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Abstract

Quantum field theories are very good at describing the world around us
but use complicated computations that cannot always be solved exactly.
Introducing conformal symmetry to quantum field theory can reduce this
complexity and allow for quite simple calculation in the best case. This
report aims to describe the critical part of the Ising model in 2 dimen-
sions using conformal field theory while assuming only some knowledge of
quantum mechanics and complex analysis from the reader. This is done
by using the book Conformal Field Theory as the source for information
about conformal field theory.

Sammanfattning

Kvantfältteorier är mycket bra p̊a att beskriva verkligheten runt om
oss men de använder sig av avancerade beräkningar som inte alltid kan
lösas exakt. Genom att ge systemet konform symmetri s̊a kan dessa avan-
cerade beräkningar förenklas och bli ganska enkla i de bästa fallen. Målet
med denna rapport är att beskriva hur en modell som kallas för ”Ising mo-
del”kan beskrivas i sitt kritiska tillst̊and med hjälp utav konform fältteori.
Läsaren antas kunna kvantmekanik samt komplex analys. Informationen
om konform fältteori hämtas ifr̊an boken Conformal Field Theory.
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1 Introduction

When it comes to different models of the physical world around us quantum
field theories are some of the best theories we have for describing the small
fundamental aspects of reality with an example being the standard model used
in particle physics. Although these models provide a very accurate descrip-
tion of the world the computations involved are usually quite complicated and
sometimes approximations have to be used. By introducing the concept of con-
formal symmetry, that is a symmetry where angles between curves are locally
preserved we can reduce the complexity of the calculations involved. Quan-
tum field theories which are invariant under these conformal transformations
are called conformal field theories.

Another interesting theoretical model is the 2D Ising model which describes
a lattice of particles with spin up or down. These particles then also have an
interaction with their nearest neighbour where the energy of the interaction is
based upon if the spins of the two particles agree or disagree. The interesting
property of this model is its ability to show a phase transition even while being
a very simple statistical model.

The property of conformal field theories to simplify complicated calculations
has made them find quite a few applications in areas where one wants to be
able to exactly solve a system which is described by quantum field theories.
One example of an important theory in theoretical physics which uses confor-
mal field theories is string theory which uses a 2 dimensional conformal field
theory in its description of reality. Another example of the uses of conformal
field theory is that the critical temperature part of the 2D Ising model can
be described using 2D conformal field theory. These uses among others make
conformal field theories interesting theoretical models to investigate in order to
possibly find new uses for the model or to find solutions to problems which are
not solved by the use of more complicated models like quantum field theory.

The goal of this report is to replicate the critical part of the Ising model using
conformal field theory along with an explanation of the fundamentals of confor-
mal field theory. This will be achieved by first getting to conformal field theory
from a knowledge of quantum mechanics and some complex analysis and then
using conformal field theory to construct the critical point of the 2D Ising model.
The source for the information about conformal field theory and its relation to
the Ising model used in this report is the book Conformal Field Theory [1] which
is recommended if further reading into the field of conformal field theory is of
interest. The notation used in this report will match the notation used in Con-
formal Field Theory.
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2 Theory

2.1 Simple quantum fields

One of the simplest systems in quantum field theory is the free scalar field which
is described by the action (page 16 equation 2.1[1])

S[φ] =

∫
dxdtL(φ, φ̇,∇φ) (1)

L =
1

2

{
1

c2
φ̇2 − (∇φ)2 −m2φ2

}
(2)

L in this equation is the Lagrangian density which is oftentimes just called the
Lagrangian, m is the mass of the field and c is the speed of light if we are
operating in a relativistic theory otherwise it is some characteristic velocity of
the theory. c = 1, ℏ = 1 units will be used in this report. We consider a discrete 1
dimensional chain with lattice spacing a, sites at x = an and N total sites which
has periodic boundary conditions at these sites. Using the canonical formalism
along with discrete Fourier transforms and raising and lowering operators (page
16-18[1] for the full process and definitions) we obtain the following expression
for the time dependence of the field:

φn(t) =

N−1∑
k=0

√
2

Naωk

[
ei(2πkn/N−ωkt)ak(0) + e−i(2πkn/N−ωkt)a†k(0)

]
(3)

Where ak is the lowering operator and a†k is the raising operator. Usually
in quantum field theory we operate in the Heisenberg picture where the time
dependence of the systems is placed in the operators rather than in the states
themselves. They have the commutator

[ak, a
†
q] = δkq (4)

Where δkq is the Kronecker delta. The defined ground state is:

ak |0⟩ = 0 ∀k (5)

If we want to have a non-discrete system we need to take the continuum limit
of the lattice which is done by letting the lattice spacing a go to 0. Using the
continuum creation and annihilation operators we then obtain (see page 19[1]
for details)

φ(x) =

∫
dp

2π

{
a(p)ei(px−ω(p)t) + a†(p)e−i(px−ω(p)t)

}
(6)

Where a(p) is the annihilation operator and a†(p) is the creation operator. They
have the commutator:

[a(p), a†(p′)] = 2πδ(p− p′) (7)
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Where δ is the Dirac delta function. Equation (6) permits the splitting of the
field into the positive frequency part (the part that only contains annihilation
operators) and the negative frequency part (which only contains creation op-
erators). Of the exited states which this field permits the simplest are the
elementary excitations: a†(p) |0⟩ which have the dispersion relation

ω(p) =
√
m2 + p2 (8)

This type of dispersion relation is one usually seen for relativistic particles so
these different states of the field represents a different amount of free particles.
They are free since there is no interaction between the particles because the
total energy of the state of the field is just a sum of the individual energies of
the particles. The commutator in equation (4) shows us that if we swap the
momenta of the two states we obtain the same pair of states that we started with
so the particles here are bosons. The ground state is usually called a vacuum
in quantum field theory since that state corresponds to having no particles.
The Hilbert space created from repeated applications of the creation operator
is called a Fock space. A special ordering of operators is often used in quantum
field theory called normal ordering and is defined by putting all operators that
annihilate the vacuum to right such as with

: a(p)a†(p) : = a†(p)a(p) (9)

The expectation value of a normal ordered operator operating on the vacuum
state is zero by definition. This definition however is only true for fields that
are free (non-interacting).

In order to obtain a fermionic field we will first need to understand the funda-
mentals of Grassmann variables (for a more complete explanation of Grassmann
variables see chapter 2.B[1]). A Grassmann algebra is a vector space where the
generators θi (often called Grassmann variables) have a defined anticommuta-
tive (oftentimes called antisymmetric instead) product:

θiθj = −θjθi (10)

For Grassmann variables used in the description of fermionic fields ψi is usually
used. We also need to use the anticommutator

{a, b} = ab+ ba (11)

instead of the regular commutator. This will give us the following anticommu-
tators for the mode operators(the creation and annihilation operators) of a free
fermionic field(for a full description including examples see chapter 2.1.2[1]):

{a(p), a†(q)} = (2π)2ωpδ(p− q) (12)

{a(p), a(q)} = {a†(p), a†(q)} = 0 (13)
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With a generic Lagrangian (repeated indices are summed over)

L =
i

2
ψiTijψ̇j − V (ψ) (14)

For complex Grassmann variables we have the Lagrangian

L = iψ̄iTijψ̇j − V (ψ) (15)

having the defined vacuum state

ψi |0⟩ = 0 ∀i (16)

and the anticommutation relations

{ψi, ψj} = {ψ†
i , ψ

†
j} = 0 (17)

{ψi, ψ†
j} = (T−1)ij (18)

2.2 Path integrals

A method widely used in quantum field theory is the method of path integrals
which can provide a easy way to bridge the gap between fundamental fields and
statistical physics. The probability amplitude of a field going from the state
φi(x, ti) to φf (x, tf ) in path integrals is

⟨φf (x, tf )|φi(x, ti)⟩ =
∫

[dφ(x, t)]eiS[φ] (19)

The action S[φ] is the action of one specific path from φi(x, ti) to φf (x, tf )
and the differential [dφ(x, t)] implies that the integral is taken over all possible
paths from φi(x, ti) to φf (x, tf ). This computation can be quite difficult, if
not impossible to solve exactly and is one of the reasons a simplification is very
welcome. The path integral method has the advantage of easily being able to be
compatible with special relativity since we do not make time a special dimension
so we can easily transfer over to 4 dimensional spacetime. Also if the field used is
Lorentz invariant in a non-quantum theory then that invariance is preserved by
the path integral method. For fermions we need to translate this expression into
one that uses Grassmann variables (see chapter 2.2.2[1] for the full derivation)

⟨ψf (x, tf )|ψi(x, ti)⟩ =
∫
[dψ̄dψ]eiS[ψ̄,ψ] (20)

With the same interpretation as the bosonic path integral. More common than
these types of path integrals is the scattering amplitude between a number of
free particles (also called asymptotic states). These scattering amplitudes are
obtained in practise from correlation functions. The n-point correlation function
for a point particle is

⟨x(t1)x(t2)...x(tn)⟩ = ⟨0|T (x̂(t1)x̂(t2)...x̂(tn))|0⟩ (21)
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Where we used T as the time ordering operator which places the operators in
increasing order of time from right to left. For the remainder of this report
this time ordering operator will not be explicitly written out but is always
implicit inside correlation functions. Path integrals can be used to calculate
the correlation function in the following way (see chapter 2.3.1 and 2.3.2[1] for
derivation)

⟨x(τ1)x(τ2)...x(τn)⟩ =
∫
[dx]x(τ1)x(τ2)...x(τn)exp(−S[x(τ)])∫

[dx]exp(−S[x(τ)])
(22)

We used the change of variable known as the Wick rotation:

t→ −iτ (23)

Where τ is real so we must integrate over time along the imaginary axis. We
then obtain the real part of the correlation functions through analytic contin-
uation. One advantage of this change of variable is that our metric changes
from a Minkowski metric to a Euclidean metric and this is why this procedure
is also called the Euclidean formalism. For the rest of the report we will be
working in the Euclidean formalism but we will be replacing τ with t so that
the dimensions of the systems will be clear.

In order to be able to switch between the normal ordering and the time or-
dering of operators we need some relation between the two for the case of free
fields. This relation comes in the form of Wick’s theorem which makes use of
contractions which are defined in the following way

: ϕ1ϕ2ϕ3ϕ4 :=: ϕ1ϕ3 : ⟨ϕ2ϕ4⟩ (24)

So the contraction of two operators just means that we take them out of the
normal ordering and multiply with their 2-point function. For bosons Wick’s
theorem then states the following: The time ordered product is equal to the
normal ordered product, plus all the possible ways one could contract the fields
within the normal ordered product. For example

T (ϕ1ϕ2ϕ3) =: ϕ1ϕ2ϕ3 : + : ϕ1ϕ2ϕ3 : + (25)

: ϕ1ϕ2ϕ3 : + : ϕ1ϕ2ϕ3 :

In the case of fermionic fields we also need to put a sign before each term equal
to the sign obtain via anticommutation for the amount of times we need to swap
places of neighbouring operators in order to get the contracted fields next to
each other. Equation (25) then becomes

T (ψ1ψ2ψ3) =: ψ1ψ2ψ3 : + : ψ1ψ2ψ3 : − (26)

: ψ1ψ2ψ3 : + : ψ1ψ2ψ3 :
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2.3 General symmetric invariance

Symmetries play a huge role in physics as a whole therefore looking at the effects
of different symmetries on fields and their properties is in order. A general action
of a field depends only on the field ϕ and the first derivative of the field ∂µϕ

S =

∫
ddxL(ϕ, ∂µϕ) (27)

Where the d in the exponent is referring to the number of dimensions of the
system. A general transformation of the position and the field will look like

x → x′ (28)

ϕ(x) → ϕ′(x′)

To note here is that the new field ϕ′ at x′ can be expressed as a function of the
initial field ϕ at x

ϕ′(x′) = F(ϕ(x)) (29)

The new action can then be calculated to be

S′ =

∫
ddx

∣∣∣∣∂x′

∂x

∣∣∣∣L(F(ϕ(x)),
∂xν

∂x′µ
∂νF(ϕ(x))) (30)

For infinitesimal transformations of the general kind

x′µ = xµ + ωa
∂xµ

∂ωa
(31)

ϕ′(x′) = ϕ(x) + ωa
∂F
∂ωa

(x)

Where {ωa} is a set of infinitesimally small parameters for the transformation
which are all first order only. One can define a Generator of this transformation
in the following way (equation 2.128[1])

iGaϕ =
∂xµ

∂ωa
∂µϕ− ∂F

∂ωa
(32)

For the variation in the action δS = S′ − S obtained from the infinitesimal
transformation in equation (31) we can derive the formula

δS =

∫
ddx∂µj

µ
aωa (33)

Where jµa is known as the current associated with this infinitesimal transforma-
tion and is in this case equal to

jµa =

{
∂L

∂(∂µϕ)
∂νϕ− δµνL

}
δxν

δωa
− ∂L
∂(∂µϕ)

δF
δωa

(34)
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According to Noether’s theorem every symmetry of the system should corre-
spond to some classically conserved quantity of the system with a symmetry of
the system implying an invariance of the action for any variance of the fields.
An invariant action simply means

δS = 0 (35)

Noether’s theorem then implies that for position dependant values of ωa the
action is invariant. This can be shown to lead to the relation

∂µj
µ
a = 0 (36)

and the conserved quantity associated with the current jµa (called the conserved
charge):

Qa =

∫
dd−1xj0a (37)

Where d − 1 in the exponent refers to only taking into account the spatial di-
mensions of the system.

As discussed earlier correlation functions are important objects in quantum
field theory so seeing how they transform under transformations like equation
(28) would be good. If we consider the general correlation function (equation
2.147[1]):

⟨ϕ(x1)ϕ(x2)...ϕ(xn)⟩ =
1

Z

∫
[dϕ]ϕ(x1)ϕ(x2)...ϕ(xn)exp(−S[ϕ]) (38)

Where Z is the partition function (also called the vacuum functional). One can
then show that the invariance of the action and of the measure under transfor-
mations like equation (28) leads to the following result:

⟨ϕ(x′
1)ϕ(x

′
2)...ϕ(x

′
n)⟩ = ⟨F(ϕ(x1))F(ϕ(x2))...F(ϕ(xn))⟩ (39)

Another way to express the effects of this symmetry is through the so-called
Ward identities which will be useful later for conformal symmetry. Any in-
finitesimal transformation can be expressed using its generators in the following
way

ϕ′(x) = ϕ(x)− iωaGaϕ(x) (40)

From this we may derive the Ward identity for the current jµa associated with
the transformation

∂

∂xµ
⟨jµa (x)ϕ(x1)ϕ(x2)...ϕ(xn)⟩ = (41)

−i
n∑
i=1

δ(x− xi) ⟨ϕ(x1)ϕ(x2)...Gaϕ(xi)...ϕ(xn)⟩
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For translations the conserved current is the important object known as the
canonical energy-momentum tensor which is one of the central objects which
will be discussed in later sections of this report along with different fields. It
can be shown to be (equation 2.165)

Tµνc = −ηµνL+
∂L

∂(∂µϕ)
∂νϕ (42)

Where ηµν is the diagonal metric tensor of d dimensional flat spacetime. It has
the corresponding conserved charge

P ν =

∫
dd−1xT 0ν

c (43)

Which is just the regular 4-momentum obtain in relativity.

2.4 Two dimensional conformal invariance

In the rest of the report we will mostly be working in 2 dimensions since confor-
mal invariance is much more interesting in 2 dimensions due to that fact that
any analytic function is a locally conformal transformation in 2D. A transfor-
mation which is conformal, that is one that preserves the angles between curves
must have the following effect on the metric tensor

gµν′(x′) = Λ(x)gµν(x) (44)

So it’s invariant up to a scale factor.For a set of coordinates (z0, z1) any change
of coordinates zµ → wµ(x) implies a change in the metric tensor

gµν →
(
∂wµ

∂zα

)(
∂wν

∂zβ

)
gαβ (45)

Which combined implies the following two possible solutions:

∂w1

∂z0
=
∂w0

∂z1
and

∂w0

∂z0
= −∂w

1

∂z1
(46)

or

∂w1

∂z0
= −∂w

0

∂z1
and

∂w0

∂z0
=
∂w1

∂z1
(47)

Where equation (46) is simply the Cauchy-Riemann equations which are true
for holomorphic (analytic) functions. The other equations describe what we call
antiholomorphic functions. This suggest using a complex coordinate system z
and z̄ with the translation rules

z = z0 + iz1 (48)

z̄ = z0 − iz1

∂z =
1

2
(∂0 − i∂1)

∂z̄ =
1

2
(∂0 + i∂1)
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An alternative notation ∂z = ∂ and ∂z̄ = ∂̄ will be used instead if the differenti-
ation variable is clearly implied elsewhere. The metric tensor described earlier
is in these coordinates

gµν =

(
0 1

2
1
2 0

)
gµν =

(
0 2
2 0

)
(49)

Where the order of variables for µ is first zand then z̄ and this also applies to
µ in the energy-momentum tensor. Infinitesimal conformal transformations are
all of the form(equation 5.15[1])

z′ = z + ϵ(z) ϵ(z) =

∞∑
−∞

cnz
n+1 (50)

and with z̄′ and ϵ̄(z̄) being defined similarly. With the change in a dimensionless
(scalar) field with no spin being

δϕ = −ϵ(z)∂ϕ− ϵ̄(z̄)∂̄ϕ =
∑
n

{cnℓnϕ(z, z̄) + c̄nℓ̄nϕ(z, z̄)} (51)

With the generators

ℓn = −zn+1∂ ℓ̄n = −z̄n+1∂̄ (52)

Which have the commutation relations (equation 5.19[1])

[ℓn, ℓm] = (n−m)ℓn+m (53)

[ℓ̄n, ℓ̄m] = (n−m)ℓ̄n+m

[ℓn, ℓ̄m] = 0

The algebra made up of these generators is called the Witt algebra.

A field that transforms in the following way when a globally conformal trans-
formation z → w(z), z̄ → w̄(z̄) is applied to it is called quasi-primary (equation
5.23[1]):

ϕ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄

ϕ(z, z̄) (54)

A quasi-primary field is one whose components transform in the same way as
a covariant tensor which has rank h + h̄ where h is known as the holomor-
phic conformal dimension of the field while h̄ is the antiholomorphic conformal
dimension and the number of different indices for h is z and similarly for h̄.
There are also fields which show this behaviour even under locally conformal
transformations and these fields are called primary.
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2.5 Conformal symmetry of correlation functions

We now once again return to correlation functions to study the effect of confor-
mal symmetry on them. Using equation (38) with the same invariance of the
action and the measure and using the new holomorphic and antiholomorphic
coordinates we obtain: (equation 5.24[1])

⟨ϕ1(w1, w̄1)ϕ2(w2, w̄2)...ϕn(wn, w̄n)⟩ = (55)

n∏
i=1

(
dw

dz

)−hi

w=wi

(
dw̄

dz̄

)−h̄i

w̄=w̄i

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)...ϕn(zn, z̄n)⟩

The conformal symmetry allows us to give a exact unique solution to the 2-point
correlator:

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)⟩ =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
(56)

Where C12 is some constant. However if the conformal dimensions of the fields
are not the same this correlator vanishes which implies that

h1 = h2 = h h̄1 = h̄2 = h̄ (57)

The 3-point correlator can also be calculated uniquely and exactly and is

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)ϕ3(z3, z̄3)⟩ = (58)

C123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄3+h̄1−h̄2

13

Where C123 once again is some constant and zij is

zij = zi − zj (59)

The 4-point correlator however cannot be uniquely determined by conformal
symmetry alone and the same goes for any higher order correlator as well.

Now we return back to the Ward identities described by equation (41) since
it turns out that for conformal symmetry we can write one identity for all of it
which is valid for any conformal transformation ϵ, ϵ̄. This identity is appropri-
ately named the conformal ward identity (equation 5.46[1]):

δϵ,ϵ̄ ⟨X⟩ = − 1

2πi

∮
C

dzϵ(z) ⟨T (z)X⟩+ 1

2πi

∮
C

dz̄ϵ̄(z̄) ⟨T̄ (z̄)X⟩ (60)

Where we used the renormalised energy-momentum tensors

T (z) = −2πTzz T̄ (z̄) = −2πTz̄z̄ (61)

X here is an arbitrary amount of primary fields and δϵ,ϵ̄ ⟨X⟩ is the variation of X
when the transformation ϵ, ϵ̄ is applied. The contour C is taken counterclockwise
and its only condition is that it must include all of the positions of the fields
included in X.
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2.6 Operator product expansion

A property that one encounters when dealing with multiple fields inside corre-
lation functions is that if their positions overlap the correlation function tends
to have a singularity at that point. By looking specifically at this singular be-
haviour we can say something about the correlation functions of fields whose
positions overlap. The way this is done is through the use of the so called oper-
ator product expansion which is a representation of a product of operators by
a sum of different regular (when z → w) operators which are multiplied by a
function of z − w which may diverge. The OPE of any primary field with the
energy-momentum tensor can be shown to be (equation 5.71[1])

T (z)ϕ(w, w̄) ∼ h

(z − w)2
ϕ(w, w̄) +

1

z − w
∂wϕ(w, w̄) (62)

T̄ (z̄)ϕ(w, w̄) ∼ h̄

(z̄ − w̄)2
ϕ(w, w̄) +

1

z̄ − w̄
∂w̄ϕ(w, w̄)

It is implied with all operator product expansions that they only make sense
within a correlator so we have dropped the brackets ⟨...⟩. The ∼ symbol implies
that they are equal modulo regular terms which do not have a singularity at
z = w. Specifically for a free bosonic field with the action

S =
1

2
g

∫
d2x∂µφ∂

µφ (63)

we can show it has the 2-point correlator (equation 5.75[1])

⟨φ(z, z̄)φ(w, w̄)⟩ = − 1

4πg
{ln(z − w) + ln(z̄ − w̄)} (64)

Where g is some renormalisation constant and the formula is true up to some
additive constant. By taking the derivatives ∂zφ and ∂z̄φ and then taking only
the holomorphic part we obtain the operator product expansion

∂φ(z)∂φ(w) ∼ − 1

4πg

1

(z − w)2
(65)

The original field can be shown to instead have the operator product expansion

φ(z)φ(w) ∼ − ln(z − w) (66)

This field has the energy-momentum tensor (equation 5.79[1])

T (z) = −2πg : ∂φ∂φ : (67)

Using this along with wick theorem, described by equation (25) we can calculate
the operator product expansion of the energy-momentum tensor with ∂φ

T (z)∂φ(w) = −2πg : ∂φ(z)∂φ(z) : ∂φ(w) = (68)

−2πg(: ∂φ(z)∂φ(z)∂φ(w) : + : ∂φ(z)∂φ(z)∂φ(w) : +

: ∂φ(z)∂φ(z)∂φ(w) : ∼ ∂φ(z)

(z − w)2
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Finally we expand ∂φ(z) around w and obtain the full operator product expan-
sion

T (z)∂φ(w) ∼ ∂φ(w)

(z − w)2
+
∂2wφ(w)

z − w
(69)

Comparing this to equation (62) we see that ∂φ has a conformal dimension of 1
and is a primary field. Similarly we can solve for the operator product expansion
of the energy-momentum tensor with itself:

T (z)T (w) ∼ 1

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(70)

For a free fermion we instead have the action (equation 5.84[1])

S =
1

2
g

∫
d2xΨ†γ0γµ∂µΨ (71)

With the Dirac matrices γµ

γ0 =

(
0 1
1 0

)
γ1 =

(
0 −i
i 0

)
(72)

and using the definition for the spinor Ψ = (ψ, ψ̄) we obtain

S = g

∫
d2x(ψ̄∂ψ̄ + ψ∂̄ψ) (73)

The holomorphic operator product expansion of the fermionic field with itself
can then be calculated to be

ψ(z)ψ(w) ∼ 1

2πg

1

z − w
(74)

and by using the energy-momentum tensor

T (z) = −πg : ψ(z)∂ψ(z) : (75)

we can obtain the operator product expansion of the energy-momentum tensor
with the field ψ by using Wick’s theorem:

T (z)ψ(w) ∼ ψ(w)

2(z − w)2
+
∂ψ(w)

z − w
(76)

We once again also derive the operator product expansion of the energy-momentum
tensor with itself:

T (z)T (w) ∼ 1

4(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(77)

Which shows that the energy-momentum tensor is not primary field in this case
either. It can in fact be shown that the energy-momentum tensor is a quasi-
primary field in general under conformal transformations.
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By looking at equations (70) and (77) we can see the following general pat-
tern for the operator product expansion of the energy-momentum tensor with
itself:

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(78)

Where the constant c is know as the central charge of the theory and is one of
the main parameters of theories with conformal invariance. We will later see its
values for different descriptions of the critical Ising model.

2.7 The operator formalism

In order to be able to use some of the simplifications offered by conformal sym-
metry we will need to switch to a view that makes the fields into operators acting
upon different states. The first step to doing this is to use the so called radial
quantisation which is a coordinate transformation from the regular complex co-
ordinates to ones similar to polar coordinates except that our radial coordinate
represents time and our angular coordinate represents space (for more informa-
tion see chapter 6.1.1[1]). See figure 1 below for an illustration.

t1 t2x

t

x

t1

t2

Figure 1: An illustration of radial quantisation. Source for TikZ code[2]

When it comes to the vacuum state with these new field operators we assume
that as t→ ±∞ any interactions between the fields goes to 0 so that at infinity
the fields can be treated as being free. For the interacting field ϕ(z, z̄) we thus
get the operator and state (equation 6.3[1])

|ϕin⟩ = lim
z,z̄→0

ϕ(z, z̄) |0⟩ (79)

We can then define hermitian conjugation of a quasi-primary field as the follow-
ing (equation 6.4[1]):

[ϕ(z, z̄)]† = z̄−2hz−2h̄ϕ(1/z̄, 1/z) (80)
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We can then also do something called mode expansion of a field in the following
way (equation 6.7[1]):

ϕ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz−n−h̄ϕm,n (81)

ϕm,n =
1

2πi

∮
dzzm+h−1 1

2πi

∮
dz̄z̄n+h̄−1ϕ(z, z̄)

With the vacuum state criteria

ϕm,n |0⟩ = 0 (m > −h, n > −h̄) (82)

In order to make equations clearer we will be ignoring the antiholomorphic
part of future equations and simply writing out the holomorphic part since the
antiholomorphic part usually has exactly the same structure. The field described
in equation (81) then becomes:

ϕ(z) =
∑
m∈Z

z−m−hϕm (83)

ϕm =
1

2πi

∮
dzzm+h−1ϕ(z)

What was previously time ordered fields within correlators will now instead be
radially ordered operators since time is now represented by our radial coor-
dinate, with radial ordering being defined as putting the operators in order of
increasing radial coordinate from right to left. Just as time ordering was implied
before we now instead imply a radial ordering of operators within correlators.

From this we can obtain some relations for the commutator for the holomorphic
fields a(z) and b(w) ∮

w

dza(z)b(w) = [A, b(w)] (84)

[A,B] =

∮
0

dw

∮
w

dza(z)b(w) (85)

where

A =

∮
a(z)dz B =

∮
b(z)dz (86)

Where the subscript for the counterclockwise contour integrals determines around
which point the integral is taken at some fixed time and if no subscript is spec-
ified it is taken at a fixed time around the origin.
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2.8 The Virasoro algebra

By using the mode expansion described by equation (81) on the energy-momentum
tensor we obtain

T (z) =
∑
n∈Z

z−n−2Ln (87)

T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n

Ln =
1

2πi

∮
dzzn+1T (z)

L̄n =
1

2πi

∮
dz̄z̄n+1T̄ (z̄)

Where Ln and L̄n are the generators of the local conformal transformations
in the operator formalism on the Hilbert space, similar to how equation (52)
describes the local conformal generators in the path integral formalism on the
space of functions. These generators on the Hilbert space make up the famous
Virasoro algebra which can be shown to have the commutation rules (see equa-
tion 6.25[1] for proof):

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (88)

[Ln, L̄m] = 0

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0

Where we once again encounter the central charge c of the theory. The vacuum
state is obtained from the following relation (equation 6.26[1])

Ln |0⟩ = 0 (n ≥ −1) (89)

L̄n |0⟩ = 0

We can also see that the free state obtained from the field operator is an eigen-
state of the n = 0 generators:

|h, h̄⟩ = ϕ(0, 0) |0⟩ (90)

L0 |h, h̄⟩ = h |h, h̄⟩
L̄0 |h, h̄⟩ = h̄ |h, h̄⟩

For these eigenstates of L0 we have two different raising operators: ϕm (m < 0)
and Ln (n < 0). So any exited state can be constructed by repeated application
of these operators who on each application increase the conformal dimensions
of the state by −m or −n respectively. States obtained this way are called de-
scendant states of the asymptotic state.

When we defined normal ordering back in equation (9) we said that that def-
inition only holds for non-interacting fields. The generalised normal ordering
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for two operators A(z) and B(z) is denoted by (AB)(z) and can be show to be
(equation 6.130[1])

(AB)(w) =
1

2πi

∮
w

dz

z − w
A(z)B(w) (91)

and also equal to (equation 6.144[1])

(AB)(z) =
∑
n

z−n−hA−hB (AB)n (92)

for:

(AB)m =
∑

n≤−hA

AnBm−n +
∑

n>−hA

Bm−nAn (93)

We can now define a descendant fields for some descendant state as the normal
ordering of operators which operates on the vacuum to produce the correspond-
ing descendant state:

L−n |h⟩ = (L−nϕ)(0) |0⟩ (94)

The reason we have been focusing so much on primary fields specifically is
made clear in chapter 6.6.1[1] where two important things are noted: under a
conformal transformation a primary field and its descendants only transform to
that primary field or one of its descendants, A correlator consisting of descendant
fields can always be reduced to a correlator containing only of the respective
primary fields. A set consisting of a primary field ϕ and all of its descendants
is denoted [ϕ] and is called the conformal family of that field.

2.9 Simple minimal models

For theories describing physical systems we are mostly interested in finite repre-
sentations of the Virasoro algebra which are usually called Verma modules. In
order to construct these finite representation we need to define a inner product
between two descendant states:

L−k1L−k2 ...L−km |h⟩ L−l1L−l2 ...L−ln |h⟩ (95)

Which have the defined inner product (equation 7.9[1])

⟨h|Lkm ...Lk2Lk1L−l1L−l2 ...L−ln |h⟩ (96)

Using the Hermitian conjugate L†
m = L−m and with the condition:

⟨h|Li = 0 (i < 0) (97)

These finite descriptions can sometimes be simplified since there could be a sub-
space inside the Verma module which contains all of the information of the larger
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module and as such can be used as a representation for it. These Verma modules
are called reducible. Sometimes these Verma modules can permit states which
have a negative norm (these states are usually called ghosts when discussed in
the context of string theory). The Verma modules which lack negative norm
states are called unitary and its these that we are interested in. It can be shown
that a non-reducible unitary finite Verma module can be achieved with the fol-
lowing constraints of the central charge and the conformal dimension (equation
7.65[1]):

c = 1− 6
(p− p′)2

pp′
(98)

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
(99)

Where p and p′ are two coprime integers and where r, s is bounded by:

1 ≤ r < p′ 1 ≤ s < p (100)

With hr,s also having the symmetry:

hr,s = hp′−r,p−s (101)

Verma modules which have all these properties are called minimal models and
are usually described by the central charge along with the two numbers p and
p′ as M(p, p′) with the usual convention p > p′. A way of describing how the
limited number of conformal families of primary fields behaves under operator
product expansions is through so called fusion rules. For example if we have
four fields ϕ1, ϕ2, ϕ3, ϕ4 and the following fusion rule:

ϕ1 × ϕ2 = ϕ3 + ϕ4 (102)

This fusion rule above means that when we take the operator product expansion
of ϕ1 with ϕ2 (the left hand side is just an operator product expansion) the field
obtained will belong to either the conformal family of ϕ3 or to the conformal
family of ϕ4. These fusion rules describe the short range behaviour of operator
product expansions in Verma modules by specifying what conformal families
they can belong to.

3 Results

3.1 The 2D statistical Ising model

In the normal two dimensional Ising model we have spin variables σi which
can be either -1 or 1 sitting at the vertexes of a two dimensional crystal lattice
of size N ×M and interact with their nearest neighbour with the energy per
interaction ⟨ij⟩ being (equation 12.1[1]):

E⟨ij⟩ = −Jσiσj (103)
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One of the interesting things about this model is the fact that it undergoes a
phase transition when the coupling strength K = βJ (β = 1/(kBT )) reaches
some critical value Kc which is mainly achieved by changing the temperature
of the system. This critical point is what we will describe with a minimal
model later. First we expand the model into two different phases one for high-
temperature (where K is small) and one for low temperature (where K is large)
and look at the criteria for when the two phases overlap. For the high tem-
perature expansion we can obtain the following partition function (equation
12.4[1]):

Zhigh = [2 cosh(K)]NM
∑
loops

[tanh(K)]length of loop (104)

Where we sum over all closed loops of vertexes with the same spin. In the
high temperature phase the magnetisation at zero field called the spontaneous
magnetisation is zero. The spins in this phase will be in a disordered state with
the spins being randomly distributed over the lattice. The low temperature
expansion is instead (equation 12.5[1]):

Zlow = 2eNMK
∑
loops

e−2K(length of loop) (105)

Where the loops this time are the boundaries of the different spin 1 or -1 regions
that appear for the low temperature expansion. As said the spins in this low
temperature phase will form droplets of a certain size which are local regions
of the lattice where only one spin appears. In this phase the spontaneous mag-
netisation is non-zero with it having a maximum at T = 0 and going to zero as
T → Tc. The two directions of the spontaneous magnetisation have the same
energy and which one appears will depend on the way that the external field
was brought to zero. This ordered phase is also called the ferromagnetic phase.
The overlap of the two different expansions thus occurs when:

e−2K′
= tanhK (106)

At this point we will start finding droplets of all sizes so we can have droplets
inside other droplets. This can be viewed as having both the disordered nature
of the randomly distributed spins in the high temperature phase and the ordered
nature of the droplets in the low temperature phase.

3.2 Ising model as a minimal model

When the Ising model reaches the critical point and we take the continuum
limit the spin operator obtains a non-local element and the operators start
anticommuting (page 442[1]). This then motivates describing the theory with
a massless free fermion which has the action as described in equation (73)(g =
1/(2π) has been used):

S =
1

2π

∫
d2z(ψ̄∂ψ̄ + ψ∂̄ψ) (107)
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The free fermion has a conformal dimension of h = 1/2, as seen in equation
(76) and a central charge of c = 1/2 as seen in equation (78) and (77). This
implies that the minimal model describing the critical Ising model is M(4, 3)
which gives us the following fusion rules:

σ × σ = I+ ϵ (108)

σ × ϵ = σ

ϵ× ϵ = I

With the energy operator ϵ(z, z̄) being a continuum version of the interaction
energy E⟨ij⟩ and I being the identity field (primary field in the conformal family
of the energy-momentum tensor). We also have the following correlators as seen
in equation (74):

⟨ψ(z)ψ(w)⟩ = 1

z − w
(109)

⟨ψ̄(z̄)ψ̄(w̄)⟩ = 1

z̄ − w̄

The spin operator will have the conformal dimension of 1/16 (equation 7.83[1])
and from this we obtain its propagator:

⟨σ(z1, z̄1)σ(z2, z̄2)⟩ =
1

|z1 − z2|
1
4

(110)

By using the fusion rules in equation (108) we can obtain the following operator
product expansions

ϵ(z, z̄)ϵ(w, w̄) ∼ 1

|z − w|2
(111)

ψ(z)σ(w, w̄) ∼ 1

(z − w)
1
2

µ(w, w̄)

ψ̄(z̄)µ(w, w̄) ∼ 1

(z̄ − w̄)
1
2

σ(w, w̄)

Where we have µ as the disorder operator which is the operator dual to the spin
operator. Since the previously used fermionic field was free we could take two
copies of the same system and since they don’t interact this theory obtains a
central charge of c = 1. This then leads to a single bosonic field description for
the critical Ising model. This combined bosonic field φ is described as:

φ(z, z̄) = ϕ(z)− ϕ̄(z̄) (112)

Where

eiϕ(z) =
1√
2
(ψ1 + iψ2) eiϕ̄(z̄) =

1√
2
(ψ̄1 + iψ̄2)
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By doing this we can see that the correlators of the combined spin operator
σ = σ1 × σ2 with itself is (equation 12.59[1]):

⟨σ(z, z̄)σ(w, w̄)⟩2 = N ⟨cos φ
2
(z, z̄) cos

φ

2
(w, w̄)⟩ (113)

The fact that the correlator is squared is because of the two underlying fermionic
theories. The 4-spin correlator when z1 → z2 and z3 → z4 can then be shown
to be

⟨σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)⟩2 = (114)

1

|z12z34|
1
2

[C2
σσI + 2|z12z34|C2

σσϵ ⟨ϵ(z2, z̄2)ϵ(z4, z̄4)⟩]

From this we can calculate the following two constants for correlation functions:

CσσI = 1 Cσσϵ =
1

2
(115)

Using this and the fact that in the high-low temperature duality which occurs
at the critical point, the energy operator changes sign and the spin and disorder
operators are swapped. We can then calculate the following correlator

⟨σ(z1, z̄1)µ(z2, z̄2)σ(z3, z̄3)µ(z4, z̄4)⟩2 = (116)

|z13z24|
1
2

2|z14z23z12z34|
1
2

[
−1 +

|z12z34|
|z13z24|

+
|z14z23|
|z13z24|

]
By taking the limits of z1 → z2 and z3 → z4 we can calculate the exact operator
product expansions of equation (111):

ψ(z)σ(w, w̄) =
eiπ/4√

2(z − w)
1
2

µ(w, w̄) (117)

ψ(z)µ(w, w̄) =
e−iπ/4√
2(z − w)

1
2

σ(w, w̄)

ψ̄(z̄)σ(w, w̄) =
e−iπ/4√
2(z̄ − w̄)

1
2

µ(w, w̄)

ψ̄(z̄)µ(w, w̄) =
eiπ/4√

2(z̄ − w̄)
1
2

σ(w, w̄)

4 Discussion

The goal of the report was to replicate the critical part of the Ising model using
conformal field theory which has been done. The amount of material within
conformal field theory which fell out of the scope of the report was more that
initially thought though since quite a few of the derivations would take too much
time to go trough in any meaningful way. Other applications of conformal field
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theory were also not discussed however they were almost certainly outside of the
scope of this report. If a larger more thorough review of the topic is of interest
the source used in this report Conformal Field Theory is highly recommended
as a very in-depth book about the matter which has a much bigger scope than
this article.

Of the other applications of conformal field theory that one could look deeper
into a good starting point are some of the other more advanced minimal models
like the WZW models have applications in for example explaining the integer
quantum hall effect[3]. String theory is one of the more prominent theories which
makes use of conformal field theory in the modelling of string worldsheets[1].
There is also the concept of combining conformal field theory with supersym-
metry, usually called superconformal field theory.

5 Conclusion

While quantum field theory is a very powerful models in describing the world
around us its flaw of being computationally complicated can be alleviated by
applying conformal symmetry. The theory then obtained has more niche uses
but makes up for it by having much less complicated calculations. Of the ap-
plications of conformal field theory the Ising model is perhaps not the most
interesting but it is still a illustrative example of how a highly advanced theory
based upon a specific symmetry still can find quite a lot of useful applications
in physics.
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