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Abstract 

Campylobacter is the leading cause of gastroenteritis worldwide and in Sweden there are 

official programs for the surveillance of the bacteria. One important objective with foodborne 

pathogen surveillance is molecular typing. As typing based on whole genome sequencing data 

is becoming more common, knowledge on how to set up analysis pipelines is essential to avoid 

variation in results. Here, typical whole genome sequencing pipelines are compared to a 

reference genome at different analysis stages to optimize assembly quality and typing results 

using cgMLST. The results show that read trimming is optimal to obtain high quality assemblies 

with SPAdes as well as for improving cgMLST results compared to when no read trimming was 

performed before assembling with SPAdes. The opposite was shown for SKESA where 

trimming beforehand had negative effects on the results, most likely due to SKESA having built 

in trimming properties. Additionally post assembly improvements had generally positive effects, 

however these effects were small. 
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Bättre genomanalysminskar risken för matförgiftning!

Du vet förmodligen att man inte ska äta rå kyckling på grund av att man kan få
Salmonella och bli matförgiftad. Men visste du att det inte bara är Salmonella som kan
orsaka sjukdom vid konsumtion av rå kyckling? Kyckling bär även på en bakterie som
heter Campylobacter som även den orsakar magsjuka. För att undvika stora utbrott av
bakterien övervakar myndigheter i Sverige Campylobacter genom att ta prover från
kyckling som undersöks för bakterien. En viktig del av övervakning och en eventuell
smittspårning vid utbrott är att kunna identifiera olika typer av Campylobacter. Detta
gör man genom att sekvensera hela bakteriens genom och ge gener varsitt ID så att man
kan jämföra skillnader i gener mellan olika Campylobacter-prover. Det finns många
olika verktyg man kan använda för genomanalys av en organism, och ett problem är att
det är möjligt att få olika resultat beroende på vilka verktyg man använder. Det kan
bland annat göra att generna får fel ID, vilket inte är bra. I det här projektet undersöktes
olika datorprogram som används för genomanalys för att hitta vilka program som ger
bäst resultat vid analys av Campylobacter, men också vilka program som gör att rätt ID
ges till generna genom att jämföra med ett referensgenom med kända IDn för varje gen.

När man extraherat DNA från en bakterie så måste DNAt klippas upp i mindre bitar
som sekvenseras på en maskin för att man ska få ut så kallade reads. Man kan använda
trimningsprogram som tar bort delar av innehållet i readsen som är av dålig kvalité.
Efter att man har fått sina reads använder man assemblyprogram för att få ut en
assembly som representerar bakteriens genom. De program jag använt i denna rapport
för assemblyn är SKESA och SPAdes. Intressant är att trimning, som används ofta och
av väldigt många, gjorde att kvalitén på assemblies skapade med programmet SKESA
blev sämre än när man inte trimmade readsen innan. Jämförelsevis så gjorde trimning
av reads innan man assemblar med programmet SPAdes att det blev bättre assemblies.
Det var också tydligt att SPAdes gav bättre resultat än SKESA.

Efter att man fått fram assemblies kan man finslipa dem, bland annat med programmet
Pilon som försöker förbättra ens assembly. När Pilon användes på assemblies skapade
med SKESA hade Pilon en positiv effekt, det blev förbättringar! Det blev förbättringar
även när SPAdes användes, men då bara om man trimmat readsen innan man
assemblade.

Slutsatsen som man kan dra av det här projektet är att vissa program fungerar bättre
tillsammans än andra och att det går att rekommendera vissa program som ger bättre
resultat när man sekvenserar Campylobacter och ska identifiera olika typer av
bakterien. Denna information kan bidra till att mer optimala verktyg används vid
övervakning av Campylobacter.
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Abbreviations

MLST Multi locus sequence typing

cgMLST Core genome multi locus sequence typing

wgMLST Whole genome multi locus sequence typing

PFGE Pulse field gel electroforesis

DNA Deoxyribonucleic acid





1 Introduction

Campylobacter is a genus with gram negative pathogenic bacteria carried
asymptomatically predominantly by birds as well as other animals. Campylobacter
causes campylobacteriosis which is responsible for the most gastroenteritis cases in
humans worldwide, with symptoms such as fever, abdominal pain, nausea and diarrhea
among others. Transmission of the bacteria to humans can happen in several ways,
most commonly by handling or consuming undercooked contaminated poultry or other
meat. Furthermore, consuming unpasteurized dairy products or drinking from
contaminated water are also ways for the bacteria to infect to humans. Campylobacter
jejuni is responsible for the vast majority of campylobacteriosis, followed by
Campylobacter coli (SVA 2020a). Campylobacter jejuni has a relatively small genome
with its genome length of approximately 1,600,000 base pairs. The actual length varies
by strain. Approximately 94% of the genome is protein coding and the genome has
few repeats. (Parkhill et al. 2000)

Occasionally, larger outbreaks of Campylobacter occur in Sweden and worldwide
(SVA 2020a) and in order to prevent outbreaks from happening, surveillance of food
borne pathogens is important (Lindsey et al. 2016). According to Thacker the
definition of surveillance in epidemiology is the following: ” [..] the systematic
collection, analysis, interpretation and timely dissemination for the planning of [...]
public health programmes” (Thacker 1988). In Sweden there are official programs for
the surveillance of Campylobacter in animals, specifically broiler chickens. Fecal
samples are taken from 10 broiler chickens per slaughter batch and analyzed for
Campylobacter. In humans, campylobacteriosis is a notifiable disease, i.e confirmed
cases of Campylobacter infections are required to be reported to a regional disease
control physician and the Swedish public health authority (SVA 2020a).

1.1 cgMLST and wgMLST, tools for surveilling Campylobacter

One of the major objectives of foodborne pathogen surveillance is to differentiate
between populations of bacteria to be able to infer what strain or type is carried by for
example a flock of broiler chickens or is responsible for an infection. Previously two
methods called Multi locus sequence typing (MLST) and pulse field gel
electrophoresis (PFGE) have been used to type differences between populations of
food borne pathogens including Campylobacter. PFGE put simply is a gel
electrophoresis performed on lysed isolates which have been fragmented with
restriction enzymes. During the electrophoresis the fragments will be separated by size
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giving rise to patterns on the gel which act as a barcode. These barcodes can be used to
differentiate between strains and allows for typing them (Schwartz & Cantor 1984;
Sharma-Kuinkel et al. 2016). In MLST however, a rather small number of
housekeeping genes are sequenced and alleles are identified from the sequences
(Maiden et al. 1998). The number of housekeeping genes varies among studies but is
generally between 7-11 genes, with seven being most commonly used (Maiden et al.
1998; Jolley & Maiden 2010; Dingle et al. 2001; Payne et al. 2020). Each allele in
each sequence is given a number and the combination of numbers make up a so called
sequence type (ST) which can be used as an identifier for a particular population of
bacteria (Maiden et al. 1998). However, as progress in whole genome sequencing
(WGS) has increased rapidly over the last couple of years, typing based on whole
genomes or core genomes instead of a few housekeeping genes can be done to increase
resolution. These methods are called cgMLST (core genome multi locus typing) and
wgMLST (whole genome multi locus typing) respectively and each sequence at each
locus is given an allele number similarly to regular MLST but on a larger scale. Thus
cgMLST and wgMLST can distinguish more differences between different isolates
than MLST can (Yan et al. 2021; Cody et al. 2013). Besides offering a high typing
resolution, cgMLST and wgMLST are easily standardized due to utilizing bacterial
gene schemes containing a fixed number of genes curated by different research groups.
The schemes are used for typing and no reference genome is needed allowing for
standardization and reproducibility (Deneke et al. 2021).

As an alternative to a gene-by-gene approach, i.e cgMLST and wgMLST, isolates can
be typed with SNP analysis where SNPs (single nucleotide polymorhpisms) are
identified. The SNP analysis approach offers an even higher resolution than
gene-by-gene approaches, however it is more difficult to standardize among different
laboratories due to recombination and the method requiring a reference genome.
(Pearce et al. 2018)

1.2 De novo assembly

Since both cgMLST and wgMLST are based on core genomes or whole genomes,
WGS is a mandatory precursor for the analyses. To assemble a de novo genome, DNA
has to be sequenced on a sequencing machine to generate raw reads which are
assembled into contigs and/or scaffolds. In the RefSeq database and among
surveillance genomes, most genomes are assembled with reads generated by Illumina
sequencers (Segerman 2020) and there are multiple Illumina sequencing machines and
multiple library preparation kits commerically available (SVA 2020b; Segerman 2020).
During the library preparation, adapters (short nucleotide sequences) are ligated to
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fragmented DNA which can adhere to the flowcell of the Illumina sequencing machine
onto which the sequencing is carried out. Additionally, barcode sequences are added
along with the adapters to allow for sample multiplexing. The barcode sequences
therefore act as identifiers so individual samples can be distinguished.

After sequencing, raw DNA reads need to be assembled into de novo genomes.
Available today are numerous different software used to assemble raw reads and they
can differ in what algorithms are used and what parameters are available. In the RefSeq
database, most bacterial genomes are assembled with the software SPAdes while most
surveillance genomes are assembled with SKESA, developed by the NCBI (Segerman
2020). Additionally, before assembling the genome, raw reads can be trimmed to
remove adapters and filter away reads that are too short. Trimming can additionally
remove segments of the reads that are of bad quality. It is especially valuable to
remove the end of the reads since the per base read quality generally decreases at the
end (Bolger et al. 2014; Chen et al. 2018). While trimming can increase the quality of
assemblies, there is a risk that trimming could have negative effects on the assembly.
Trimming could for example lead to more fragmented assemblies (Del Fabbro et al.
2013). The assembly program SKESA has built in adapter and quality trimming
(Souvorov et al. 2018) while SPAdes does not (Prjibelski et al. 2020).

Furthermore assemblies can be processed further to try to improve the assemblies.
There is a possibility that DNA from a previous sequencing run is left in the
sequencing machine. This could lead to DNA from an entirely different organism
being sequenced and assembled together with your samples and thus contaminating
them. The contigs produced by contaminants are usually small and therefore it could
be beneficial to remove small contigs from the assembly to hopefully eliminate
contaminating DNA (SVA 2020b). Additionally there are software aimed to improve
assemblies using read alignment analysis. The software Pilon is one of those software
and maps reads back to the assembly to find inconsistencies. Pilon then aims to fix the
inconsistencies and is able to reassemble genome regions. (Walker et al. 2014).

The chosen software for an assembly, along with trimming of raw reads and any post
assembly improvements may affect the quality of the assembly. Library preparation,
read depth or coverage may also have an effect (SVA 2020b). Since cgMLST analysis
is based on WGS, the assembly quality could consequently affect the cgMLST results.
One study performed a cgMLST analysis on assemblies assembled with raw reads of
different coverages, spanning the range 10x to 500x, and used among others SPAdes
and SKESA assemblers. It was observed that SPAdes required coverages of at least
30x while SKESA needed coverages of 40-60x to not get a high cgMLST error rate
(Liu et al. 2021). A different study found that a coverage of 40x is beneficial for
cgMLST analyses based on SPAdes assemblies (Palma et al. 2022) and also found that
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wet lab work had no effect on the results. However none of these studies investigated
Campylobacter.

1.3 Aims and purpose

The purpose of this project is to better understand and optimize typical whole genome
sequencing pipelines by measuring and comparing different quality aspects of WGS
data at different analysis stages. This could make it possible to recommend how
analysis pipelines should be set up for Campylobacter and could reduce variation in
analysis results.

2 Material and methods

In this section the materials used is presented along with all methods from the pipeline
creation, how to run the pipeline and how results are compiled.

Scripts and the scientific workflow can be found at the following GitHub page:
https://github.com/chels0/Quality_performance_of_WGS_analysis_pipelines

2.1 Sequencing data

The raw data is Campylobacter jejuni ST-464 raw reads (n=25) of varying quality
sequenced by different reference laboratories for Campylobacter in the EU. Half of the
raw reads were sequenced from genomic DNA given to the different laboratories by
SVA (the Swedish National Veterinary Institute) which is the official EU reference
laboratory for Campylobacter. The other half of the raw reads were sequenced from
lyophilised cultures, also given to the laboratories by SVA. All raw reads are Illumina
reads generated either with the Illumina DNA Prep kit or Nextera XT DNA Library
Preparation kit. The majority of laboratories used Illumina MiSeq as sequencer (SVA
2020b) with readlengths of 300. However some laboratories used readlengths of 150
and 250. The coverage of the reads were downsampled to 20x, 50x and 100x.
However a few samples did not reach a coverage of 100x.

A complete genome from the same ST-464 isolate is used to benchmark the assemblies
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against and this is considered to be a correct assembly. The complete genome was
sequenced with both long read and short read sequencing using Oxford nanopore
technology and Illumina respectively. (SVA 2020b)

2.2 Creating a scientific workflow for de novo assembly

A scientific workflow with software encompassing the analysis from quality control,
trimming, assembly, contig size filtering, assembly improvement and assembly
validation was developed in Nextflow. The workflow takes reads in the form of
forward and reverse fastq files from one or more samples as input along with a
reference genome, originating from the same isolate as the samples. For an overview
of what software were used in the workflow along with their inputs and outputs as well
as how the different software is linked, see Figure 1.
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Figure 1: Structure of the Nextflow workflow, including software with their respective inputs and
outputs

2.2.1 Software details

Trimmomatic (Bolger et al. 2014) and Fastp (Chen et al. 2018) were used to trim low
quality reads from the read data. Fastp was run with default parameters while
Trimmomatic was run with parameters ’LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36
ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:2:true’ for all samples generated with
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Nextera library preparation kits and parameters ’LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36
ILLUMINACLIP:’TruSeq3-PE-2.fa:2:30:10:2:true’ for the samples PT28-1-27 and
PT28-3-27 which were generated with a TruSeq library preparation kit.

FastQC (Andrews et al. 2012) as well as Fastp were used for quality control of
trimmed reads after trimming had been performed. FastQC was run with default
parameters while Fastp was run with flags -A -L -Q -G to utilize the quality control
component of the software without trimming.

The assembly programs SPAdes (Prjibelski et al. 2020) and SKESA (Souvorov et al.
2018) were used for assembling the reads into scaffolds and contigs. SKESA was run
with default parameters and SPAdes was run with options –isolate or –-careful to
investigate differences in results between the options.

The filtering step removed short contigs from assemblies meeting a certain basepair
amount threshold, here contigs of size 200 and 500 basepairs.

The software Pilon (Walker et al. 2014) was used to improve the assemblies using the
assemblies and BAM files as input. The BAM file was generated by mapping raw
reads back to the generated assembly using Bowtie2 using default parameters. Pilon
was run with default parameters as well.

QUAST (Gurevich et al. 2013) was used to evaluate assemblies based on various
metrics using default parameters.

2.3 Running different pipelines with the scientific workflow

First, one WGS pipeline setup was generated automatically for each possible software
combination by choosing one of the trimming options, one assembler and then any post
assembly improvement option, either filtering, Pilon, both or nothing at all. Each
pipeline was then run with the scientific workflow. Thus each iteration had a unique
setup of software combinations. Then, for each pipeline, the software MultiQC (Ewels
et al. 2016) was used to compile all assembly output statistics for each sample
generated with QUAST. The following four QUAST metrics were plotted as bar plots
for each pipeline: N50 values, number of contigs, genome fraction in percent (the
percentage of aligned bases to the reference genome) and misassemblies. The N50
value can be defined as such: If contigs are ordered from biggest to smallest until they
make up 50% of the genome, the N50 value is the length of the smallest contig. This
metric is often used to describe the completeness of the genome.

18



2.4 cgMLST analysis

The software chewBBACA (Silva et al. 2018) was used to perform a cgMLST analysis
by taking all assemblies for each combination along with the reference genome as
input. The cgMLST scheme for Campylobacter jejuni used for the allele calling in the
cgMLST analysis was from the Innuendo project (Llarena et al. 2018) and contained
678 loci from the core genome of Campylobacter jejuni. The output from the cgMLST
analysis was the allele numbers at every loci for each sample and the reference.
However one of the samples was discarded as it had been assembled with the wrong
settings.

Next, the allele number at each loci for the samples in the chewBBACA output were
subtracted with the references’ allele number for every pipeline. Consequently, an
allele number of zero represents loci where the allele numbers of the reference and the
sample is the same. Thus the allele calling for that particular loci and sample is deemed
correct. Inversely, a non-zero allele number represents a wrong called allele, missing
alleles or alleles not present in the schema. Additionally the number of non-zero allele
numbers for every sample was summed up for each pipeline. Since there are a total of
678 loci for each sample, the combined amount of loci for the summed up samples
(n=25) is 16,950 for each pipeline. As such, if every single sample differed from the
reference for a pipeline there would be 16,950 differences.

Furthermore a pairwise comparison between pipelines was performed. To avoid
confounding variables and multivariate analysis, comparisons were only made between
pipelines that were identical except for when one of the pipelines strictly had one
added software. This was done to find loci which differed from each other after the
reference’s allele number had been subtracted from each samples’ allele number. The
total number of loci which differed between the compared pipelines was counted along
with how many of the differences between the pipelines were corrections, errors and
changes from one error to another. A correction is when the pipeline with additional
software had an allele number of zero while the other pipeline had an allele number of
non-zero. An error is when the pipeline with more software had a non-zero allele
number while the other pipeline had an allele number of zero. A change from one error
to another is when both pipelines had non-zero values not equalling each other. The
differences, proportion of corrections, proportion of errors and proportion of changes
were plotted as stacked bar plots.
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3 Results

38 different pipelines containing software common for the analysis of Campylobacter
jejuni have been compared on the basis of how pre-processing of reads and post
assembly improvements affect assemblies generated with SKESA and SPAdes. The
main results are assembly quality statistics from QUAST as well as how many
differences and what types of different allele calling differences are observed between
the assemblies and the reference genome in a cgMLST analysis.

3.1 Coverage and its effect on assembly quality and cgMLST

Reads were downsampled to coverages of 20x, 50x and 100x to investigate what effect
the different coverages had on the assembly quality and the cgMLST analysis.
Regarding assembly quality, increasing coverage decreased the number of contigs (Fig
2A) and misassemblies (Fig 2D) for all pipelines which is desirable. Meanwhile
increasing coverage yields higher N50 values (Fig 2B) and genome fraction
percentages (Fig 2C) for all pipelines which is ideal for these metrics. It is also
noticeable that pipelines including SPAdes performed better than pipelines including
SKESA since the median N50 values and genome fractions increased while the median
amount of misassemblies and contigs decreased.

Additionally, increasing coverage produced fewer allele calling differences from the
reference for every pipeline (Fig 3). For exact values see Appendix A table A2.
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Figure 2: Line plots depicting the distribution of the median QUAST metric values generated by
all pipelines aggregated on assembler option. Bold lines represent the mean median QUAST
metric for the aggregated pipelines in regards to assembler option and the transparent areas
show the 95% confidence interval. (A) The median number of contigs (B) The median N50
values. (C) The median genome fraction (D) The median number of misassemblies
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Figure 3: The total number of alleles which differed from the reference for all pipelines in regards
to coverage (20x, 50x and 100x). Ske= SKESA, SpI= SPAdes –isolate, SpC= SPAdes –careful,
N= No trimming, T= Trimmomatic, F= Fastp, P= Pilon, 200f= filtering contigs of size 200, 500f=
filtering contigs of size 500.

Considering the observation that increasing coverage generally improves all metrics,
only results for coverages of 100x are shown here on forward. For coverages of 20x
and 50x, see appendices B-E.

3.2 The effect of pre assembly read-trimming on assembly quality
and cgMLST results

Trimming is often recommended to filter away bases with lower quality and in this
section of the results the actual effect of trimming on the assembly quality is
investigated by comparing SKESA and SPAdes assemblies generated from untrimmed
reds with assemblies generated with trimmed reads without post assembly
improvements.

For SPAdes I observed that the median number of contigs decreased when
Trimmomatic was used compared to when no trimming had been done before
assembling. The spread in values was also decreased as values cluster more closely to
the median, as seen by the small interquartile range compared to no trimming.
However, even though most assemblies improved after trimming with Trimmomatic, a
few assemblies seem to have worsened (Fig 4A). The N50 values for Trimmomatic and
no trimming are similar to each other, with both having the same median and similar
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spread as well as minimum/maximum values (Fig 4B). The median genome fraction is
slightly higher for assemblies which had been assembled with reads previously
trimmed with Trimmomatic compared to when no read trimming had been done
beforehand. Additionally using Trimmomatic raised the lower quartile and the
minimum value which is satisfactory (Fig 4C). Trimming with Trimmomatic did not
affect the amount of misassemblies as the results are identical to no trimming (Fig 4D).

For SKESA the following was illustrated. Regarding total number of contigs, the
median was the same for untrimmed assemblies and assemblies trimmed with
Trimmomatic (Fig 4A). However for Trimmomatic the upper quartile decreased
slightly while the outliers got worse. The median N50 values was the same when no
trimming had been done beforehand and when trimming had been used. However not
trimming before assembling yielded more assemblies with high N50 values compared
to when Trimmomatic had been used beforehand (Fig 4B). The median genome
fraction is higher when Trimmomatic had been used, however the smallest genome
fraction value decreased compared to when no trimming had been done (Fig 4C).
Trimmomatic had no large effect on the amount of misassemblies however it did
remove an outlier present when no trimming had been done (Fig 4D).
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Figure 4: QUAST metrics for SPAdes and SKESA assemblies generated by reads trimmed with
Trimmomatic (red) and untrimmed reads (blue) at coverage 100x. The box represents the span
av values for 50% of assemblies. The middle line inside the box represents the median value.
The whiskers extending from the box plots each represent the span of values for 25% of the data
points, with the bottom line being the minimum value and the top line being the maximum value.
(A) Number of contigs (B) N50 values (C) Genome fraction (D) Number of misassemblies (i.e
number of relocations, translocations or inversions)

Trimmomatic is not the only trimming software available, another common software is
Fastp and the two were compared to each other to evaluate which trimming software
was best paired with SKESA and SPAdes. For SKESA, Trimmomatic and Fastp
perform equally for number of contigs (Fig 5A) and amount of misassemblies (Fig
5D), however Fastp had higher outliers than Trimmomatic for both metrics, which was
not ideal. The median N50 values was the same for both Trimmomatic and Fastp.
However using Fastp before assembling yielded more assemblies with high N50 values
compared to when Trimmomatic had been used beforehand (Fig 5B). Trimmomatic
scored better than Fastp regarding genome fraction as the median is higher and the
lower quartile is higher (Fig 5C).

For SPAdes –isolate, Trimmomatic and Fastp had similar medians to each other for the
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following metrics: number of contigs (Fig 5A), N50 values (Fig. 5B) and genome
fraction (Fig 5C). Additionally, Trimmomatic had a smaller upper quartile than Fastp
regarding number of contigs and a larger lower quartile regarding genome fraction,
both of which are more ideal. Adding to that, outliers strayed less from the rest of the
values for Trimmomatic. For figure 5B the median N50 value is the same for both
trimming options and the interquartile ranges are similar, however Trimmomatic had a
longer bottom whisker, meaning 25% of the data points are relatively low. Worth
noting is that Fastp had outliers with lower N50 values than Trimmomatic.
Trimmomatic scored better than Fastp when investigating misassemblies as can be
seen in figure 5D where the median is zero for Trimmomatic and 1 one for Fastp.

Figure 5: QUAST metrics for SPAdes and SKESA assemblies generated by reads trimmed with
Trimmomatic (red) and reads trimmed with Fastp (blue) at coverage 100x. The box represents
the span av values for 50% of assemblies. The middle line inside the box represents the median
value. The whiskers extending from the box plots each represent the span of values for 25%
of the data points, with the bottom line being the minimum value and the top line being the
maximum value. (A) Number of contigs (B) N50 values (C) Genome fraction (D) Number of
misassemblies (i.e number of relocations, translocations or inversions)

After the cgMLST analysis had been performed and the total amount of loci
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differences from the reference for every sample had been summed up, SKESA
assemblies generated from untrimmed reads had a combined total of 86 differences for
all samples out of 16,950 possible while there were 98 differences for SPAdes
assemblies trimmed beforehand, also out of 16,950 possible (Fig 3). Trimming before
using SKESA introduces more new errors than corrections regardless of trimming
software, however Fastp introduces more errors than Trimmomatic. For SPAdes,
Trimmomatic had a net positive effect on the allele calling as more corrections than
errors were introduced while Fastp had a net negative effect (Fig 6).

Figure 6: Differences in allele calling between trimmed assemblies and untrimmed assemblies
(without post assembly improvements). n is the total amount of different alleles observed. Cor-
rections are the amount of loci which were corrected after trimming without post assembly cor-
rections (positive).Errors are the amount of loci where trimming introduced an error not found
in the allele calling of the untrimmed assembly (negative). The changes are changes from one
error to another error (neutral). On the x-axis is software, y-axis is the amount of each change.
The plots are divided into SKESA (light blue) and SPAdes –isolate (light purple).

3.2.1 Results for other coverages than 100x

The observations seen at coverage 100x could generally be seen at coverages of 20x
and 50x as well, both regarding assembly statistics (Appendix B, Fig B1 and Fig B2)
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and the cgMLST results (Appendix C, Fig C1). However at coverages of 50x, neither
Trimmomatic or Fastp perform well when used before SPAdes with Trimmomatic
producing several times more errors than Fastp, see appendix E figure E1.

3.2.2 SPAdes –isolate compared to SPAdes –careful

The SPAdes manual has two recommended modes which are incompatible with each
other and it is unclear which would suit best for this data set. The two modes, –isolate
and –careful, were therefore compared to each other to investigate which is the most
optimal to use in regards to assembly quality and cgMLST analysis. The box plots for
–careful and –isolate are more similar to each other than when SPAdes and SKESA
were compared in regards to QUAST metrics, see appendix D figure D1 and D2. As
such assembly quality is not enough to infer which option is best. However the
cgMLST results are more clear. After the cgMLST analysis had been performed and
the total amount of loci differences from the reference for every sample had been
summed up, SPAdes –careful assemblies generated from untrimmed reads had a
combined total of 99 differences for all samples out of 16,950 possible (Fig 3. Using
Trimmomatic before SPAdes –careful yielded a higher correction rate than when Fastp
was used beforehand. Comparing –careful and –isolate it is evident that the proportion
of corrections, errors and changes are similar to each other with –isolate having a
slightly higher proportion of corrections. However SPAdes –careful had fewer total
amount of differences. At coverages of 50x however –careful performs better than
–isolate since it is possible to gain a net positive amount of corrections when using
SPAdes –careful (Fig 7).
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Figure 7: Differences in allele calling between trimmed assemblies and untrimmed assemblies
(without post assembly improvements). n is the total amount of different alleles observed. Cor-
rections are the amount of loci which were corrected after trimming without post assembly cor-
rections (positive).Errors are the amount of loci where trimming introduced an error not found
in the allele calling of the untrimmed assembly (negative). The changes are changes from one
error to another error (neutral). On the x-axis is software, y-axis is the amount of each change.
The plots are divided into SKESA (light blue) and SPAdes –isolate (light purple).

3.3 The effects of post assembly improvements

In this section of the results, SKESA and SPAdes assemblies without post assembly
improvements have been compared to SKESA and SPAdes assemblies with post
assembly improvements.

In figure 8 the effect Pilon had on QUAST metrics is shown. Pilon had a slight
negative effect on the median values and spread for SKESA regarding the amount of
contigs at coverage 100x (Fig 8A) while having a positive effect on the median values
for SKESA regarding genome fraction (Fig 8B). Other metrics and coverages were not
affected, see appendix C figure C1. For SPAdes –isolate however, Pilon had an effect
on the amount of misassemblies where the medians were negatively affected as they
were raised from zero to 1 misassembly when Trimmomatic or no trimming was used
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beforehand. This can be seen at other coverages as well, see appendix B. Additionally
the same effect can be seen for spades –careful, see appendix D

Pilon did however have positive effects, albeit small, on the cgMLST results for both
SPAdes and SKESA. The number of corrections made by Pilon was high for most
pipelines, with the exceptions where it was used on assemblies generated with SPAdes
–isolate by untrimmed reads as well as when used on assemblies generated with
SKESA by reads trimmed with Trimmomatic (Fig 9).

Figure 8: QUAST metrics for SPAdes and SKESA assemblies improved by Pilon at coverage
100x. The box represents the span av values for 50% of assemblies. The middle line inside the
box represents the median value. The whiskers extending from the box plots each represent the
span of values for 25% of the data points, with the bottom line being the minimum value and the
top line being the maximum value. (A) Number of contigs (B) N50 values (C) Genome fraction
(D) Number of misassemblies (i.e number of relocations, translocations or inversions)
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Figure 9: Differences in allele calling between assemblies which had not been improved by
Pilon and assemblies improved by Pilon. n is the total amount of different alleles observed.
Corrections are the amount of loci which were corrected after trimming without post assembly
corrections (positive). Errors are the amount of loci where trimming introduced an error not found
in the allele calling of the untrimmed assembly (negative). The changes are changes from one
error to another error (neutral). The plots are divided into SKESA (light blue) and SPAdes –
isolate (light purple) and the y-axis is the amount of each change. On the x-axis is software.
FP vs F = the pipeline including Fastp+Pilon compared to the pipeline including Fastp only. NP
vs N = the pipeline including No trimming+Pilon compared to the pipeline including No trimming
only. TP vs T = the pipeline including Trimmomatic+Pilon compared to the pipeline including
Trimmomatic only.

A filtering step was used to remove small contigs in case there was left over DNA from
a different organism in the sequencing machine which got assembled. Filtering had no
discernible effect on the QUAST metrics for neither SKESA or SPAdes (including
–careful) while having an effect on the cgMLST results. Filtering had no effect on
SKESA assemblies while for SPAdes, filtering introduced a few corrections when no
trimming had been done beforehand (Fig 10). When filtering contigs of length 500,
most combinations were negatively or neutrally affected for both SPAdes –isolate and
SPAdes –careful for all coverages with the exception for pipelines including trimming
and SPAdes –careful at coverage 100x, see appendix E figure E1, where effect filtering
had was mostly positive.
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Figure 10: Differences in allele calling between assemblies without a contig size filter of 200
and assemblies with a contig size filter of 200. n is the total amount of different alleles observed.
Corrections are the amount of loci which were corrected after trimming without post assembly
corrections (positive). Errors are the amount of loci where trimming introduced an error not found
in the allele calling of the untrimmed assembly (negative). The changes are changes from one
error to another error (neutral). The plots are divided into SKESA (light blue) and SPAdes –
isolate (light purple) and the y-axis is the amount of each change. On the x-axis is software. FP
vs F = the pipeline including Fastp+filtering of size 200 compared to the pipeline including Fastp
only. N200f vs N = the pipeline including No trimming + filtering of size 200 compared to the
pipeline including No trimming only. T200f vs T = the pipeline including Trimmomatic + filtering
of size 200 compared to the pipeline including Trimmomatic only.

When comparing pipelines with both filtering and Pilon to pipelines with only one of
the post assembly improvements, Pilon together with filtering introduced more
corrections than when only filtering was used. Similarly when Pilon and filtering were
used together more corrections were introduced compared to when only Pilon was
used. However there are a few exceptions. See appendix E figure E1 and appendix C
figure C1.

31



4 Discussion

Since Campylobacter is the leading cause of gastroenteritis in humans it is of great
importance to be able to properly classify different strains/sequence types for the
surveillance of the organism to avoid larger outbreaks. In this project 38 typically used
WGS pipelines, encompassing software used for assembling and typing
Campylobacter, have been compared using read data of varying quality from
Campylobacter jejuni. A higher coverage produced higher quality assemblies in
general and less deviance in the allele calling between the assemblies and a reference
(deemed correct) as well as less deviance in allele calling between different pipelines.
Coverages of 20x gave significantly worse results compared to 50x and 100x for all
pipelines.

Trimming before assembling with SKESA had no obvious benefit regarding QUAST
output statistics as most metrics were negatively affected when trimming, i.e worse
median or spread in values. Exceptions where trimming might have positive effects are
amount of contigs (coverage 50x and 100x) and genome fraction (coverage 100x).
What is more, trimming even had detrimental effects on the cgMLST analysis as the
error rates were significantly higher than the correction rate. This coupled with the fact
that SKESA assemblies generated with untrimmed reads differ less from the reference
than SKESA assemblies generated by trimmed reads give strong indications to there
being no benefit to trimming reads before assembling with SKESA. This could be
because SKESA has an inbuilt trimming system and thus there is no need for any
pre-trimming by external trimming software. This observation is of importance since it
might be a common occurrence to trim reads as a force of habit if trimming is a
standardized part of ones pipeline. Regarding post assembly improvements, filtering
contigs of size 200 only had an effect on the cgMLST analysis for one pipeline
containing no trimming and SPAdes –isolate. Larger positive effects can be seen for
the cgMLST analysis when contigs of size 500 were removed, especially at coverage
100x. However in the grand scale of things, there were few loci differences overall
when taking into account that there are a total of 16,950 possible loci that could differ
considering I summed all assemblies’ differences from the reference. Furthermore,
Pilon generally improved the cgMLST analysis compared to pipelines where it was not
used. However in the grand scale of things, the amount of differences is small when
taking into account that there are a total of 16,950 possible loci that could differ
considering I summed together all assemblies’ differences from the reference. SKESA
achieves significantly better results at coverages of 100x which concurs with a
previous study, even though it focused on a different organism, where the authors
found that SKESA needed a higher coverage than 50x to give satisfactory cgMLST
results (Liu et al. 2021).
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Furthermore, trimming reads before using SPAdes give better results than trimming
reads before using SKESA, regardless of coverage, both in regards to QUAST output
statistics and the cgMLST analysis. Not trimming reads before using SPAdes gave rise
to assemblies which also performed better than SKESA assemblies based on
untrimmed reads in regards to the QUAST output statistics at all coverages as well as
the cgMLST analysis at coverages of 20x and 50x (Fig 3.

The two SPAdes settings –isolate and –careful were compared to each other due to the
SPAdes manual recommending both while they are incompatible with each other.
SPAdes –isolate is recommended for high coverage isolates while SPAdes –careful is
used to minimize the number of mismatches and insertions/deletions. Generally,
SPAdes –isolate seemed to benefit the most from Trimmomatic as the correction rates
in the cgMLST analysis were higher than for Fastp. An exception to this could be seen
at coverages of 50x where Fastp produced better results, both in the cgMLST analysis
and the box plots illustrating the QUAST metrics. The reason for why SPAdes –isolate
performed worse than SPAdes –careful could be because of stochastic problems
leading to the software not working ideally at certain coverages. This concurs with the
manual which recommends the setting to be used at high coverages. SPAdes –careful
could be used instead of SPAdes –isolate if the read coverage is around 50x and
SPAdes –careful is paired with Trimmomatic. It is less clear for SPAdes –careful which
trimming option is best based solely on the QUAST metrics since both trimming
options had strengths and weaknesses. However when considering the fact that
Trimmomatic led to more corrections in the cgMLST analysis than Fastp,
Trimmomatic might be the best trimming tool for SPAdes –careful as well. Regarding
post assembly improvements, Pilon had a generally positive effect on SPAdes –isolate
assemblies while for –careful it was generally positive at coverages of 50x and 100x.
Pilon should be avoided for SPAdes –isolate assemblies generated from untrimmed
reads at all coverages as well as –careful assemblies at low coverages. However since
the amount of differences is relatively small, especially at coverages of 50x and 100x,
Pilon does not have a major impact on the cgMLST analysis as a whole, although what
little effect it has is generally positive. Generally positive effects can be seen for the
cgMLST analysis when contigs of size 500 were removed, especially at coverage
100x, but again the amount of differences is relatively small.

As of today, most studies investigating parameters which affect cgMLST analysis have
not investigated any pre-processing of reads or post-processing of assemblies, but have
instead focused more deeply on coverage, read length and assembler (Liu et al. 2021;
Palma et al. 2022). As such this project might provide a broader overview of what
parameters are of importance when setting up pipelines allowing for further in depth
investigation based on the results found here in the future.
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4.1 Pipeline recommendations

The possible recommendations that could be made for Campylobacter jejuni based on
this project are the following: Avoid coverages of around 20x, trim reads before
assembling with SPAdes and use the setting –careful if coverage is around 50x, do not
combine SKESA with trimming software. Pilon can be used on SPAdes assemblies
generated from trimmed reads while Pilon can be used on SKESA assemblies
generated from untrimmed reads. Whether or not the filtering should be used is
difficult to say without further studies investigating what effects the removal of small
contigs have on the cgMLST analysis. An alternative to filtering could be to change the
index on the sequencing machine so that the new sequencing run has different IDs than
the previous run. That way one could possibly avoid contaminations without filtering.

It seems like Trimmomatic gave better cgMLST results compared to Fastp. However it
is more difficult to give recommendations on specific trimming software since both
Fastp and Trimmomatic in theory could achieve very similar results by tweaking the
settings for each software. There is no guarantee that the settings used in this project
are optimal for either software, perhaps the settings could be tweaked to fit this data set
better or even fit individual read data better. However due to time limits and the scope
of the project this could not be investigated.

4.2 Study limitations and future studies

One study limitation is that assemblies were not investigated individually in the
cgMLST analysis as this would have generated too much data. Instead the amount of
loci which deviated from the reference for every assembly were summed up within
each pipeline. A consequence of this is that there are a few assemblies with more loci
differences than others which skews the total sum of all assemblies’ differences for
every pipeline towards a larger deviance, even though the majority of assemblies differ
very little from the reference. If instead each individual assembly was considered, it
might have been possible to give recommendations on how to set up pipelines for read
data of worse quality to improve both assemblies and cgMLST results. It would also
have been possible to investigate how the wet-lab part of the analysis possibly could
affect the results since there are various different DNA extraction kits, library
preparation kits and sequencing machines etc.

A study which investigated pipelines for SNP-analysis found that each pipeline had
variation in performance in regards to different species (Pearce et al. 2018). Thus it
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would be interesting to expand this project to a different genus, for example
Salmonella which is another food borne pathogen which causes gastroenteritis in
humans. Because of the small genome of Campylobacter and small number of repeats,
the complexity level for assembling the genome is reduced compared to larger
genomes with higher levels of repeats. Due to the fact that organisms of separate
genera differ in genome sizes and the amount of repeats, it would be beneficial to try
the different pipelines with other organisms to see how robust the pipelines are and
what pipelines are best suited for specific organisms. Salmonella is a good candidate
since the INNUENDO project has cgMLST schemes for Salmonella.

4.3 Conclusions

How WGS pipelines are set up have effects on assembly quality as well as cgMLST
results. Thus it is possible to give recommendations on how WGS pipelines for
Campylobacter jejuni should be arranged. To optimize both assembly quality as well
as cgMLST results, a coverage of at least 50x should be obtained if assembling with
SPAdes, while a higher coverage is needed for SKESA. Pipelines incorporating
SKESA as assembler should not include a trimming software as the quality of the
cgMLST analysis worsened when SKESA assemblies were trimmed with either Fastp
or Trimmomatic. Pipelines including SPAdes should include a trimming software since
the pipelines produced higher quality assemblies as well as less deviance in allele
calling from a reference when read trimming had been performed before assembling.
The SPAdes settings –isolate and –careful yield similar results except at coverages of
50x where –careful exclusively should be used. Furthermore, adding the software
Pilon to the pipelines is recommended. It is more difficult to give recommendations on
specific trimming software as there are an immense plethora of settings which could
affect assemblies and cgMLST analysis both positively and negatively, regardless of
software chosen. It is worth keeping in mind that these recommendations do not
necessarily extend to other organisms, however this is worth investigating in future
studies.
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Appendix A

Appendix showing the denotations for each software which makes up each pipeline’s
name as well as the total number of allele differences from the reference for each
pipeline.

Table A1: Analysis steps in pipelines and denotations
Software Denotation

SPAdes –isolate SpI
SPAdes –careful SpC

SKESA Ske
Trimmomatic T

Fastp F
No trimming N

Pilon P
Filtering contigs of size 200 200f
Filtering contigs of size 500 500f
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Table A2: The amount of alleles which differed from the reference for all pipelines at all coverages
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Appendix B

This appendix shows QUAST metrics for all coverages for SPAdes and SKESA
comparisons.
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Figure B1: QUAST metrics for SPAdes and SKESA assemblies generated by trimmed reads
(red) and untrimmed reads (blue) at coverages of 20x, 50x and 100x. The box represents the
span av values for 50% of assemblies. The middle line inside the box represents the median
value. The whiskers extending from the box plots each represent the span of values for 25%
of the data points, with the bottom line being the minimum value and the top line being the
maximum value. (A) Number of contigs (B) N50 values (C) Genome fraction (D) Number of
misassemblies (i.e number of relocations, translocations or inversions)
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Figure B2: QUAST metrics for SPAdes and SKESA assemblies generated by trimmed reads
with Trimmomatic (red) and reads trimmed with Fastp (blue) at coverages of 20x, 50x and 100x.
The box represents the span av values for 50% of assemblies. The middle line inside the box
represents the median value. The whiskers extending from the box plots each represent the
span of values for 25% of the data points, with the bottom line being the minimum value and the
top line being the maximum value. (A) Number of contigs (B) N50 values (C) Genome fraction
(D) Number of misassemblies (i.e number of relocations, translocations or inversions)
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Appendix C

This appendix shows the chewBBACA comparisons for all coverages when SPAdes is
compared to SKESA.
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Figure C1: Differences in allele calling between different pipelines. n is the total amount of dif-
ferent alleles observed. Corrections are the amount of loci which were corrected after trimming
without post assembly corrections (positive).Errors are the amount of loci where trimming intro-
duced an error not found in the allele calling of the untrimmed assembly (negative). The changes
are changes from one error to another error (neutral). On the x-axis is software, y-axis is the
amount of each change. The plots are divided into SKESA (light blue) and SPAdes –isolate
(light purple). (A) The difference between Trimmomatic and no trimming as well as Fastp and
no trimming. (B) The difference between filtering contigs of size 200 an no filtering for all trim-
ming options. (C) The difference between using pilon an not using pilon for all trimming options.
(D) The difference using pilon together with filtering for all trimming options.
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Appendix D

This appendix shows the QUAST metrics for all coverages when SPAdes –careful and
SPAdes –isolate are compared.
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Figure D1: QUAST metrics for SPAdes –isolate and SPAdes –careful assemblies generated by
reads trimmed with Trimmomatic (red) and untrimmed reads (blue) at coverages of 20x, 50x and
100x. The box represents the span av values for 50% of assemblies. The middle line inside the
box represents the median value. The whiskers extending from the box plots each represent the
span of values for 25% of the data points, with the bottom line being the minimum value and the
top line being the maximum value. (A) Number of contigs (B) N50 values (C) Genome fraction
(D) Number of misassemblies (i.e number of relocations, translocations or inversions)
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Figure D2: QUAST metrics for SPAdes –isolate and SPAdes –careful assemblies generated
by reads trimmed with Trimmomatic (red) and reads trimmed with Fastp (blue) at coverages
of 20x, 50x and 100x. The box represents the span av values for 50% of assemblies. The
middle line inside the box represents the median value. The whiskers extending from the box
plots each represent the span of values for 25% of the data points, with the bottom line being the
minimum value and the top line being the maximum value. (A)Number of contigs (B)N50 values
(C) Genome fraction (D) Number of misassemblies (i.e number of relocations, translocations or
inversions)
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Appendix E

chewBBACA comparison all coverages for SPAdes –isolate vs SPAdes –careful
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Figure E1: Differences in allele calling between different pipelines. n is the total amount of dif-
ferent alleles observed. Corrections are the amount of loci which were corrected after trimming
without post assembly corrections (positive).Errors are the amount of loci where trimming intro-
duced an error not found in the allele calling of the untrimmed assembly (negative). The changes
are changes from one error to another error (neutral). On the x-axis is software, y-axis is the
amount of each change. The plots are divided into SKESA (light blue) and SPAdes –isolate
(light purple). (A) The difference between Trimmomatic and no trimming as well as Fastp and
no trimming. (B) The difference between filtering contigs of size 200 an no filtering for all trim-
ming options. (C) The difference between using pilon an not using pilon for all trimming options.
(D) The difference using pilon together with filtering for all trimming options.
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