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Abstract 
Cancer is a leading cause of mortality worldwide, responsible for nearly one in six deaths. Thus, 

there is a need for a greater understanding of cancer for the development of novel therapeutics. 

This master thesis project aims to compare the proteome signatures between dying and 

surviving cancer cells treated with diverse anticancer drugs. 

The first aim is to investigate if drug targets behave similarly and have the same sign (up- or 

down-regulation) in dying versus surviving cells. The second aim is to validate that combining 

the dying cancer cell’s proteome with the surviving cell’s can help improve drug target rankings 

for anticancer treatments. The third aim is to identify proteins and pathways involved in life 

and death decisions by comparing dying and surviving states in response to the anticancer drugs 

in different cell lines. 

First, we demonstrate that drug target behaviour in dying versus surviving cells is almost 

identical for nine diverse anticancer compounds with a correlation of 0.93. To identify drug 

targets, orthogonal partial least squares-discriminant analysis (OPLS-DA) modelling was 

performed to contrast the proteome signature of one anticancer drug against all other drugs and 

rank the proteins based on the magnitude of the model’s predictive component. There were 

occasions when the dying cells gave better rankings than the surviving ones. In some cases, the 

best target rankings were obtained when combining the data from both surviving and dying 

cells. 

To identify proteins and pathways involved in life and death decisions, OPLS-DA modelling 

contrasting the two states was performed, and heatmaps and scatterplots of dying and surviving 

log2 fold changes were made. As a result, several pathways involved in cell survival and cell 

death were identified. In addition, at least six proteins consistently differentially regulated 

between the surviving and dying cells were identified. Such proteins can be considered as 

putative survival (resistance) or sensitivity biomarkers and serve as potential drug targets for 

the development of novel anticancer agents. 
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Döende cancerceller – nyckeln till att överleva cancer? 
Populärvetenskaplig sammanfattning 

Albin Lundin 

 

Minst en av tre personer i Sverige kommer få en cancerdiagnos någon gång under sin livstid 

(Bergman & Johansson 2018). I många fall går cancer att bota om den upptäcks tidigt och om 

medicineringen är effektiv, men trots detta är cancer en av de ledande dödsorsakerna världen 

över och orsaker ungefär ett av sex dödsfall (WHO 2022). Även om forskningen har gjort stora 

framsteg indikerar de höga dödstalen ett behov av nya och effektivare cancerläkemedel.  

 

För att nya cancerläkemedel, och läkemedel generellt sett, ska bli godkända för användning 

behövs i många fall kunskap om vilket deras målprotein är. Att hitta detta målprotein är däremot 

lättare sagt än gjort eftersom varje människa har minst 20,000 olika proteiner kodade i sitt 

genom (Pray 2008). För att effektivare cancerläkemedel ska utvecklas behöver man också rikta 

in sig på nya målproteiner, det vill säga proteiner som spelar en avgörande roll för cancerns 

utveckling.  

 

För att underlätta processen att hitta målproteiner för cancerläkemedel har metoder som 

utnyttjar masspektrometri utvecklats de senaste åren, vilka analyserar proteiner i överlevande 

cancerceller som utsatts för olika läkemedel. Genom att jämföra hur proteinnivåerna förändras 

som respons på läkemedel kan målproteinerna identifieras. Det finns däremot utrymme för 

förbättring av dessa metoder och ett sådant sätt kan vara att inkludera döende cancerceller i 

analysen.  

 

Detta examensarbete syftar till att testa om målproteiner för olika cancerläkemedel är enklare 

att identifiera om både överlevande och döende cancerceller utsätts för denna typ av analys. 

Eftersom både överlevande och döende cancerceller analyseras, kan dessa jämföras för att hitta 

proteiner som skiljer dem åt. Dessa proteiner skulle vara involverade i celldöd och överlevnad 

och kan av den anledningen demonstrera hur cancern motstår behandling och undviker död. 

Därmed skulle dessa vara intressanta målproteiner för framtida cancerbehandlingar.  

 

Resultatet av detta arbete visade att döende cancerceller kan vara av nytta vid identifiering av 

målproteiner för olika cancerläkemedel. I vissa fall kunde de döende cancercellerna identifiera 

målmolekylerna på ett bättre sätt än de överlevande, och i andra fall gav en kombinerad analys 

upphov till bättre identifiering. Utöver detta kan åtminståne sex proteiner med stora 

nivåskillnader mellan överlevande och döende cancerceller identifieras, vilka kan visa sig vara 

intressanta målproteiner för framtida cancerläkemedel.  
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1 Introduction 
A critical part of drug discovery and development is the identification of drug targets and 

mechanisms of action, which can be very challenging processes. It is estimated that 7-18% of 

FDA-approved drugs lack a defined drug target showing that it is not an absolute necessity to 

characterize them. However, the identification of specific targets for a compound seems to 

increase approval chances (Moffat et al. 2017). Two common approaches used in drug target 

discovery are target-based discovery and phenotypic drug discovery (Moffat et al. 2017). The 

former relies on screening an already known drug target against a drug library to see which 

drug interacts with the target. In the latter approach, cells or a model system are exposed to 

various drugs to see which cell shows the desired phenotype (Lansdowne 2018). The downside 

of target-based discovery is that prior knowledge of the drug target is needed, while phenotypic 

drug discovery faces challenges in target deconvolution (Moffat et al. 2017). 

In recent years, methods involving mass spectrometry have been developed to identify drug 

targets and mechanisms of action. These methods are called Functional Identification of Target 

by Expression Proteomics (FITExP) (Chernobrovkin et al. 2015) and ProTargetMiner (Saei et 

al. 2019), and these can identify drug targets in datasets comprising thousands of proteins. Both 

methods analyze the protein regulation in surviving cells from multiple cell lines treated with 

anticancer compounds. Using multiple cell lines and assuming that the drug target is regulated 

similarly across all cell lines, the drug target can be more easily identified since unrelated 

proteins regulated in a cell-specific way can be filtered out (Chernobrovkin et al. 2015). 

Furthermore, when using multiple anticancer compounds, the proteome responses can be 

contrasted against each other to filter out proteins that are always up or down-regulated 

regardless of treatment (e.g. proteins involved in detoxification or those generally related to cell 

death), which allows for more accurate identification of the drug target and mechanism of action 

(Chernobrovkin et al. 2015). OPLS-DA modelling is used in both methods to visualize the drug 

targets (Chernobrovkin et al. 2015, Saei et al. 2019).  

When cell lines are exposed to anticancer treatments, the matrix attached or surviving cells 

transition to cell death by first detaching from the matrix (Saei et al. 2018). Since the detached 

cells further progress towards death, they have the most significant response to the anticancer 

compounds. Therefore they might reflect the drug target and mechanism of action better than 

the surviving, still attached cells. A study comparing the proteome response between dying and 

surviving cells for three anticancer compounds (Saei et al. 2018) found that drug targets and 

mechanisms were highly similar for the dying and the surviving cells. Furthermore, it was found 

that combining proteomics data from dying and surviving cells can improve the drug target 

identification in most cases. Also, studying dying and surviving cells made it possible to 

identify proteins differentially regulated between the dying and surviving states regardless of 

the treatment and cell line used, hinting on cell death and survival pathways. 

One of the downsides of the study comparing the proteome response between dying and 

surviving cells (Saei et al. 2018) was the few anticancer drugs used. In the ProTargetMiner 



12 

 

paper (Saei et al. 2019), proteomic data from 9 drugs and the three major cancer cell lines A549, 

MCF-7, and RKO were obtained from surviving cells, and now corresponding data have been 

collected for dying cells.  

1.1 Goals 

This Master Thesis project aims to analyze the ProTargetMiner data complemented with data 

from dying cells to validate the findings made in the previous project comparing the proteome 

response in dying and surviving cells (Saei et al. 2018). This project has the following four 

goals:  

1. To validate that dying has a more significant impact on the cellular proteome than the 

treatment and cell line used.  

2. To test the hypothesis that the regulation of drug targets is similar between the dying 

and surviving cells across the three cell lines and nine anticancer compounds used in 

the study.  

3. To validate that merging proteomics data from dying and surviving cells can improve 

drug target rankings extracted from OPLS-DA models.  

4. To compare the proteomes of dying and surviving cells to discover pathways and 

proteins contributing to cell death and survival, regardless of the cell line or anticancer 

drug used. While proteins found to be differentially regulated in the dying state would 

be hypothetically involved in cell death, proteins regulated in the surviving cells would 

be involved in cell survival and drug resistance. Cancer treatment aims to kill the 

cancerous cells, so an increased understanding of how they resist drug treatment could 

offer new opportunities for treating cancer.  

1.2 General introduction to Mass Spectrometry 

A mass spectrometer is an analytical tool used for measuring ionized molecules’ mass-to-

charge (m/z) ratio. It consists of an ion source that ionizes molecules, a mass analyzer that 

measures the m/z ratio, and a detector that identifies the number of ions at each m/z value. 

Electrospray ionization, or ESI, is a common ion source used to ionize peptides in a solution, 

which can be coupled with a liquid chromatography unit. The ion source is coupled to a liquid 

chromatography unit, where the complex molecular solution can be separated over time by 

liquid chromatography and analyzed individually (Aebersold & Mann 2003). 

 

When using Mass Spectrometry in proteomics, it is often peptides and not whole proteins that 

are analyzed in the mass spectrometer. Whole proteins can be challenging to handle and are not 

always soluble under the same conditions. Also, it is difficult to predict which protein might 

give rise to a measured protein m/z peak due to all modifications possibly present on a protein. 

When working with peptides obtained by exposing whole proteins to a protease during sample 

preparation, it is much easier to obtain sequence information from the mass spectrometer, which 

is needed for identifying and quantifying proteins (Steen & Mann 2004). 
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Two mass spectrometers can be coupled together and used for tandem MS. In this case, the 

mass to charge ratio of the ionized peptide is measured in the first MS, MS1. Before entering 

the second mass spectrometer, MS2, peptides are isolated and fragmented by an inert gas. The 

mass spectra from MS2 can then be used to identify the individual amino acids present in the 

precursor peptide necessary for its identification (Steen & Mann 2004). 

 

For multiplexing MS analyses, Tandem Mass Tag (TMT) labelling can be performed. TMT 

labels consist of a reporter group with a different weight for each label, a mass normalizer that 

makes the overall weight of different TMT labels the same, and an amine-reactive group used 

to attach the label to the N-terminus or lysine residue of the peptide. Different samples can be 

labelled with different TMT labels before being pooled and analyzed together by Tandem MS. 

Since the labels have the same overall weight and chemical properties, the same peptides from 

all samples will elute simultaneously from the liquid chromatography unit, giving rise to a 

single peak in the MS1 spectra. In the MS2 spectra, the intensities of the different reporter ions 

are used to quantitate the peptide amount in each sample, while the peptide fragments peaks are 

used to identify the peptide (Thermo Fisher Scientific).  

1.3 Internal reference scaling (IRS) normalization 

For LC-MS/MS, more analytes are eluting from the chromatography unit than the mass 

spectrometer can handle. As a result, the mass spectrometer samples a relatively small number 

of analytes meaning that proteins not detected by the mass spectrometer may still be present in 

the sample. Furthermore, the mass spectrometer can sample the analyte anywhere between the 

baseline and the analyte elution peak. Therefore, the same analyte could be sampled at different 

intensities between mass spectrometry runs, meaning that technical replicates analyzed in 

different runs would not have the same abundance even if the same amount of protein were 

present in the replicates. Furthermore, while the samples are prepared in parallel, the high-pH 

reverse phase fractionation process can also induce slight variations between multiplexed 

samples. Overall, these phenomena induce a batch effect that must be removed before data 

analysis. One way of removing this type of batch effect is by a normalization technique called 

Internal Reference Scaling, or IRS (Plubell et al. 2017).  

 

The principle behind IRS normalization is relatively simple. By analyzing an identical pool of 

proteins in each TMT experiment, scaling factors can be calculated to adjust each protein of the 

pooled standard to the same intensity across all TMT experiments. The scaling factor of each 

TMT experiment is then applied to all ion channels putting all samples on the same intensity 

scale. Thus, apart from the samples being normalized, any present batch effects between the 

TMT experiments are also removed (Plubell et al. 2017).  

1.4 Orthogonal Partial Least Squares Discriminant Analysis Modelling 

Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) is a multivariate data 

analysis tool that can classify data with one or more classes. It is well suited to work with noisy 
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data, of which biological data is a typical example. OPLS is an extension of Partial Least 

Squares (PLS) modelling, a supervised classification approach used to assess relationships 

between a descriptor matrix X and a response matrix Y. The descriptor matrix contains the 

sample data, while the response matrix contains the class of each sample. PLS works both in 

terms of quantitative and discriminant analysis, the latter case being called Partial Least Squares 

Discriminant Analysis (PLS-DA). The difference between OPLS-DA and PLS-DA lies in how 

they discriminate between the classes. While the loading vectors of a PLS-DA model will 

contain mixtures of discriminatory and non-discriminatory properties, OPLS-DA modelling 

can separate the discriminatory loading vector (predictive component) from the non-

discriminatory vectors (orthogonal components). This property makes it easier to interpret 

which features have the highest predictive power or are most specific for the classes. In 

addition, when only discriminating between two classes, the models are straightforward to 

interpret since there is only one predictive component. The orthogonal component of an OPLS-

DA model represents the within-class variation (Bylesjö et al. 2006).  

 

When it comes to validating OPLS-DA performance, there are several measures. The R2 value 

is a measure that represents the percentage of the predictive variance explained by the full 

model, while the Q2 value represents the model’s predictive performance obtained through 

cross-validation. Both measures take values between 0 and 1, where values close to 1 indicate 

better model performance (Thévenot et al. 2015).  

1.5 Experimental procedures 

Human lung adenocarcinoma A549 cells, breast adenocarcinoma MCF7 cells, and colon 

carcinoma RKO cells were grown in flasks for 24 hours. Samples were treated with anticancer 

compounds in triplicates for 48 hours, causing 50% cytotoxicity (LC50). The matrix attached 

cells were collected and trypsinized, washed, and lyzed. The detached cells were collected by 

centrifuging the cell media and were washed. 50 μg of protein were kept for each sample. 

Proteins were digested with Trypsin for 6 hours. TMT reagents were added and left to incubate 

for 2 hours, whereafter the samples were combined. The peptides were separated into 96 

fractions using a Dionex Ultimate 3000 2DLC (Liquid chromatography) system over a 48-

minute gradient. The fractions of detached and attached cells for MCF7 and RKO and the 

detached cells of A549 were concatenated into 24 samples. The attached cells of A549 were 

concatenated into 16 samples. The protein samples were analyzed in randomized order by LC-

MS/MS. The anticancer compounds used can be seen in Table 1 and were selected to have a 

high diversity of targets and MOA, based on ProTargetMiner (Saei et al. 2019).  

The raw mass spectrometry data was searched in MaxQuant version 1.5.6.5 for protein 

quantification, and the Andromeda search engine was used to identify the proteins. In addition, 

the raw mass spectrometry data was IRS normalized before further data analysis.  
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Figure 1. Overview of the experimental procedures. The three major cancer cell lines A549, MCF7, and RKO are 

treated with nine anticancer compounds and one control, as seen in Table 1. Matrix attached and detached cells are 

collected and analyzed separately by LC-MS/MS using TMT10 multiplexing.  

 

Table 1. The drugs used in the study with drug targets from DrugBank.  

* Drug targets identified by Saei et al. (2019) that are not included in DrugBank 

Drug Targets 

DMSO (control) - 

8-azaguanine PNP 

Raltitrexed FPGS, TYMS 

Topotecan TOP1MT, TOP1 

Floxuridine TYMS 

Nutlin MDM2, TP53 

Dasatinib ABL1, SRC, EPHA2, LCK, YES1, KIT, PDGFRB, STAT5B, ABL2, 

FYN, BTK, NR4A3, BCR, CSK, EPHA5, EPHB4, FGR, FRK, 

HSPA8, LYN, ZAK, MAPK14, PPAT, PARG* 

Gefitinib EGFR 

Vincristine TUBB, TUBA4A 

Bortezomib PSMB5, PSMB1, DPP3*, DPP7* 

2 Methods 
The dataset used in this project contains IRS normalized data for the Dying and Surviving states. 

Both states contain data from three carcinoma cell lines, A549, RKO, and MCF7, for which 

there is data for nine drugs and one control sample in triplicates. Apart from the protein 

intensities across the states, cell lines, and drugs, the output from MaxQuant also contains 

additional data, such as flags for contaminant proteins, sequence coverage, and the number of 

peptides used to identify the proteins. In this section, the data analysis methods used to complete 
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the goals presented in section 1.1 are described in detail. An overview of the workflow can be 

seen in Figure 2.   

 
Figure 2. Overview of the workflow. First, the IRS normalized data is preprocessed, and two data sets are created. One 

containing only the proteins with missing values, and the other containing all proteins regardless of missing values. 

With the dataset containing proteins without missing values, drug target regulation is compared between surviving and 

dying cells and features influencing the cellular proteome are identified. Also, drug target rankings are derived through 

OPLS-DA modelling, and the surviving and dying states are compared through heatmaps. With the dataset containing 

all proteins, the dying and surviving proteomes are compared through scatterplots and OPLS-DA modelling. 

2.1 Pre-processing 

Proteins marked as reverse, only identified by site, contaminants, or only identified with one 

peptide were removed. Next, two datasets were created. One dataset contained only the proteins 

without missing values across all samples, used for working with drug targets. The other 

contained all proteins regardless of the number of missing values present across the samples, 

which could be of value when discriminating between surviving and dying cells. For the dataset 

keeping all proteins regardless of missing values, proteins that showed no variance across all 

samples were removed since they would not have any discriminatory power. Finally, all missing 

values were imputed to the minimum value of the respective cell line. The dataset allowing 

proteins with missing values had a final protein count of 10,483, while the dataset containing 

only proteins without missing values had 5,072. 

 

For each TMT set of both datasets, log2 fold changes were calculated by log2 transforming the 

IRS value ratio between each drug and the control. P-values were calculated using a two-tailed 

t-test comparing the log2 fold changes for the replicates of each drug to the log2 fold changes of 
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the controls. Lastly, volcano plots were created to visualize the drug targets and mechanistic 

proteins.  

2.2 Comparing the protein regulation between dying and surviving cells 

To compare the protein log2 fold changes for the known targets of the different drugs, including 

those found in a previous study (Saei et al. 2019), mean log2 fold changes were calculated for 

the drug targets for each state of each cell line. The dataset containing only proteins without 

missing values was used in this case. The obtained mean values were visualized in a lollipop 

plot, highlighting the mean of each cell line and each cell state, and in a scatter plot showcasing 

the dying log2 fold change on the x-axis and the surviving log2 fold change on the y-axis. A 

linear regression was made between the dying and surviving log2 fold changes in the scatter 

plot, and the Pearson correlation coefficient was calculated. 

2.3 Determining the feature with the highest impact on the cellular 

proteome 

PCA plots of combined and individual cell lines were made to test what features had the most 

significant impact on the cellular proteome. These were made with IRS normalized values from 

the dataset containing proteins without missing values. The principal components were 

investigated to identify what characteristics contribute to the variance in the dataset. In the PCA 

plot combining the cell lines, a CV threshold of 15% was used, leaving 2,115 proteins.  

2.4 Drug target rankings 

Four different types of OPLS-DA models were built for contrasting each drug against all others, 

using the log2 fold changes of the dataset consisting of proteins without missing values. These 

models contrast each drug against all others: 

1. Within the same cell line and cell state 

2. Within the same cell line combining the cell states 

3. Within the same cell state combining the cell lines 

4. For all data combined 

For all models, proteins that were more upregulated in response to the treatment than to the 

other drugs were specified to have positive specificity values in the predictive component, while 

proteins more downregulated in response to the treatment were specified to have negative 

specificity values.  

 

The protein rankings were based on the specificity values obtained in the predictive component. 

Proteins with negative specificity were ranked separately from the proteins with positive 

specificity. The rankings were derived based on the order of magnitude in both cases. For 

instance, the protein with the highest specificity would be ranked as number one, while a protein 

with the 100th highest value would get ranked as number 100. The derived target rankings were 

put into a table to compare the exact ranking of the different targets between the different 

models. A boxplot was created to get a general overview of the rankings of each model. 
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2.5 Differentially regulated proteins and pathways between dying and 

surviving cells 

Multiple approaches were taken to find proteins and pathways differentially regulated between 

the two states. These include scatterplots showcasing the surviving log2 fold changes against 

the dying log2 fold changes, OPLS-DA modelling contrasting the log2 fold changes of living 

and dying states, and making heatmaps with the IRS normalized values using k-means 

hierarchical clustering to cluster the proteins.  

2.5.1 Scatterplots 

Scatterplots were made with the dying log2 fold changes on the x-axis and the surviving log2 

fold changes on the y-axis using the dataset including all proteins regardless of missing values. 

The scatterplots were made both on individual cell lines, comparing the cell line mean of log2 

fold changes for the two states, and the combined cell line data comparing the mean of the 

overall log2 fold changes. For all scatterplots, four clusters were highlighted. These clusters 

were obtained by comparing the regulation of one state compared to the other, forming clusters 

of proteins showing regulation in one state while showing none or opposite regulation in the 

other state. For instance, one cluster highlights proteins upregulated in the dying state that 

shows no regulation or even downregulation in the surviving state. In all scatterplots, the log2 

fold change threshold for up and downregulation was set to 0.5 and -0.5, respectively. Finally, 

the proteins of each cluster were submitted for pathway analysis using GOrilla (Eden et al. 

2009). 

2.5.2 OPLS-DA Modelling 

Another approach used for discovering differentially regulated proteins between dying and 

surviving cells is OPLS-DA modelling. OPLS-DA models were built to contrast surviving 

versus dying states for all cell lines combined and for individual cell lines, using the dataset 

consisting of all proteins regardless of the number of missing values. The 50 proteins with the 

highest negative respective positive specificity were submitted to pathway analysis using 

GOrilla (Eden et al. 2009). 

2.5.3 Barplots 

To see how reproducible the results were for the found proteins in the scatterplots and OPLS-

DA models across all cell lines and drug treatments, bar plots of the log2 fold changes were 

made showing the regulation of the dying and surviving states. Proteins showing reproducibility 

across the cell lines and drugs were examined further regarding their general function and 

involvement in cell death or survival. Barplots of the proteins found to be differentially 

regulated between the two states in the previous study (Saei et al. 2018) were also made. 

2.5.4 Heatmap 

As another option for finding pathways separating the two states, heatmaps with k-means 

hierarchical clustering of proteins were made. The heatmaps were made on log10 transformed 

IRS values (and not log2 fold changes) for the combined data of all cell lines and for individual 

cell lines. P-values were calculated to measure how different the living and dying states were 
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for each cluster. Finally, the proteins in each cluster were submitted to pathway analysis using 

GOrilla (Eden et al. 2009). 

  

3 Results 
In this section, the results are presented. 

3.1 Dying has the most significant impact on the cellular proteome 

PCA analysis was performed on the combined cell line data and individual cell lines to 

determine which feature contributes to the highest variance across the data set. As seen in Figure 

3, the first two principal components are plotted against each other for the four cases. In the 

PCA plot of the combined cell line data, the first principal component separates the dying and 

surviving cells. The second component separates the cell lines.  

 

For the PCA plots of the individual cell lines, the separation is even more apparent. In all three 

cases, the cellular state drives the separation of the first principal component, accounting for 

80% of the total variation in the dataset for the MCF7 cell line. The second component of cell 

lines A549 and MCF7 separates the drug Bortezomib from the other drugs, while for the RKO 

cell line it separates Bortezomib and Vincristine from the other drugs. Since the first component 

accounts for the highest proportion of variance within the dataset, it can be concluded that dying 

has the most significant impact on the cellular proteome rather than the type of cell line or drug 

in use. 
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Figure 3. PCA plots for all cell lines combined and individual cell lines. The shape represents the cell line, the size 

represents the cell state, and the colour represents the drug treatment. There are three points for each combination of 

drug, cell line, and state, representing the replicates. 

3.2 The regulation of drug targets is highly similar in the dying and 

surviving cells 

The mean log2 fold changes for the drug targets were compared between the cell states for the 

cell lines combined and the cell lines individually. This comparison was made in a lollipop plot 

and scatterplots, as seen in Figure 4. The regulation of fold change of the drug targets in treated 

samples versus control is highly similar between the dying and surviving states in both cases. 

However, there are some minor differences. For instance, EGFR, the drug target for Gefitinib, 

has a negative log2 fold change for the MCF7 cell line in the dying state while having a slight 

positive log2 fold change in the surviving state. In the scatter plots, linear regressions are shown 
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together with the Pearson correlation coefficient between the log2 fold changes of the surviving 

and dying. The correlation was the largest for the combined cell line data and the RKO cell line. 

 

 
Figure 4. Log2 fold changes for the drug targets. A) Drug target log2 fold changes illustrated in a lollipop plot. On the 

y-axis, the drug is first specified, followed by the drug target. B) Log2 fold changes illustrated in a scatterplot with the 

surviving log2 fold change on the y-axis and the dying log2 fold change on the x-axis for the combined response of all 

cell lines and the cell lines individually. A linear regression is made in all cases, and the Pearson correlation coefficient 

is displayed.  
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3.3 Target Rankings 

The proteins without missing values were subjected to OPLS-DA analysis, contrasting the 

proteome of each treatment against those of all others. One of the resulting loading plots, 

contrasting Fluxoridine against all other drugs for the combined cell line and cell state data, is 

shown in Figure 5. In this figure, the drug target TYMS marked in maroon has the second-

highest positive value in the predictive component (x-axis), and thus, its drug target ranking is 

two. All target rankings for the known drug targets can be seen in Figure 6 A. Only TYMS and 

PARG have high target rankings for the combined cell line and cell state data. The rest of the 

targets show relatively low rankings for the combined data. 

 

The overall distribution of target rankings can be seen in Figure 6 B. For the RKO and A549 

cells, the dying state has a lower median and less spread than the surviving state, meaning that 

dying cells generally provide better target rankings than surviving for these cell lines. For the 

combined cell line data, the dying cells have a higher median ranking but less spread than the 

surviving cells, while the dying cells of the MCF7 cell line display a higher median ranking and 

a similar amount of spread as the surviving cells indicating worse rankings. When it comes to 

the target rankings derived from the combined state data, RKO cells exhibit a general 

improvement with a low median ranking and the least amount of spread. For A549 and MCF7 

cells, the combined state rankings display a similar median ranking to the surviving state while 

showing a similar spread to the dying state. Finally, for the combined cell line data, the 

combined state rankings have a higher mean than the surviving and dying states, but it has the 

lowest values for the 75th and 25th percentiles. Overall, the target rankings perform best for 

RKO cells when combining the cell state data. 

 

 
Figure 5. OPLS-DA model for Floxuridine, combining the data across all cell lines and cell states. The top proteins at 

each end of the predictive component (x-axis) are marked orange, and the drug target for Floxuridine, TYMS, is marked 

in maroon. The R2 and Q2 values of the OPLS-DA model are displayed in the top left corner.  
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Figure 6. Target rankings. A) Exact target rankings for all combinations of cell lines and cell states. The left annotation 

shows the drugs and the drug targets, while the top annotation shows the cellular state and the cell lines. B) Boxplot 

showing the distribution of target rankings for all combinations of cell lines and cell states. The line in the middle of the 

box represents the median ranking. The upper and lower hinges correspond to the 75th and 25th percentile while the 

whiskers cover values from the hinges and extend no further than 1.5 times the Interquartile Range. Values falling 

outside the whiskers are marked with dots. 
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3.4 Comparing life and death 

Several approaches were taken to compare the dying and surviving proteomes to find proteins 

and pathways that are always differentially regulated, especially regardless of the cell line or 

he anticancer agent used. In the following sections, the results from these analyses are 

presented. 

3.4.1 Contrasting the proteome regulation in dying versus surviving cells 

In Figure 7, a scatter plot comparing the log2 fold changes for the dying and surviving states is 

presented. In this plot, the mean log2 fold changes of all drugs in the given state is shown on 

the axes. Four clusters are highlighted for proteins that show up-or down-regulation in one state 

but none or opposite regulation in the other state. No pathways were found for the proteins 

upregulated in the dying state. However, cornification and keratinization pathways were 

associated with the proteins downregulated in the dying state. Proteins upregulated in the 

surviving state were associated with extracellular structure organization and protein-lipid 

complex remodelling, while proteins downregulated in the surviving state were associated with 

positive regulation of serine-type endopeptidase activity. Interestingly, some of these pathways 

are known to be involved in cell life and death processes.  

 

Figure 7. Scatterplot of the mean surviving log2 fold change against the mean dying log2 fold change of all the treatments 

and cell lines for the dataset containing all proteins regardless of the number of missing values. The clusters show up- 

or downregulation in one state while showing none or opposite regulation in the other. Proteins upregulated in the 

surviving state are marked as purple. Proteins downregulated in the surviving state are marked blue. Proteins 
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upregulated in the dying state are marked green. Proteins downregulated in the dying state are marked red. The log2 

fold change threshold for up- and down-regulation was set to 0.5 and -0.5, respectively. The orange line represents a 

linear regression between the log2 fold changes, and the Pearson correlation is displayed in the top left corner. The 

regression and Pearson correlation are based on the dataset without missing values.  

3.4.2 OPLS-DA modelling contrasting life and death 

The loading plots obtained when contrasting surviving and dying cells through OPLS-DA 

modelling can be seen in Figure 8. In addition, the pathways associated with the top 50 proteins 

in the dying and surviving cells of each OPLS-DA model are presented in Table 2. For instance, 

these include extracellular matrix organization in the surviving state of the combined cell line 

data and A549 cells, negative regulation of canonical Wnt signalling pathway for the surviving 

cells of the MCF7 cell line, and estrous cycle for the dying cells of the RKO cell line. 

 
Figure 8. OPLS-DA models contrasting surviving and dying cells for individual cell lines and all cell lines combined. 

The circles with positive values in the predictive component (x-axis) correspond to proteins with higher regulation in 

the surviving state compared to the dying. Conversely, proteins with negative values in the predictive component have 

higher regulation in the dying state than in surviving. The top 0.5% proteins are marked in orange at each end of the 

predictive component, and R2 and Q2 values are displayed in the top left corner of each plot.  
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Table 2. Pathways for the top 50 proteins of the dying and surviving states for each OPLS-DA model presented in 

Figure 8.  

Cell line State Pathways 

All cell lines Surviving Extracellular structure and matrix organization 

Ossification 

Dying Dynein heavy chain binding 

A549 Surviving Extracellular matrix organization 

Dying Regulation of superoxide metabolic process 

Regulation of cellular response to stress 

MCF7 Surviving  Negative regulation of canonical Wnt signalling 

pathway 

Dying Protein C-linked glycosylation 

RKO Surviving Sesquiterpenoid metabolic and catabolic 

processes 

Farnesol catabolic and metabolic processes 

Dying Dichotomous subdivision of terminal units 

involved in salivary gland branching 

Estrous cycle 

 

3.4.3 Comparing expression for proteins between life and death 

Barplots for the proteins COL1A2, MYCBP, PRSS23, SSNA1, THBS4, and USP4 can be seen 

in Figure 9. These proteins stand out on the scatterplot and OPLS-DA models comparing the 

cellular states, and therefore, can serve as cell death or survival proteins. As displayed, 

COL1A2, PRSS23, and THBS4 show a consistently higher regulation in the surviving cells 

than in the dying ones. On the other hand, MYCBP, SSNA1, and USP4 show a consistently 

higher regulation in the dying cells than in surviving ones. Also, similar bar plots of the proteins 

that were found to be differentially regulated between the two states in the previous study (Saei 

et al. 2018) can be seen in Figure 10. Overall, the inclusion of a higher number of diverse drugs 

can lead to the discovery of more general cell death and survival markers than what was 

observed before (Saei et al. 2018). In both figures, the presence of missing values can be 

observed. In Figure 9, log2 fold changes are not present for MYCBP of dying A549 cells, and 

in Figure 10, most log2 fold changes are missing for RNF40. 
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Figure 9. Log2 fold changes for proteins standing out in the OPLS-DA models and scatter plot, showing the log2 fold 

changes across all drugs and both states. The regulation in the dying state is marked in red with different shades for 

the different cell lines, while the regulation in the surviving state is marked in blue with different shades for the cell 

lines. The error bar shows the standard deviation of the replicates in each case. 
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Figure 10. Log2 fold changes for proteins found to be differentially regulated between dying and surviving cells in the 

previous study (Saei et al. 2018). Dying log2 fold changes are shown in red and surviving log2 fold changes are shown 

in blue. The different cell lines are marked in different shades of the two colours. The error bar shows the standard 

deviation of the replicates in each case. 

3.4.4 Heatmaps 

Heatmaps were made as a final approach to compare the dying and surviving cells. In Figure 

11 A, a heatmap of all cell lines can be seen, in which there are some clear distinctions between 

the cell lines and states. The clusters in this figure are ordered based on the p-value comparing 

the dying and surviving states. In Figure 11 B, the top three Gene Ontology (GO) processes for 

each cluster can be seen along with their enrichment and false discovery rate. For example, 

cluster 3 showed a clear difference between the dying and surviving states of MCF7 and was 

found to be involved in the regulation of the cell cycle and the regulation of tyrosine 
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phosphorylation of STAT protein. The latter is a process necessary for establishing the JAK-

STAT signalling pathway (Egger et al. 2003) involved in cellular processes such as cell division 

and cell death (Hu et al. 2021). Further, the proteins in cluster 5 were involved in biological 

adhesion and mesenchyme development, and the proteins in cluster 1 were involved in rRNA 

processing. 

 
Figure 11. A) Heatmap of all cell lines using log10 transformed IRS normalized values. The column annotation at the 

bottom marks the two cellular states, the three cell lines, and the nine anticancer drugs. The clusters are ordered by p-

value comparing each cluster’s living and dying states. B) The top three associated GO processes obtained from Gorilla 

for each cluster, showing their Enrichment and False discovery rate (FDR). For cluster 12, only one GO process was 

found. 
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4 Discussion 
This master thesis project compares the proteome response between dying and surviving cells 

treated with different anticancer compounds. The cellular states are investigated individually 

and together to devise the best approach in target identification. Further, the proteome response 

is compared between dying and surviving cells to identify proteins and pathways differentially 

regulated between the two states. These would contribute to cell survival, drug resistance, and 

cell death. The results concerning these aims are discussed in the below sections.  

4.1 Dying has the most significant impact on the cellular proteome 

Similar to the previous study comparing the proteome of dying and surviving cells (Saei et al. 

2018), this study also shows that cell death has the most significant impact on the cellular 

proteome rather than the treatment or type of cell line used. The separation between life and 

death is evident in the first principal component of all PCA plots, especially for individual cell 

lines.  

An additional way to determine what feature has the highest impact on the cellular proteome 

would have been to calculate distances in the multidimensional PCA space. In this case, 

distances between cell lines, treatments, and cell states would have been calculated to determine 

which feature shows the highest separation in the PCA space. However, due to the clear 

separation between surviving and dying cells in the first principal component of each PCA plot, 

this way of determining the feature with the highest impact on the cellular proteome was 

deemed unnecessary. The first principal component in a PCA plot shows the highest variance 

across the dataset, and thus it is clear that cell death has the most significant impact on the 

cellular proteome.  

4.2 Dying and surviving cells have similar drug target regulation 

The known drug targets of the anticancer compounds had a similar regulation between the dying 

and surviving states. There were some noticeable differences when comparing the states for 

individual cell lines, but when combining the cell lines, the log2 fold changes were the most 

consistent between the states. This can also be noticed when comparing the Pearson correlation 

coefficients, for which the highest correlation was found for the combined cell line data. The 

consistency between the states shows that dying and surviving cells have similar drug target 

regulations. However, it would not have been surprising if there were more differences, given 

that two different states with different effects on the cellular proteome are compared in this 

study.  

 

Only the known drug targets that did not have any missing values across all samples were 

included in this comparison. If drug targets with missing values were included, missing value 

imputation would have been necessary, giving rise to unwanted bias. If more data was available 

for the drug targets with missing values and, generally, data from more cell lines and anticancer 
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treatments, the conclusion that the surviving and dying cells have similar regulation of drug 

targets would have been more general. 

4.3 Combining data from dying and surviving cells can improve drug 

target identification 

Some of the known targets for the compounds in the study showed good rankings when 

combining all data, e.g. TYMS as the known target for Raltitrexed and Floxuridine, and PARG 

for Dasatinib. These targets are among the ones with the greatest log2 fold change in response 

to drug treatment, as seen in Figure 4. Only TP53 have a greater log2 fold change, but at the 

same time, TP53 has high log2 fold changes across most drug treatments, which can be seen in 

Appendix A. This is due to the involvement of TP53 in various cell death processes. Thus, it 

seems easier to identify drug targets for drug treatments having a significant effect on the 

expression of the drug target using this method. It should also be noted that some of the drug 

targets displayed high variations in log2 fold changes within the biological replicates, which 

could affect the rankings.  

 

In the previous study (Saei et al. 2018), it was found that combining the cell line data for both 

states could improve drug target rankings. There are cases where this is true in this study, for 

instance, for TYMS in Floxuridine, but it does not seem to happen to the same extent. It is 

difficult to say what this might depend on. It could be affected by the different drugs and cell 

lines used in this study compared to the previous one. If some of them have similar effects on 

the cellular proteome, it could be challenging to contrast them against each other to obtain target 

rankings. On the other hand, this study includes more drug treatments, which according to the 

results of the ProTargetMiner paper (Saei et al. 2019), should provide better target rankings. 

Another reasonable explanation could be the high variation in log2 fold changes for biological 

replicates for some of the targets. Since the OPLS-DA models take all replicates into account 

when discriminating between the drug treatments, a high variation between replicates would 

make the rankings worse. 

4.4 Comparing the proteome in living and dying cells 

When combining cell line data and analyzing individual cell lines, two similar pathways found 

for proteins with higher expression in the surviving cells than in the dying are extracellular 

structure organization and extracellular matrix organization. Cells only grow and differentiate 

when they are in the correct location, which they sense through interactions with neighbouring 

cells and the extracellular matrix (Gilmore 2005). When cells lose attachment to the 

extracellular matrix, they undergo a special form of apoptosis called anoikis (Galluzzi et al. 

2018). For this reason, it is not surprising that the surviving cells show an increase in proteins 

responsible for maintaining the extracellular structures to increase their chances of survival.  

 

Ossification, or bone formation, is a pathway found for proteins having higher regulation in 

surviving cells when combining the cell line data. Collagens are a primary constituent in bones, 
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and several are found upregulated in the surviving cells compared to the dying. Furthermore, 

collagens provide structural support to the extracellular space (Wu et al. 2022). As mentioned 

before, cells need to be connected to the extracellular matrix to remain alive. Therefore, if they 

produce collagens that support the extracellular space, they would have a greater chance of 

remaining attached and therefore remain alive.  

 

Another finding in the combined response from all cell lines was that proteins involved in 

dynein heavy chain binding were found at higher levels in dying cells than in surviving. Dyneins 

are involved in several cellular processes, for instance, mitotic spindle organization and 

chromosome separation during mitosis (Vallee et al. 2004). Since dead cells do not proliferate, 

it does not seem surprising that dynein interactions differentiate the dying and surviving cells.  

 

The sesquiterpenoid and farnesol catabolic and metabolic processes were more prevalent in 

surviving than dying cells of the RKO cell line. One sesquiterpenoid, Bigelovin, inhibits cell 

proliferation and induces apoptosis and autophagy by inhibiting the mTOR pathway (Wang et 

al. 2018). The mTOR pathway regulates cell proliferation, apoptosis, and autophagy (Zou et al. 

2020) by regulating the production of reactive oxygen species (Wang et al. 2018). Like 

sesquiterpenoids, farnesol is an inducer of cell cycle arrest and apoptosis, which have also been 

found to inhibit tumorigenesis in animals (Joo & Jetten 2010). Therefore, the catabolic 

processes of sesquiterpenoids and farnesol in surviving cells prevent apoptosis and autophagy, 

keeping the cells alive.  

 

The pathway regulation of superoxide metabolic process was found in dying A549 cells. 

Superoxide is produced in the mitochondria of apoptotic cells (Cai & Jones 1998), which is a 

possible explanation for why this pathway marks a difference between the dying and surviving 

cells. 

 

One surprising finding is the pathway negative regulation of canonical Wnt signalling found in 

surviving MCF7 cells. Wnt signalling regulates the early and late stages of apoptosis (Pećina-

Šlaus 2010). In addition, an active Wnt signalling increases cells’ growth properties and has 

been associated with therapy resistance (Bugter et al. 2021). Further, suppression of Wnt 

signalling prevents inappropriate proliferation (Sampson et al. 2001). For these reasons, it is 

surprising that the Wnt signalling pathway is found to be negatively regulated in the surviving 

cells and not positively regulated. If found positively regulated, this pathway could have been 

linked to surviving cells’ efforts to resist the drugs and continue to grow. One hypothesis for 

this observation could be that it is an effect induced by the anticancer compounds to kill the 

cells, but then that gives rise to questions about why not a similar effect is found in the dying 

cells. 

 

When cancer cells detach from the cellular matrix, it is not necessarily marking the end of their 

life cycle. Detached cancer cells can recover and grow if recultured in fresh media (Saei et al. 

2018), and at the beginning of metastasis cancer cells detach from the primary tumour (Fujii et 
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al. 2021). The keratinization and cornification pathways found downregulated for dying cells 

in the scatter plot (Figure 7) bears the hypothesis if the dying or detaching cancer cells can 

migrate more and colonize other tissues. Cornification is a particular type of cell death 

occurring in the epidermis, dependent on the high keratin levels produced through 

keratinization. In a study by Seltmann et al. (2013), it was found that the downregulation of 

keratins in keratinocytes directly contributes to the tumour cells’ migratory and invasive 

behaviour by affecting cell stiffness. Therefore, as a final attempt to survive, the detached cells 

might downregulate their keratin expression to increase their chances of relocating elsewhere. 

 

Proteases, mainly caspases, play an essential role in cell death by breaking down the cells 

(Galluzzi et al. 2018). In addition, serine proteases are also shown to mediate cell death in the 

absence of caspases by perforating the mitochondrial membrane and thus releasing cytochrome 

c into the cell (Egger et al. 2003). When cytochrome c is released in the cell, caspases are 

activated, leading to subsequent cell death (Jiang & Wang 2004), which explains why the 

pathway positive regulation of serine-type endopeptidase activity is found downregulated in 

surviving cells, as seen in Figure 7.  

 

Three proteins with consistently higher log2 fold changes in the surviving state than the dying 

are COL1A2, PRSS23, and THBS4. COL1A2 has, on the one hand, been found to act as a 

tumour suppressor for colorectal cancer (Yu et al. 2018 p. 2). On the other hand, it induces 

cancer cell proliferation, migration, and metastasis (Xu et al. 2019). By the results of this study, 

it does not seem like COL1A2 would act as a tumour suppressor in colorectal cancer since it is 

upregulated in the surviving RKO cells. In this case, the more probable explanation seems to 

be that it induces cell proliferation, migration, and metastasis. The second protein, PRSS23, is 

an interesting one. Studies have shown that knockdown of this protein inhibits gastric cancer 

tumorigenesis, and therefore it has been suggested as a potential target for gastric cancer 

treatment (Han et al. 2019). This might also apply to the A549 and MCF7 cell lines for which 

PRSS23 is consistently upregulated in the surviving state while being downregulated in the 

dying state. If the knockdown causes the inhibition of cancer tumorigenesis, it is reasonable for 

this protein to be downregulated in the dying cells. For RKO cells, PRSS23 was not detected 

in the experiment, and unfortunately, no conclusions can be drawn for RKO cells in this case. 

Finally, the function of the third protein THBS4, according to UniProt (The UniProt 

Consortium 2021), is cell proliferation, adhesion, and attachment, which should be processes 

essential for the survival of cancer cells. These functions align with the protein being 

upregulated in surviving cells since these are apparent processes for surviving cells.  

 

Three proteins with consistently higher log2 fold changes in the dying state than the surviving 

are MYCBP, SSNA1, and USP4. According to UniProt (The UniProt Consortium 2021), 

MYCBP may control the transcriptional regulation of the protein MYC, which activates the 

transcription of growth-related genes. This function potentially describes why this protein 

would have different expression levels in dying than surviving cells. SSNA1 is a protein that 

slows down the cellular growth rate, shrinkage, and catastrophe, explaining why higher levels 
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would be observed in dying cells than in surviving. Finally, USP4 is a deubiquitinating enzyme 

that can remove ubiquitin from target proteins (The UniProt Consortium 2021). It inhibits the 

activation of the NF-κB signalling pathway (Fan et al. 2011), which gives cancer cells a survival 

advantage by upregulating anti-apoptotic genes (Verzella et al. 2020). Since USP4 is 

downregulated in surviving cells, it means that NF-κB signalling is active and upregulates anti-

apoptotic genes in the surviving cells. The contrary applies to dying cells. 

 

The survival and death markers found in the current study with nine drugs, were stronger and 

showed a more consistent behaviour between dying and surviving states than those identified 

in the previous study with three drugs (Saei et al. 2018). This observation is probably because 

different cell lines and drug treatments were used in this study compared to the previous. 

Furthermore, the drugs used in the current study were selected from different principal 

components of a dataset with 55 drugs and thus represent diverse targets, mechanisms of action, 

and cell death pathways. 

 

One concern with the comparison between Dying and Surviving cells is that the dying A549 

cells only were analyzed in 16 fractions, compared to the other cells which were analyzed in 24 

fractions (as mentioned in section 1.5 Experimental procedures). This might introduce some 

bias in the analysis since fewer proteins would be able to be identified in the dying A549 cells 

in general compared to the others. To avoid this, the analysis could have been performed only 

on the RKO and MCF7 cells, or the proteins with missing values could have been excluded. 

However, the proteins and pathways found in this comparison are still relevant for life and death 

processes.  

 

Out of the methods used for comparing Dying and Surviving cells, OPLS-DA modelling should 

give the most reliable results. While scatterplots of Dying and Surviving cells can give 

additional information in regards to what proteins are up or down-regulated, they can be heavily 

influenced by the log2 fold changes of one sample since they only display mean values. If one 

sample has extremely high or low log2 fold change, that could have a significant impact on the 

mean log2 fold change. On the other hand, OPLS-DA modelling takes reproducibility into 

account when producing the models, both between different samples and within biological 

replicates. This means that the proteins identified in the OPLS-DA models would show 

consistent differences between the two states and therefore, this approach should produce more 

reliable results. 

5 Conclusion 
This study shows that cell death is the feature contributing most to the separation of the 

proteome signatures rather than the cell line or treatments. We show that the regulation of drug 

targets is highly similar in dying versus surviving cells. Further, both matrix attached and 

detached cells are helpful for drug target identification, and combining data from both states 
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can improve drug target rankings. However, the log2 fold change of the drug targets and the 

variation within the biological replicates seem to affect the final ranking. Thus, the target 

identification is highly dependent on the data quality. A drawback with this method of 

identifying drug targets is that the drug target needs to be detected by the mass spectrometer. 

Also, outside the scope of cancer drug target identification, identifying drug targets in dying 

cells is relatively limited, considering the treatment would need to exert cytotoxicity to the cells.  

Most pathways found when comparing the proteome between the dying and surviving cells can 

be expected based on our current knowledge of cell death and survival pathways. In addition, 

at least six proteins showing differential regulation between the two cell states regardless of cell 

line and treatment were identified. Some of these proteins seem to have potential as drug targets 

for future anticancer treatments, and thus, these would be interesting to investigate further. 
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8 Appendix A – Log2 fold changes for the drug targets 

across each drug 
 

This appendix shows log2 fold changes for some drug targets in bar plots across all drug 

treatments and both cell states. Each bar represents the mean log2 fold change, and each 

replicate is shown as a dot. The error bar displays the standard deviation. 
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9 Appendix B - Heatmaps of individual cell lines 
In this appendix, heatmaps of individual cell lines are shown. The first one is made on the 

RKO cell line, the second one on the MCF7 cell line, and the third on the A549 cell line.  

 



44 

 



45 

 

 


