep learning

All 238 images were used for evaluating the deep learning models. Out of these 238
images, 48 were from the previous small dataset used for performance evaluation of
SampleFinder and active contours. Since these 48 images were already annotated, they
were held aside when using active contours as an automatic annotation tool.

The annotation of the remaining 190 images was done with the active contours model
using either the SampleFinder circle as an initial spline or the threshold boundary from
SampleFinder if no circle was found. Each annotation was manually inspected (visually)
and regarded as either a good or bad boundary for the sample and thereafter the binary
mask was saved if the result was regarded as good.

If the active contours annotation was regarded as bad, a visual inspection of the
threshold boundary was also made and saved only if it was a good annotation. Same was
made for using the threshold boundary as initial spline for active contours. The images in
the dataset which could not retrieve a good and representative sample boundary from the
active contours model or SampleFinder were instead manually annotated, see section 3.3
for method.

3.7 Deep learning

From studying literature about semantic segmentation using deep learning I learned that
there are several networks which have been created for segmentation tasks. Many tasks
and datasets presented involved multiclass segmentation, whereas this project only focuses
on two classes, background and sample. However, the main issue was similar and therefore
these models were regarded as appropriate to try for the project task of delineating the
sample from the background. When studying literature of segmentation networks it seemed
that some networks, e.g. FCN and SegNet had been created and evaluated with the VGG-
16 network as encoder. Therefore, I found it relevant to test that architecture for this project.

Some models which have been used for semantic segmentation problems and have
shown good performance results, such as FCN-8, SegNet, U-Net and PSPNet, were
implemented in keras by Gupta (2022). The implementation is called keras-segmentation
and also enables usage of common CNN architectures e.g. VGG-16 and MobileNet as
encoders in the segmentation models. Keras-segmentation also implements a vanilla CNN
which has 5 convolutional layers, each followed by a max-pooling layer with size 2 × 2
and stride 2 (Figure 9). The kernels in the convolutional layers are of size 3 × 3 and they
move with stride 1. The number of kernels start with 64 followed by 128, and for the last 3
layers the number of kernels are 256. After each convolutional layer, batch-normalization
is performed and the activation function ReLU is applied.
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Figure 9: The network architecture of the vanilla CNN.

3.7.1 Dataset splitting and pre-processing
The dataset was split into a set for training the networks, one set for validation and one set
to use for testing the performance of the networks. The distribution of the images were
such that 60% (142) were put in the training set, 20% (48) were in the validation set and
the 48 images which were used to evaluate SampleFinder and active contour were used as
the testing set, also representing 20%. The reason for using that set as the testing set was
to be able to make a relevant comparison of the performance of the three different types of
models.

All images which were annotated with active contour or SampleFinder were put in
the training and validation dataset. This was done so that 65% of the images in the sets
were from the automatic annotation and 35% were manually annotated. This distribution
made sure that both the validation and training set contained images with mixed sample
quality, since the manually annotated images mostly consisted of images with lower quality
samples and the automatically annotated images had higher sample quality.

Before training the networks using this dataset the dimensions of the images and the
corresponding segmentation masks were altered. The dimensions were altered so that the
width and height was evenly divisible by 32 (25). The initial width of the images were
846 and the height were 2142, which is not evenly divisible by 32. Therefore, a border
of zeroes were added to the images and masks, 2 pixels to the left of the images and 18
pixels at the top of the images. This changed the dimensions of the images and masks to
864× 2144× 3.

3.7.2 Training and evaluation
The vanilla CNN was used as the encoder for the first evaluation of FCN-32, FCN-8,
SegNet and U-Net. Then, the VGG-16 network was also used as encoder for the FCN-8
and SegNet. This was done by loading the pretrained weights from the VGG-16 network
which had been trained on the ImageNet dataset. The FCN-8 network was used to evaluate
the effect of changing the number of epochs when training the network. The number of
epochs used were 10, 20 and 25. Categorical cross entropy was used as the loss function
together with the Adam optimizer. Most of the training processes had a batch size of two,
however, some networks were trained with batch size one because of memory limitations.
Larger batch sizes than two was not possible to use, also because of memory limitations.

The deep learning models were trained inside a docker container with a tensorflow
installation as well as access to the servers’ graphical processing units (GPUs). On the
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server where the container was made there were two Nvidia GeForce RTX 2070 GPUs and
one of them was used when training the models.

After training the networks, the model loss and accuracy for the training and valida-
tion sets were plotted and the IoU for the two classes, background and sample, were
calculated on the validation set. The best performing networks out of the four architectures
used, FCN-8, FCN-32, SegNet and U-Net, were then also evaluated with regards to IoU
and runtime on the test set. The runtime was measured by taking the average time per
image when predicting the segmentation masks for the test set on the GPU.

3.8 Displaying model boundaries and over- and underestimation

To get an estimation of how much each model underestimated and overestimated the
sample area, FNR and FPR were used. Pixels with the label background (pixel value 0)
were regarded as negatives and the pixels with the label sample (pixel value 1) were re-
garded as positives. Hence, the FNR represented underestimation and the FPR represented
overestimation of the sample area. They were calculated for each segmentation model
according to equation 2 and 3.

To display the results from the different models, the resulting boundaries from the
models were plotted on the original images. For each model, the three images with the
lowest IoU were extracted and the boundaries were plotted. Some of the models had
images in common among the three worst and therefore only seven images were chosen.
This was done to visualize the weaknesses of the different models and also to get an
understanding of which types of images that the models performed worst on. Beyond those
images, eight randomly chosen images from the testing dataset were also plotted to get an
overall picture of how the models differed. Apart from the models; SampleFinder, active
contour and the four deep learning networks, the manual annotations by me and person 2
were also plotted.

4 Results
The IoU between the two ground truth sets were 97.9% for the sample class and 99.6% for
the background class. The annotation set made by me received a mean pixel percentage of
the sample of 14.7% while the other person’s annotations had a slightly higher percentage
of 14.8%. This means that person 2 was generally a bit more generous when marking out
the sample area. However, some images stood out a bit more in the difference between
sample pixel percentage. These images were characterized by smeared out samples with a
low contrast sample boundary. By looking at the IoU for the sample class of these images
one can also see that these images had a lower IoU than the average of 97.9%.

25



4.1 Active contour and SampleFinder

4.1.1 Parameter optimization
The active contour model had predefined values of the parameters which were used by
default if no other specification was made. The default parameter settings were as follows:
alpha=0.01, beta=0.1, w_line=0, w_edge=1, gamma=0.01, bc=str, max_px_move=1,
max_iterations=2500 and convergence=0.1. When using the default settings it took an
average of 28 seconds to find a sample boundary in one image (Table 1). The runtime for
the default settings was very long. This can be compared to the runtime after optimizing
the parameter settings which was around 2 seconds per image (Table 2). The IoU of the
sample class for the active contour model with default settings was 78.5% which was a
small increase compared to the SampleFinder circle which had an IoU of 77% (Table 2).

The parameter optimization for the active contours model resulted in a model with
the following settings: alpha=0.016, beta=0.15, gamma=0.001, max_iterations=100,
w_line=1, w_edge=1, max_px_move=1. Other than that, the optimal number of
points in the snake was determined to be 740 and the optimal expansion of the circle
was 40 pixels. For the one image used for the optimization this resulted in an IoU of 94.7%.

The alpha and beta values were slightly increased because it gave higher IoU. How-
ever, even higher values of alpha and beta instead decreased the performance of the model.
Negative values of w_line gave lower IoU values than positive values. This means that
it was advantageous to make the snake attract to lighter regions. The max_iterations
parameter had a large effect on the runtime of the model. Fewer iterations gave a faster
algorithm. A decreased number of iterations did however not decrease the IoU, which was
why fewer iterations, from 2500 to 100, was regarded as optimal.

A small number of points in the snake gave a lower IoU than a higher number of points.
This was probably because the behavior of the snake became more edgy and less smooth
when using fewer points. Expanding the SampleFinder circle before using it as an initial
spline for the active contour model gave higher IoU than compressing the circle or just
using the circle without any changes. The parameters which didn’t have to be altered from
the default were w_edge and max_px_move. All resulting plots can be seen in Appendix A.

The different single channel conversions gave different performance results. The
green channel gave the highest sample IoU (Table 1). These results suggest that using
the green channel when converting from the rgb image to grayscale would give the best
sample boundary detection on the images.
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Table 1: Performance results for the default settings of the active contour model and the results from using
the different types of single channel conversions.

IoU
(sample)

std
IoU

(background)
std

time
(s/image)

Default 0.785 0.199 0.959 0.040 28
Red channel 0.830 0.154 0.968 0.031 -
Green channel 0.865 0.130 0.975 0.025 -
Blue channel 0.852 0.121 0.971 0.024 -
rgb2gray 0.863 0.137 0.974 0.027 -

4.1.2 Initial spline
Placing out a circle with a fixed radius in the middle of each image gave a very low IoU for
the sample class of 39.6%. Using this mid circle as an initial spline for the active contour
model increased the IoU but still it gave a very low IoU of 45.3% and a high standard
deviation of 27.9%. This model is therefore not at all optimal to use for annotating images
or as a boundary for microscope scanning. SampleFinder showed better performance
results. The circle had an IoU of 77% with high standard deviation of 22.4% and the
thresholded image gave an IoU of 84.4% (Table 2). One reason for the high standard
deviation was that SampleFinder did not place out a circle in 3 out of 48 images, resulting
in an IoU of 0 for those images.

The active contour model with SampleFinder circle as initial spline increased the
IoU compared to just using the SampleFinder circle. This model gave an IoU of 86.5%,
which is an increase of almost 10%. However, the active contour model with the threshold
boundary as initial spline did not increase the IoU compared to just using the threshold
boundary. Instead, it actually decreased the IoU from 84.4% to 83.2% (Table 2).

The best performance for the active contours model was reached when using the
threshold boundary points as initial spline when no circle was given by SampleFinder and
in all other cases using the SampleFinder circle (with expansion) as initial spline. This
gave an IoU of 88.5% with a low standard deviation of 6.9% (Table 2).

The SampleFinder model had an average time of 0.07 seconds per image which is
very fast. The active contour model gave an average of between 1.78 and 2.09 seconds
per image (Table 2). The fastest active contour model was when using the circle as
initial spline and an average circle when no circle was found, and the slowest was to use
only the threshold boundary as initial spline. Active contour was a slower model than
SampleFinder, however, the performance of the model was better. To run an annotation on
190 images with active contour would take around 6 minutes.
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Table 2: Performance results for different segmentation models on 48 manually annotated images. The type
of initial spline for the active contour model is defined in parentheses.

Model
IoU

(sample)
std

IoU (back-
ground)

std
time

(s/image)
Mid circle 0.396 0.232 0.844 0.081 -
SampleFinder circle 0.770 0.224 0.963 0.028 0.07
SampleFinder threshold 0.844 0.103 0.972 0.023 0.07
Active contours (mid circle) 0.453 0.279 0.863 0.087 1.78
Active contours (sf circle) 0.865 0.130 0.975 0.025 1.86
Active contours (sf threshold) 0.832 0.090 0.968 0.021 2.09
Active contours (sf circle +
threshold)

0.885 0.069 0.979 0.016 1.87

The performance results of the active contour model suggests it is appropriate to use
for annotation of a larger dataset with similar images. The results also suggest the most
efficient way to annotate would be to use the threshold boundary from SampleFinder as
initial spline if no circle can be placed out since this would increase the probability of the
annotation being good.

Out of 190 images, 124 were able to be annotated with either active contour or
SampleFinder. The images which were not able to be annotated consisted mostly of images
where the sample was smeared out, not round or uneven in thickness.

4.2 Segmentation networks (deep learning)

The validation accuracy of the FCN-8 network increased when training for 20 epochs in-
stead of 10 (Appendix B). However, there was no increase when training for 25 epochs and
therefore 20 epochs was used as a start when training the other networks. The difference in
accuracy and loss between the training and validation was very low for the FCN-8 networks,
hence, the networks overfitted to a low extent on the training data (Figure 10). Using the
pretrained VGG-16 network as encoder for FCN-8 did not increase the performance of the
model (Figure 11, Appendix B). For the following plots epoch 0 indicates the accuracy and
loss after training the networks for one epoch.
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Figure 10: Loss and accuracy when training FCN-8 with vanilla CNN for 25 epochs.

Figure 11: Loss and accuracy for FCN-8 trained with VGG-16 for 20 epochs.

The FCN-32 network was trained to the highest validation accuracy among the networks.
The model loss was also very low (Figure 12). FCN-32 also had the highest IoU for the
sample class on the validation set (Appendix B). Because of the good results this network
was evaluated on the independent testing set.

Figure 12: Loss and accuracy when training FCN-32 with vanilla CNN for 20 epochs.
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SegNet showed the worst results on both the validation accuracy and sample IoU. However,
when changing the encoder from the vanilla CNN to the pretrained VGG-16 network there
was an increase in accuracy and IoU (Figure 13). The U-Net had higher accuracy and IoU
compared to SegNet, but lower than both FCN networks (Figure 14, Appendix B).

Figure 13: Loss and accuracy when training SegNet with vanilla CNN and VGG-16 for 20 epochs.

Figure 14: Loss and accuracy when training U-Net with vanilla CNN for 20 epochs.

The evaluation on the test set showed that the FCN-32 network performed the best out of
the four networks with an IoU for the sample class of 95.2% and a low standard deviation
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of 2.1%. U-Net had the second highest sample IoU, however, it had the highest standard
deviation of 7.2%. SegNet showed the lowest IoU of 88.8% with a standard deviation of
4.6%. The FCN-8 network had a sample IoU of 91.5% with a standard deviation of 5.2%
which makes it the third best. There were no large differences in runtime between the
networks (Table 3).

Table 3: Performance evaluation of the networks on the test set.

Model IoU (sample) std
IoU

(background)
std

time
(s/image)

FCN-8 0.915 0.052 0.985 0.014 0.37
FCN-32 0.952 0.021 0.992 0.006 0.38
SegNet (VGG-16) 0.888 0.046 0.979 0.014 0.44
U-Net 0.922 0.072 0.987 0.014 0.30

The best performing network, FCN-32, consisted of 69,745,026 parameters and was of size
837MB. The FCN-8 also had a large number of parameters 69,730,822 and were of size
837MB. This can be compared to the second best network, U-Net, which only had 4,471,746
parameters and was of size 54MB. SegNet was also small in comparison to FCN-32 and
FCN-8. The network only had 3,697,602 parameters and a size of 139MB. The training time
was similar for all the networks, in total it took around 15-20 minutes to train a network for
20 epochs.

4.3 Boundaries, over- and underestimation

SampleFinder circle and threshold were the models which had the highest FNR. This means
that these models often mark out too little of the sample on the microscope slide. The active
contour model had a lower FNR, however, all four networks show even lower FNR. The
lowest FNR belongs to the FCN-8 network, only 1%. SampleFinder circle and threshold
had the lowest FPR which then means these models do not mark out a too large boundary of
the sample. FCN-8 and SegNet are the two models which most often mark out a too large
boundary since these models had the highest FPR (Table 4).

Table 4: FNR and FPR for SampleFinder circle and threshold boundary, the active contour model with
SampleFinder circle and threshold boundary as initial spline as well as the deep learning networks.

Model FNR (under) FPR (over)
SampleFinder circle 0.215 0.002
SampleFinder threshold 0.161 0.002
Active contours 0.073 0.009
FCN-8 0.010 0.014
FCN-32 0.016 0.006
SegNet (VGG-16) 0.012 0.019
U-Net 0.047 0.006
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By looking at the randomly chosen images in Figure 15 one can see the differences in the
resulting boundaries between the traditional models (SampleFinder and active contour)
and the deep learning networks. Image 7 clearly shows how the networks adapt their
boundary more accurately to a sample which does not have a round character compared
to the traditional models. The traditional models show high accuracy on image 2 which
has a more roundly shaped sample. When compared to the results from the networks one
can even see that two of the networks, SegNet and FCN-8, overestimates the area of the
sample in image 2.

Image 1 in Figure 15 shows how the networks are more generous when marking out
the sample compared to the traditional models. Even if the sample is smeared out and
uneven in thickness, the networks can still detect the smeared out area and include it in
their binary mask. In general, one can see that the networks follow the boundary of the
sample more accurately in comparison to the SampleFinder and active contour model
which agrees to the IoU results for the models.

32



Figure 15: A collection of eight randomly chosen images from the testing set. The images to the left show
the results from SampleFinder (SF) circle and threshold as well as the active contours and manual
annotations (MA). The images to the right are the same as to the left but with the contours from the different
deep learning networks.

Images 1, 4 and 5 in Figure 16 shows how FCN-8 and SegNet overestimates the sample
area to a large extent. These results also align with the FPR values and somewhat explain
why the FPR were the highest for these networks. Out of these three images, the traditional
models show much better results on image 5 compared to FCN-8 and SegNet. Images
2, 6 and 7 all show that U-Net tends to underestimate the sample area more than the
other networks. For images 6 and 7, the SampleFinder and active contour also underesti-
mated the area. This is probably because the samples are uneven in thickness and not round.

In Figure 16 one can also see some differences between the two manual annota-
tions. Two clear examples of different interpretations of the ground truth are shown in
image 1 and 3. There is an area in the bottom parts of both of the images which have been
marked by person 2 but not by me. These are also areas which some of the deep learning
networks, such as FCN-32, have marked out as part of the sample.
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Figure 16: A collection of the images which were among the three images with the lowest IoU for the
models, in total seven images. To the left the SampleFinder (SF) circle and threshold boundaries are
displayed together with the active contour result and the two manual annotations (MA). To the right all
network boundaries are drawn on the images.
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5 Discussion
The active contour model gave an increase in performance for the task of delineating
the stool sample from the microscope slide background compared to the current method
(SampleFinder). However, the model was much slower than the current one. A general
disadvantage with the active contour method is its sensitivity to a good initial guess.
Since the application of the model in this project used the SampleFinder circle as initial
spline, it became highly dependant on SampleFinder doing a good job of finding the sample.

All four segmentation networks, FCN-32, FCN-8, SegNet and U-Net, also showed
an increase in performance compared to the current method. A comparison between
SampleFinder circle and best performing network (FCN-32) show an increase of 18,2%
in IoU for the sample class. The networks also show higher IoU compared to the active
contour model. The networks show a large decrease in underestimation compared to
SampleFinder and active contour. The reason for wanting a low underestimation is due to
the method of STHs diagnosis. As described, the degree of infection is measured in eggs
per gram and therefore it is very important to count all eggs in the stool sample. Hence, all
of the sample must be scanned by the microscope.

Further, one can conclude that the diagnosis method is not sensitive to an overesti-
mation of the sample area. But overestimation is not optimal fore the sake of decreasing
the amount of background images taken by the microscope. The networks which had
the highest overestimation, FCN-8 and SegNet, also showed the lowest underestimation.
With respect to the importance of scanning all of the sample, these networks would then
be preferable over the other models. However, FCN-32 showed an underestimation of
1.6% which is not much higher than SegNet which had 1.2%, but still showed higher IoU
compared to SegNet and FCN-8.

The results show that the networks which previously have been used for semantic
segmentation problems also work for this project’s problem. As a whole, viewing the
problem as a semantic segmentation task is highly suitable. The networks do a good job of
learning the general features of the sample on the microscope slide images, such as color
and texture, which leads to high performance. In the majority of the images the sample
sticker and handwritten numbers are ignored even though the whole image is inputted to
the network models. Most often, the sample area is also cohesive but with some exceptions.
For example, SegNet marked parts of the sticker and other irrelevant areas in some images,
areas which are separated from the sample area. One way of handling this could be to only
scan the largest cohesive area, but this could be a problem if the actual sample would be
distinctly separated on the slide or the largest cohesive area is not the sample.

One difference between the networks is the smoothness of the sample boundary. In
general, FCN-32 and SegNet gives smoother boundaries than FCN-8 and U-Net. FCN-8
generates the least smooth boundaries. One reason for this could be that FCN-8 picks up
finer details than the FCN-32 because of the skip connections in its architecture. Another
difference is the size of the networks. The smallest network, U-Net, also had the second
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best IoU results. With regards to size, this network would probably be preferred over the
large FCN-32 network.

Between the networks there was no large runtime difference, but all four networks
were faster than the active contour model. A comparison between the best active contour
model and FCN-32 show that the network is almost 5 times faster than the active contour
model. The fastest model was however the current one and the time difference was large
between both the networks and active contour. SampleFinder is almost 27 times faster
than active contour and 5 times faster than the networks on the GPU.

One difficulty in the project were the annotations, both the manual annotations and
the annotations made with active contour and SampleFinder threshold. The annotations
were done using only one cohesive area to bound all of the sample which in some
cases could have been regarded as less accurate than having multiple separate areas. A
motivation for doing this is to maintain the accuracy of the diagnosis method, i.e making
sure all eggs are found on the slide to ensure that the right degree of infection can be
determined. On some of the images there were not a clear boundary of the sample and this
left more room for interpretations of what should be regarded as sample. This was one
reason for why two different annotations were made by two different persons.

Further, the results from the models can be compared to the IoU between the two
manual annotations. If the difference between two humans and a human and a computer
is similar the computer could be said to have similar correctness to the work of a human.
In this case, the IoU was 97.9% between the two persons who annotated the dataset and
95.2% between the manual annotation and FCN-32, the best performing model tested.
There is a difference, but it is not large. In conclusion, FCN-32 came closest to perform
the same as a human.

Using pretrained weights from the VGG-16 network trained on ImageNet increased
the performance of SegNet. However, this was not the case when training the FCN-8
network. One thing that did increase the performance of FCN-8 were the number of
epochs, but only to 20 epochs, higher numbers were not advantageous. Since the number
of epochs were only evaluated on one network this may not have been optimal for all
networks. To improve the individual optimization of number of epochs for each network,
early stopping could be used (Keras documentation 2022).

Something which could also improve the performance of the deep learning networks
is more data. More data from newer studies could be used to train and evaluate the
networks and improve the generalization ability of the networks. Another aspect which
could potentially improve the performance of the networks would be to use IoU as loss
function instead of categorical cross entropy. This was suggested by Nagendar et al.
(2018) where they show that training a segmentation model on IoU can in some cases
improve the model. Data augmentation could also be interesting to try for improving the
performance of the networks. Especially for the U-Net since the article which describes
this network, Ronneberger et al. (2015), emphasises its suitability for segmentation tasks
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where only small datasets are available by partially using data augmentation.

The parameters in the active contour model were evaluated on only one image be-
cause of time limitations. This is not an optimal way of finding the best settings for the
whole dataset, but it was done due to time limitations. This could have limited the model’s
potential of showing higher performance. One potential improvement could have been to
also perform the parameter optimization on a higher quality image and compare the results
from using the settings on the small dataset (48 images). The parameters which gave the
highest average IoU over the dataset would then be preferred.

6 Conclusion
The objective of this project was to find an improvedmethod for delineating the stool sample
on the microscope slide. To conclude, the project was successful with regards to the goal.
Both the active contour model and the segmentation networks performed better than both
SampleFinder circle and threshold when using IoU as a performance measurement. The
runtime of the models did however not outperform the runtime of SampleFinder. Out of all
the models tested, FCN-32 performed best and would be recommended if model size is not
an issue. The FCN-32 network show potential for decreasing the amount of background
images collected by the microscope while retaining the accuracy in STHs diagnosis. An
implementation of this network could contribute to reducing the scanning time as well as
reducing the dependency of a human to accept and possibly adjust the scanning area.
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Appendix A

Figure 17: Plots of IoU for different values of alpha.

Figure 18: Plots of IoU for different values of beta.
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Figure 19: Plots of IoU for different values of gamma.

Figure 20: Plots of IoU for different number of iterations.
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Figure 21: Plots of IoU for different values of max_px_move.

Figure 22: Plots of IoU for different values of w_edge.
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Figure 23: Plots of IoU for different values of w_line.

Figure 24: Plots of IoU for different number of points in the snake.
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Figure 25: Plots of IoU for different circle expansion/compression values.
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Appendix B

Table 5: Epochs, validation accuracy for the last epoch and IoU values on validation set. The highlighted
networks are the ones which performed best for each network architecture type.

Model epochs
CNN type

(base model)
val acc

IoU
(sample)

IoU (back-
ground)

FCN-8 10 Vanilla CNN 0.981 0.884 0.978
FCN-8 20 Vanilla CNN 0.986 0.912 0.984
FCN-8 25 Vanilla CNN 0.986 0.910 0.984
FCN-8 20 VGG16 (batch_size=1) 0.986 0.912 0.984
FCN-32 20 Vanilla CNN 0.990 0.935 0.989
SegNet 20 Vanilla CNN 0.955 0.761 0.947
SegNet 20 VGG16 0.984 0.897 0.981
U-Net 20 Vanilla CNN (batch_size=1) 0.979 0.861 0.976
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