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Advancing traditional strategies for testing hydrological model fitness in a changing 
climate
Andrijana Todorović a,b, Thomas Grabsb and Claudia Teutschbein b

aFaculty of Civil Engineering, Institute of Hydraulic and Environmental Engineering, University of Belgrade, Belgrade, Republic of Serbia; bDepartment 
of Earth Sciences, Program for Air, Water and Landscape Sciences, Uppsala University, Uppsala, Sweden

ABSTRACT
Mitigation of adverse effects of global warming relies on accurate flow projections under climate change. 
These projections usually focus on changes in hydrological signatures, such as 100-year floods, which are 
estimated through statistical analyses of simulated flows under baseline and future conditions. However, 
models used for these simulations are traditionally calibrated to reproduce entire flow series, rather than 
statistics of hydrological signatures. Here, we consider this dichotomy by testing whether performance 
indicators (e.g. Nash-Sutcliffe coefficient) are informative about model ability to reproduce distributions 
and trends in the signatures. Results of streamflow simulations in 50 high-latitude catchments with the 
3DNet-Catch model show that high model performances according to traditional indicators do not 
provide assurance that distributions or trends in hydrological signatures are well reproduced. We there-
fore suggest that performance in reproducing distributions and trends in hydrological signatures should 
be included in the process of model selection for climate change impact studies.
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1 Introduction

Global warming and changes in climate conditions can have 
adverse effects on water resources. They can affect water sup-
ply, irrigation or hydropower production (Xu 1999a), and, 
consequently, economy, safety and ecosystem sustainability 
(Olsson et al. 2016). In many regions around the world, global 
warming is expected to increase the frequency of hazardous 
events, such as floods (Dankers and Feyen 2009, Dankers et al. 
2014) or droughts (Wasko et al. 2021), both of which cause 
substantial economic losses (Roudier et al. 2016). Global 
warming acts together with rapid urbanization and population 
growth in some regions, thereby increasing pressure on water 
resources and potentially leading to water scarcity (Schewe 
et al. 2014). Therefore, adequate strategic planning and imple-
mentation of optimal climate-change adaptation measures are 
of vital socio-economic importance (Gangrade et al. 2020), 
especially with regard to the realization of the Agenda 2030 
Sustainable Development Goals that highlights the importance 
of water as an integral part of human development (United 
Nations Water 2015, WWAP (United Nations World Water 
Assessment Programme) 2015). However, the identification of 
relevant adaptation measures largely depends on reliable 
assessment of climate change impacts on water resources 
(Feng and Beighley 2020).

Climate change impacts on water resources are typically 
assessed by comparing simulated hydrological variables over 
a future period to those simulated in the baseline (i.e. 

historical/present) period (Hakala et al. 2019). Climate change 
impact studies (CCISs) are focused primarily on flows, since 
they represent an integrated catchment response to alterations 
in hydroclimatic processes (Beck et al. 2017). In particular, 
CCISs are concerned with changes in flow statistics (Olsson 
et al. 2016), such as mean, high or low flows (Lehner et al. 
2006, Ludwig et al. 2009, Gosling et al. 2017, Mishra et al. 
2020). Analyses of high flows (e.g. Booij 2005, Kay et al. 2009, 
Dams et al. 2015, Chen and Yu 2016) and low flows (e.g. Parajka 
et al. 2016, Pokhrel et al. 2021) are important because these types 
of events can have adverse and far-reaching consequences for 
societies and ecosystems (Pechlivanidis et al. 2016). Therefore, 
they are essential from the perspective of water resources man-
agement (Farmer et al. 2018). Changes in flow seasonality and 
timings, or duration of some specific flows, are also often ana-
lysed (Cayan et al. 2001, Stewart et al. 2005, Addor et al. 2014, 
Mendoza et al. 2016, Feng and Beighley 2020), since they can be 
significant from an economic and environmental point of view 
(Blöschl et al. 2017, Blöschl et al. 2019b, Wasko et al. 2020). 
These flow regime features (e.g. mean or extreme flows, runoff 
timings and durations) are hereafter referred to as hydrological 
signatures (McMillan 2021).

Future flows are obtained by running a hydrological model 
with the downscaled and bias-corrected outputs of a general 
circulation model (GCM), which is run assuming one or 
several greenhouse gas concentration trajectories, i.e. repre-
sentative concentration pathways (Refsgaard et al. 2014, 
Hakala et al. 2019). The GCM outputs have rather coarse 
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spatial resolution and have to be downscaled to be suitable for 
hydrological modelling (Xu 1999b, Refsgaard et al. 2014, 
Teutschbein et al. 2010). Distributions of the downscaled 
GCM outputs display strong biases compared to their observed 
counterparts (primarily precipitation and temperature); thus, 
they have to be bias-corrected before being used for hydro-
logical simulations (Teutschbein and Seibert 2012, 2013). Bias- 
correction improves the accuracy in reproducing distributions 
of climatic variables, as well as the projected flows (Osuch et al. 
2016, Hakala et al. 2019).

Projected changes in the hydrological signatures depend on the 
assumed trajectories, and on each element in the complex model-
ling chain (Velazquez et al. 2013); thus, they are accompanied by 
uncertainties (Prudhomme and Davies 2009a, 2009b). Extensive 
research on these uncertainties often indicates climate models as 
the key source of uncertainty in the projections (Wilby and Harris 
2006, Minville et al. 2008, Bastola et al. 2011, Najafi et al. 2011, 
Teng et al. 2012, Karlsson et al. 2016, Joseph et al. 2018). However, 
in some cases uncertainties induced from hydrological models can 
be similar or even larger than uncertainties stemming from the 
climate models (Bosshard et al. 2013, Pechlivanidis et al. 2016, 
Eisner et al. 2017). For example, low-flow projections are highly 
sensitive to the choice of hydrological models, presumably due to 
their limited skills in reproducing low flows (Maurer et al. 2010; 
Velazquez et al. 2013, Vansteenkiste et al. 2014, Parajka et al. 2016, 
Gangrade et al. 2020, Huang et al. 2020).

Selection of a hydrological model is a key step in 
a modelling study (Beck et al. 2017, Addor and Melsen 
2019), including CCISs (Lespinas et al. 2014, Seiller et al. 
2017). However, identification of models that are suitable for 
CCISs is quite challenging, as modelling under changing cli-
mate has remained one of the unsolved problems in hydrology 
(Blöschl et al. 2019a). In particular, there is a lack of specific 
guidance on the evaluation of model suitability for CCISs, and 
on model selection (Fowler et al. 2018b). Model suitability for 
CCISs is often assumed to be equal to model transferability 
that implies consistently good performance across various 
climatic conditions encountered in the record period 
(Kirchner 2006, Krysanova et al. 2018, Motavita et al. 2019). 
Transferable models are generally deemed to reasonably repre-
sent runoff generation processes (Euser et al. 2013); thus, 
application of such models is expected to yield credible flow 
projections (Krysanova et al. 2018). Model transferability is 
traditionally appraised by applying a split- or a differential 
split-sample test (DSST) (Klemeš 1986). The latter is consid-
ered more indicative of model performance under contrasting 
climate conditions (Seibert 2003). Recently, several extensions 
of the DSST have been proposed to enable even more rigorous 
evaluation of model transferability (Coron et al. 2012, Thirel 
et al. 2015, Fowler et al. 2018b). However, despite its robust-
ness, DSST can fail to identify transferable models in some 
instances (Fowler et al. 2018b). Furthermore, good perfor-
mance under current conditions (Krysanova et al. 2018), pro-
ven by a DSST or an extension thereof (Fowler et al. 2018a) is 
no guarantee that the model can perform well under future 
climate. This can be attributed to potential modifications of 
catchment processes (Blöschl and Montanari 2010, Chiew 
et al. 2015) or even emergence of processes not encountered 
in the record period (Peel and Blöschl 2011).

Model performance is typically quantified in terms of numer-
ical indicators (efficiency measures), such as Kling-Gupta (Gupta 
et al. 2009) or Nash-Sutcliffe (Nash and Sutcliffe 1970) coeffi-
cients. These performance indicators (hereafter referred to as 
indicators) are based on aggregated statistics of the residuals, i.e. 
differences between observed and simulated flow series (Yilmaz 
et al. 2010). As such, they cannot fully reveal all aspects of model 
performance (Crochemore et al. 2015). For example, these indi-
cators are often skewed towards high flows (Legates and McCabe 
1999). To put more emphasis on low flows, various flow trans-
formations, such as logarithms, are applied (Oudin et al. 2006, 
Fenicia et al. 2007, Santos et al. 2018). Furthermore, numerous 
parameter sets can yield quite similar values of a performance 
indicator (equifinality, Beven and Binley 1992), even though they 
result in different simulated hydrographs, especially outside the 
calibration period (Wagener et al. 2003). In addition to these 
indicators, various hydrological signatures can be used to com-
plement evaluations of model performance and facilitate model 
diagnostics (Yilmaz et al. 2008, Pfannerstill et al. 2014, Topalović 
et al. 2020, McMillan 2021), and can also be used as objective 
functions in the model calibration (Westerberg et al. 2011, Shafii 
and Tolson 2015). Evaluation of model performance in extreme 
flows, such as annual maxima (Mizukami et al. 2019), has been 
proposed in the literature. Studies on this topic show that high 
performance in extreme flows is difficult to achieve because 
model calibration generally leads to a “squeezing” of the flow 
distribution (i.e. distribution tails move towards the central 
value), leading to overestimation of low flows and underestima-
tion of high flows (Farmer et al. 2018).

Notwithstanding the significant progress in the field of 
hydrological model evaluation, the gap between information 
offered by the standard evaluation procedures and tradition-
ally used performance indicators, and the requirements of 
CCISs, still persists. This discrepancy can be attributed to 
different approaches to calibration and evaluation of hydro-
logical and of climate models. The former models are condi-
tioned to reproduce entire series, while the latter are expected 
(and limited) to reproduce distributions over a 30-year period 
(Ricard et al. 2019). Therefore, transferability of hydrological 
models cannot be fully translated into transferability in the 
impact-assessment domain (Chen et al. 2016). Fowler et al. 
(2018a) argued that research on model applicability under 
changing climate conditions is insufficient, and that there is 
still a clear need for novel, more robust model structures, 
innovative calibration strategies and modelling practices in 
general (Gelfan et al. 2020), including novel evaluation proce-
dures that can identify the most suitable models for CCISs 
(Coron et al. 2012, Thirel et al. 2015).

Evaluation of hydrological model suitability for CCISs 
should be focused on hydrological signatures that are pertinent 
to these studies, such as extreme flows or signatures that have 
various eco-hydrological applications (Mendoza et al. 2015, 
Krysanova et al. 2017, 2018, Ricard et al. 2019). This is in 
line with the concept of model “fitness for the said purpose” 
(Xu 1999c). Evaluation of model suitability for CCISs should, 
thus, include distributions of the selected hydrological signa-
tures, because the impact assessments rely on these distribu-
tions, rather than on the entire series. Model performance in 
reproducing distributions of signatures is seldom considered 
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(e.g. Willems 2009), especially its potential links to commonly 
used performance indicators (Coffey et al. 2004). Nevertheless, 
the hydrological community recognized the importance of 
accurate reproduction of signatures’ distributions, so bias- 
correction of simulated flows was suggested to improve this 
aspect of model performance (González-Zeas et al. 2012, 
Farmer et al. 2018, Daraio 2020, Bum Kim et al. 2021). 
Alternatively, hydrological model parameters alone (Ricard 
et al. 2019), or together with parameters of a bias-correction 
transfer function, can be optimised to improve accuracy in 
reproducing signatures’ distributions in the baseline period 
(Ricard et al. 2020). Model ability to reproduce trends in the 
signatures should also be evaluated, since such trends can 
affect the assessment of impacts of future climate (Cunderlik 
and Ouarda 2009, Wasko et al. 2020). Accurate reproduction 
of the trends poses a challenge to hydrological modelling, and 
conflicting conclusions about model performance in this 
respect were reported (Lespinas et al. 2014, Fowler et al. 
2020, Wasko et al. 2021).

In this paper, we hypothesized that commonly used perfor-
mance indicators are not necessarily informative about hydro-
logical model ability to reproduce observed (and potential 
future) distributions and trends in hydrological signatures 
relevant for climate change impact assessments. Such signa-
tures include, for example, flow statistics (e.g. mean, maximum 
and minimum flows), or runoff timings and durations. To test 
this hypothesis, we (1) evaluated model performance in repro-
ducing distributions and trends in series of the signatures, and 
(2) examined relationships between numerous performance 
indicators and model performance in terms of distributions 
and trends in the signatures. This study advances previous 
research on this subject by taking numerous indicators and 
signatures into consideration, and by comprehensively analys-
ing relationships between these two facets of model perfor-
mance. All analyses were conducted for 50 Swedish 
catchments, covering a wide range of hydroclimatic regimes 
in high latitudes.

2 Methodology

2.1 Catchments and data

The study focuses on Sweden, a country in Northern Europe 
that covers an area of approximately 408 000 km2 with an 
elevation range of −2 to 2100 m.a.s.l. (SLU 2015; Fig. 1(a)). 
The country’s area comprises 69% forests, 9% wetlands, 8% 
shrubs and grassland, 8% agriculture, 3% human settlements 
and 3% open land or glaciers. According to the Köppen-Geiger 
classification (Kottek et al. 2006), Sweden features three major 
climate zones: the polar tundra climate zone (ET) in the 
Scandinavian Mountains in northwestern Sweden, the subarc-
tic boreal climate (Dfc) in central and northern Sweden, and 
the warm-summer hemiboreal climate zone (Dfb) in southern 
Sweden (Fig. 1(b)).

Daily precipitation, temperature, and flow series for con-
sidered catchments over the period 1961–2020 were obtained 
from a publicly accessible database (http://vattenwebb.smhi. 
se/), maintained by the Swedish Meteorological and 
Hydrological Institute (SMHI). Geospatial data for the 

streamflow stations were downloaded from SMHI’s Svenskt 
Vattenarkiv (SVAR) database (Eklund 2011, Henestål et al. 
2012). Daily temperature and precipitation series were 
obtained from the SMHI’s spatially interpolated 4 km × 4 km 
national precipitation–temperature grid (Johansson 2000, 
SMHI 2005). Mean catchment precipitation and temperature 
were calculated as an area-weighted average of all grid cells 
partly or fully lying within the catchment boundaries.

Only catchments for which continuous daily series from 
January 1961 to December 2020 were available, and which had 
low percentages of lakes, glaciers and urbanized areas and a low 
degree of regulation (DOR, i.e. reservoir volume relative to the 
mean annual runoff volume from its draining area; Fig. 1(c)) 
were selected for this study. Regarding the DOR criterion, the 
catchments were selected according to the results of preliminary 
analyses, rather than according to a specific threshold. 
Specifically, we selected only those catchments (1) for which 
inspection of hydrographs failed to detect any abrupt changes, 
and (2) for which modelling results, including those presented 
in the relevant literature on Swedish catchments (Girons Lopez 
et al. 2021), showed satisfactory model performance. Such 
catchments were considered not heavily regulated, and, there-
fore, suitable for this study. Only 50 catchments met all the 
criteria above, six of which were nested within larger catch-
ments. Seventeen selected catchments were regulated (princi-
pally with DOR below 15%; Fig. 1(c)), with the dams that were 
built before 1961. Key properties of the selected catchments are 
presented in Fig. 1 and in Table S1 of the Supplementary 
material.

The 50 high-latitude catchments in this study span 
a latitudinal gradient from 56°N to 68°N and thus ade-
quately reflect spatial variations in Swedish climate, topo-
graphy, and land use (Fig. 1(b), Table S1). Over the past 
60 years (1961–2020), annual mean temperature in those 
catchments was on average 2.7°C, with an annual precipi-
tation of 762 mm. In half of the catchments, snowfall 
comprised approximately one third of annual precipitation, 
which is consistent with the relatively low mean annual 
temperatures, which were below 0°C in some catchments 
(Fig. 1(b)). The selected catchments were mainly snow- 
dominated (20 catchments) or transitional (21 catchments), 
while only nine catchments were rain-dominated according 
to the centre of timing (Kormos et al. 2016; Fig. 1(d)). 
Aridity indices, which were mainly lower than 1.5, suggest 
that the selected catchments are predominantly humid 
(UNEP 1992, Wang et al. 2021). Median annual runoff in 
the selected catchments was 379 mm (12 L/s/km2) over the 
record period. However, there were considerable spatial 
variations: specifically, the highest runoff was observed in 
the Scandinavian Mountains in northwestern Sweden, 
characterized by mountain snowmelt, and the lowest in 
southeastern Sweden (Fig. 1(d)), featured by less pro-
nounced flow peaks. Hydrological regimes of the selected 
catchments are characterized by relatively high runoff coef-
ficients (greater than 0.5) and high baseflow rates, i.e. base-
flow index exceeded 0.5 in most catchments. Mean annual 
runoff was positively skewed in most catchments, suggest-
ing a tendency towards occurrences of high flows (Carlisle 
et al. 2017).
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(a)

(b)

(c)

(d)

Figure 1. The selected catchments in Sweden and their properties: (a) locations of the catchments and distributions of their key topographic properties (area, slope, 
elevation and latitude); (b) climate of the selected catchments, and the distributions of mean annual precipitation, percentage of precipitation in the form of snowfall, 
mean annual temperature and the aridity index (ratio of mean precipitation to mean potential evapotranspiration); (c) degree of regulation (DOR, percentage of mean 
annual runoff from the drainage area of the reservoir) in the catchments and distributions of shares of prevailing land-use types, and water surfaces and glaciers; and 
(d) mean annual runoff in the catchments and distributions of the centre of timing (COT, in days of water year; Kromos et al. 2016), runoff coefficients, and annual 
maxima and seven-day minima. The hydroclimatic variables presented in the figure were obtained over water years 1962–2020.
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2.2 The 3DNet-Catch model

In this study, runoff was simulated with the 3DNet-Catch 
model (Todorović et al. 2019). This model requires precipita-
tion, temperature, and potential evapotranspiration series for 
simulations, and observed flows for calibration. Hydrological 
simulations consist of runoff simulations and routing, and can 
allow for correction of precipitation and temperature with 
elevation in semi- or fully-distributed set-ups (Stanić et al. 
2018, Todorović et al. 2019).

2.2.1 Model structure
Runoff is simulated by employing the interception, snow and 
soil routines (see Figure S1 of the Supplementary material). 
Interception is modelled by a single storage with a flexible 
capacity that varies according to the leaf area index. All pre-
cipitation that occurs at temperatures below a particular 
threshold is considered snow. Snowmelt is simulated by apply-
ing the degree-day method with a seasonally varying melt 
factor. Spatial heterogeneity of the snow cover and snowpack 
sublimation are also accounted for. In the 3DNet-Catch model, 
soil is represented by a surface layer and an arbitrary number 
of subsurface layers that can have different parameters, such as 
thickness or porosity. Surface runoff, percolation, and eva-
poration take place in the surface layer (Todorović et al. 
2019). Surface runoff is simulated by applying the Soil 
Conservation Service Curve Number (SCS-CN) method 
(Mishra and Singh 2003), which is combined with continuous 
simulation of soil moisture. Surface runoff can be augmented 
by the excess water from subsurface soil layer(s). Percolation 
into the deeper soil layer is simulated by using an analytically 
solved non-linear outflow equation combined with the 
Brooks-Corey relation (Brooks and Corey 1964). The water 
balance of the subsurface layer(s) comprises percolation from 
above as the inflow, and percolation to a deeper layer, or non- 
linear reservoir, and transpiration as outflows. Both linear and 
non-linear outflow equations are employed for runoff routing 
to a catchment outlet. Surface runoff is simulated with a linear 
outflow equation. Percolation from the deepest soil layer 
represents inflow to the non-linear reservoir with 
a threshold: water that exceeds the threshold is routed by an 
additional linear reservoir and produces subsurface runoff. 
Water below the threshold is routed by employing the non- 
linear equation and produces baseflow.

The chosen 50 catchments were characterized by relatively 
low variations in land use and in elevation span; hence, 
a spatially lumped model set-up was used in this study, without 
any corrections of meteorological variables with elevation. The 
adopted model version has one surface and one subsurface soil 
layer that share the same parameters, except for thickness and 
hydraulic conductivity. This model version has 21 free model 
parameters (see Table S2 of the Supplementary material for 
parameter list and their prior ranges).

2.2.2 Model calibration and evaluation
For each of the 50 catchments, model parameters were estimated 
in the first half of the record period (water years 1962–1991), and 
evaluated in the remainder (water years 1991–2020). 
Additionally, the model was run in the full record period (water 

years 1962–2020). All simulations were conducted at a daily time 
step, with one preceding water year for model warm-up. The 
model parameters were estimated by applying the Generalised 
Likelihood Uncertainty Estimation (GLUE) method (Beven and 
Binley 1992). For each catchment, only one best-performing set 
was chosen out of an initially sampled population of 75 000 from 
the uniform parameter prior distributions generated with the 
Latin hypercube sampling (Keramat and Kielbasa 1997). The 
parameter prior distributions were common to all catchments 
(Table S2). The best set in each catchment was selected according 
to a composite objective function (OF) that includes Kling-Gupta 
efficiency (KGE; Gupta et al. 2009) computed from daily flows 
and inverse-square root transformed flows (see Table 2 for equa-
tions) as follows:

OF ¼ 0:8KGEþ 0:2KGE1=
ffiffiffi
Q
p (1) 

This composite OF was selected to obtain balanced perfor-
mance in high and low flows (Santos et al. 2018, Mizukami 
et al. 2019). Although no optimization algorithm was 
employed in this study, the term “objective function” is never-
theless used to distinguish it from other performance indica-
tors used for the analyses.

To examine impacts of parameter equifinality, we analysed 
the performance of the 50 best behavioural parameter sets in 
one catchment. The best sets were selected from the 75,000 
initially sampled ones, based on their values of OF 
(Equation 1) in the calibration period. As the reference catch-
ment we selected Assembro (Fig. 1(a)), since it is a lowland, 
medium-sized catchment in central-south Sweden with 
catchment characteristics that correspond relatively well to 
the average characteristics of the selected catchment set, 
primarily in terms of hydrological regime features. 
Specifically, this is a transitional catchment (according to 
criteria by Kormos et al. 2016), with a runoff coefficient of 
0.5 and a negligible percentage of lakes (7.4%). The number 
of behavioural sets was set to 50 to make the results of this 
simulation comparable to those conducted in the 50 catch-
ments. The objective of the analyses with the best behavioural 
sets was to examine whether equifinality in terms of perfor-
mance indicator(s) translates into equifinality in performance 
in reproducing distributions or trends in the series of signa-
tures. Posterior parameter distributions (with OF as 
a likelihood measure), or ensembles of simulated flows with 
the behavioural sets, were not considered as testing the 
hypothesis of this study did not necessitate such results.

2.3 Evaluation of model performance in reproducing 
statistical properties of hydrological signatures

2.3.1 Selection of hydrological signatures
To assess the ability of 3DNet-Catch to reproduce hydrological 
signatures relevant for CCISs, we compiled a suite of signatures 
(Table 1). In addition to mean flows (Qmean), the spring flows 
were analysed (Qspring, March through June) to detect changes in 
runoff seasonality, which can be anticipated in high-latitude 
catchments in a warmer future climate due to a decrease in 
snowpack and its duration, and earlier snowmelt (Harder et al. 
2015, Teutschbein et al. 2018, Kiesel et al. 2020).
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Extremely high and low flows of given durations (e.g. 
annual daily maxima or minimum seven-day flows) are often 
used for assessment of flood hazard and environmental flows, 
and are important for consideration of climate change impacts 
on ecological and social systems (Gain et al. 2013). Assessment 
of climate change impacts on design floods is essential for dam 
safety (Bergström et al. 2001); therefore, the hydrological 
model should accurately reproduce distributions of maximum 
flows. Annual minima of given duration, or number of days 
with flows below a certain threshold, are relevant for assess-
ment of allowable water withdrawals, including water supply 
withdrawals, or for the assessment of allowable loads from 
treatment plants, all of which are important for competent 
water management (Richter et al. 1996, Vis et al. 2015). As 
there are considerable uncertainties in simulating such 
extreme flows (Mizukami et al. 2019), the analyses in this 
study were complemented by moderately low and moderately 
high flows, represented by different flow percentiles 
(Gudmundsson et al. 2012).

Impact studies are often focused on changes in flow dura-
tions and timings that represent runoff seasonality (McMillan 
2021). Consequently, model performance in reproducing run-
off timing should be preferred over model efficiency in pre- 
defined subperiods (seasons), since these periods can vary over 
the years, especially under changing climate. Runoff timings 
are commonly computed from ordinal day of a calendar year 

and converted to a corresponding angular value between 0 and 
2π (Cayan et al. 2001). Alternatively, runoff timings can be 
linearized if computed according to water years starting on 
1 October (Wasko et al. 2020), which is the approach adopted 
in this study. Details on the selected hydrological signatures 
are presented in Table 1.

2.3.2 Evaluation of model performance in reproducing 
distributions of the hydrological signatures
In some studies, model performance in extreme flows was 
conducted by comparing some specific flow quantiles obtained 
from observed and simulated flows, such as 100-year floods 
(Dankers et al. 2014, Hoang et al. 2016). However, fitting 
a distribution, which includes selection of a distribution func-
tion and parameter estimation method, significantly affects 
estimated quantiles, particularly for high return periods, and 
can, therefore, affect reasoning on model performance in 
reproducing distributions of signatures (Dankers and Feyen 
2009). Therefore, such an approach was not adopted here, and 
model evaluation was limited to a comparison of the series 
signatures obtained from observed and simulated flows.

Model ability to reproduce distributions of the selected 
signatures was conducted in (1) various catchments with dif-
ferent hydrological regimes, and (2) different periods. This set- 
up was adopted to reveal whether potential relationships 
between performance indicators and model ability to 

Table 1. Hydrological signatures (flow statistics, and runoff timings and durations) used for model evaluation.

Hydrological signature Description Reference

Mean annual flow, Qmean Mean flows in a water year.
Mean spring flow, Qspring Series of mean flows in the spring (1 March through 31 May) over the simulation 

period.
(Chen et al. 2017)

1-, 5- and 30-day maximum annual flows,  
Qmax,d for d = 1, 5 and 30

Series of annual maxima obtained from daily flows averaged over 5 and 30 days 
in each water year of the simulation period.

(Dankers et al. 2014, Vis et al. 2015)

1-,3-, 7-, 10-, 20-, 30- and 90 day minimum 
flows, Qmin,d for d = 1, 3, 7, 10, 20 and 
30

Series of minimum flows averaged over a given number of days (d) obtained in 
each water year of the simulation period.

(Richter et al. 1996, Olden and Poff 
2003, Garcia et al. 2017)

10th and 90th flow percentiles in wet 
seasons, Qwet,10p and Qwet,90p

Series of specific flow percentiles obtained in each water year of the simulation 
period. The wet season is defined as the period from 1 April through 
30 September.

(Yarnell et al. 2020)

10th and 90th flow percentiles in dry 
seasons, Qdry,10p and Qdry,90p

Series of specific flow percentiles obtained in each water year of the simulation 
period. The dry season is defined as the period from 1 October through 
31 March.

(Yarnell et al. 2020)

Timing of the centre of mass of annual 
flow, COM

Timing is computed from daily flows Qi and for each year in a simulation period:  

COM ¼
P

i Qi tiP
i Qi  

where ti represents the ordinal day of a water year.

(Mendoza et al. 2015, Kormos et al. 
2016)

Spring onset (spring “pulse day”), SPD Spring onset is the ordinal number of the day in which the negative difference 
between the streamflow mass curve and the mean streamflow mass curve is 
the greatest. 
Spring onset series is obtained from values in each water year of a simulation 
period.

(Cunderlik and Ouarda 2009)

High-flow frequency, HFF Series of mean number of days in a water year with flows greater than 5 times the 
mean observed flow in the simulation period. In the literature, flows greater 
than nine times the mean observed flow are used for high-flow frequency 
computations. Since the catchments considered in this paper exhibited 
relatively low flow variability, this threshold was reduced to 5.

(Westerberg and McMillan 2015, 
Krysanova et al. 2017)

Low-flow frequency, LFF Series of mean number of days in a water year with flows smaller than 20% of the 
mean observed flow in the simulation period.

(Nicolle et al. 2014, Westerberg and 
McMillan 2015, Krysanova et al. 
2017)

Timing of the maximum annual flow, TQmax Ordinal days in which maximum annual flow occurred, obtained in each 
water year of the simulation period.

(Richter et al. 1996)

Timing of the minimum annual flow, TQmin Ordinal days in which minimum annual flow occurred, obtained in each 
water year of the simulation period. If there are several consecutive days with 
the same minimum flows, the mean timing of these days in a water year is 
adopted.

(Vis et al. 2015, Parajka et al. 2016)
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reproduce the distributions remain consistent across hydro-
logical regimes and periods (Potter et al. 2010, Hannaford et al. 
2013). Additionally, the analyses were repeated with numerous 
behavioural parameter sets (Beven and Binley 1992) in one 
catchment to examine whether equifinality in terms of perfor-
mance indicators also implies equifinality in reproducing dis-
tributions of signatures.

The Wilcoxon rank sum (WRS) test (Conover 1999) was 
employed to evaluate model ability to reproduce distributions 
of the observed hydrological signatures. WRS is a nonparametric 
test used to compare continuous distributions of two samples, 
which do not necessarily have to be of the same size (Asadzadeh 
et al. 2014). The test does not imply any assumptions on the true 
form of probability distributions of the analysed variables, i.e. the 
two samples do not have to be normally distributed or equal in 
size (Kottegoda and Rosso 2008), and they can contain ties 
(García-Portugués 2022). The null hypothesis (H0) of the WRS 
test is that the medians of the samples’ distributions are equal, 
with the underlying assumption that the two distributions have 
the same shape and variance (Montgomery and Runger 2003). 
The WRS test statistic, z, is considered normally distributed if the 
sample size is greater than 15 (Kottegoda and Rosso 2008).

To evaluate model ability to reproduce distributions, 
annual series of the selected hydrological signatures (Table 1) 
were obtained from daily observed and simulated flows. These 
series were compared by applying the WRS test: in the case 
that the test null hypothesis was not rejected at a 5% level of 
significance, we assumed that the model reproduced distribu-
tion of a signature to a satisfactory degree.

2.3.3 Evaluation of model performance in reproducing 
trends in hydrological signatures
Model performance in reproducing trends has become an 
important part of model evaluation, particularly in the context 
of CCISs (Lespinas et al. 2014, Pechlivanidis et al. 2016, 
Hattermann et al. 2017). However, a common, systematic 
approach to evaluating this aspect of model performance has 
not been adopted yet. In this paper, a model was considered to 
properly reproduce a trend in a series if either (1) trends in the 
series obtained from both observed and simulated flows were 
not statistically significant, or (2) trends in both series were 
statistically significant and had the same sign. Otherwise, we 
considered that the model did not properly reproduce trends.

The Mann-Kendall test (Kendall 1938, Mann 1945) with 
a 5% of level of significance was applied to identify statistically 
significant trends in the hydrological signatures. The test was 
run in all 50 catchments (again for the calibration, evaluation 
and full record periods), as well as for the model runs with the 
50 best parameter sets in the Assembro catchment over the 
calibration period. Serial autocorrelation can affect the results 
of this test (e.g. Fatichi et al. 2009, Harder et al. 2015) and, 
therefore, all considered series were tested for the presence of 
autocorrelation by applying the Box-Ljung test (Ljung and 
Box 1978) prior to testing for the presence of a trend. 
Thereafter, the Sen’s slope estimator was used to determine 
the sign of a trend (Sen 1968).

2.4 Relationships between performance indicators and 
hydrological signatures

2.4.1 Selection of performance indicators
Numerous performance indicators can be used to quantify 
model efficiency (Crochemore et al. 2015), and an entire set 
of indicators can be attributed to every simulated flow series. 
In the present study, 18 indicators were chosen to represent 
model performance (Table 2), including indicators focused 
on performance in high flows (e.g. KGE or Nash-Sutcliffe 
(NSE) coefficients), low flows (KGE or NSE computed from 
transformed flows or low-flow segments of flow duration 
curves), runoff volume (VE) or dynamics (coefficient of 
determination R2). Indicators based on the squared residuals, 
such as NSE, and on absolute values of residuals, such as 
index of agreement (IA), were included (Willmott et al. 
2012), as well as indicators computed from flow duration 
curve segments (Pfannerstill et al. 2014, Todorović et al. 
2019). All selected indicators are dimensionless, with higher 
values suggesting better model performance. A vValue of 1 
indicates perfect fit according to all selected indicators, and 
almost none of the indicators has a lower limit (except for R2, 
which takes values between 0 and 1).

Selection of the indicators was conditioned by the set-up of 
analyses of their informativeness about model ability to repro-
duce statistical properties of signatures. Specifically, some ana-
lyses within this study necessitated a monotonic relationship 
between the value of the performance indicator and model 
efficiency, and could not be conducted with e.g. percent bias in 
runoff volume, which can take positive and negative values, and 
where a value of 0 indicates a perfect fit. The selected perfor-
mance indicators were calculated separately for each of the 50 
catchments for the calibration, evaluation and full record peri-
ods, as well as for the 50 best model runs in the Assembro 
catchment in the calibration period (GLUE).

2.4.2 Informativeness of performance indicators about 
model performance in reproducing distributions of 
hydrological signatures
To analyse whether a specific performance indicator can pro-
vide insights about the model ability to reproduce distributions 
of hydrological signatures, we divided the simulations in the 50 
catchments (separately for the calibration, evaluation and full 
record periods), as well as the simulations conducted with the 
50 best parameter sets in Assembro, into two groups. One 
group comprised simulations that properly reproduced distri-
butions according to the WRS test, and the second group 
included simulations that did not (i.e. H0 of the WRS test 
was rejected at a 5% level of significance). The values of 
a performance indicator of the two groups were then com-
pared by applying another WRS test (for the sake of clarity, this 
particular test is denoted the WRS-2 test hereafter). Rejection 
of H0 at a 5% level of significance suggests that the median 
values of the performance indicators of the two groups were 
different. The alternative hypothesis of the WRS-2 test stated 
that the median of the indicators of the first group of simula-
tions was greater than the median of the second group. As 
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larger indicator values suggest better model performance, 
a rejection of the null hypothesis in favour of this alternative 
hypothesis suggests that higher indicator values would be 
indicative of better model performance in reproducing distri-
butions of the selected signature. In other words, rejection of 
H0 of the WRS-2 test would suggest that a particular indicator 
can be informative about model ability to reproduce the 
distributions.

Further examinations of the relationships between per-
formance indicators and model performance in reprodu-
cing distributions were based on Pearson correlation 
coefficients between values of indicators and absolute 
values of the WRS test statistic, z. High absolute values 
of the WRS test statistic suggest that it is within the 
rejection region and, thus, that the distributions are not 
well reproduced. For example, test statistics greater than 
1.96 (or smaller than −1.96) imply rejection of H0 at the 
5% level of significance (Kottegoda and Rosso 2008). Since 
this is a two-tailed test, absolute values of the test statistic 
are analysed. Strong negative correlations between the 
values of indicators and the absolute z values would sug-
gest that higher indicator values would be informative 

about model ability to simulate the distributions of signa-
tures (Fig. 2(a)). Here, correlation coefficients below −0.7 
were considered an indication of strong correlation 
(Blasone et al. 2007). Weak negative or positive correla-
tions would suggest that the indicators are not informa-
tive about model performance regarding distributions of 
signatures (Fig. 2(b)).

2.4.3 Informativeness of performance indicators about 
model performance in reproducing trends in hydrological 
signatures
To examine whether a specific indicator was informative in terms 
of model ability to reproduce trends, we followed the same logic 
as for the analysis of the distributions. The set of simulations was 
divided into two groups: one group containing the simulations 
that were able to reproduce trends according to the set criteria 
and one group containing all other simulations. The indicator 
values of the two groups were again compared using the WRS-2 
test. Rejection of the WRS-2 test null hypothesis at a 5% level of 
significance in favour of the alternative hypothesis would suggest 
that higher indicator values could be used as an indication of 
model ability to reproduce trends in a simulation period.

Table 2. Performance indicators used for model evaluation.

Notation Description of performance indicator and references Equation

KGE ● Kling-Gupta efficiency coefficient is computed from:
● daily flows, KGE (Gupta et al. 2009);
● reciprocal of root-transformed daily flows, KGE1/√Q, to put more emphasis on low flows 

(Santos et al. 2018);
● daily flows in a representative year, KGEwy, obtained by averaging daily flows on a specific 

calendar day over the entire simulation period (Schaefli et al. 2014)

KGE ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � 1ð Þ
2
þ α � 1ð Þ

2
þ β � 1ð Þ

2
q

r ¼
P N

i¼1
Qobs;i � �Qobsð Þ Qsim;i � �Qsimð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P N

i¼1
Qobs;i � �Qobsð Þ

2
Qsim;i � �Qsimð Þ

2
q

α ¼
ŜQsim

ŜQobs

; β ¼
�Qsim
�Qobs

NPKGE Non-parametric formulation of KGE indicator (Pool et al. 2018).  
It is computed as KGE, with Spearman instead of Pearson correlation coefficient, and with the 

ratio of standard deviations estimated from FDCs.

NPKGE ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rSpearman � 1
� �2

þ αNP � 1ð Þ
2
þ β � 1ð Þ

2
q

αNP ¼ 1 � 1
2

PN

i¼1

FDCsim;i

N�Qsim
�

FDCobs;i

N�Qobs

�
�
�

�
�
�

NSE Nash-Sutcliffe efficiency coefficients (Nash and Sutcliffe 1970) are computed from daily (NSE) 
and log-transformed daily flows (NSElogQ). NSE ¼

P N

i¼1
Qobs;i � Qsim;ið Þ

2

P N

i¼1
Qobs;i � �Qobsð Þ

2

LME Liu mean efficiency represents a modification of KGE computed from daily flows (Liu 2020).
LME ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 � 1ð Þ
2
þ β � 1ð Þ

2
h ir

k1 ¼ r
ŜQsim

ŜQobs

¼ αr

R2 Coefficient of determination (Krause et al. 2005).
R2 ¼

P N

i¼1
Qobs;i � �Qobsð Þ Qsim;i � �Qsimð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P N

i¼1
Qobs;i � �Qobsð Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P N

i¼1
Qsim;i � �Qsimð Þ

2
q

VE Volumetric efficiency (Criss and Winston 2008).
VE ¼ 1 �

P N

i¼1
Qsim;i � Qobs;ij j

P N

i¼1
Qobs;i

IA Index of agreement (Krause et al. 2005).
IA ¼ 1 �

P N

i¼1
Qobs;i � Qsim;ið Þ

2

P N

i¼1
Qobs;i � �Qobsj j� Qsim;i � �Qobsj jð Þ

2

LE Lindström efficiency coefficient (Seibert and Vis 2010).
LE ¼ NSE � 0:1

P N

i¼1
Qobs;i � Qsim;ij j

P N

i¼1
Qobs;i

KGEFDC KGE computed from:
● entire flow duration curve (KGEFDC) (e.g.Todorović et al. 2019); and
● different flow duration curve (FDC) segments.

The FDC segments are set after recommendations by Pfannerstill et al. (2014). Segments are 
obtained from flows that are exceeded given the percentage of time of the simulation 
period.

FDC segments considered:
● extremely high flows exceeded up to 5% of the time 

(KGE0–5),
● high flows: exceeded 5–20% of the time (KGE5–20),
● mean flows, exceeded 20–70% of the time (KGE20–70),
● low flows, exceeded 70–95% of the time (KGE70–95),
● very low flows, exceeded 95–100% of the time (KGE95– 

100),
● overall low flows, exceeded 70–100% of the time 

(KGE70–100).

* Qobs – observed daily flows; Qsim – simulated daily flows; �Qobs – mean observed flow over the simulation period; �Qsim – mean simulated flow over the simulation 
period; N – length of a simulation period (in days); ŝ – standard deviation; FDC – flow duration curve.
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3 Results

3.1 Hydrological model: overall performance of 
3DNet-Catch

For each catchment, one parameter set that yielded maximum 
values of the composite OF (Equation 1), which included KGE 
values computed from daily flows and reciprocals of square root- 
transformed flows (KGE1/√Q), was selected. The median values of 
the OF across the catchments varied between 0.71 (evaluation) 
and 0.76 (calibration). The minimum values of the OF ranged 
between 0.41 (evaluation) and 0.73 (GLUE), while the maximum 
values ranged between 0.75 (GLUE) and 0.88 (calibration). No 
clear relationship between the values of the OF and the geogra-
phical location of the catchments was found (Fig. 3). For example, 
slightly lower values of the OF were obtained in a few catchments 
in the northwest of Sweden at high elevations, but also in a few 
catchments in mid and southern Sweden. The highest values of 
the OF were obtained in a few catchments in the northeast and 
southwest of the country. Performance in the smaller, nested 
catchments was quite similar to performance in the larger catch-
ments encompassing them (Table S3 of the Supplementary mate-
rial). Ranges of the OF values were rather consistent across the 
three simulation periods, while low variation across the GLUE 
behavioural sets suggests strong equifinality.

The median values of the majority of the performance 
indicators were satisfactory (Fig. 4), including KGE and 
KGE1/√Q, generally suggesting a fair balance between the two 
parts of the OF. The highest median values (>0.9) were 
obtained for the IA across the simulations. Good performance 
was also achieved in terms of VE, showing that the model can 
accurately simulate runoff volume. The median VE values 
ranged from 0.92 in the full record period to 0.95 in the 
GLUE simulations. Another indicator with quite high values 
was KGEfdc (the median values ranged between 0.88 and 0.92), 
suggesting that the model, on average, accurately reproduced 
the flow duration curve (FDC) in all simulation periods. The 
poorest performance, on average, was obtained in reproducing 
the lowest-flow FDC segment (KGE95–100), especially in the 
GLUE simulations that yielded negative medians of this indi-
cator. The median values of all the other indicators exceeded 
0.50; however, there were some variations across the simula-
tions: the highest median performance was obtained in the 

calibration period, while performance in the remaining simu-
lations was slightly lower in most indicators. A few exceptions 
in this regard included KGE computed over two low-flow 
segments (namely, KGE95–100 and KGE70–100), which yielded 
very slightly higher values in the evaluation period.

The values of high percentiles of the indicators in Fig. 4 
showed that good performance could be obtained for all the 
indicators, with exception of KGE95–100 in the GLUE simula-
tions. High percentiles of Nash-Sutcliffe coefficients (NSE, 
NSElogQ) and KGE computed from the transformed flows 
(also shown in panels g–i of Fig. 3) were slightly lower in 
comparison to the other indicators. In contrast, the low per-
centiles of the indicators showed that the model in some 
catchments or with some behavioural parameter sets yielded 
poor performance on many indicators, especially those related 
to the extreme flows (KGE computed over the highest and 
lowest FDC segments, KGE0–5, KGE95–100). An exception in 
this regard is IA, which consistently took rather high values. It 
should be emphasized that a high spread between low and high 
percentiles of the indicators was desired in this study in order 
to enable analyses of relationships between the indicators and 
model performance in reproducing distributions or trends in 
signatures. On the other hand, low variations across the indi-
cator values of the GLUE sets were essential to enable proper 
analyses of equifinality impacts on model performance in 
reproducing distributions or trends in the series of signatures.

3.2 Model performance in reproducing statistical 
properties of hydrological signatures

3.2.1 Model performance in reproducing distributions of 
the hydrological signatures
Distributions of the hydrological signatures were, on average, well 
reproduced by the model in most catchments (Fig. 5). High 
performances were obtained in mean flows (Qmean), and for 
most signatures related to high flows (30-day annual maxima: 
Qmax,30, high flow percentiles in the wet season: Qwet,90p, high-flow 
frequency: HFF, timing of annual maxima: TQmax), particularly in 
the GLUE simulations. The poorest performance was obtained in 
reproducing distributions of signatures related to low flows, espe-
cially in the dry season percentiles (Qdry,10p and Qdry,90p). For 
example, none of the 50 behavioural GLUE sets in the Assembro 

Figure 2. Illustration of relationships between performance indicator values and the absolute values of the Wilcoxon rank sum (WRS) test statistic. Larger values of 
performance indicators imply higher model efficiency, while larger absolute values of the test statistics imply rejection of the WRS test null hypothesis, i.e. the 
signatures obtained from the observed and simulated flows have statistically different medians. Panel (a) illustrates a performance indicator that can be considered 
informative about model ability to simulate the distribution of a signature, while panel (b) illustrates a non-informative indicator.
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catchment could reproduce these signatures. Performances in 
reproducing hydrological signatures were, on average, only 
slightly higher in the calibration period compared to the evalua-
tion or full record periods. The greatest drop in performance was 
obtained for spring flows (Qspring), followed by 90-day annual 
minima (Qmin,90). Conversely, the performance in reproducing 
1-day low flow (Qmin,1) and its timing (TQmin) was better in the 
evaluation period than in the calibration period.

3.2.2 Evaluation of model performance in reproducing 
trends in hydrological signatures
Most of the selected signatures did not exhibit significant trends 
at the 5% level of significance according to the results of the 
Mann-Kendall test (Fig. 6 and Fig. S2 of the Supplementary 
material). Significant trends mostly emerged over the full record 
period (1962–2020), while they could not be detected in the two 
subperiods. Trends in mean and spring flows suggest that many 

of the selected catchments could become wetter, mainly in the 
north at quite high latitudes. Significant trends in annual max-
ima were detected in few catchments, as opposed to mostly 
increasing trends in annual minima detected in many catch-
ments, particularly in the full record period. Concerning low- 
flow frequency (LFF), significantly increasing as well as signifi-
cantly decreasing trends were detected, with a shift from decreas-
ing trends in the northern catchments to increasing trends in the 
southern ones. Decreasing trends that were detected in spring 
pulse day (SPD) and timing of annual maxima (TQmax) suggest 
shifts in the annual runoff cycle that could be attributed to earlier 
snowmelt.

Trends in the series of selected signatures (or the lack of trends) 
were well reproduced in most catchments in the three simulation 
periods (Fig. 7), according to the methodology adopted. Model 
performance in this regard was quite high in calibration and 
evaluation, with a slight decrease in the full record period, 

Figure 3. Model performance across the 50 catchments in the calibration (left), evaluation (mid) and full record periods (right panels). Model performance is quantified 
in terms of the objective function (OF, Equation 1; panels a–c), and Kling-Gupta efficiency coefficients obtained from daily flows (KGE; panels d–f) and log-transformed 
flows (KGE[1/√Q]; panels g–i).
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primarily in annual minima and in the wet season flow percentiles. 
Performance of the GLUE behavioural parameter sets in reprodu-
cing trends was exceptionally high across all signatures, including 
daily minima (Qmin,1) and the 10th flow percentile in the wet 
season (Qwet,90p), which is the only observed signature that exhib-
ited a significant trend over the full record period in Assembro 
catchment. Low variations in performance in reproducing trends 
of signatures across the GLUE behavioural parameter sets suggest 
that equifinality in performance indicators can also imply equifin-
ality in reproducing trends. The performance in reproducing 
trends was not straightforwardly related to the presence of sig-
nificant trends in the observed signatures. In other words, a high 

percentage of catchments with significant trends in an observed 
signature did not imply lower performance in reproducing trends 
in that signature.

3.3 Relationships between performance indicators and 
hydrological signatures

3.3.1 Informativeness of performance indicators about 
model performance in reproducing distributions of 
hydrological signatures
None of the selected performance indicators alone was informa-
tive about the model ability to reproduce the distributions of all 

Figure 5. Model performance in reproducing distributions of the selected hydrological signatures (Table 1). Cell values are percentages of successful simulations, i.e. 
percentage of catchments in the calibration (CAL), evaluation (EVAL) or full record period (FRP), or percentage of the behavioural parameter sets in the Assembro 
catchment in the calibration period (GLUE) that well reproduced the distributions of the signatures. The last column in the heat map shows the average performance of 
the simulation across all signatures.

Figure 4. Model performance in the 50 catchments in the calibration, evaluation and full record periods, and performance of the 50 best parameter sets in the 
Assembro catchment in the calibration period. Boxes indicate 25th, 50th and 75th percentiles, while the whiskers stretch to the point nearest to 1.5 times the 
interquartile range from the boxes. Outliers and negative values are omitted from the figures for clarity. Abbreviations for the performance indicators are explained in 
Table 2.

1800 A. TODOROVIĆ ET AL.



signatures across different periods (Fig. 8). At the same time, the 
overall informativeness varied considerably across the indica-
tors, with noticeably lower informativeness about the signatures 
related to low flows. The signatures that resulted in significantly 
different indicator values in most cases were mean flows, annual 
maxima of various durations, the 90th wet season flow percen-
tile, and annual maxima timings, although there were significant 
variations in these patterns across the four simulations. Many 
indicators were informative about model performance in repro-
ducing distributions of mean flows and annual maxima and 
minima in the three simulation periods, but these patterns 
could not be detected in the GLUE simulations. Such patterns 
included e.g. informativeness of KGE computed from daily flows 
and transformed flows about annual maxima and minima, 
respectively. The few relationships that were consistent across 
the four simulations include: Liu mean efficiency (LME), R2 and 
VE, and the 90th wet season flow percentile (Qwet,90p), KGE 
computed from the entire FDC and Qwet,90p and 30-day annual 
maxima, and KGE95-100 and 20-day annual minima.

Links between the performance indicators and model 
ability to reproduce distributions of the signatures were 

also examined using the Pearson correlation coefficient 
between the values of indicators and absolute values of 
WRS test statistic z. Strong negative correlations, with 
Pearson correlation coefficients smaller than – 0.7 (follow-
ing Blasone et al. 2007), can suggest whether a specific 
indicator is related to model ability to reproduce distribu-
tions of a selected signature. Such correlations were 
detected in only a few indicators for mean annual flows 
in the four simulations (Fig. 9), including VE, IA, and KGE 
computed from the entire FDC. There were no relation-
ships that resulted both in rejection of the WRS-2 test null 
hypothesis and in a correlation coefficient smaller than 
−0.7 across all the simulations, both of which would 
imply informativeness of a performance indicator about 
model ability to reproduce distribution of a signature.

3.3.2 Informativeness of performance indicators about 
model performance in reproducing trends in hydrological 
signatures
An initial test for autocorrelation in the data with the Box- 
Ljung test revealed no significant autocorrelation in the 

Figure 6. Percentage of catchments in which significant trends were detected in the selected hydrological signatures (Table 1) according to the results of the Mann- 
Kendall test in the calibration (CAL), evaluation (EVAL) and full record periods (FRP). The signatures were computed from observed flows.

Figure 7. Model performance in reproducing trends in the selected hydrological signatures (Table 1). Cell values in the heat map are percentages of successful 
simulations, i.e. percentage of catchments in the calibration (CAL), evaluation (EVAL) or full record period (FRP), or percentage of the behavioural parameter sets in the 
Assembro catchment in the calibration period (GLUE) that successfully reproduced trends (or the lack of trends) in hydrological signatures. The last column in the heat 
map shows average performance across all signatures.
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considered series of signatures. Comparisons of the simula-
tions that properly reproduced trends in the hydrological 
signatures to those that did not suggest that the indicators 
mostly were not informative about model performance in 
this respect, according to the WRS-2 test (Fig. 10). However, 
there were differences across the simulations. For example, 
KGE calculated from the entire FDC (KGEFDC) was informa-
tive about performance in reproducing trends in a few signa-
tures in the calibration and full record periods, but not over the 
evaluation period. No consistent relationship between the per-
formance indicators and model performance in reproducing 
the trends across the simulations was detected.

4 Discussion

The specific objectives of this research were twofold: (1) to 
evaluate whether hydrological models can reproduce distribu-
tions and trends in series of hydrological signatures relevant 
for climate change impact studies, and (2) to examine whether 
commonly used performance indicators can be informative 
about model ability to reproduce these distributions and 
trends. All analyses were conducted in 50 high-latitude 

catchments with different runoff dynamics, and over different 
periods to test whether potential relationships between the 
indicators and the model ability to reproduce the distributions 
or trends remain consistent. To analyse the impact of equifin-
ality, all analyses were conducted with numerous behavioural 
parameter sets (Beven and Binley 1992) in one catchment.

4.1 Hydrological model: overall performance of 
3DNet-Catch

On average, satisfactory values of different performance indi-
cators were obtained across the simulations. The best perfor-
mance was obtained in terms of index of agreement (IA), 
which is based on the absolute values of the residuals. This 
suggests that this indicator has a low sensitivity to discrepan-
cies between simulated and observed flows and, as such, is not 
sufficiently informative about model performance. Similar 
conclusions were reported by Krause et al. (2005). Slightly 
lower performance, on average, was shown by NSE coeffi-
cients, Lindström efficiency coefficient and KGE computed 
from the transformed daily flows and from the highest-flow 
and low-flow segments of FDCs, all of which are related to 

)0202-1991(doirePnoitaulavE)1991-2691(doirePnoitarbilaC
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Figure 8. Informativeness of performance indicators (Table 2) about model ability to reproduce distributions of the hydrological signatures (Table 1) in different 
simulations. Values of 1 in the heat maps indicate that the two groups of simulations (i.e. simulations in which the distributions were well reproduced versus the 
remaining ones) have significantly different indicator values, suggesting that a specific indicator can be informative about model performance in reproducing the 
distributions. Values of −1 mean that the two groups of simulations result in similar values of an indicator, suggesting that the indicator is not informative about model 
ability to reproduce the distributions. A value of 2 (−2) suggests that the distributions of a signature were reproduced in all (none) of the catchments or by the 
behavioural parameter sets (GLUE), respectively.
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model performance in extreme flows (Oudin et al. 2006, 
Pfannerstill et al. 2014). Values of KGE computed over the 
very low-flow FDC segment that was exceeded 95–100% of 
time (KGE95–100) were systematically lower than KGE com-
puted from low-flow and overall low-flow FDC segments that 
were exceeded 70–95% and 70–100% of time, respectively. 
This result shows that partitioning the low-flow segment of 
FDC into two subsegments (as suggested by Pfannerstill et al. 
2014) contributes to a more comprehensive model evaluation.

Overall, the results demonstrated that it is challenging to 
achieve good performance in extreme flows, particularly in low 
flows during dry periods (Vaze et al. 2010, Zhang et al. 2015, 
Fowler et al. 2016). Poor performance over dry periods has 
been frequently reported in the literature, for example in 
studies dealing with Australian catchments affected by the 
Millennium drought (e.g. Thirel et al. 2015, Fowler et al. 
2020, Topalović et al. 2020). No substantial differences in 
model performance across the three simulation periods were 
detected in this study, although there were significant varia-
tions in the indicators across the catchments in each simula-
tion period, as opposed to the GLUE behavioural sets 

characterized by a strong equifinality. These results suggest 
that model suitability for CCISs should preferably be evaluated 
in different catchments, rather than in a single catchment with 
numerous parameter sets.

Variation in model performance across the catchments 
could not be attributed to variations in their properties in 
this study. As shown in Fig. 3, model performance could not 
be linked to e.g. catchment area, latitude, elevation or DOR 
(Fig. 1(c)). For example, similar performance was exhibited 
by catchments of various degrees of regulation, as well as in 
unregulated ones (e.g. catchments in the southeast of 
Sweden). The lack of a clear relationship between model 
performance and DOR can be explained by the fact that the 
vast majority of the selected catchments were unregulated or 
had rather low DOR, or that the reservoirs are managed in 
a way that does not considerably alter the natural runoff 
regime, and could be properly reproduced by the model. 
Slightly poorer performance was obtained in few high- 
elevation catchments in the northwest of Sweden, 
characterized by a higher percentage of snowfall and high 
runoff coefficients. High runoff coefficients in these 

)0202-1991(doirePnoitaulavE)1991-2691(doirePnoitarbilaC
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Figure 9. Pearson correlation coefficients between the values of performance indicators (Table 2) and absolute values of the Wilcoxon rank sum test statistic, z, 
obtained in different simulations. Strong negative correlations suggest that a specific indicator can be informative about the model ability to reproduce the distribution 
of a hydrological signature (Table 1), as opposed to weak negative or positive correlations.

HYDROLOGICAL SCIENCES JOURNAL 1803



catchments could be partly attributed to uncertainties in 
precipitation data in these regions caused by spatial interpo-
lation from a sparse rain gauge network (Van Der Velde et al. 
2013, 2014). Uncertainties in precipitation data are common, 
especially if precipitation occurs in the form of snowfall 
(Grossi et al. 2017), during high-intensity rainfall events 
(McMillan et al. 2011), or in high-elevation regions (Wang 
et al. 2016). Despite permanent development of spatial inter-
polation methods and processing of precipitation data, it is 
still a great challenge to obtain datasets of high quality and 
resolution (Hu et al. 2019). Consequently, high runoff coeffi-
cients are encountered in many catchments globally, such as 
catchments in the Pacific Northwest in the US (e.g. Addor 
et al. 2017). Bearing in mind the objectives of this study, 
a wide range of hydroclimatic regimes, ranging from snow-
melt to rainfall driven, as well as those in regulated catch-
ments, and a wide range of values of performance indicators 
were all essential for reaching valid conclusions on relation-
ships between the two facets of model performance. 
Therefore, the collection of catchments across high-latitude 
climate is regarded as adequate for testing the hypotheses in 
this study. Nevertheless, further research is needed to thor-
oughly examine relationships between model performance 

and catchment properties (which was beyond the scope of 
this study), preferably with an extended collection of catch-
ments, including those from other geographical regions with 
different streamflow regimes, and with other hydrological 
models.

4.2 Evaluation of model ability to reproduce statistical 
properties of hydrological signatures

Model ability to reproduce distributions and trends varied con-
siderably across the hydrological signatures and the simulations. 
The lowest efficiency was obtained in reproducing distributions of 
signatures related to low flows (annual minima of various dura-
tions, dry-season percentiles, timings of annual minima), which 
was consistent with the conclusions reached from the indicator 
values. This was also confirmed by the fact that slightly better 
performance was obtained during the evaluation period than in 
the calibration period in reproducing distributions of annual 
minima (Qmin,1) and their timings (TQmin), as well in terms of 
KGE95–100 and KGE70–100. The model generally reproduced trends 
in the series quite well, irrespective of the presence of significant 
trends in the observed series of signatures. However, statistically 

)0202-1991(doirePnoitaulavE)1991-2691(doirePnoitarbilaC
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Figure 10. Informativeness of performance indicators (Table 2) about model ability to reproduce trends in series of hydrological signatures (Table 1) in different 
simulations. Values of 1 in the heat maps indicate that the two groups of simulations (i.e. simulations in which the trends were well reproduced versus the remaining 
ones) have different indicator values, which can suggest that a specific indicator is not informative about model performance in reproducing the trends. Values of −1 
mean that the two groups of simulations results in similar values of a specific indicator, suggesting that a specific PI is not informative about model ability to reproduce 
the trends. A value of 2 (−2) suggests that the trends of a signature were reproduced in all (none) of the simulations or by the behavioural parameter sets (GLUE), 
respectively.
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significant trends were detected in, on average, six signatures in 
each catchment over the full record period, and in, on average, 
two signatures over the calibration and evaluation periods (see 
Figure S2 of the Supplementary material). Therefore, further 
research is needed to evaluate model ability to reproduce trends 
in the series of signatures in other catchments with more pro-
nounced trends, such as some of the catchments presented by 
Thirel et al. (2015). Model transferability in terms of the indica-
tors generally corresponded to transferability in terms of repro-
ducing distributions and trends in the signatures.

Equifinality affected all aspects of model performance, i.e. it 
could be detected regardless of the approach to quantification 
of model performance. For example, equifinality was reflected 
in low variability across indicator values of different beha-
vioural sets (e.g. VE, Fig. 4). It was also evident in model ability 
to reproduce distributions: for example, all behavioural sets 
reproduced the timings of annual maxima and most sets well 
reproduced distributions of annual maxima of various dura-
tions (Fig. 5). The impact of parameter equifinality was most 
pronounced in reproducing trends (or the lack of them) in the 
selected signatures (Fig. 7).

4.3 Informativeness of performance indicators about 
model ability to reproduce statistical properties of 
hydrological signatures

There were no clear and consistent relationships between the 
values of performance indicators and model ability to repro-
duce distributions or trends in series of hydrological signa-
tures. This study was grounded on the assumption that 
a comparison between the indicator values of models that 
can reproduce the distributions, with those that cannot, can 
show whether specific indicators are informative about model 
performance in this regard, provided that such relationships 
remain consistent across the simulations. Few such relation-
ships were detected in this study: for example, relationships 
between annual minima of various durations and KGE com-
puted from transformed flows (KGE1/√Q) and from very low- 
flow FDC segments (KGE95–100). The relationship between 
distributions of annual maxima and KGE95–100 was also con-
firmed by the fact that model performance in these two aspects 
was better in the evaluation than the calibration period in some 
catchments. However, these relationships do not persist in all 
simulations, including the simulations with the 1% best beha-
vioural parameter sets (Fig. S3 in the Supplementary material), 
and simulations with the 50 best behavioural sets in the 
selected 50 catchments (Fig. S4). This conclusion is further 
supported by combined considerations of these patterns and 
the correlation coefficients between the indicator values and 
absolute z values of the WRS test statistic.

The WRS test can suggest informativeness of a certain 
indicator about model ability to reproduce distributions and/ 
or trends in the series of signatures. However, this does not 
necessarily imply that a performance indicator that is shown to 
be informative about model performance in reproducing dis-
tributions of some signatures has high values, and vice versa. 
For example, the median values of KGE1/√Q, KGE70–95 and 
KGE70–100 were satisfactory in the full record period, but the 
model failed to reproduce distributions of annual minima of 

varying durations, dry-season percentiles, and low-flow fre-
quencies in most of the catchments. The discrepancies between 
these two aspects of model performance (i.e. performance 
indicators and model ability to reproduce distributions and 
trends) can be explained by the nature of the indicators them-
selves. Values of such indicators reflect differences between 
entire observed and simulated flow series, and are much less 
sensitive to differences in the distributions of series of signa-
tures, as well as in potential underlying trends in these series. 
The results presented in this study clearly show that perfor-
mance indicators and model ability to reproduce statistical 
properties of series of hydrological signatures represent two 
distinct facets of model performance that complement each 
other. Therefore, model evaluation procedures should be 
extended to include both aspects of model performance.

4.4 Limitations of the study and further research

The conclusions presented in this study build on the simulation 
results from one hydrological model in 50 high-latitude catch-
ments. Further research is needed to repeat these analyses with 
other hydrological models, and in catchments in other hydrocli-
matic regions, and to compare those conclusions on the informa-
tiveness of performance indicators, regarding model ability to 
reproduce distributions and trends in the signatures, to those 
presented in this study. Similarly, the lists of performance indica-
tors and hydrological signatures chosen in this study, although by 
no means exhaustive, could be extended in future research. 
Nevertheless, the timings of the 25th and 75th percentiles of annual 
runoff volume (Burn and Hag Elnur 2002, Harder et al. 2015, 
Melsen et al. 2018) might be excluded from such extensions, since 
initial analyses revealed strong autocorrelation in these series that 
affects the power of the Mann-Kendall test for trend (Fatichi et al. 
2009, Harder et al. 2015), and since hydrological models have 
limited skill in reproducing them properly (Plavšić and Todorović 
2018).

Most analyses conducted in this study rely on applications of 
the WRS test. This test was preferred for comparisons of the 
distributions of signatures obtained from observed and simulated 
flows over other suitable alternatives, such as Kolmogorov- 
Smirnov or Cramer-von-Mises tests (Conover 1999). Although 
the results from comparisons of the distributions of signatures 
with the Kolmogorov-Smirnov test depart from those obtained 
with the WRS test in up to 12% of all instances (results for the full 
record period), the conclusions about the informativeness of 
performance indicators about model ability to reproduce the 
distribution of the signatures corroborate those reached by 
using the WRS test (see Fig. S5 of the Supplementary material).

Application of the WRS test imposes certain limitations. 
This nonparametric test is based on a comparison of medians 
(Kvam and Vidakovic 2007, Kottegoda and Rosso 2008), with 
an underlying assumption of the WRS test that the two dis-
tributions have the same shape and variance, while other 
properties of series distributions, such as skewness, are not 
explicitly considered. Consequently, even if the series obtained 
from observed and simulated flows did not differ according to 
the WRS test, that does not mean that the quantiles computed 
from the two series would be equal, because quantile estimates 
are strongly affected by various properties of series, such as 

HYDROLOGICAL SCIENCES JOURNAL 1805



skewness or presence of outliers (Plavšić et al. 2014). Thus, 
further research is needed to enhance the examination of 
model ability to reproduce other features of hydrological sig-
natures’ distributions. As part of such research, application of 
different, complementary statistical tests can be considered.

Climate change impact on floods poses a great concern and 
a great challenge to CCISs. Models’ ability to accurately simu-
late the highest flows, such as annual maxima, is generally 
limited (Brunner et al. 2021). To improve model skill in 
reproducing annual maxima, Mizukami et al. (2019) proposed 
the annual peak flow bias (APFB) metric as objective function. 
Although specifically tailored for annual maxima, this perfor-
mance indicator cannot be considered informative about 
model ability to reproduce their distributions, according to 
the methodology adopted in this study (see Fig. S6 in the 
Supplementary material). The same conclusions were reached 
for the mean flows and annual daily minima. These results 
once again highlighted issues with reproducing the most 
extreme flows, and the need for further research in this regard. 
Furthermore, spring floods triggered by snowmelt have differ-
ent statistical properties than rainfall-induced summer or 
autumn floods; thus, these two series should be analysed inde-
pendently (Blazkova and Beven 2009). The peak over threshold 
method can also be used for flood flow quantile estimation 
(Plavšić 2005, Todorović et al. 2017, Tabari 2021).

Gelfan and Millionshchikova (2018) state that: “in order not to 
get lost in the ‘jungle of models,’ one needs to be able to distin-
guish between models appropriate for impact studies and unsui-
table ones,” and emphasize that “there are a lot of ‘good’ models 
that pretend to be suitable for impact studies, and the number of 
such models grows like a snowball.” The approach applied in this 
paper is in line with the appeals of the hydrological community 
for novel evaluation procedures aimed at identifying models 
suitable for CCISs that can potentially mitigate uncertainty in 
hydrological projections under climate change (Fowler et al. 
2018b). This study clearly shows that commonly used perfor-
mance indicators fail to show model performance in reproducing 
statistical properties of series of hydrological signatures that cli-
mate change impact assessments build on. In other words, good 
model performance in terms of commonly used indicators does 
not warrant that the statistical properties of signatures are well 
reproduced, which can eventually result in misleading assessment 
of climate change impacts and failure in the identification of 
optimal adaptation strategies. This study presented an evaluation 
of the performance of hydrological models that are run with the 
observed climatic series, while hydrological series in CCISs would 
inevitably be affected by uncertainties in climate projections. 
However, it is essential to establish robust evaluation procedures 
that can identify hydrological models suitable for CCISs under 
current conditions, with observed data that allow comparisons of 
observed and simulated variables. The application of the WRS test 
to evaluate model performance in reproducing distributions of 
the selected signatures represents a step forward in this direction.

5 Conclusions

Climate change adaptation strategies are grounded in statisti-
cal analyses of the series of hydrological regime features (i.e. 
hydrological signatures), such as mean or extreme flows, or 

extreme flow timings and durations. Therefore, distributions 
and trends in series of hydrological signatures should be accu-
rately reproduced by hydrological models. Although crucial 
for climate change impact studies (CCISs), this aspect of 
hydrological model performance is rarely analysed. In this 
paper, we provided novel insights on model performance and 
suitability for climate change impact studies by: (1) thoroughly 
evaluating model ability to reproduce distributions and trends 
in series of hydrological signatures relevant for CCISs, and (2) 
examining whether commonly used performance indicators 
are informative about how well a model can reproduce these 
distribution and trend properties.

The simulations with the 3DNet-Catch model for 50 high- 
latitude catchments in Sweden revealed considerable differences 
in the model performance. Specifically, distributions of low-flow 
signatures generally were not well reproduced, while model per-
formance for high-flow-related signatures was noticeably better. 
Such behaviour was also exhibited by the performance indicators. 
However, no strong, clear, and consistent relationships between 
the values of indicators, and model performance in reproducing 
the distributions and trends in the signatures, were detected in 
this study. This means that good model performance in terms of 
the commonly used performance indicators cannot warrant that 
the distributions or trends in the series of signatures are well 
reproduced, and vice versa. This clearly shows that these two 
facets of model performance are distinct and complementary, 
and that model suitability for CCISs cannot be appraised merely 
using performance indicators. Therefore, traditional model eva-
luations based merely on performance indicators should be 
extended, and evaluation focused on distributions and trends in 
signatures presented in this paper can be considered a part of 
these efforts. Model performance in reproducing distributions 
cannot be used straightforwardly as an OF for model calibration; 
however, it can be included in a process of model selection for 
CCISs and, thereby, potentially reduce uncertainties in the flow 
projections under climate change due to model equifinality.
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