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Abbreviations

API Application programming interface
BCa Bias and skewness-corrected bootstrap percentile limits
CDD Case-deletion diagnostics
CL Clearance
df degree of freedom
FO First order
FOCE First order conditional estimation
FOCE INTER First order conditional estimation with interaction
IIV Interindividual variability
IOV Interoccasion variability
LLP Log-likelihood profi ling
MAE Mean absolute error
OFV Objective function value
PD Pharmacodynamic
PK Pharmacokinetic
PK/PD Pharmacokinetic/Pharmacodynamic
PsN Perl-speaks-NONMEM
RSE Relative standard error
SCM Stepwise covariate model
SMP Shared memory multiprocessor
V Volume of distribution
 
 Th e diff erence between prediction and observation, residual error
 Th e diff erence between an individual parameter and the population 

parameter
 Fixed-eff ect parameters
 Th e diff erence between occasions for an individual parameter
 General model parameters, including ,  and 
2 Variance of the residual error
 Covariance matrix of inter-occasion variability
 Covariance matrix of inter-individual variability
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Introduction

Th e purpose of clinical trials is to verify the safe and effi  cacious use of drugs. Usually 
very ‘simple’ statistical analyses are used to evaluate the results from these trials. 
In pivotal clinical trials, the typical purpose of the statistical analysis is to test if 
there is a diff erence in effi  cacy between drug A and placebo. Th e type of tests used, 
e.g. Student’s t-test, Pearson’s chi-square test or Fisher’s exact test, make very few 
assumptions, which makes it relatively easy to prove that the tests are appropriate. 
Inferences based on complex designs, such as pharmacometric models, make more 
assumptions. However, one advantage with model-based inferences is that it may be 
possible to make predictions for a wider spectrum of situations than those covered 
by the main objective of a trial.

Pharmacometrics uses models based on pharmacology, physiology and disease for 
quantitative analysis of interactions between drugs and patients. Th is involves phar-
macokinetics, pharmacodynamics and disease progression with a focus on popula-
tions and variability. Th e purpose of pharmacokinetics is to describe the relationship 
between dose, formulation and exposure of a drug using the time-course of absorp-
tion and disposition processes. Pharmacodynamics describes the drug eff ect as a 
function of dose and concentration of drug in plasma or tissues.  

Pharmacometric data analysis and modelling are tightly linked concepts in drug 
development. Modelling can be used simply to summarise pharmacokinetic (PK) 
and pharmacodynamic (PD) data. It may also be used to make predictions in special 
populations, to create and test hypotheses, and to support dosage recommendations. 
Further, models can be used as a means to prove that the mechanisms of 
pharmacokinetics and pharmacodynamics are adequately understood and addressed. 
All these aspects of modelling are important in drug development (1, 2).

Population pharmacokinetics is a term closely related to pharmacometrics and was 
coined in the 1980s. Th e initial purpose with population pharmacokinetics, was 
to analyse routine clinical data for individualising dosage regimens (3-7). In drug 
development the usage of this approach has become much wider, ranging from early 
human studies in phase I to late clinical trials of phase III and phase IV (8, 9), in 
addition to the original application area. Population pharmacokinetics and pharma-
codynamics describe the mean trends and variability of drug concentrations and/or 
drug eff ects in a set of subjects by means of nonlinear mixed-eff ects models (10, 
11).
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Decisions in drug development should preferably be based on the best possible 
information. Th is information is also important for evaluating effi  cacy and safety of 
drug treatment. However, because of the complexities involved, especially in model 
based analysis, the best possible (or perhaps most correct) information is not always 
easily obtained. Statistical methods to improve the information content of model 
based analyses are central to this thesis. Further, these methods are not meaningful 
to researchers until they are easily applicable to typical problems and there exists 
a set of examples showing the appropriateness of the methods. Th is is particularly 
relevant to pharmacometrics, in which the nonlinearity of most relevant mathemati-
cal models makes it diffi  cult to show general validity. Practically, this means that 
a method must be translated into computer software that can communicate with 
the programs that researchers already use, handle most common types of applica-
tions and be evaluated on a range of real world problems. Th is thesis focuses on the 
development, application and evaluation of a set of statistical tools for nonlinear 
mixed-eff ects modelling.
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Mixed-eff ects modelling

A mixed-eff ects model has two (or more) layers of variability. In pharmacometrics, 
the fi rst layer handles residual variability while the second describes the variability 
between individuals. Conceptionally, pharmacometric models are often divided into 
three sub-models: a fi xed-eff ects (structural) model, a random-eff ects (statistical or 
stochastic) model and a covariate model.

Th e structural model
Th e structural part of a mixed-eff ects model in pharmacometric data analysis 
describes the pharmacokinetic and/or pharmacodynamic properties of a drug, 
which are shared among all individuals in a population. Th is could for example 
be a one-compartment model (PK) and an E-max model (PK/PD). Th e structural 
model includes fi xed eff ects such as rate of absorption, clearance, maximal eff ect 
etc. that belongs to an average individual in the population. Adhering to the well 
established nomenclature of population pharmacokinetics and pharmacodynamics 
the structural part (plus residual error) of a mixed-eff ects model is written

(Eq. 1)
( )
( )2
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where yij is the jth observation in the ith individual, xij is the jth input for the ith 
individual, f is the transfer function from input to observations,  are the model 
parameters, ij is the residual error for the jth observation in the ith individual and 

2 is the variance of the unexplained residual variability. Th e residual error is intro-
duced to handle unexplained variability. Errors in dose or sampling time, sample 
volume, analytical instruments and model misspecifi cation are all included in this 
term. To describe the pharmacokinetics of a drug, a simple form of f is a one-com-
partment pharmacokinetic model with a single intravenous administration, a single 
dose level and an additive error term. Th is is written as

(Eq. 2)

Th e parameter vector  describing the pharmacokinetic properties of this drug con-
sists of clearance CL and volume of distribution V. Here, these have the same value 
for all individuals but mixed-eff ects models allow the model parameters to change 
between individuals.
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Th e stochastic model
People are not identical and consequently the concentrations of a drug and its eff ect 
may diff er between individuals. Techniques and equipment for chemical analysis as 
well as routines for analysis of drug concentration in plasma samples also vary over 
time and within and between laboratories. Th e stochastic part of a mixed-eff ects 
model is used to account for this type of variability.

Interindividual variability
Drug response is in general subjected to substantial interindividual variability (IIV) 
(12). Th is variability may partially be described by demographic factors such as sex, 
weight, age and smoking habits, clinical factors such as liver and kidney disorders or 
genetic factors that control the sensitivity to a drug eff ect. Th e unexplained variability 
between individuals may still be large even if covariate eff ects are accounted for and 
it is therefore important to use an appropriate model structure for the interindividual 
variability. Let i denote the parameters of the ith individual, including covariates 
zi, fi xed eff ects parameters , and random eff ects i describing the variability of the 
parameters between individuals. 

(Eq. 3)( )
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Th e function g expresses the eff ect of the covariates and interindividual random 
variation on the individual parameters i. Th e i are random parameters with mean 
zero and variance-covariance matrix . Th e one-compartment model above can 
thus be expanded using formulas describing the variability of clearance and volume 
of distribution within the studied population in relation to the typical values of the 
population, TVCL and TVV. Often, lognormal distributions are used to explain the 
variability of parameters that have a natural lower boundary (such as zero). Th is is 
exemplifi ed for clearance. 

(Eq. 4)

Interoccasion variability
Th e pharmacokinetics of a drug may change over time within an individual. 
Concomitant medication of inducers/inhibitors of metabolic enzymes, progression 
of liver/kidney disease and the development of organ function in neonates are 
some possible causes for time-varying pharmacokinetics. Th e underlying processes 
that control the variation are often poorly understood and diffi  cult to measure. 
Consequently, a large magnitude of this variability is usually not possible to 
explain. If the pharmacokinetics changes relatively fast, a time-dependence on the 
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magnitude of the variability may be needed in the model. If the changes occur 
over a longer period of time, for example between diff erent treatment periods or 
occasions, the variability between these periods may have to be described by an 
interoccasion variability (IOV) term. Neglecting IOV may lead to biased estimates 
of the  pharmacokinetic parameters (13, 14). If there is a need to include a term for 
the unexplained interoccasion variability the model parameters are determined per 
individual i and occasion k, ik.

(Eq. 5)
, , ,
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Using this parameterisation, zi, , i, and  are defi ned as before while h is the func-
tion relating the covariates, IIV and IOV to the individual-occasion specifi c param-
eters ik. ik are the random eff ects of the parameters for individual i and occasion 
k and  is the variance-covariance matrix of these random eff ects. If clearance in 
the one-compartment model above is subject to IOV the sub-model for clearance 
would be:

(Eq. 6)

Th e covariate model
Parts of the variability can often be explained by covariates, which are factors whose 
individual values are measured and recorded in clinical trials. For example, creatinine 
clearance may help to explain the overall clearance of a drug that is eliminated by 
the kidneys.

Covariates can be incorporated into a model in various ways depending on their 
type, shape and range. A categorical covariate can be binary (e.g. sex, smoker (Yes/
No), concomitant medication) or it can have multiple categories (e.g. race, scales 
describing disease states or disease progression). Th e categories may be non-ordered 
(race) or ordered (a 4-level scale describing heart failure).

Categories are often assigned numerical values to make it easier to formulate 
parameter-covariate relationships. For a binary covariate a baseline or a ‘No’ answer 
to a question of the type “Do you smoke?” is usually coded as 0, while 1 represents 
the other state. Th e eff ect of smoking habits (SMOK) on clearance may be included 
in the model as:

(Eq. 7)

where  stands for the fractional change in clearance upon smoking. Th e New York 
Heart Association (NYHA) has a 4-grade classifi cation scale for heart failure. In 

, , ,CL i CL i k

ikCL TVCL e

1i iCL TVCL SMOK
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this case, grade 1 is used as the baseline and a new sub-model is included for each 
new category.

(Eq. 8)

Continuous covariates are included in a similar fashion, and as before, the covariate 
is often added as a fractional change in a parameter. Th e eff ect of the covariate can 
be expressed relative to its median to make the parameter values more informative. 
If weight is a good predictor of volume of distribution, it may be added to the model 
as a linear sub-model according to:

(Eq. 9)

Th e parameter-covariate relationship can be assigned any type of linear or nonlin-
ear function. Two common parameterisations for nonlinear models are the piece-
wise linear model which combines two linear splines, and the exponential model as 
showed in the equations below.

(Eq. 10)

(Eq. 11)

Model building
Pharmacometric models range from empirical models to full physiological models. 
Empirical models use few mechanistic assumptions and are primarily intended to 
describe data and not to explain it. One example of an empirical pharmacokinetic 
model is the sum of exponentials. Models that are more mechanistic may be obtained 
by incorporating knowledge about physiology such as blood fl ows, organ volumes, 
receptor affi  nities and enzyme turnover rates. Full physiological models include 
blood fl ows and volumes of all major organs. 

Regardless of the level of mechanistic integration, there is often a need of exploring 
data to gain insight in the pharmacokinetic and pharmacodynamic properties of a 
drug. Th is type of modelling, where data drives the structure of a model, is called 
exploratory data analysis (EDA). Th us, EDA is the task of uncovering information 
in data. Th is is often employed in the process of building pharmacokinetic and 
pharmacodynamic models, and it is a recommended part of the strategy in model 
development (15). A combination of graphical and statistical tools can be used to 
fi nd trends in the data, primarily to identify covariates that are good predictors of 
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model parameters (16, 17). Using EDA may however introduce selection bias since 
strong signals are explicitly selected (18). 

Scatter plots displaying model predictions versus observations and weighted residu-
als versus predictions/observations or time are often used as means to assess the 
goodness of fi t for a model. Th e distribution of the weighted residuals is a good indi-
cator of the appropriateness of the residual sub-model. Th e plots of the residuals may 
also give the modeller hints of where to fi nd the possible weak spots of the model.

Th e benefi t of using a more complex model structure over a simpler one is relatively 
easy to deduce when maximum likelihood is used for regression. If the models are 
nested, the benefi t can be evaluated using the ratio of the likelihoods for the two 
models. Th e likelihood ratio is 2-distributed for nested models and the degrees 
of freedom (df) for the distribution are determined by the diff erence in degrees of 
freedom between the two competing models. Often, as in the case of NONMEM, 
the likelihood is expressed as an objective function value (OFV), which is equal to 
minus two times the logarithm of the likelihood. Th e diff erence between the OFVs 
of two competing models is also 2-distributed. Consequently, the addition of an 
extra structural parameter to a model yields a model which better refl ects the data 
if the diff erence in OFV is larger than 3.84 ( 2(1df, p=0.05)). However, simulation 
studies have shown that the actual signifi cance levels may not be the expected if 
inappropriate estimation methods and/or distributional assumptions of the vari-
ability are used (19, 20).

Data analysis using models is lined with assumptions about the properties of 
the data, the statistical methods (regression methods, evaluation methods etc.), the 
fi xed-eff ects and the stochastic parts of the model (21). Assumptions of particular 
importance for this thesis are (i) the validity of the likelihood ratio test for diff erent 
estimation methods and model components; (ii) the distributional properties of the 
parameter estimates; (iii) model independence of subgroups in the data; (iv) the 
adequacy of the covariate model building strategy.

Clinical relevance
Clinical relevance in modelling translates the addition of model components into 
potential benefi ts for patients. For example, a change in clearance of 50% for a 
subgroup of patients could be very important for a drug with a narrow therapeutic 
index while not being relevant for other drugs. Th e importance of incorporating 
a covariate that is related to clearance for this subgroup into the model can be 
calculated from such clinical information.

One measure of the impact of adding a predictor to a model parameter is a 
reduction in the interindividual variability of this parameter. By reducing the 
interindividual variability, the average error in the predicted individual parameter 
value will be reduced. Clinical relevance can also be based on changes in predicted 
individual parameter values. For example, if the predicted clearance in a patient 
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drops by 25% after the inclusion of a covariate, this covariate may be regarded as a 
clinically relevant predictor of clearance. Th is approach is sensitive to outliers since 
it only depends on the prediction of a single individual’s parameter value. To make 
a covariate model a bit more robust, the 95th percentiles of the predicted changes of 
all individuals can be used.

What is regarded as clinically relevant varies between researchers, between 
physicians and between regulators. A more conservative approach in covariate model 
building may be to exclude covariates based on clinical irrelevance. Th e threshold 
for irrelevance can be set at a low value to be sure not to miss clinically relevant 
covariates.

Stepwise covariate model building
Stepwise covariate model building is also known as (orthogonal) Forward Selection 
– Backward Elimination. Th e method assumes that a structural model has already 
been defi ned. Th e task of stepwise covariate model building is to identify covariates 
that explain the variability in the parameters of the structural model. 

In a fi rst step, each relevant parameter-covariate combination is added and 
estimated one by one in the structural model. Th e model with the largest 
improvement over the starting model is retained as the starting model for the next 
step. In each subsequent step, the remaining parameter-covariate combinations are 
tried. Th is forward inclusion continues until no improvement is gained by adding 
new model components. Th e measure of model improvement is usually based on 
statistical signifi cance. Optionally, the forward inclusion step can be followed by a 
backward elimination step. Th is proceeds according to the same general scheme as 
the forward step, but reversely, using stricter improvement criteria. 

Th is adaptive procedure for covariate model building relies heavily on the validity 
of the statistics used for model discrimination. Stepwise procedures in general have 
been shown to exhibit a risk of including false parameter-covariate relationships, 
of giving rise to biased estimates of the included relationships as well as of yielding 
too narrow confi dence limits (22, 23). Other studies have reported that these 
problems may not be large for pharmacokinetic models (24, 25). Benefi ts of stepwise 
covariate model building are that the procedure is conceptionally simple and easy 
to understand and that the a priori declared criteria make the procedure relatively 
objective.

Regression
Th ere are a number of diff erent software packages for regression of mixed-eff ects 
models. Th ese can be divided into approximate maximum likelihood, exact maximum 
likelihood, nonparametric maximum likelihood and full Bayesian. Th e approximate 
likelihood methods include NONMEM (26), NLINMIX (SAS) (27), NLME (S-
PLUS) (28) and WinNonMix (29). Th e newer exact maximum likelihood methods 
are: NLINMIX adaptive Gaussian quadrature (SAS), PEM (30) and MCPEM 
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(31). Th e nonparametric maximum likelihood methods include NPML (32) and 
NPEM (33) and SAEM (34). An example of a full Bayesian method is BUGS (35). 
NONMEM is by far the most used software (36, 37). Some studies have been 
performed, comparing the diff erent software (38-40) and the recent development 
of methods using stochastic estimation of the likelihood seems very promising. Th e 
studies in this thesis use NONMEM as the regression software.

NONMEM
Papers I & II describe the development of software that uses NONMEM as the 
engine for regression. Th erefore, an introduction to the regression methods used in 
NONMEM as well as some practicalities of interaction with the software is given 
below.

Estimation methods
NONMEM uses the maximum likelihood regression procedure. By iteratively 
adjusting the model parameters it seeks the combination of parameter values that 
maximises the likelihood L(y| ,x) of the observations, given the model and input 
variables. Th e likelihood is the product of the likelihood Li of all individuals in the 
data. Since the likelihood must acknowledge the random eff ects on the individual 
level, the individual likelihood is expressed as an integral over all possible values of 

i according to

(Eq. 12)

Th e parameters  are divided into fi xed eff ects,  and random eff ects, . Most often, 
no closed form solution of the integral exists for nonlinear mixed-eff ects models, 
which means that some level of approximation must be used.

NONMEM uses two versions of a fi rst order approximation by Taylor expansion 
of yi. Th e fi rst, called the fi rst-order estimation method (FO), evaluates the terms 
of the Taylor series around the expected value of the s and s, which is zero. Th e 
second, called the fi rst-order conditional estimation method (FOCE), acknowledges 
that the individual likelihoods are better approximated if the Taylor series is evaluated 
around the conditional estimates of the s, i.e. the posterior Bayes estimates of the 
parameters in each iteration of the regression procedure. A further refi nement of 
the fi rst order approximation is called FOCE INTER. Th is method maintains the 
eff ect of residual error on the s (interaction between s and s) when the likelihood 
is calculated. Interaction will be an issue when the residual error model is allowed 
to vary between individuals or when a heteroskedastic error model is used. A second 
order approximation is accessed through the Laplacian method (LAPLACE). Th is 
method also computes the likelihood using the conditional estimates of the s. 
Technically, NONMEM minimises the objective function, which equals minus two 
times the natural logarithm of the likelihood, which is reported when the regression 
converges or terminates.

| , | , , |i i i i i i i i i i
i i

L L y x l y x h d
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Estimate of standard error
Th e standard method for calculating standard errors in NONMEM is the robust 
sandwich method. Using this method the variance-covariance matrix of the 
parameter estimates is calculated as

(Eq. 13)

where R is the hessian (partial second derivatives) of the objective function evaluated 
at the parameter estimates, and S is a sum of the cross-products of the gradient vec-
tors of the individual objective functions.

Both the S and R matrices should asymptotically be good estimates of the variance-
covariance matrix. When normality cannot be assumed, the robust sandwich 
method may be a better alternative. Wald confi dence intervals of the parameters 
may be calculated as

(Eq. 14)

where z  is the  quantile of the normal distribution (41).

Th e NONMEM model fi le
Th is fi le contains instructions in ordinary ASCII text that, except for the data, 
holds all information needed for fi tting a non-linear mixed eff ects model using 
NONMEM. Typically, a model fi le contains specifi cations for a pharmacokinetic 
and/or a pharmacodynamic model, initial estimates of the model parameters, 
boundaries for the model parameters as well as details about the location and the 
format of the data.

Th e NONMEM data fi le
In the fi eld of pharmacokinetics and pharmacodynamics parameters of mixed eff ects 
models are usually estimated based on data from clinical trials. Th is information is 
often held in a text fi le that typically contains records of subjects included in the 
study, subject demographics, dosing and sampling times and measurements of drug 
concentrations and drug eff ects.

Th e NONMEM output fi le
Th e results of model fi ts or simulations performed in NONMEM are presented 
in an output fi le of a fi xed format. Among other things, the output fi le includes 
parameter estimates, an estimate of the variance-covariance matrix plus diagnostics 
from the minimisation of the objective function and the calculation of the variance-
covariance matrix.

1 1ˆvar( ) R SR

ˆˆ SE z



19

Statistical Tools in Pharmacometrics

Model Evaluation
Th e term “Model validation” is often used when there is a need to demonstrate that 
a model is suitable for its intended purposes. However this terminology suggests that 
there do indeed exist valid and, consequently, invalid models. A model is by defi nition 
an approximation of a phenomenon that we try to describe. In drug development, 
we will hardly ever be able to control and measure every aspect of an experimental 
procedure, and thus there will be parts of a model (especially the stochastic model) 
where several alternative sub-models provide more or less equivalent results. A better 
term may therefore be “Model evaluation”. Although there may exist a need for 
criteria to defi ne “good” and “bad” models this will have to be criteria that varies by 
purpose and application. 

A model that fails to meet some or most criteria used in an evaluation may still be 
useful. It can, for example, serve as a basis for further investigations where the weak 
parts of the model are studied, be used for predictive purposes acknowledging its 
fl aws, or purely as a way to summarise an idea or a concept (42).

Graphical evaluation
Graphical inspection of the goodness of fi t is useful at many stages in the model 
building and the model evaluation processes. Th e model building is an interactive 
method, where each expansion and reduction of the model is followed by an in-
progress evaluation. Goodness of fi t graphs are easily created using for example Xpose 
(43), making it a suitable tool for summarising the model status as the modelling 
process continues.

Consistency

Accuracy and precision
Regardless of the intended use of a model, i.e. to make predictions, to select 
appropriate dose levels etc., the quality of the model parameter estimates should be 
considered. If the correct model structure is known, the only sources of inaccuracy 
and imprecision are the data and the regression procedure. Th e underlying 
assumptions of the Wald based confi dence intervals, which are usually reported for 
a population model developed using NONMEM, are that the parameter estimates 
are symmetrical and that the estimates of standard error are correct. Th e confi dence 
intervals may be evaluated and further refi ned by applying bootstrapping (44-47) or 
log-likelihood profi ling (48, 49).

Over-parameterisation
A model should not be more complex than what is supported by the data. Th is is 
not only a question about whether parameter estimates are at all possible to get for 
a certain combination of model and data. Usually, one intention with a model is 
to summarise the information contained in data. If the model is to represent any 
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additional value to the data at hand, it should be possible to make some statements 
about data that does not yet exist. For example, if a data set consisting of 100 
observations clearly shows a linear trend of the dependent variable versus an input 
variable, a second-order polynomial would probably succeed in describing the data 
since the data is dense. Th e system will however be ill-conditioned since the trend 
also can be described using only the linear part of the polynomial. In this case, 
the linear model is probably preferred for predictive purposes, unless additional 
evidence supports the nonlinear model.

Correlations between parameter estimates and the condition number of the 
covariance matrix are two types of diagnostics that can be used to assess the 
level of over-parameterisation. Th e bootstrap may also be used to identify over-
parameterisation and to get some indication of which parameters that are aff ected.

Subpopulations
Failure to identify subpopulations can lead to incorrect dosing recommendations of 
a drug for a certain subpopulation. Th erefore, it is important to resolve if a model 
benefi ts from the inclusion of a covariate as a predictor of a model parameter. Data 
not included in the original data set can be used to assess the predictive performance 
of the original model compared to a model where additional covariates have been 
added. If the larger model does not predict the external data better than the original 
model, we can conclude that the original model includes all covariates that are 
important for prediction. An alternative approach is to use the bootstrap to verify the 
inclusion or exclusion of covariates to a model (46). Depending on the complexity of 
the model, this type of evaluation can be very time-consuming.
Identifying external factors that infl uence the size of the model parameters is also of 
importance. Continuous external factors that infl uence the model can be handled 
by the stochastic parts of the model. Th e infl uence of categorical external factors 
may be evaluated using mixture models (26). Standard statistical tests for model 
selection can be used to clarify the need for a mixture model.

Data dependence
To be a good description of a system, a model should not be overly dependent on 
small subsets of data. If the model changes a lot depending on which part of the 
data that is used for model building it may be a sign of both under- and over-
parameterisation. Th e eff ect of excluding/including one or several individuals in 
a pharmacometric data analysis can be investigated through the calculation of the 
individual contributions to the likelihood (50) or through case-deletion diagnostics 
(47, 51). Th e overall dependence of parameter estimates on the entire data set can be 
evaluated using the bootstrap (46). Histograms of the bootstrap parameter estimates 
can be used to explore potential multi-modality. Th e composition of the bootstrap 
samples within the diff erent modes in the histograms may give an indication of 
which individuals or groups of individuals that drive the estimate in a particular 
direction.
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Predictivity
If a model is intended for predictive purposes, evaluation of the predictive performance 
is important. Th e mean absolute error (MAE) and root mean squared error (RMSE) 
are two statistical measures, which may be used to summarise bias and the precision 
of the prediction. Predictivity can be evaluated on the observational level by 
evaluating the ability of a model to predict concentrations, drug eff ects or biomarkers. 
Although this is easy to calculate, the results may be hard to interpret, especially 
if the predictions are made over a large range of values. It may be wise to calculate 
the MAE and RMSE on transformed (logarithmic, box-cox, etc.) concentrations to 
handle heteroskedasticity. Predictivity may also be assessed on the parameter level, 
for example to get a measurement of how well a model predicts individual clearance 
values (52). Th is is most important in the evaluation of the covariate sub-model. 
A potential problem is the necessary assessment of the individuals’ true parameter 
values. Posterior Bayes estimates may be used as surrogates if no exterior validation 
data exists for this purpose. If the data is relatively dense, this may indeed be a good 
option but if the data is sparse, the posterior Bayes estimates will be shrunk towards 
the population mean of the parameters. Th e MAE and RMSE may in this case be a 
too optimistic measure of the predictivity.

It should be noted that a measure of the predictivity may not add too much to 
the perceived quality of the model unless it is evaluated in relation either to the 
predictivity of another model or to criteria stating what is regarded as suffi  cient, 
clinically or otherwise.

Statistical procedures
A number of statistical procedures have been suggested for model evaluation in 
pharmacometric data analysis (15, 48, 53-55) Th is section gives a general overview 
of the algorithms, results and diagnostics for these methods.

Bootstrap
Th e bootstrap (45, 56) is a general method for measuring statistical accuracy and 
precision. Briefl y, it involves creating ‘‘new’’ data sets by sampling with replacement 
from the original data and applying the same analysis steps to each of the new data 
sets as was performed on the original data. In population PK/PD, these analysis steps 
usually correspond to model fi ts generating parameter estimates, but it can be any 
kind of statistical procedure. Th e results from the new data sets form distributions, 
which refl ect the uncertainty in the original analysis. Th ese distributions can be 
used to assess covariate selection stability (43), uncertainty of parameter estimates 
(46) and to correct for certain types of bias (57). Th e resampling is performed with 
replacement on statistically independent parts of the data, which in population 
PK/PD usually corresponds to individuals. Depending on the statistic of interest, 
diff erent numbers of resampled data sets are needed. Estimation of standard 
errors typically requires around 200 bootstrap data sets. If the Bias and skewness-
corrected bootstrap percentile limits method (BCa) (44) is used to calculate second-
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order correct 95% confi dence intervals approximately 2000 bootstrap data sets are 
required.

Log-likelihood profi ling
Th e standard way of estimating the confi dence intervals of parameter estimates for 
nonlinear mixed-eff ects models is to calculate the interval limits from the standard 
errors under the assumption that the estimates are normally distributed. Log-
likelihood profi ling (LLP) is one alternative method where no assumption regarding 
symmetry of the interval is made (48, 49). Fixing a parameter to values close to the 
estimate obtained from a maximum likelihood procedure (as the one implemented 
in NONMEM) and refi tting this reduced model generates a likelihood profi le. 
With NONMEM, minus two times the natural logarithm of the likelihood is used 
and the maximum likelihood then corresponds to the minimum of this quantity. 
If a parameter is fi xed, this model can be regarded as an alternative, competing 
with the full non-fi xed model, in being the most appropriate model for describing 
the data at hand. A statistically signifi cantly improvement is achieved when the 
log-likelihood diff erence is 3.84 for two nested models ( 2(1df, p=0.05)). Th us, 
the challenging alternative model with a fi xed parameter can be rejected when the 
log-likelihood diff erence is above this value. Th e confi dence interval limits for a 
parameter is then where the log-likelihood is 3.84 higher than at the maximum 
likelihood estimate. It is however well known that the actual signifi cance levels for 
log-likelihood diff erences acquired through NONMEM may not agree with the 
expected using a 2-distribution. For example, it has been shown that the FO gives 
higher signifi cance levels than the nominal when studying covariate eff ects (19). 
Also, tests for non-zero variance components cannot be performed using standard 
likelihood ratios since the null-hypothesis puts the parameter value on the boundary 
of the parameter space (zero) (58).

Case-deletion diagnostics
Case-deletion diagnostics (CDD) is a standard method for detecting observations 
that are the most important for a model fi t, e.g. to determine which observation or 
individual that infl uences the parameter estimates the most. Th e data is divided into 
k parts of which k-1 are used to re-fi t the model. Th is is repeated until all k parts 
have been excluded once. For mixed-eff ects modelling, this most often means that 
one individual or group of individuals is excluded at a time. Th e Cook-score and the 
covariance ratio may be used to estimate the eff ect of the removal of one individual 
on the parameter estimates (59) according to

(Eq. 15)
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k
and cov(

k
) denote the vector of parameter estimates and the covariance matrix 

acquired when individual k is removed from the dataset. Analytical methods for 
case-deletion exist for linear models but for nonlinear mixed-eff ects models it is 
necessary to fi t the model to data sets in which one individual at a time is excluded 
(51). Th is requires a substantial amount of CPU time, especially for large data sets.

Jackknife
Th e jackknife, fi rst proposed by Quenouille (60, 61) as a means to reduce bias, is 
very similar to case-deletion diagnostics. Parts of the data are excluded one by one 
from the training data set, followed by the calculation of a statistic of some kind 
on each reduced data set. Th e jackknife estimate of the bias of a parameter estimate 
for a data set with n subjects is the diff erence between the jackknife estimate of the 
mean and the estimate from the full data set scaled by a factor of n-1, i.e.

(Eq. 17)

where

(Eq. 18)

Cross-validation
Cross-validation is also very similar to case-deletion diagnostics. It uses the same 
scheme of excluding a portion 1/k of the data and refi tting the model on the 
remainder. Th is is repeated until all k parts of the data have been excluded once. 
However, instead of excluding one individual at a time a larger portion of the data is 
withhold, often 1/5th of the data. Th e values of the parameters, as they were estimated 
for each k-1 sized remainder, are then used to predict the excluded parts of the data. 
Some statistics of the predictive performance is then calculated and summarised for 
the k predicted sub sets. Possible statistics to calculate using this procedure are cross-
validated versions of OFV, MAE and RMSE.

Software development
Th e academia, the pharmaceutical industry and the regulatory authorities all drive 
the need for new scientifi c software for all aspects of modelling and simulation. 
Guidelines or defi nitions of ‘best practice’, formulated by the authorities or others, 
are based on a fairly pragmatic balance of what is regarded as ‘best’ or ‘appropriate’ 
and what is actually doable. Th e availability of resources in terms of time, employees 
and validated tools determines what is regarded as doable. Consequently, there is 
a need for development of validated software that helps scientists to apply the best 
available methods.
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Pharmacometric software
Th e dominant position of the NONMEM package for nonlinear mixed-eff ects 
modelling aff ects the format of new software. If the software uses NONMEM 
models, data or output it should preferably adhere to the standards of NONMEM 
(26) to be useful to more than a few research groups. NONMEM is distributed as 
ANSI FORTRAN code and runs on any hardware and software platform that has a 
FORTRAN compiler for the ANSI standard. A NONMEM run may require several 
hours or more to fi nish, depending on the complexity of the model and the amount 
of data. As discussed earlier, NONMEM uses text fi les for input and output. 

Requirements
Since NONMEM is largely platform independent, it is wise to choose a programming 
language that is not restricted to one operating system or hardware. Th e text-
processing components of the language are also important. Object orientation is 
an attractive way of encapsulating blocks of code sharing a common purpose or 
functionality. In object orientation, the abstraction of code into classes, attributes 
and methods makes it easy to translate real world problems to software solutions. 
Th e runtimes of NONMEM can pose a problem, especially in algorithms that 
involve many runs. Such software, for example resampling methods, would benefi t 
from executing NONMEM runs in parallel.  

Parallel environment
Th e very frequently cited Moore’s Law (62) predicts that the number of transistors 
on a chip (more or less a good measure of computer speed) doubles about every two 
years. Lately, there has been a lot of debate about whether this trend is coming to and 
end or not. Indeed, the speed of the processors that have come to the market after 
2001 has not increased at the rate predicted by Moore. Instead, a lot of attention has 
been given to parallel computing. Th e idea is to make several processors cooperate 
and thereby cutting the computing time. 

Symmetric Multiprocessing 
Symmetric Multiprocessing (SMP) is a computer architecture where two or more 
processors share the same main memory. It is the most common multiprocessor 
system type and it is available for many high-end workstations and servers.

Clusters
Clusters are groups of relatively tightly joined computers. Th e Linux kernel extension 
openMosix (63) is one example where the total load of the computers in the cluster is 
balanced by migrating processes to computers where there are free CPU-cycles and 
memory. Th is type of system behaves a lot like a standard SMP with the diff erence 
that processors on separate computers do not have (direct) access to the same main 
memory. Th is puts some, but not many, extra constraint compared to SMPs on the 
way a parallel computing may be realised. A little simplifi ed, the most apparent 
adjustment that is necessary to make to get a program to work in parallel on an 
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openMosix cluster compared to an SMP computer is that it must create processes 
that have a memory area dedicated to it.

Grids
Grids are collections of loosely joined computers. NorduGrid’s Advanced Resource 
Connector (ARC) (64, 65) and Platform’s Load Sharing Facility (LSF) (Platform 
Computing Inc. Markham, Ontario Canada) are two examples of grid solutions. In 
a grid, processes are submitted to a queuing system and balancing of the load is done 
at the launch of each new process. A process that is committed to a particular CPU 
is not moved from that CPU until the process is fi nished. Compared to clusters, this 
solution is less dependent on continuous and steady network connections and it is 
suitable for large systems with many computing nodes. Th e simplest way to benefi t 
from a grid environment is to identify pieces of code that can take a long time to 
run, and which can be executed in isolation.

Validation
A software validation procedure verifi es that the software does what the design and 
performance goals of the development state. Scientifi c methods are evaluated by 
careful analysis of their results, and by comparing them to other methods. Th is will 
ultimately lead to recommendations about the circumstances under which a method 
can be used as well as the benefi ts one method has over another. 
To show general applicability, software that uses NONMEM for regression should 
preferably operate correctly on a large set of models. Th e set would if possible include 
multiple estimation methods, diff erent types of data, PK and PD models. Ideally, 
diff erent modellers should have developed the models since NONMEM coding 
styles vary.
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Th is thesis in perspective of current research

NONMEM is the fi rst software developed for nonlinear mixed-eff ects modelling in 
pharmacometric data analysis, and the fi rst version was distributed in 1979. Since 
then a number of other software have been developed. Still, NONMEM has been 
used in the majority of the publications within pharmacometrics during the last 
decade (425/503) (36). Th e development of an application programming interface 
to NONMEM such as Perl-speaks-NONMEM (PsN) is therefore valuable since it 
enables the development of new tools using NONMEM for regression.

In early 2000, when the work of this thesis was initiated, four papers on the use of 
bootstrapping in population pharmacokinetics had been published1. From 2000 
until today, 30 papers have been published. Th e increased interest for this method 
may be explained by the Guidance for Industry on population pharmacokinetics, 
which was released by the U.S. Food and Drug Administration in 1999 (53). Th is 
Guidance recommends bootstrapping for model evaluation purposes. Bootstrap-
ping and other techniques that require repeated modifi cations of the data or the 
model are cumbersome to carry out using NONMEM as the regression tool. Th e 
expansion of PsN to include a set of statistical tools (case-deletion diagnostics, cross-
validation, jackknife, log-likelihood profi ling, the bootstrap and stepwise covariate 
model building) makes these tasks a lot easier to perform.

Log-likelihood profi ling and case-deletion diagnostics have also been suggested as 
tools for model evaluation (15, 48, 54, 55). However, there are no general recommen-
dations on when these methods are appropriate to use. Recent examples of model 
evaluation in population PK/PD vary considerably in focus and methods (Table 1). 
To clarify the usefulness of diff erent model evaluation methods we used a large set 
of clinical and nonclinical data. An interesting extension to this investigation would 
be to make the picture more complete by including the predictive performance of 
models.

As previously discussed, covariate model building using automated procedures is 
not without problems. Yet automated procedures are appealing because of their 
objectivity. As long as the modeller is aware of their defi ciencies, the results may be 
compared between applications. In a stepwise search for a covariate model using sta-
tistical criteria for inclusion and exclusion of covariates many small but signifi cant 
parameter-covariate relationships are often identifi ed. Apart from being a potential 
1  PUBMED, keywords: bootstrap AND (“population pharmacokinetics” OR NONMEM)
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waste of CPU-time, a large number of included covariates may not increase the 
predictivity of the model. Th erefore the gain in external predictivity should ideally 
be evaluated to determine the appropriate size of the covariate model. Application 
of clinical relevance criteria may help in limiting the number of included covariates. 
Th e inclusion of clinical criteria a priori in the automated covariate model build-
ing procedure as in Paper III of this thesis has to the authors’ knowledge not been 
described before.

Table 1. Population PK/PD model evaluation techniques reported in the literature. Th e intention of 
the examination of the available literature was not to make a complete picture, but rather to give an 
overview of applied methods and their relative popularity.

Method Application 

references 

Number of 

articles 

Bootstrap 6

Cross-validation 1

Data-splitting 6

External validation data set 4

Jackknife (leverage analysis) 2

Log-likelihood profiling (LLP) 1

Posterior predictive check (PPC) 2

Randomization test 1

(47, 55, 66-69)

(70)

(71-76)

(77-80)

(47, 55)

(55)

(39, 81)

(82)

Th e search was performed 2005-09-08 using PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?DB=pubmed), with search terms (“model validation”[All Fields] OR “model evaluation”[All 
Fields]) AND ((“pharmacokinetics”[Subheading] OR “pharmacokinetics”[MeSH Terms] OR 
pharmacokinetics[Text Word]) OR (“pharmacology”[Subheading] OR (“pharmacology”[TIAB] 
NOT Medline[SB]) OR “pharmacology”[MeSH Terms] OR pharmacodynamics[Text Word])). 
Articles not related to population PK/PD were not considered.
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Aim

Th e aim of the work presented in this thesis was to facilitate the practical use of 
available and new statistical methods in the area of pharmacometric data analysis. 
Th is involved the development of suitable software tools that allows for effi  cient use 
of these methods, characterization of basic properties and demonstration of their 
usefulness when applied to real world data.
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Present investigation

Th e development of a package of statistical tools for 
pharmacometric data analysis using NONMEM (Papers I & 
II)
Th e joint aim of Papers I and II was to develop a set of statistical tools for 
pharmacometric data analysis using NONMEM. In Paper I the eff ort was focused 
on preparing the ground for software development using NONMEM as a tool for 
regression. Th e result was an application programming interface (API) for NONMEM 
written in Perl. Using this API, we decided to create a common structure for the 
development of statistical tools. Th e main goal of this common structure was to 
make it easy to add new tools and to design it to allow for communication between 
the tools, i.e. to enable the use of one tool within another. Paper II describes the 
implementation of this common structure and a set of statistical tools; the bootstrap, 
case-deletion diagnostics (including jackknife and cross-validation), log-likelihood 
profi ling and automated stepwise covariate model building.

Perl was chosen as the programming language based on (i) speed of text processing; 
(ii) platform independence; (iii) easy communication with operating systems and 
with other programming languages and (iv) object oriented programming support.

Object oriented design was used for both the API and the set of statistical tools. 
Th e abstraction of object orientation makes it easier to design and describe an 
application since real world terms are easily translated to code elements and vice 
versa.

Th e NONMEM API
Th e three input/output fi les of NONMEM, i.e. the model, the data and the output 
fi les, were chosen as the main classes for the object oriented design of the API to 
NONMEM.

Models
Th e model class of PsN is built around the NONMEM model fi le. It supports 
all records and options that are valid as model fi le specifi cations for NONMEM 
versions 5 and 6 with the exception of super-problems (26). 
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Data
Th e data class is designed to make it easier to manage NONMEM data fi les within 
computer programs. Th e structure of the data class is subject-centric, recognising 
that the subjects included in a study often can be regarded as independent. Th is 
structure makes it easy to restructure a data set on the subject level, e.g. to prepare 
for statistical methods based on resampling.

Output
Th e output class contains routines for parsing NONMEM output fi les. Th ere is no 
need to change any aspects of an output fi le and consequently, the methods of the 
output class are all accessors reporting the content of a NONMEM output fi le in a 
structured manner.

Statistical tools
Each tool is implemented as a separate class, inheriting common routines and 
attributes from a general tool class (Figure 1). Th e general tool class is responsible 
for the functionality common to all statistical methods of PsN-Toolkit, e.g. parallel 
execution. A common structure for workfl ow is defi ned within the general tool class 
as is the ability to employ another tool.

Model fi t
To create a general design of the tools of PsN, the execution of normal NONMEM 
runs was defi ned as the smallest element in the tool structure. Th e diagnostics of 
a NONMEM run is collected through the PsN output class. Some diagnostics are 
used to categorise a run as successful or non-successful using two levels of criteria 
within the PsN model fi t. Th e standard criteria are i) a successful minimisation 
of the objective function and ii) no parameter estimates are close to a parameter 
boundary. A stricter variant called ‘picky’ also requires that the covariance step of 
NONMEM is successful and that no warnings are reported from this step.

If a NONMEM model fi t does not reach a successful minimisation of the objective 
function, it is often a good idea to try to rerun the fi t with slightly perturbed initial 
estimates of the model parameters. PsN has the capability to rerun a NONMEM 
model fi t automatically using a new set of initial estimates. What is considered 
a successful run is controlled by the ‘picky’ option defi ned above. Th e new initial 
estimates init for run i (i=0..N, where 0 is the original run and N is the maximum 
number of retries) are created as

considering parameter boundaries, if any. Th us, the initial estimates for retry number 
three will diff er at most by 30% from the original initial estimates. Similar to the 
other tools, the PsN model fi t can execute parts of its routines in parallel.

0 0
0.1

iinit init uniform initrand i
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Bootstrap
Th e bootstrap tool can perform a ‘normal’ nonparametric bootstrap, where confi dence 
intervals are calculated based on bootstrap percentiles. It can also perform a BCa 
bootstrap where jackknife means of the parameter estimates are used to correct for 
bias and skewness. PsN runs a jackknife after the bootstrap when the BCa method 
is requested. Apart from confi dence intervals, estimates of standard error and bias 
are calculated.

Case-deletion diagnostics / jackknife / cross-validation
Th e case-deletion diagnostics, jackknife and cross-validation are implemented as one 
class since they share many internal routines. Cook-scores and covariance ratios are 
calculated for each case-deleted data set. Jackknife estimates of bias are calculated 
using the parameter estimates from all case-deleted data sets. A cross-validated 
estimate of the OFV can be calculated from the predictions of the removed parts of 
the data.

Log-likelihood profi ling
Log-likelihood profi ling is implemented using a second-order polynomial function 
to predict the required increase in the OFV. Th e user can supply initial estimates of 
the confi dence intervals.

Automated covariate model building
Automated stepwise covariate model building is implemented according to the 
defi nition stated earlier in this thesis. Th e user can control the behaviour of this tool 
to a large extent, for example by specifying the shape of each parameter-covariate 
relationship, setting initial estimates and defi ning limits for statistical criteria. It is 
also possible to supply project-specifi c code for the implementation of signifi cance 
criteria.

Interaction with computer systems

Parallel execution
PsN is designed to run on multi-processor systems with a capability to perform 
many CPU-intensive tasks in parallel. However, NONMEM is not available in a 
parallelised form yet. Since most of the CPU-cycles within a PsN-program will 
be spent running NONMEM, the part of PsN that is responsible for executing 
NONMEM has been most optimised for a parallel environment. Parallel execution 
of PsN is supported on SMP systems, openMosix clusters, the NorduGrid grid 
system and Platforms LSF grid system.

Operating systems
PsN has been tested on UNIX and Microsoft Windows platforms. Th ere should 
however, not be any problem to run PsN on any system that has Perl and NONMEM 
installed.
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Figure 1. A simplifi ed diagram showing the relation of the PsN classes.

Th e use of clinical irrelevance criteria in covariate model 
building with application to dofetilide pharmacokinetic data 
(Paper III)
Th e aim of this investigation was to characterise the pharmacokinetics of dofetilide in 
patients and to identify clinically relevant covariates and their respective contribution 
to changes in pharmacokinetic parameters. In addition, the consequences of applying 
three diff erent modelling strategies in covariate model building were investigated 
using the analysis of dofetilide as an example: 1) using statistical criteria only or 
in combination with clinical irrelevance criteria for covariate selection, 2) applying 
covariate eff ects on total clearance or separately on non-renal and renal clearances 
and 3) using separate data sets for covariate selection and parameter estimation.

Dofetilide is a selective class III anti-arrhythmic drug with a narrow 
therapeutic index (66-69). Consequently, knowledge about covariate eff ects on the 
pharmacokinetics of dofetilide is valuable since it will increase the predictability of 
the pharmacokinetics in the patient. To build a predictive PK model the data set 
can be divided into three parts for model development, parameter estimation and 
evaluation of the predictive performance, respectively. Using data splitting should 
increase the predictive performance of the model and decrease bias in the parameter 
estimates. 
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Methods
Pooled concentration-time data (1445 patients, 10133 observations) from phase 
III clinical trials was used to develop a population pharmacokinetic model using 
NONMEM (26). Th e pooled data was split, preserving the relative contribution 
of each trial, in three parts, which were used for covariate selection, parameter 
estimation and evaluation of predictive performance. Stepwise covariate model 
building was used to identify important parameter-covariate relationships using the 
strategies described above. Th is was accomplished through the stepwise covariate 
model building tool (SCM) as implemented in PsN-Toolkit version 2.1.8 (Paper 
II). Th e statistical signifi cance criterion for inclusion of covariates was set at the 5% 
level and the 0.1% signifi cance level was used to exclude covariates from the full 
model. Inclusion and exclusion of covariates using clinical irrelevance was based on 
reduction in interindividual variability and changes in parameters at the extremes 
of the covariate distribution. Parametric separation of the elimination pathways 
was accomplished using creatinine clearance as an indicator of renal function. All 
covariates were tested on total clearance (joint clearance model) and separately on 
non-renal and renal clearance (split clearance model). Th e parameters were estimated 
using the FO and the FOCE methods. Mean absolute error was used to summarise 
the predictive performance of the models on the concentration level. 

Results and conclusion
A one-compartment model with fi rst order absorption adequately described the 
data. Th e base model, the full and the fi nal covariate models all resulted in similar 
estimates of the structural parameters, the interindividual- and interoccasion 
variability and the residual error. Using clinical irrelevance criteria rather than only 
statistical criteria resulted in models containing less parameter-covariate relationships 
with only a minor loss in predictive power. When the elimination was divided into 
a renal- and non-renal part additional covariates were found signifi cant although no 
gain in predictive power could be seen. Th e FO and FOCE estimation methods gave 
almost identical fi nal covariate models with similar predictive performance (Figure 
2). Th e parameters of the fi nal model were estimated using the full data set and the 
FOCE method, and clinical irrelevance criteria were used for covariate inclusion. 
Th is model included creatinine clearance as a predictor of clearance and weight as a 
predictor of volume of distribution (Table 2).

In conclusion, in this study clinical irrelevance criteria were valuable for practical 
reasons since stricter inclusion/exclusion criteria shortens run times of the covariate 
model building procedure and because only covariates important for the predictive 
performance were included in the model. For large data sets containing a large 
amount of covariate information clinical irrelevance is likely superior to statistical 
signifi cance as criteria in identifying important covariates.
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Base mod el 

(FOC E) 

Final  mod el  

Clinical  irrelevance 

(FOC E) 

Structural model
CL/F  (L/h)  
V/F (L) 
Ka (h-1)

15.5  ( 0.71)  
235   ( 1.2) 
1.4    (3.5) 

15.5  ( 0.72)
236   ( 1.2)
1.4    (4.4)

Covariate s (%) 
Creatinine clearance on CL/F
Weight  on V/F  

+0.89   (3.8) 
-

+0.90   (3.2)
+0.70   (12)

Interi ndividual  variability  (%)
CL/F  
V/F  
Correlation  CL/F--V/F 

19  (8. 4) 
28  (9. 0) 
49  (13)  

19  (8. 4)
26  (10)
57  (11)

Inter occasion  variability  (%) 
CL/F  
Ka 
Correlat ion  CL/F--Ka 

19    (9.5)  
107  (9.1)  
-42   (14)  

19    (9.3)
109  (9.0)
-41   (14)

Resi dual  error  
Additive on th e Box -Cox  
transfor med scal e (0.6) 

0.29  ( 2.5) 0.29  ( 2.5) 

Objective function  val ue -9255  -9335  

Figure 2. Th e mean absolute errors on the concentration level for the fi nal models using the predic-
tion data set. Th e parameters were estimated using the fi rst-order (FO) or the fi rst-order conditional 
estimation (FOCE) method.

Table 2. Parameter estimates (relative standard error (RSE (%)) for the base model and the fi nal 
model using the full data set. Th e parameters were estimated using the fi rst-order conditional esti-
mation (FOCE) method and clinical irrelevance criteria were used for covariate inclusion.
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 Evaluating the evaluations: resampling methods for 
determining model appropriateness in pharmacometric data 
analysis (Paper IV)
In this study, the objective was to categorise the performance of some of the 
statistical procedures implemented in PsN. We applied case-deletion diagnostics, 
log-likelihood profi ling and the bootstrap for evaluation of 22 real world clinical 
and nonclinical data sets. All models and datasets were published, submitted for 
publication or regarded as fi nalised and ready for company reports.

Methods
Th e FO and the FOCE estimation methods were used for all models with a 
continuous response variable. For models with a heteroskedastic residual error sub-
model the INTER variant of the FOCE method was applied. For models with 
categorical response variables, the Laplacian method was used.

Cook-scores and covariance ratios were calculated per subject for all data sets 
and estimation methods using case-deletion diagnostics. Wald confi dence intervals 
were computed using estimates of standard error obtained either directly from 
NONMEM, or through a bootstrap. Bootstrap estimates of parameter confi dence 
intervals were calculated using the nonparametric percentile and the BCa techniques. 
Log-likelihood profi ling was used to acquire confi dence intervals based on the 
decrease in likelihood around the maximum likelihood estimates.

Th e similarity of the confi dence intervals attained through the diff erent approaches 
was evaluated using both cluster analysis and a normalised mean diff erence from an 
index method. Th e percentile bootstrap estimate of confi dence interval limits was 
chosen as the index method because it handles asymmetric distributions of estimates 
without relying on assumptions while being reasonably robust to outliers. Its use is 
also encouraged by regulatory authorities (53).

Results and conclusion
Th ere was a clear tendency towards experiencing problems in the bootstrap and 
case-deletion diagnostics for models having high covariance matrix condition 
numbers (the absolute ratio between the highest and the lowest eigenvalues in a 
normal matrix) in the original analysis (Figure 3). Estimation during the bootstrap 
procedure using the FOCE method was also more prone to minimisation problems 
as compared to the FO method.

Th e LLP clearly provided narrower confi dence intervals than the bootstrap. Over 
all parameters, the upper and lower confi dence limits were 10% and 17% closer to 
the maximum likelihood estimate, respectively (Figure 4). Th e LLP also stood out as 
the most dissimilar method when compared to the rest of the methods using cluster 
analysis (p=0.05). However, when only models based on FOCE were considered, the 
LLP was the method that most closely agreed with the index method, especially for 
fi xed-eff ects parameters (Figure 5).
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Th is study shows that the condition number of the model fi t covariance matrix 
is a reliable predictor of model stability to perturbations in the data. For the FO 
method, log-likelihood profi ling resulted in confi dence intervals that were narrower 
than the other methods evaluated in this study. Case-deletion diagnostics was shown 
to be a useful indicator of model stability in addition to being a tool for detecting 
infl uential or outlying individuals or groups of individuals. Based on the clear rela-
tion between condition number and the stability of the methods we were able to 
create some rules of thumb for their use. If the condition number is less than 50, 
all methods are likely to succeed. If the condition number is between 50 and 1000, 
successful application of the methods cannot be guaranteed. Th erefore case-deletion 
diagnostics and log-likelihood profi ling may be applied before a bootstrap is run (if 
at all) since these methods are less CPU-intensive. A condition number above 1000 
is a clear indication of ill-conditioning and the appropriateness of the model will 
probably benefi t from a re-evaluation.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Condition Number 

S
uc

ce
ss

fu
l B

oo
ts

tr
ap

 R
un

s 

FO
FOCE

Figure 3. Th e number of successful bootstrap NONMEM runs, plotted against the condition 
number of the covariance matrix in the original analysis. All bootstraps included 2000 runs.
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Figure 4. Mean diff erence for the methods for calculating confi dence intervals compared to the per-
centile bootstrap. Th e diff erences are expressed as the relative length of the lower and upper part of 
the confi dence intervals. Th e whiskers represent the 95% confi dence region of the mean diff erence 
as computed by a non-parametric percentile bootstrap with 10000 samples.
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ences are expressed as the relative length of the lower and upper part of the confi dence intervals. 
Th e whiskers represent the 95% confi dence region of the mean diff erence as computed by a non-
parametric percentile bootstrap with 10000 samples.
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Conclusions

In this thesis, new statistical methods in the area of pharmacometric data analysis were 
made available. Th is was done through the development of an API to NONMEM 
and the subsequent use of this API in the creation of a set of tools implementing 
various statistical methods. Th e value of the methods was evaluated using a large set 
of real world data.

Paper I described the creation of PsN, an API to the software package NONMEM. 
In paper II, a set of statistical methods including the bootstrap, jackknife, case-
deletion diagnostics, log-likelihood profi ling and stepwise covariate model building 
was made available as tools for application in pharmacometric data analysis through 
the software PsN. 

Th e appropriateness of the methods and the consistency of the software tools were 
evaluated using a large selection of clinical and nonclinical data. One important result 
found through these evaluations was that criteria based on clinical relevance are useful 
components in automated stepwise covariate model building. As demonstrated using 
the anti-arrhythmic drug dofetilide in Paper III, clinical relevance criteria allowed 
for the ability to restrict the number of included parameter-covariate relationships 
while maintaining the predictive performance of the model. Th e clinical relevance 
criteria used would have been diffi  cult to apply without PsN or equivalent software 
without spending a very large amount of time on manual construction of parameter-
covariate relationships, running of NONMEM and inspection and evaluation of 
intermediate results.

In Paper IV, the condition number of the covariance matrix was shown to be a good 
indicator of how well the bootstrap and case-deletion diagnostics procedures behave 
when applied to PK/PD data analyses using NONMEM. It is not surprising that 
a model with a high condition number is likely to experience numerical problems 
in the regression procedure using case-deleted or bootstrap data sets. Notably, most 
models in this analysis showed such numerical problems in the regression proce-
dure, despite being regarded as the fi nal by the developers. Log-likelihood profi ling 
can be used as a replacement for the bootstrap to calculate confi dence intervals for 
fi xed-eff ects parameters if the FOCE method is used. It is not recommended to use 
log-likelihood profi ling in combination with the FO method. 
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In conclusion, the software developed in this thesis equips modellers with an 
enhanced set of tools for effi  cient pharmacometric data analysis. PsN is currently 
being used in research groups in academia and leading pharmaceutical companies 
as a tool in model development and evaluation.
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