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Abbreviations

1D One-dimensional 
2D Two-dimensional 
3D Three-dimensional 
AAE Average absolute error 
ADMET Absorption, distribution, metabolism,  

elimination/excretion, toxicity 
AMS The molecular surface area 
ANN Artificial neural network 
BCS Biopharmaceutics classification system 
ChemGPS Chemical global positioning system 
CLOGP Calculated logP

Hm Change in enthalpy of melting 
DSC Differential scanning calorimetry 

Hsub Change in enthalpy of sublimation 
G Change in Gibbs’ free energy 
Gcav G due to cavitational forces 
Gele G due to electrostatic forces 
Ghyd Change in free energy of hydration 
Gint G due to interaction forces 
Sm Change in entropy of melting 
Gvdw G due to van der Waals forces 

ELJ Lennard-Jones interaction energy 
EC Coulomb interaction energy  
F Test statistic from the t-test 
FL Fluorescence (detection) 

Gamma – surface tension 
GSE General solubility equation 
HPLC High Pressure Liquid Chromatography 
logP Octanol-water partition coefficient (the logarithm of) 
M Molar
MC Monte Carlo 
MD Molecular dynamics 
MLR Multiple linear regression 



MM Molecular mechanics 
MMFF Merck molecular force field 
MS Mass spectrometry (detection) 
N Number of observations 
NPSA Non-polar surface area 
NTP Normal temperature and pressure 
PCA Principal components analysis 
pH Negative logarithm of the proton concentration (M) 

Phi – the flexibility number 
pKa Acid dissociation constant 
PLS Projection to latent structures by means of  

partial least squares 
PSA Polar surface area 
PTSA Partitioned total surface area 

2
H Polarisability / dipolarity 

Q2 Cross-validated R2

QM Quantum mechanics 
QSAR Quantitative structure-activity relationship 
QSPR Quantitative structure-property relationship 
r Correlation coefficient 
R The universal gas constant 
R2 The excess molar refractivity 
R2 Coefficient of determination 
RMSE Root mean square error 
rpm Revolutions per minute 

Sigma – the rotational symmetry number 
s Standard deviation 
S Molar solubility in water; aqueous solubility 
S0 Intrinsic solubility 
SA Surface area 
SE Standard error 
SpH Total solubility at a given pH 
SO Aqueous solubility of the supercooled liquid 
SS Aqueous solubility of the solid 

2
H Summation of hydrogen bond acidity 

2
H Summation of hydrogen bond basicity 

Tm Melting point 
TSA Total surface area 
UV Ultra violet (detection) 
Vx McGowen characteristic volume 
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1. Introduction 

1.1. Solubility in drug discovery and development 
The number of candidate drugs in pharmaceutical development that make it 
to the market has markedly decreased over the last few decades. The average 
success rate for new compounds (from first-in-man to registration) was only 
one in nine compounds for all therapeutic areas during a ten year period 
(1991-2000)1. This contributes to the staggering expenditure in the pharma-
ceutical industry. The cost of the discovery and development of one drug 
was estimated to be in the order of $804 million in 20012. In 1991 the most 
important cause of compound attrition in clinical development was related to 
inadequate pharmacokinetic profiles and poor bioavailability (accounting for 
40% of attrition). Since adequate solubility is a prerequisite for drug absorp-
tion from the gastrointestinal tract, it plays a significant role for the resulting 
bioavailability of orally administered drugs. The figure of 40% had dropped 
to 10% in the year of 2000, indicating an improvement in the pharmacoki-
netic properties of the compounds being put forward as candidate drugs. 
However, judging from the increase in the scientific literature on the subject 
of poor solubility – the search string “poorly soluble” generated 80 hits in 
1995, 162 hits in 2000 and 261 hits in 2005 on PubMed – poor solubility 
clearly constitute an important issue in contemporary drug discovery and 
development. 

With candidate drugs in development becoming increasingly poorly solu-
ble3,4, formulators are presented with considerable technical challenges5.
With the purpose of facilitating decision making in drug development, the 
biopharmaceutics classifications system (BCS), was designed by Amidon et
al.6. The BCS correlates the in vitro drug solubility and permeability to the 
in vivo bioavailability and it applies the following four classes to candidate 
drugs: (I) high solubility and high permeability, (II) low solubility and high 
permeability, (III) high solubility and low permeability and (IV) low solubil-
ity and low permeability (Fig. 1). Characteristically, modern candidate drugs 
belong to Class II or IV of the BCS. The bioavailability of class II com-
pounds can potentially be improved by the development of new, sophisti-
cated and often expensive formulation designs, while class IV compounds 
are most likely returned to the lead optimisation phase for improvement of 
the physicochemical properties5.
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Figure 1. Improvement strategies based on BCS Classifcation. The solubility (S) 
increases in the direction of the x-axis, while the permebility (P) increases in the 
direction of the y-axis. Modified from reference5.

A more appealing approach would be to address the issue of poor solubility 
already in the early stages of drug discovery through in vitro (experimental) 
and in silico (computational) screening, in line with the “fail early, fail 
cheaply” principle. Typically, the drug discovery process goes through the 
stages of (i) target identification – in which the mechanisms responsible for 
a disease state are investigated in detail and one or several proteins are iden-
tified and validated as suitable targets, (ii) hit identification – in which large 
company libraries or smaller focused libraries are screened to find com-
pounds that exert pharmacological activity towards the selected target, 
(iii) hit-to-lead – in which the hits are explored with regards to potency, se-
lectivity and absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties with the intention being to prioritise and select a few 
lead series, (iv) lead optimization – in which pharmacological activity, phys-
icochemical and ADMET properties of lead compounds are optimised to 
produce up to a few candidate drugs that can enter into the development 
phase. Computational7 and experimental8 methods are used in parallel 
throughout all of the Phases (i) to (iv) with an emphasis being placed on 
computational methods in the earlier stages and experimental in the later 
stages.

Rules and cut-off values are assigned for optimal potency, physicochemi-
cal properties, pharmacokinetic profiles and toxicity with the intention of 
identifying lead compounds that are not only active, but also exhibit ade-
quate bioavailability and are free from serious side-effects9. An example of a 
simple set of such rules was provided by Lipinski’s “rule of 5”10, stating that 
a compound is likely to exhibit poor absorption if it has >5 hydrogen bond 
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donors, >10 hydrogen bond acceptors, the molecular weight (Mw) is 
>500 gmol-1 and the calculated logP (CLOGP) >5. A more stringent rule for 
“lead-likeness” was proposed by Teague et al. stating that Mw <350 gmol-1,
CLOGP<3 and affinity ~0.1 M are more appropriate cut-offs for successful 
leads since the lead optimisation process often results in larger and more 
lipophilic molecules11. The identification of chemical features associated 
with drugs, drug-like compounds and leads is important to improve the drug 
discovery process12-18.

In the pursuit of lead compounds with the desired pharmacokinetic pro-
files there has been an increasing demand for computational models for the 
prediction of ADMET properties directly from chemical structure. As a re-
sult, a range of software for this purpose is now commercially available7.
The predictive ability of these models for pharmaceutically interesting com-
pounds has been questioned. Two important reasons for their lack of predic-
tivity have been identified. Firstly, the experimental data used for model 
development is not of sufficiently high quality resulting in the introduction 
of error of unknown size in the models19. Secondly, the compounds used as 
training sets in the model development do not reflect the compounds that are 
to be predicted20.

To find predictive computational models for ADMET properties that are 
free from the above-mentioned limitations presents a challenge for people 
involved in pharmaceutical research. This challenge was the driving force 
for the start of the work undertaken in this thesis. Focus was set on aqueous 
solubility. 

1.2. Thermodynamics of dissolution of solids 
1.2.1. Estimation of solubility from thermodynamic properties 
The dissolution process was divided into three steps to simplify the examina-
tion of the contribution from the different interaction energies21,22. If this 
division is applied to the dissolution of solids in water, the first step would 
represent the removal of one molecule from the crystal lattice, the second 
step the formation of a cavity in the water large enough to accommodate the 
molecule, and the third step the transfer of the molecule into the water 
(Fig. 2). Steps one and two would be energetically unfavourable, since they 
involve the breaking of intermolecular bonds in the crystal and the water, 
respectively; but energy is gained in the third step from favourable interac-
tions between the solute (i.e. the molecule) and the water. For dissolution to 
occur, the energy gained in the third step has to be numerically larger than 
the energetic cost of steps one and two. 
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Figure 2. The dissolution process. 1. The removal of a molecule from its crystal 
lattice. 2. The creation of a cavity in the solvent. 3. The insertion of the molecule 
into the cavity. Energy is consumed by steps 1 and 2, while energy is gained in 
step 3. Modified from Fig. 2.16 on p. 47 of Solubility Behaviour of Organic Com-
pounds23.

From a thermodynamic perspective, there are two alternative routes from the 
pure crystalline compound to the saturated water solution. On the left-hand 
side of the schematic diagram (Figure 3), the crystalline solid is melted, 
cooled down to the temperature of the water to form a supercooled liquid 
(which is a hypothetical state for solids) and then transferred from the super-
cooled liquid to the water. On the right-hand side, the compound is removed 
from the crystal and transferred to the gas phase and then transferred from 
the gas phase into the water. Each step in the thermodynamic cycle is associ-
ated with a change in the Gibbs’ free energy. The bottom half of Fig. 3 can 
be regarded as describing the stability of the solid state, while the top half 
can be regarded as being related to the solvation. The solubility of a com-
pound depends on the balance between the two and, subsequently, it would 
be possible to estimate the solubility from a combination of the properties on 
the bottom half and the properties of top half of the figure. The approach to 
estimate solubility from experimental properties representing any of the in-
dividual steps in Fig. 3 has been taken by several research groups as outlined 
in Section 1.2.1.1. below. However, the ultimate approach for the estimation 
of drug solubility lies perhaps with free energy calculations of each of the 
separate steps that would allow for the estimation of solubility ab initio i.e. 
from first principles. 
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Figure 3. A thermodynamic cycle for dissolution of a crystalline drug. The change 
in Gibbs’ free energy associated with each transition is denoted as follows: fusion 
( Gfus), transfer from the melt to the saturated water solution ( Gtrf), sublimation 
( Gsub), hydration ( Ghyd) and dissolution ( Gdis). Modified from Fig. 8.1 on p. 373 
of Solubility Behaviour of Organic Compounds23.

1.2.1.1. Classical solubility models 
The oldest rule for solubility is perhaps that of similia similibus solvuntur or 
“like dissolves like” first proposed by medieval alchemists. This rule sug-
gests that a non-polar compound will dissolve in a non-polar solvent, as a 
result of their similar chemical structure, but not in a polar solvent. The like 
dissolves like rule can be exemplified by the classical work of Corwin 
Hansch24 and co-workers from 1968. They correlated the aqueous solubility 
of 156 organic liquids to their experimental or calculated logP with excellent 
results.

978.0log339.11log P
S

   (1) 

r = 0.935 s = 0.472 

In Eq. 1, S is the molar solubility in water, P is the octanol-water partition 
coefficient, r is the correlation coefficient and s is the standard deviation (in 
log units of S). In 1965, Irmann25 proposed the following equation for the 
difference in aqueous solubility of solids and their corresponding super-
cooled liquids. 

  Crystal 

Saturated
water solution 

Gas

Gsub

Ghyd

GdisMelt

Gfus

Gtrf
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In Eq. 2, SS is the aqueous solubility of the solid, SO is the aqueous solubility 
of the supercooled liquid and Tm is the melting point in ºC. The constant 
-0.0095 arises from the approximation introduced by Walden,26 that the Sm
of most organic compounds is close to 54.4 Jmol-1K-1. Equations 1 and 2 
were combined by Yalkowsky and Valvani27 in 1980 to form the general 
solubility equation (GSE), which was later (2001) revised by Jain and 
Yalkowsky28. In this revised equation (Eq. 3), the Tm term represents the 
contribution to solubility from the solid state and the logP term represents 
the contribution to the solubility from the solvation. Hence, the GSE uses the 
left-hand route in the thermodynamic cycle in Fig. 3 above. The revised ver-
sion of the GSE states that; 

PTS m log)25(01.05.0log    (3) 

where S is the aqueous solubility of a solid organic non-electrolyte, Tm is the 
melting point in ºC and P is the octanol-water partition coefficient. For liq-
uids the melting point term is omitted. Admittedly, the GSE is a simplifica-
tion of the thermodynamic contributions to the solubility and there are sev-
eral assumptions associated with it. The most important of which are the 
assumptions that the solubility is low enough to assume ideal solubility, that 
the supercooled liquid is completely miscible with n-octanol and that the 

Sm of organic compounds is constant (Walden’s rule). In spite of these as-
sumptions, the GSE has proven to be able to predict aqueous solubility of 
many different classes of organic compounds, including drug-like ones, with 
good accuracy29.

Abraham and Lee30 proposed the following relationship for the solubility 
for 659 organic solids and liquids: 

x

RS

V987.3362.3

238.4168.2771.0004.1518.0log

22

2222  (4) 

R2 = 0.920 s = 0.557  

where S is the aqueous solubility, R2 is the excess molar refractivity, 2  is 
the dipolarity/polarisability, 2  is the overall or summation hydrogen bond 
acidity, 2  is the overall or summation hydrogen bond basicity and Vx is 
the McGowen characteristic volume31. The product 2 x 2 , reflects the 
strength of the interactions in the crystal. R2 and Vx can be calculated from 
structure, whereas 2 2  and 2  were experimental data in Eq.4, but 
can now be calculated with the program ABSOLV32.
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In addition to the above-mentioned equations, the UNIFAC33,34,
AQUAFAC35 and Mobile Order Theory36,37 provide estimates of the solubil-
ity of organic compounds from Sm, Tm or the solubility in a hydrocarbon 
solvent (e.g. n-octane). These methods, the above-mentioned Equations 1-3 
included, all require one or more experimental parameters. This limits the 
utility of these methods in early drug discovery since experimental data for 
the pure compound is rarely available. One way to overcome this restriction 
is to calculate these properties from the chemical structure. If the quality of 
these estimations is satisfactory, the predicted values could replace the ex-
perimental ones enabling the estimation of solubility already before a com-
pound is synthesised. 

1.2.2. Computational estimation of thermodynamic properties 
1.2.2.1. Octanol-water partition coefficient (logP)
Being the, by far, most frequently used property in drug design, logP has 
received a great deal of attention and many methods exists for its calculation 
directly from chemical structure. Five distinct categories of methods have 
been identified38,39. They are (i) the -substituent method40, (ii) fragment 
based methods41, (iii) atomic contribution and/or surface area methods42, (iv) 
molecular properties methods43 and (v) solvatochratic parameters methods44.
Being so popular, numerous commercial software packages based on these 
methods are available for the calculation of logP. The predictive ability of 
three such programs45-47 was evaluated on a diverse set of 300 drugs and 
drug-like molecules39. It was found that the programs were equally accurate 
with a standard deviation of around 0.65 log units and it was pointed out by 
the authors that the error in the experimental data might be larger than previ-
ously suggested. When evaluating calculated logP for 2569 AstraZeneca48

in-house data, root mean square errors (RMSEs) ranged from 0.84-1.2049-51

and for 640 legacy Pharmacia compounds the RMSEs obtained52 ranged 
from 1.14-1.4649,51,53. From these investigations it can be concluded that a 
certain measure of uncertainty (at least 0.5 log units) must be expected when 
using commercial software for the estimation of logP and it is reasonable to 
believe that it will be even larger for new drug-like compounds. 

1.2.2.2. Melting properties (Tm), ( Hm) and ( Sm)
Tm is the temperature at which a phase transition from the solid to liquid 
form of the pure compound occurs. At this temperature, the solid and liquid 
phases co-exist at equilibrium. Hence, the “change” in Gibbs’ free energy is 
zero, which gives us the following relationship for Tm:

0mmm STHG     (5) 
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m

m
m S

H
T      (6) 

In Equations 5 and 6, G is the change in Gibbs’ free energy, Hm is the 
enthalpy of melting (kJmol-1), Tm is the melting point (K) and Sm is the 
entropy of melting (Jmol-1K-1). Most models for the estimation of the melt-
ing point directly from chemical structure are based on small homologous 
series of compounds. Only recently have models appeared that are based on 
structurally diverse sets of organic compounds54-56 and drugs57,58. On average 
these models estimates the melting point of a diverse set of drugs compiled 
by Bergström et al.59 from the MERCK Index with a RMSE of about 40ºC. 
The reason for the lack of accuracy probably lies in the complex (possibly 
non-linear) relationship between the molecular structure and melting point. 
Important descriptors identified in the above-mentioned models include 
measures of the size, shape, polarisability, flexibility and hydrogen bond 
potential. The ability to form intermolecular hydrogen bonds results in a 
higher melting point than does intramolecular hydrogen bonds. This feature 
can be difficult to capture with descriptors derived from the single molecule, 
rather than from studying the interaction per se.

An alternative approach to the estimation of Tm was recently explored by 
Jain and Yalkowsky60. They assessed Tm by making separate estimations of 
its components Hm and Sm in Eq. 6. The Hm were predicted using a 
group contribution method and Sm was predicted from the molecular sym-
metry and flexibility with a semi-empirical equation (Eq. 7) developed by 
Dannenfelser et al. 61,62.

lnln50 RRSm    (7) 

In Eq. 7, Sm is the entropy of melting (Jmol-1K-1), R is the universal gas 
constant 8.31 Jmol-1K-1,  is the rotational symmetry number and  is the 
flexibility number. Equation 7 estimated the Sm of 1799 organic com-
pounds with an average absolute error (AAE) of 12.3 Jmol-1K-1 63. A group 
contribution method64 estimated the Sm for the same dataset with an accu-
racy of 10.4 Jmol-1K-1. The Tm of 2230 compounds was predicted from Hm
and Sm with an AAE of 30.1ºC. Since the AAE is normally a smaller num-
ber than the RMSE, this represents more or less the same accuracy as for the 
other methods for estimation of the melting point. 

The accuracy that can be expected from present methods for the estima-
tion of Tm directly from chemical structure is around ±40ºC for organic com-
pounds and drugs alike. In most cases, this is not satisfactory for precise 
predictions of Tm of single compounds. It could, however, provide a means 
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to apply the GSE (or other methods that include Tm) as a simple filter for a 
crude estimation of solubility without the need for experimental data. 

1.2.2.3. Enthalpy of sublimation ( Hsub)
The lattice energy is the energy that is released when one mole of crystal is 
formed from one mole of molecules in the gas phase. The enthalpy of subli-
mation ( Hsub) is the heat that is absorbed in the reverse process, i.e the en-
ergetic cost to remove one mole of molecules from the crystal lattice and 
transfer it to the gaseous state. The experimental determination of the Hsub
involves the determination of vapour pressure over the crystal, which is a 
time-consuming experiment for drugs65,66. As a result of this, very few meth-
ods for the prediction of the Hsub of drugs exist. There are, however, exam-
ples of such models for small organic compounds67,68.

The future challange in this field lies in the ability to predict the structure 
of crystals from the molecular structure of a compound. Because of the com-
plexity of large organic compounds and drugs, only crystal structures of 
small organic, organometallic and inorganic compounds have been success-
fully solved by this technique69. To inspire progress in this field, the Cam-
bridge Crystallographic Data Centre has hosted three blind tests of crystal 
structure prediction70-72.

1.2.2.4. Free energy of hydration ( Ghyd)
The free energy of solvation can be calculated using high level computer 
simulations of the solute-solvent system of interest. These simulations are 
computationally demanding and time consuming and are therefore, not suit-
able for the screening of large compound libraries. They do, however, offer 
an excellent means for investigating the solute-solvent interactions more 
closely for a limited number of compounds. If the solvent is water, the free 
energy of solvation is termed the free energy of hydration ( Ghyd). However, 
the methods described here are applicable to any solute-solvent system. The 
methods available for the calculation of the free energy of solvation were 
recently reviewed73. They can be roughly divided into two types, discrete 
methods74-76 and continuum models. In the discrete methods, the solvent 
molecules, as well as solute, are treated implicitly by means of Monte Carlo 
(MC) or molecular dynamics (MD) simulations. As the solute needs to be 
embedded in a large number of solvent molecules, all of which are repre-
sented at a (i) quantum mechanical (QM) level, (ii) a purely classical mo-
lecular mechanical (MM) level or (iii) a mixture of the two, they are highly 
computer intensive. Continuum models77-81are less computer intensive than 
discrete methods since they differ from the latter in the respect that they do 
not treat the solvent molecules individually, but rather as a dielectric contin-
uum using the theory of polarisable fluids. The solute is still modelled by 
either QM or MM. 
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When performing the calculations, it is convenient to divide the solvation 
process into three additive parts: (i) cavitational forces ( Gcav),
(ii) dispersion and repulsion (van der Waals) forces ( Gvdw) and (iii) electro-
static forces ( Gele) (Eq. 8). 

elevdwcavhyd GGGG    (8) 

Since the cavity formation depends largely on the size of the solute, the van 
der Waals term and the electrostatic term can be grouped together as one 
interaction term; Gint = Gvdw + Gele (Eq. 9). 

intcavhyd GGG     (9) 

If the free energy of one compound is simulated for two different solvents, 
for e.g. n-octanol and water, the free energy of transfer between those sol-
vents can be obtained. In the case of n-octanol and water, this corresponds 
directly to the octanol-water partition coefficient of the compound. 

The free energy of hydration can also be estimated by a quantitative struc-
ture-property relationship (QSPR) approach. One of the first examples of 
this was provided by Hine and Mokarjee82 in 1975, but several others have 
followed since76,83-85. The RMSE of the predicted Ghyd with these models 
ranges from about 3-6 kJmol-1 which corresponds to approximately 10% of 
the range of Ghyd of the respective training set. Unfortunately, the datasets 
that were used for the training of these models are restricted to organic com-
pounds which are not drug-like. It can be expected that the error will be lar-
ger for drug molecules, since they are large, often flexible and complex 
chemical structures in comparison to the small organic molecules used for 
model development. 

1.3. Experimental estimation of drug solubility 
1.3.1. Definition of intrinsic solubility 
The intrinsic solubility (S0) of a drug is the concentration of a saturated wa-
ter solution of the neutral form of that drug in equilibrium with its solid. 
In practice, this means that the drug should be in its free form (i.e., not a salt 
or solvate), that the preferred solvent is water, that the pH should be adjusted 
so that only the neutral form of the drug exists in the solution and that there 
is excess solid present. It would also be desirable to start from a pure sample 
of the most stable polymorph at the relevant temperature and pressure. 
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1.3.2. Factors influencing solubility experiments 
When determining aqueous solubility, very different values may be obtained 
depending on the experimental set-up and the methods used. Care must be 
taken to ensure that the conditions used in the experiment correspond to the 
desired endpoint. For example, consider the different endpoints of kinetic 
and thermodynamic methods for the determination of solubility described in 
Section 1.3.3. and 1.3.4. 

1.3.2.1. pH 
Drugs often contain ionisable groups such as amines, carboxylic acids and 
sulphonamides. The ratio of ionised and unionised compound will vary with 
the pH of the solution, depending on whether the protolytic function is an 
acid or a base, and on the pKa of that group. The ionised form has a higher 
solubility than does the unionised form. It follows that the solubility of acids 
and bases is pH dependent. The Henderson-Hasselbalch equation describes 
the relationship between the pH of a solution and the fraction of deproto-
nated and the protonated species of the drug as a function of its pKa. For a 
base, the Henderson-Hasselbalch equation becomes Eq. 10, which can be re-
written into a more practical form, describing the solubility of a base at a 
given pH as a function of its intrinsic solubility and pKa (Eq. 11). 

HB
BpKpH a log    (10) 

pHpK
pH

aSS 1010     (11) 

In Eq. 10, [B] is the molar concentration of the base in neutral form and 
[HB+] is the molar concentration of the base in its ionised form. In Eq. 11, 
SpH is the total solubility of the base at a given pH (i.e., the sum of the neu-
tral and ionised forms at that pH) and S0 is the intrinsic solubility of the base. 
The Henderson-Hasselbalch equation is only valid for ideal solutions, for 
which it predicts a tenfold increase in solubility with each unit decrease in 
pH below (for a base) the pKa up to infinity. The reverse is true for an acid. 
In a practical situation, solutions do not behave ideally and the solubility is 
not infinite, but will, instead, be limited by ion-pairing and aggregation. Re-
gardless of this, a change in pH will have a significant impact on the solubil-
ity, making a reliable pKa value important when planning experiments. 

1.3.2.2. Solid-state form 
The physical form of the solid will influence the solubility. Salts, solvates 
and polymorphs of the same compound exhibit different solubilities. For 
some compounds this effect can be large, while it is less pronounced for 
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others. Typically, the difference in solubility between two polymorphs of the 
same compound is around a factor of two86. There are several other aspects 
related to the physical form that will influence the solubility; some examples 
follow. The crystalline form of a compound is generally less soluble than the 
amorphous form of the same compound. Hydrates usually exhibit a lower 
solubility in water than their corresponding anhydrous form. When dis-
solved, any metastable form will transform into the thermodynamically sta-
ble form at the relavant temperature and pressure. Furthermore, the purity of 
the compound influences the solubility, with this effect being more pro-
nounced for poorly soluble compounds23.

1.3.2.3. Ionic strength 
The solubility of a salt will decrease upon the addition of a common ion, i.e. 
any of the ions making up that salt. Oppositely, addition of a non-common 
ion will result in an increased solubility of a sparingly soluble salt. For 
non-electrolytes, on the other hand, an increase in the ionic strength will 
result in a decrease in the solubility. Consequently it would be advisable to 
control the ionic strength and to keep track of the ions present in solution. 
Using buffer as a solvent may result in multiple equilibria between salts in 
the solid form and their corresponding ions in solutions, with the result that 
the solubility will be unpredictable. 

1.3.2.4. Temperature 
Dissolution in water is an endothermic process (i.e., heat is absorbed) for 
most compounds. This results in an increase in the equilibrium solubility 
with an increase in temperature. The increase in solubility can be explained 
by Le Châtelier’s principle, which can be summarised as: ‘If a chemical 
system at equilibrium experiences a change in concentration, temperature, 
or total pressure, the equilibrium will shift in order to minimize that 
change.’ For an endothermic process this means dissolving more compound 
to avoid an increase in temperature. Temperature will have a minor effect on 
the estimation of solubility provided that the change in temperature is small 
(±2ºC). 

1.3.2.5. Organic solvent 
The addition of a co-solvent (i.e. a water-miscible organic solvent) will in-
crease the aqueous solubility of hydrophobic compounds; the larger and 
more non-polar the solute (i.e. compound), the greater the effect of the co-
solvent. For this reason, co-solvent is often used to facilitate the determina-
tion of poorly soluble compounds or when determining solubility by auto-
mated methods starting from a dimethyl sulfoxide (DMSO) stock solution. 
Using co-solvent will change the experimental conditions, resulting in a 
different solubility value than if pure water and/or solid compound had been 
used.
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1.3.3. Kinetic methods 
Two main types of methods for the determination of drug solubility can be 
identified: (i) kinetic methods that estimate the non-equilibrium solubility in 
a high throughput mode and (ii) thermodynamic methods that estimate the 
solubility at equilibrium. 
Examples of methods with a high capacity (50-300 compounds per day) used 
by pharmaceutical companies for fast estimation of the solubility in buffer 
are provided by (i) the turbidimetric method10 and (ii) the nephelometric 
method87.

In (i), aliquots of 1 l of a 10 g L-1 DMSO solution are added at 1 min 
intervals to a pH 7 phosphate buffer. Precipitation is detected as an increase 
in UV absorbance by light scattering in the 600-820 nm range. A total of 14 
dilutions is made, resulting in a range in solubility being covered from 
4 g mL-1 to 56 g mL-1.

Method (ii) starts with a 10 mM DMSO solution being diluted 20-fold in 
phosphate-buffered saline (PBS), at pH 7.4, and then serially diluted 10 
times across a 96-well plate with PBS containing 5% DMSO. The concentra-
tion at which the compound precipitates is detected by light scattering by 
using a nephelometer with a laser light source at 633 nm. 

The advantage of using these methods is their speed and the fact that they 
estimate the solubility under conditions similar to those used in biological 
assays. Storing compound libraries in DMSO simplifies the handling, al-
though several issues have arisen in conjunction with the interpretation of 
assay results, demonstrating that this storage method is not completely reli-
able88.

1.3.4. Thermodynamic methods 
Thermodynamic methods result in intrinsic solubility (S0), since the solubil-
ity is measured at equilibrium between the solid and the saturated solution. 
However, depending on the set-up, these methods do not always strictly 
conform to the constraints associated with S0 as outlined in Section 1.3.1. 
The most commonly used method is the shake-flask method59,89. It has been 
used extensively in chemistry, for instance for the determination of logP.
Generally, excess solid material of the compound is added to 0.5-3 mL of 
pure water. The pH is adjusted with diluted acid or base to guarantee that the 
entire sample is in its neutral form, whereupon it is agitated until equilibrium 
is reached (normally for 24-72 hrs). The saturated solution is separated from 
the excess solid through filtration or centrifugation and the concentration of 
the compound is determined with HPLC-UV or HPLC-MS. 

The throughput of thermodynamic methods is less than that of the kinetic 
methods, typically about 5-10 compounds per day. However, the extra time 
needed should be weighed against the high quality of the solubility data. 
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1.4. Computational estimation of drug solubility 
1.4.1. Model development – QSPR 
To estimate and optimise physicochemical and pharmacokinetic properties 
has become an equally important and integrated part of the work in early 
drug discovery as has been the estimation and optimisation of pharmacologi-
cal activity. With statistical and mathematical tools it is possible to relate 
chemical structure to any measured activity or property and then use that 
relationship to predict that property for new unknown compounds. The rela-
tionship then becomes a model. These models are commonly referred to as 
quantitative structure-activity relationships (QSAR) and QSPR. Model de-
velopment can be divided into four steps: (i) selection of the dataset that is 
going to be used for the training of the model, (ii) generation of a description 
of the chemical structures for the compounds in the training set, (iii) compi-
lation of literature data or generation of experimental data for the desired 
property and (iv) the use of statistical or mathematical tools to relate the 
description of the chemical structure to the experimental data. The model is 
then validated and tested before it is used for the prediction of new, to the 
model, unknown compounds. Model validation procedures are discussed in 
Sections 3.9.2. and 4.2. The steps (i) to (iv) in model development are out-
lined in Fig. 4 and considerations taken in each one of them are discussed in 
the four sections below. 

Data set Statistics

Molecular
descriptors

Experimental
data

Model

Validation

Use

Figure 4. The four steps in the development of a QSPR model. (i) Selecting a data-
set, (ii) calculating molecular descriptors of the chemical structures, (iii) generating 
experimental data and (iv) connecting the experimental data to the chemical struc-
ture by statistical or mathematical tools. The model is validated before use. 
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1.4.2. Dataset selection 
When considering the compounds that should make up the training set it is 
important to have the future application of the model in mind. The first ques-
tion to ask is if the model should be global, that is representative of most 
chemical structures; or if a local model, restricted to a homologous series of 
compounds, is more appropriate. In order to achieve a global model the 
training set needs to be chemically and structurally diverse. The diversity 
can be estimated by a number of tools90. For a local model, the diversity 
within that restricted volume of chemical space91 need to be considered. 
Furthermore, if the model is to be used for the prediction of drugs, then 
drugs must also make up the majority of the training set. 

1.4.3. Molecular descriptors 
The way in which the chemical structure can be represented ranges from 
simple measures of molecular weight and counts of elements calculated from 
the molecular formula, often referred to as one-dimensional (1D) molecular 
descriptors, through measures of branching and connectivity that are calcu-
lated from or a two-dimensional (2D) structure of the molecule, to surface 
and volume descriptors calculated from the three-dimensional (3D) molecu-
lar structure. The 3D structure takes into account different possible confor-
mations of the molecule. The optimisation of the conformation of a molecule 
can be achieved by faster techniques, such as MM, or by more sophisticated 
and computationally demanding QM techniques that consider the electron 
distribution of the molecule. The three groups are outlined in Fig. 5. 

3D: Surface area, Volume, Electron 
distribution, Charges

2D: Hydrogen bond donor and 
acceptors, connectivity, topology

1D: Molecular weight, Element 
counts, Number of atomsC14H18N4O3

N

N NH2

NH2

O

O
O

Figure 5. Three types of molecular descriptors of ranging complexity can be identi-
fied. They are referred to as 1D, 2D and 3D molecular descriptors from their respec-
tive method of calculation. Examples of each descriptor type are given in the figure. 
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An important feature of molecular descriptors is that they are interpretable. It 
should be possible to for a person with knowledge of chemistry, for e.g. a 
medicinal chemist, to intuitively translate the values of the molecular de-
scriptors selected as important in a model into a change in chemical structure 
of a lead compound resulting in improved properties of that compound. 

Alternatively a fragment or atom-based approach can be taken for the rep-
resentation of the chemical structure. The compounds in the training set are 
then divided into their constituent fragments or atoms. Each such fragment 
or atom is considered to make a contribution of a certain size to the property 
studied. The size and direction of that contribution is assigned through re-
gression analysis of the fragments or atoms present in the training set. For 
new unknown compounds, the values for all fragments or atoms present in 
that molecule are summed up to yield a predicted value. 

1.4.4. Experimental data 
At first glance, measuring the equilibrium solubility of drugs may be per-
ceived as a straightforward, routine experiment. In reality, though, the vari-
ability in the solubility data found in the literature is quite large. In 1984, a 
ring test performed by 17 laboratories in Japan came back with the discour-
aging results that the equilibrium solubility for anthracene at 20º C was rang-
ing from -7.08 to -6.22 (83 nM to 603 nM) which is equal to a sevenfold 
difference in solubility. For fluoranthene, the solubility ranged from -6.38 to 
-5.94 (0.42 M to 1.15 M) which corresponds to a threefold difference in 
solubility92. Considering that a standardised protocol was used for the ex-
periments performed by the 17 laboratories, this was a surprisingly large 
difference. The values reported for same compounds in the AQUASOL dA-
TAbASE93 displayed an even larger range: more than 1.5 log units (a 36-fold 
difference) for anthracene (-6.79 to -5.23; with 22 determinations being 
made) and almost 0.9 log units (an eightfold difference) for fluoranthene 
(-6.23 to -5.35; for the 13 determinations made)94. Anthracene and fluoran-
thene are both neutral compounds that are mainly used in the production of 
dyes and agrochemicals. Their chemical structures are simple in comparison 
to the highly functionalised and complex molecules handled by the modern 
drug discovery, which should make the determination of their solubility a 
relatively easy task. 

In agreement with the above-mentioned findings, data compiled from the 
literature for seven common drugs (carbamazepine, diazepam, hydrocorti-
sone, ketoprofen, naproxen, prednisolone and progesterone) supplied by 
Loftsson et al.95 in 2006 also displayed a large difference in experimental 
values. The average difference observed in the published solubility values 
was 0.57 log units. The largest difference was 1.5 log units, observed for 
carbamazepine (-4.30 to -2.80), and the smallest difference was 
0.14 log units, observed for hydrocortisone (-3.10 to -2.96). These values 
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support the statement made by Jorgensen and Duffy96 that, ‘the average un-
certainty in experimental logS measurements for a reasonably complex or-
ganic molecule is likely no better than 0.6 log units’.

This has two major implications for solubility modelling: firstly, the accu-
racy of computational models trained on data from the literature can never 
exceed this value, or they are likely to be overfitted; and secondly, if values 
from the literature are used for modelling, it is important that a thorough 
investigation be made of the quality of those values before such data is used 
in the development of computational models. The latter can sometimes be 
difficult, since details about the experiments, such as the pH, temperature, 
solvent, purity of the compound, equilibrium time and polymorphic form are 
often not reported in the literature. The most appealing strategy would be to 
use solubility data generated under standardised conditions from one single 
laboratory for model development. 

1.4.5. Statistical and mathematical methods 
Many techniques exist for relating the chemical structures in the training set 
to their corresponding experimental values of the property under investiga-
tion. These can be in the form linear or non-linear regression methods such 
as multiple linear regression97-99 (MLR) or projection to latent structures by 
means of partial least squares100-102 (PLS); artificial neural networks103,104

(ANN) that are intrinsically non-linear in nature and classification models, 
such as decision trees. The transparency of the chosen method will greatly 
affect the interpretability of the resulting model. 

Neural networks can be trained to very accurately predict the training set, 
but are often difficult to interpret in terms of the changes needed to be done 
to the chemical structure in order to increase or decrease solubility. As a 
consequence, an ANN model is often referred to as being a black box model. 
They also suffers from the risk of being overfitted, i.e. they are so well fitted 
to the observations of the training set that they lose the predictive abilities 
when compounds not part of the training set are considered. Therefore it 
becomes extremely important that the experimental data used for training 
neural networks are of high quality or the model would be predicting the 
experimental noise. 

Linear regression methods have the advantage of being simple and trans-
parent. The influence (both size and direction) of a selected variable is easily 
identified through the coefficient for that variable, which ensures interpret-
ability of the model. On the other hand, they have the drawback of not being 
able to represent non-linear relationships between the molecular descriptors 
and the response variable.

For this thesis, multivariate methods105 principal components analysis106

(PCA) and PLS were chosen for the development of models for S0 and 
Ghyd. These are augmented linear regression methods that do not suffer 
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from the limitations of MLR which can not handle covariance among the 
variables, nor data matrices that are “short and fat”, i.e. contain a large num-
ber of variables (molecular descriptors) in comparison to the number of ob-
servations (compounds). Briefly, PCA and PLS are projection methods that 
have the ability to extract a few principal components or latent variables that 
contain the majority of the information related to the variation provided by 
hundreds of variables. PCA is used for the mapping of data, diversity analy-
sis and to find clusters and trends in data. It only considers the molecular 
descriptors, while PLS tries to fit the variance in the response variable (for 
e.g. S0) to the variance in the molecular descriptors. 

1.4.6. Available computational solubility models 
Numerous scientific articles have provided a wide range of computational 
models for the prediction of drug solubility over the last decade. They can be 
divided into three main categories according to the methods used for model 
development: (i) semi-empirical or regression equations based on experi-
mental data, (ii) fragment or atom-based methods and (iii) models that relate 
molecular descriptors to the solubility through statistical or mathematical 
methods. The first category is discussed in Section 1.2.1.1. and will not be 
considered further here. 

The method in the second category of dividing the chemical structure into 
fragments, either at a functional group level or at an atomic level, allows for 
direct interpretation of the contribution of a particular chemical fragment to 
S0. A drawback of these methods is that large datasets, containing as many 
fragments as possible, are needed in order to cover all potential fragments of 
new compounds to be predicted by the model. One of the first attempts to 
estimate water solubility based on fragments was made by Kühne et al.107 in 
1994. They used 694 non-electrolytes of environmental and pharmaceutical 
interest and noted that predictions were generally better for liquids than for 
solids. They therefore advocated the inclusion of a melting point term for 
solids. Several studies using group108,109 and atom contributions110 have fol-
lowed using larger dataset containing few or no drugs. In general, they 
achieved standard errors (SE) of 0.5-0.6 log units for the training sets and SE 
of around 1 log unit for test sets. 

In the third category of solubility models, ANN trained on large datasets 
either predominantly comprised of organic compounds111 or augmented with 
drugs112-114 and drug-like compounds have been popular. In particular one 
dataset, first compiled by Huuskonen et al.115 from databases AQUASOL93

and PHYSPROP116, has been re-used several times117-120. Unfortunately, 
several errors and misprints have been discovered for this dataset121.
MLR122,123, PLS124,125, support vector machines (SVM)126 and decision 
trees127,128 have been applied to similar datasets with similar results. Typi-
cally, these models show RMSEs for both the training and test sets of ap-
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proximately 0.5-0.7 log units. However when tested on drug-like com-
pounds, the prediction made by these models in the pharmaceutically inter-
esting region of solubility (-9 to -3 on a log M scale) was considerably less 
accurate.

A few models based on smaller datasets mainly comprised of drugs or 
drug-like structures have been developed. Unfortunately the solubility data 
was compiled from the literature rather then generated under standardised 
conditions129-131. Models proposed by McFarland132, Raevsky et al.133 and 
Jörgensen and Duffy134 were accompanied by extensive discussions around 
the results and interpretation of the models at a physicochemical level, which 
is generally missing in the models referred to above. Prediction of the solu-
bility in phosphate buffer pH 7.4 for a large number of compounds was at-
tempted with limited success by Göller et al.135. Promising alternative ap-
proaches to the methods described above include the prediction of solubility 
through free energy of solvation from quantum chemical calculations136-138

and the study of the change in solubility within series of structurally similar 
pairs of molecules139.

Many of the above-mentioned models suffer from one or several of the 
following drawbacks that have been identified as key issues in solubility 
modelling96,121,140-143. Firstly, the datasets used for training the models do not 
contain any or only a small fraction of drugs. Secondly, the training sets 
often cover a large range of solubility, from pico-molar (that is 10-12 M) to 
100 M, or even 10 000 M112,113. To accurately estimate solubility values in 
the pico-molar range appears nearly impossible and the meaning of a solubil-
ity value of 100 M is difficult to comprehend, especially considering that the 
solubility of pure water in itself is around 55 M. Training models on this 
large range of solubility results in a decreased accuracy for the smaller, but 
from a pharmaceutical perspective highly interesting region of nanomolar 
(10-9 M) to millimolar (10-3 M). 

Regardless of statistical method, the use of solubility data from literature 
will evidently introduce error of unknown size into the model. As discussed 
in Section 1.4.4., the smallest expected experimental variation in literature 
data is around 0.5 log units. Ideally, data of intrinsic solubility generated 
under standardised conditions from one single laboratory should be used for 
model development. 

The aims of this thesis were formulated with the objective to address sev-
eral of the current issues in solubility modelling. The undertaken investiga-
tions strived to understand the solubility behaviour of drugs at a physico-
chemical level and to incorporate that knowledge into accurate and predic-
tive means to estimate aqueous solubility purely from the chemical structure. 
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2. Aims of the thesis 

The general objective of this thesis was to devise computational methods to 
predict the solubility of drugs and candidate drugs directly from chemical 
structure. The emphasis was on the quality of experimental solubility data 
(Papers I-III), model development and validation (Paper I), experimental 
properties influencing drug solubility (Papers II and III) and structural fea-
tures influencing the solid state (III) as well as solvation (IV). The specific 
aims were: 

To develop computational models for solubility comprising high-
quality experimental data for drugs and drug-like molecules. 

To assess and compare the quality of computational models based 
on both structurally diverse (global) datasets and homologous (lo-
cal) series of compounds. 

To investigate which experimental properties contribute to the 
solubility and, in particular, the influence of solid-state properties 
on the solubility of crystalline drugs. 

To identify structural features of drugs, in the form of molecular 
descriptors, related to solid-state limited solubility. 

To identify structural features of drugs, in the form of molecular 
descriptors, related to solvation limited solubility. 
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3. Materials and methods 

3.1. Selection of dataset 
The strategy for the selection of the datasets used in Papers I-IV differed 
depending on the aim of the study in question. In Paper I, the goal was to 
achieve a structurally diverse dataset that covered as much of the oral drug 
space (see Section 3.2.) as possible, whilst taking care to only include high 
quality experimental data. High quality solubility data from collaborators 
within the pharmaceutical industry was added to in-house solubility data to 
form a database of diverse, drug-like compounds. 

In Papers II and III, it was considered to be of great importance not only 
that the datasets reflected the structures of orally administered drugs, but 
also that they highlighted the contribution solid-state properties made to 
solubility. In Paper III, this was achieved through the selection of a dataset 
that displayed a wide range of solubility (S0) and a narrow range of logP.
Hence, the solubility of the dataset used in Paper III was truly independent 
of lipophilicity. 

In Paper IV, the hydration free energy of drugs was studied. Since this is 
not an experimental property, we searched the literature to find data of drugs 
obtained with a thoroughly validated simulation method. 

3.2. Structural diversity and drug-likeness 
The structural diversity of the datasets used in Papers I, II and IV was as-
sessed by ChemGPS144 methodology using the 2D molecular descriptors 
calculated with the program Selma145, AstraZeneca R&D Mölndal, Sweden 
(see Section 3.8.1.). In Paper III the main objective for the selection was to 
achieve a dataset for which the S0 was independent of logP. Because of this, 
the structural diversity was not examined for this set of compounds. 
ChemGPS is a navigation tool that provides a “map” of the chemical space 
onto which a dataset of interest can be projected. From a PCA of a set of 
reference compounds and the selected molecular descriptors ChemGPS ex-
tract the first three principal components (t[1], t[2] and t[3]) and use them as 
the x, y and z-axes in a 3D co-ordinate system. The compounds under inves-
tigation can then be visualised in this co-ordinate system through PCA pro-
jection. In the ChemGPS analysis, the drug-likeness was gauged through 
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comparison of the chemical space covered by the compounds in our dataset 
with that covered by the compounds of an AstraZeneca R&D Mölndal in-
house database comprising 456 orally administered drugs. The axes used to 
create the oral drug space were the first three principal components of the 
PCA and they mainly represent size (t[1]), polarity (t[2]) and flexibility 
(t[3]), respectively. 

3.3. Chemicals and drugs 
All chemicals and drugs used in the studies were either of analytical grade or 
of high purity. The drugs had a purity exceeding 98%, with the exception of 
griseofulvin (96%), which is a natural product. Compounds were generally 
in their free form, i.e. there were no salts or solvates, and possible polymor-
phic forms were investigated with differential scanning calorimetry. Chemi-
cals and drugs were mainly purchased from Sigma-Aldrich, Stockholm, 
Sweden.

3.4. Crystal structures 
The required crystal structures were retrieved from Cambridge structural 
database (CSD) version 5.27 from The Cambridge Crystallographic Data 
Centre (CCDC), Cambridge, UK. The search engine ConQuest version 1.8 
(CCDC, Cambridge, UK) was used to query the database. Once the struc-
tures were retrieved, intermolecular forces were evaluated in the program 
Mercury version 1.4.1, CCDC, Cambridge, UK. 

3.5. Differential scanning calorimetry (DSC) 
Melting point (Tm), enthalpy of melting ( Hm) and entropy of melting ( Sm)
for many of the investigated drugs were determined using differential scan-
ning calorimetry (DSC). Triplicate samples of 1-3 mg were accurately 
weighed in sealed and pierced aluminium pans. Generally, samples of each 
compound were heated from room temperature to approximately 50 K above 
the melting temperature at a rate of 10 Kmin-1. If any anomalies, were de-
tected, such as for example asymmetric peak shape, multiple melting endo-
therms or re-crystallisation exotherms, the samples were rerun at a heating 
rate of 2 Kmin-1 to enable a closer investigation. 
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3.6. Solubility determinations – the shake-flask method 
The S0 (expressed as the logS0 in M) of crystalline compounds was deter-
mined in quadruplicate according to the shake-flask method described by 
Bergström et al.59. First of all, a rough estimation of the expected value of S0
was made from previous determinations found in the literature and/or from 
logP and Tm using the GSE. At least three times excess weight of solid was 
weighed into 1.5 mL Eppendorf tubes, 1 mL of distilled water was added 
and the samples were thoroughly mixed on a vortex to achieve maximum 
wetting of the solid. For weak bases and weak acids, the pH was adjusted to 
at least 2 pH units above (bases) or below (acids) the pKa with 0.01 M NaOH 
or 0.01 M HCl to ensure that all of the molecules were present in their neu-
tral form. The pH was not adjusted for neutral (including bases with pKa<2
or acids with pKa>12) and zwitterionic compounds. The samples were agi-
tated on an orbital plate shaker at 300 rpm for at least 24 hrs at room tem-
perature (21 ± 0.5°C). The pH was then measured and the presence of undis-
solved material was confirmed before the samples were centrifuged in an 
Eppendorf centrifuge model 5403 for 15 min at a relative centrifugal accel-
eration of 23 500 x g to separate the saturated solution from the solid. After 
centrifugation, 0.5 mL of the supernatant was carefully pipetted into 2 mL 
HPLC autosampler glass vials using a Pasteur glass pipette and the samples 
were analysed by HPLC-UV, HPLC-FL or HPLC-MS-MS. 

3.7. Hydration free energy calculations 
Values for free energy of hydration ( Ghyd) for 48 drugs from Westergren et 
al.146 were used in Paper IV. Briefly, in their method they use molecular 
simulations and interpret the results with the following equation: 

2
c

LJMShyd
EEAG    (12) 

where AMS is the molecular surface area,  is the water-vacuum surface ten-
sion of the TIP4P model (63.5 mN m-1, which is different from the macro-
scopic surface tension of 71.8 mN m-1, as discussed by Westergren et al.146)
and ELJ and EC are the solute-water Lennard-Jones and Coulomb interaction 
energies, respectively. Standard NTP (fixed temperature and pressure) 
Monte Carlo simulations in the program BOSS Version 4.6147 were used to 
obtain the interaction energies (ELJ and EC) and molecular volumes. A box of 
approximately 500 TIP4P148 water molecules surrounding one drug molecule 
was prepared. The molecular surface area (AMS) was calculated in BOSS by 
letting a sphere probe the Lennard-Jones potential energy surface around the 
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solute. The solute molecules were modelled by the OPLS-AA149 force field 
for fully flexible molecules and partial charges were calculated using 
AM1150 and CM1A151. The structures were optimized in vacuum and had a 
net charge of zero. In Paper IV the Gcav is represented by AMS , Gwdv by 
ELJ and Gele by 0.5 EC, respectively (from Eq. 8 in Section 1.2.2.4. and 
Eq. 12 above).

3.8. Molecular descriptor generation 
3.8.1. 2D – Selma and Molconn-Z 
Smiles were used as 2D structural input format for the calculation of mo-
lecular descriptors by the AstraZeneca in-house program Selma145. A total of 
93 2D descriptors that were related to molecular size, polarity, flexibility, 
charge distribution and connectivity were calculated. They included a range 
of well-known and commonly used 2D descriptors from different commer-
cial sources. Selma descriptors were used in Papers I-IV. 

The program Molconn-Z152 was used to calculate atom-type electroto-
pological state indices from Smiles. Briefly, the electrotopological state indi-
ces for a particular atom are values resulting from its topological and elec-
tronic environment. The indices encode the electronegativity as well as the 
local topology of each atom by considering perturbation effects from 
neighbouring atoms. Descriptors from Molconn-Z were used in Paper I. 

3.8.2. 3D – Surface area descriptors and VolSurf 
For the surface area descriptors low energy 3D conformers were obtained 
with the program MacroModel version 6.5. A 500-step Monte Carlo con-
formational search was performed using Merck Molecular Force Field 
(MMFF) in a simulated water environment on a Silicon Graphics Octane 
workstation. The in-house computer program MAREA153 was used to calcu-
late the free surface area (SA) of each atom as well as the molecular volume 
of the conformation with the lowest energy. The polar surface area (PSA) 
was defined as the area occupied by oxygen and nitrogen atoms and hydro-
gen atoms attached to these heteroatoms. The non-polar surface area (NPSA) 
was defined as the total surface area (TSA) minus the PSA. The SA was 
divided into the partitioned total surface areas (PTSAs). Each PTSA corre-
sponds to the surface of a certain type of atom. For example, the NPSA 
originating from carbon atoms can be partitioned into the surface areas of 
sp-, sp2-, and sp3-hybridised carbon atoms. Both the absolute SAs and the 
surface areas relative to the TSAs were calculated. 
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Smiles were used as the 2D structural input format and were converted into 
3D structures using the program Corina version 3.20154,155. From a 3D repre-
sentation of the molecules, 94 descriptors were calculated with the 
DRY (hydrophobic probe), OH2 (water), and O (carbonyl) probes in Vol-
Surf156,157 version 4.0.1. These descriptors describe surface properties related 
to size, shape, hydrophobic-hydrophilic balance, amphiphilic moment and 
capacity factors. 

3.9. Statistical analysis 
3.9.1. Linear regression 
Regression analysis was used in Papers II and III to (i) asses how much of 
the variance in solubility that could be ascribed to logP alone and (ii) to test 
how much of the variance in either the residuals (II) or logS0 (III) was re-
lated to any of the experimental solid-state properties Tm, Hm, and Sm. The 
fit of the regression was assessed from the coefficient of determination (R2)
and by calculating the RMSE according to Eq. 13: 

N
predobs

RMSE
2

   (13) 

where obs and pred were the observed and the predicted values for the ob-
servations (compounds), respectively, and N was the number of observa-
tions.

3.9.2. Multivariate analysis 
Multivariate data analysis tools principal components analysis (PCA) and 
projection to latent structures by means of partial least squares (PLS), as 
implemented in Simca-P version 11.0.0.1 (Umetrics AB, Umeå, Sweden), 
were used for Papers I-IV. All variables (molecular descriptors) were mean 
centred and scaled to unit variance. Descriptors displaying skewness outside 
the range of ± 1.5 or a variance close to zero were either excluded directly or 
cubic root transformed to acquire a normal distribution for the observations 
in the dataset. The model predictivity was judged by the R2 and the RMSE, 
calculated according to Eq. 14. 

p1N
predobs

RMSE
2

   (14) 
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where obs and pred were the observed and the predicted values of the obser-
vations, respectively, and N was the number of observations and p was the 
number of latent variables used by the PLS model. 

Each PLS model was validated by all or any of the following: (i) leave-
many-out (4 or 7 groups) cross validation (Q2), (ii) a permutation test (100 
iterations) in which the values of the response variable were randomised and 
the PLS analysis repeated in order to detect the risk of chance correlations 
and (iii) using an external test set. All three methods of validation were used 
in Paper I, while Q2 and permutation test were used for Papers II, III and IV. 

Simple variable selection was applied to decrease the complexity of the 
models and alleviate interpretation, because of the high co-variance between 
some of the descriptors. One of two methods was used: (i) If the exclusion of 
the least important variable resulted in a model with a higher Q2, then that 
descriptor was permanently left out of the model. This procedure was re-
peated until no further improvement of the model was achieved. Or (ii) first, 
the bottom 50% of the variables exhibiting the lowest level of importance 
was excluded. Second, overlapping variables (residing in the same area of 
the PLS loading plot) were excluded to leave only a few variables represent-
ing the key descriptors encoding the predominance of the information related 
to the response variable. The aim with the variable selection was to maintain 
the predictivity and increase the robustness of the model by removing infor-
mation not directly related to the response variable (i.e. removing the noise). 
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4. Results and discussion 

4.1. Training drug solubility models 
4.1.1. Quality of experimental data (Papers I-III) 
Experimental variability in the data used for the training of a computational 
model introduces noise into that model. It has been a priority throughout this 
thesis to include only high quality experimental data produced under stan-
dardised conditions to achieve as high a prediction-to-noise ratio as possible. 

In Paper I, a compilation of high quality data from collaborators in the in-
dustry was used with data generated in-house to form a large and diverse 
training set. Only those data meeting the following criteria were considered: 
(i) the solubility value should be determined at a pH resulting in measure-
ment of the intrinsic solubility, (ii) the solubility value should be obtained 
under equilibrium conditions (iii) the solubility should be determined at 
room temperature. However, despite the precautions taken, there is probably 
some experimental variability in this dataset. With the intention of quantify-
ing the experimental variability, the correlation between different methods 
used in-house for solubility determination was calculated. Excellent agree-
ment was observed between the small-scale shake-flask method and potenti-
ometric titration (R2=0.95) (data not shown). Similarly, our shake-flask 
method has previously been shown to reproduce values found in the litera-
ture with high accuracy (R2=0.98)59. Given this, the highest possible predic-
tivity (R2 and Q2) for the global model is more likely to be 0.9 rather than 
1.0, once the experimental error has been accounted for. 

In Paper II, a comparison was made between the use of filtration or cen-
trifugation as methods to separate excess solid from the saturated solution 
when equilibrium has been achieved. Excellent agreement (R2=0.998) was 
obtained for the 15 drugs investigated (Fig. 6). In this study, glass fibre filter 
was used for the filtration and the samples for both centrifugation and filtra-
tion originated from the same vial. 

Since the purity, crystallinity and differences between polymorphic forms 
of drugs greatly influence the solubility, the solid-state properties for all of 
the compounds used in Papers II and III were characterised. How these 
properties contribute to the intrinsic solubility is discussed in Section 4.4. of 
this thesis. 
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Figure 6. Correlation between experimental solubility of 15 drugs using either cen-
trifugation or filtration to separate the excess solid material from the saturated solu-
tion at the end of the experiment. The agreement between the two methods was 
excellent.

Performing the above analyses of the experimental variability ensured that 
the solubility data used throughout Papers I-III were of the highest quality 
possible. This, together with the fact that the solid-state properties of the 
starting material used for the solubility determinations were characterised for 
the majority of the compounds investigated gives confidence in the results 
and in the conclusions drawn from them. In addition, the solubility data in-
cluded in this thesis provides an excellent external test set for the validation 
of future solubility models. 

4.1.2. Diversity and drug-likeness (Papers I, II and IV) 
Since drug molecules generally differ from organic compounds by being 
larger, more lipophilic and more complex with multiple functional groups, 
drugs were prioritised over non-drugs for the investigations performed in 
this thesis. Generally, we concentrated on orally administered drugs because 
these comprise the majority of the pharmaceutical market. Furthermore, an 
effort was made to include compounds from as many structural and thera-
peutic groups as possible to make the models generally applicable to new 
molecules. 

ChemGPS144 methodology was applied to datasets in Papers I, II and IV 
to assess the structural diversity as well as the drug-likeness (Section 3.2.). 
The selection criterion for compounds in Paper III is discussed in Sec-
tions 3.1. and 4.4.2. Despite the large difference in the size of the datasets 
used (N=85, 26 and 48 in Papers I, II and IV, respectively), all three showed 
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a satisfactory spread in physicochemical properties as well as in the volume 
of the oral drug space that they covered (Fig. 7a-c). The results from these 
papers can, therefore, be regarded as being more representative and gener-
ally applicable to drugs rather than to organic compounds at large. 
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Figure 7. ChemGPS analysis of diversity and drug-likeness for the datasets used in 
(a) Paper I (N=85), (b) Paper II (N=26) and (c) Paper IV (N=48). Compounds in-
cluded in studies I, II and IV (filled circles) are projected together with 456 orally 
administered drugs (open circles) from an AstraZeneca in-house database that 
served as a reference of the oral drug space. The axes mainly represent size ([t1]), 
polarity ([t2]) and flexibility ([t3]). 

4.2. Validating drug solubility models (Paper I) 
Model validation is probably the most important step in the development of 
reliable prediction tools. Without a thorough validation, the accuracy and 
robustness of the prediction of new compounds can not be judged. In general 
PLS was used to derive models for S0 (I-III), Tm (III) and Ghyd (IV). The 
choices available for model validation for PLS are the use of Q2, permutation 
test and external test set. The most powerful determinate of model accuracy 
and robustness is the application of an external test set, i.e. a set of com-
pounds that was not included in the model training. 

Table 1. Statistics for global solubility models 

Model R2 Q2 RMSEtr R2
te RMSEte

a R2
ext te RMSEext te

a

2D 0.75 0.68 0.92 0.62 0.86 (1.00) 0.56 0.80 (1.01)*** 
3D 0.57 0.53 1.20 0.67 0.94 (1.04) 0.52 0.89 (1.06)** 
2D+3D 0.78 0.71 0.86 0.54 1.04 (1.10) 0.54 0.93 (1.07)* 
Consensus 0.80  0.90 0.71 0.83 (0.93) 0.59 0.82 (0.95)* 
a RMSE values (log units) including the data for compounds with solubility values outside the solubility 
range (-8.8 to -1.2 log units) covered by the training set are given in parentheses. Statistically significant 
differences between the RMSE values before and after the exclusion of solubility data outside the solubil-
ity range covered by the training set are denoted with asterisks; p<0.05 = *, p<0.01 = **, p<0.001 = ***.
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In Paper I, a set of 207 drugs and drug-like compounds commonly used for 
model development130,134 was applied as an external validation of the models. 
The results (displayed in Table 1) showed that the global models (based on 
2D, 3D, 2D+3D descriptors or a consensus of the three) predicted the exter-
nal test set with the same accuracy as, or higher than, the training set and the 
test set comprised of in-house data (based on the RMSE after the removal of 
solubility data outside the solubility range of the training set). 

When R2 and the observed versus predicted plots for the four models were 
considered, it seems that even though the average prediction error was 
roughly the same as for the training set, the external test set comprised more 
compounds that were mispredicted by several log units. These compounds 
were predominantly those with a high solubility, with experimental values 
outside the range covered by the training set (-8.8 to -1.2) (Fig. 8a). Fur-
thermore, very few low solubility compounds were present in the external 
test set (Fig. 8a). 

When comparing the range of physicochemical properties (molecular de-
scriptors) covered by the training set and the external test set studied in Pa-
per I, it becomes clear that the external test set only partly covers the proper-
ties of the training set, making this validation representative of compounds 
residing in that area only (Fig. 8b). 
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Figure 8. External test set: (a) observed versus predicted logS0 from the 2D descrip-
tor model for the dataset in Paper I,  = training set,  = test set and × = external test 
set. (b) the 207 compounds of the external test set used in Paper I is projected on the 
model space as defined by the first two principal components (PCs) in a PCA for the 
in-house training and test set data (N=85) using both 2D and 3D molecular descrip-
tors. The ellipse (b) shows the 95% confidence interval limits. 

For the local models, which are discussed in greater detail below (Sec-
tion 4.3.), comprised of bases, acids and ampholytes, respectively; the pre-
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diction of the external test set was generally inferior to that of the training 
set. This result can mainly be ascribed to large homologous series (e.g. bar-
bituric acids and xanthines) present in the external test sets with no structural 
homologues in the corresponding training sets. 

An evaluation of whether the external test set is appropriate for use, de-
mands that the solubility range and the descriptor range of that dataset is 
studied in relation to the properties of the training set. This highlights the 
importance of the transparency of new models; the user needs to be provided 
with information about the range of the physicochemical properties and the 
S0 values of the training set in order to be able to evaluate the applicability 
domain of the model. 

4.3. Global versus local models (Paper I) 
Several large homologous series of compounds were identified within the 
external test set used for model validation in Paper I. It is generally consid-
ered to be less demanding to find highly predictive models for datasets of 
limited structural diversity than for datasets comprising compounds of 
greater structural diversity. To test this theory, local models were con-
structed for structural subsets found in the external test set for barbituric 
acids, xanthines and steroids. In addition, a set of -receptor antagonists was 
compiled from the training and test sets used in Paper I and added to the 
compounds for which the solubility had previously been determined in our 
laboratory158. The resulting RMSE values for each of the training sets are 
shown in Fig. 9 together with the global consensus model and local models 
for acids, ampholytes, non-protolytes and bases. It is clear that the prediction 
error is generally smaller for the homologous series than for the diverse 
global dataset. 

A global model based on a diverse set of drugs will be universally appli-
cable to new drug-like molecules. However, the accuracy of the predicted S0
will not be as great as it could be. On the other hand, a local model based 
compounds that are structurally similar to one another will give predicted S0
values of high accuracy, but it will be restricted to the model range defined 
by that particular series of compounds. Thus the two types of model serve 
different purposes and should be used accordingly. 
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Figure 9. Root mean square errors (RMSEs), in log units, of the prediction for mod-
els based on local datasets (white and grey bars) as compared to the consensus 
model (black bar) for the global dataset in Paper I. 

4.4. Experimental properties influencing drug solubility 
4.4.1. Solvation properties – logP (Paper II) 
Already in 1968 Corwin Hansch formulated a series of regression equations 
that described how experimental logP values influenced the water solubility 
of organic liquids24 (see Section 1.2.1.1.). Even though logP is just a meas-
ure of the ability of a molecule to be solvated in octanol relative to the ability 
of the same molecule to be solvated in water, it is often regarded as a crude 
measure of the solvation of drugs in water. A more appropriate property for 
the estimation of the degree of solvation would be the Ghyd, which is dis-
cussed in more detail in Section 1.2.1. and 4.6.3. Judging from the popularity 
of logP and its calculated counterparts as descriptors in models of S0 it is 
clear that the octanol-water partition coefficient is closely related to the 
solubility of both organic compounds and drugs. Note, for instance, that in 
all of the global models presented in Paper I, CLOGP is rated as the most 
important descriptor (Fig 6, Paper I). 

A regression analysis with logS0 and CLOGP as variables was performed 
for 270 drugs and drug-like compounds constituting the training, test and 
external test set in Paper I to estimate the extent to which solubility is related 
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to solvation for a normal set of drugs and drug-like compounds (Paper II). 
CLOGP was found to explain 54% of the variability in logS0 of this dataset 
(Eq. 15).

CLOGP)02.0(617.0)07.0(91.1Slog 0   (15) 

1.12RMSE308.8,F0.54,R270,N 2

The regression parameters are indicated with ± 1 standard deviation and the 
statistical parameters given are as follows: N is the number of compounds, 
R2 is the coefficient of determination, F is the test statistic from the F-test 
and RMSE is the root mean square error. When using Eq. 15 to predict the 
solubility of a set of 26 structurally diverse drugs it was found that it ex-
plained 67% of the variability of the solubility in this dataset (Fig. 10a). The 
increased degree of correlation between logS0 and CLOGP for the smaller 
set of drugs can be explained by the fact that the dependency of solubility on 
lipophilicity is highly dataset dependent. 

The above analysis suggests that solubility is strongly dependent on sol-
vation. However, almost half (46%) of the variability in the solubility of the 
compounds under consideration (for the larger dataset, N=270) remains un-
explained and subsequently must be related to other properties, such as for 
instance those descriptive of the solid state. 

4.4.2. Solid-state properties (Papers II and III) 
The solubility of a crystalline solid is governed by the balance between its 
ability to interact with the solvent (i.e. water) and its ability to make stable 
interactions with itself in the crystalline state. It therefore seems natural to 
investigate if, and to what degree, solubility is related to experimental solid 
state properties such as Tm, Hm and Sm. In 1980 Yalkowsky and Valvani 
showed that in addition to logP, Tm was important for the solubility of solid 
organic compounds27 (see Section 1.2.1.1.). 

The influence of experimental solid-state properties on solubility was in-
vestigated on two occasions in the work conducted for this thesis (Pa-
pers II and III). On the first the residuals (observed logS0-predicted logS0)
from Eq. 15 were related to experimental Tm, Hm and Sm by regression 
analysis of 26 compounds (Paper II). In addition, the improvement of the 
value obtained for the solubility as predicted by a combination of CLOGP, 

Hm and Sm, relative to the solubility as predicted by CLOGP alone 
(Eq. 15), was studied for the same 26 compounds. On the second occasion, 
logS0 for a logP-independent dataset comprised of 20 compounds were re-
lated to experimental values for Tm, Hm and Sm (Paper III). 

The result of the analysis of the residuals in Paper II showed that they 
were mainly related to Hm (R2=0.26) and to a lesser extent related to 
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Tm (R2=0.09) and Sm (R2=0.09). Furthermore, the overall prediction of 
logS0 was improved by 0.3 log units when Hm and Sm were considered in 
combination with CLOGP relative to the solubility as predicted by CLOGP 
alone (Fig. 10a-b). For some compounds (i.e. astemizole, glyburide, fen-
bufen, gliclazide and griseofulvin) the improvement was larger than 
one log unit. 
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Figure 10. Observed logS0 versus logS0 as predicted by (a) CLOGP alone (Eq. 15) 
and (b) CLOGP together with Hm and Sm for the 26 drugs investigated in Paper II. 

For the logP-independent dataset, logS0 was highly correlated to 
Tm (R2=0.70) and Hm (R2=0.71), but to a lesser extent to Sm (R2=0.31), as 
displayed in Fig. 11b-d. 

From the above displayed results it was concluded that the stability of the 
crystal as quantified by solid-state properties Tm, Hm and Sm influence the 
intrinsic solubility of drugs. To what extent these properties contribute to 
drug solubility is highly compound-specific. 

The two above-mentioned examples of datasets constitute one “normal” 
dataset (N=26, Paper II) of drugs; normal in the sense that logP explains the 
greater part of the variability in S0 of this set. Hence, for most compounds in 
this dataset, poor solvation is the limiting factor for the solubility. However, 
for a few compounds, logP alone is not enough – solid-state properties are 
also needed for a proper estimation of S0 to be made since it is the strong 
interactions in the crystal that represent the major limiting factor for the 
solubility of these compounds. In the “normal” situation the solvation-
limited compounds are in majority and the solid-state limited compounds are 
in minority. Because of this the overall effect of the solid-state properties on 
the “normal” dataset is small when regarding the dataset as a whole, al-
though it is significant for individual compounds. The real challenge for the 
future lies in the ability to confidently distinguish between these two groups 
of poorly soluble compounds, since they need different treatment. 
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Figure 11. The experimental values for logS0 for 20 compounds investigated in 
Paper III correlated to (a) CLOGP, (b) Tm, (c) Hm and (d) Sm.

The second example is an “extreme” dataset (N=20, Paper III) for which the 
variability in S0 is totally independent of logP. As a result, the solubility of 
these compounds must be related entirely to other properties. It was shown 
in this study that those properties are to a large extent related to the solid 
state. In particular Tm and Hm were important contributors to S0 for these 
compounds. This “extreme” dataset constitute an example of compounds 
whose solubility is mainly governed by the strength of the interactions in the 
crystal. 

4.5. Application of semi-empirical equations on drugs 
4.5.1. The general solubility equation (GSE) (Paper II) 
In several studies the GSE (Eq.3 in Section 1.2.1.1.) has proven to be predic-
tive for the solubility of organic compounds and drugs29. The GSE is simple 
in nature and relies on sound physicochemical reasoning. With simplicity 
being its main advantage, it has the potential of providing the field of drug 
discovery with highly accurate and easily interpretable predictions of drug 
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solubility. Its main drawback is the need for experimental properties (logP
and Tm) as input parameters. 

It was considered to be of interest to test the predictivity of GSE on a 
dataset comprised exclusively of drugs. For this purpose, GSE was used to 
predict S0 for 26 drugs (Paper II) for which Tm had been experimentally de-
termined. The results were compared with experimentally determined S0.
Figure 12a shows the observed (i.e. experimental) logS0 plotted against the 
predicted logS0 (i.e. logSGSE). The RMSE was 0.9 log units, which is within 
the range of most solubility models (commonly between 0.7 and 1 log unit) 
(see Section 1.4.6.). Interestingly, we noted that the standard error (SE) had a 
negative sign, indicating that the solubility of most of the compounds was 
overestimated by the GSE. This is an undesirable feature in a solubility 
model since it increases the risk of insoluble compounds being advanced in 
drug discovery projects. 
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Figure 12. LogS0 as predicted by (a) the GSE (Eq. 3) and (b) the GSE with experi-
mental Sm (Eq. 16) for the 26 compounds in Paper II. 

We speculated on whether the reason for the overestimation might be the 
low weighting of the m term (-0.01) compared to the logP term (-1) in the 
GSE, which stems from the assumption of constant Sm (see Sec-
tion 1.2.1.1.) for organic compounds. This results in the solid-state properties 
having little impact on the predicted solubility. To alleviate the impact of 
unbalanced weighting, experimentally determined values of Sm were used 
in the place of the constant value of 56.5 Jmol-1K-1 in Eq. 16, that was ob-
tained through the combination of Eq. 14 and Eq. 26 from Jain and 
Yalkowsky’s derivation of the GSE28.

PT
S

S m
m log25
85.5705

5.0log 0   (16) 
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The prediction of logS0 (i.e. logSGSE Sm) did indeed improve by using ex-
perimental values for Sm and the solubility of these compounds was no 
longer overpredicted (Fig. 12b). This was believed to be the result of the 
more appropriate weighting of the Tm term achieved by Eq. 16 as compared 
to the original version of the GSE. 

4.5.2. The Dannenfelser equation (Paper II) 
Naturally, the modified form of the GSE (Eq. 16) evaluated above suffers 
from the same drawback of requiring experimental input parameters as does 
the original GSE. In an attempt to get around this problem Dannenfelser and 
Yalkowsky have proposed a semi-empirical equation for the estimation of 

Sm from two parameters obtained directly from the chemical structure62,159

(Eq. 7, Section 1.2.2.2.). 
Since this equation had not been validated for drugs before, it was applied 

to the 26 compounds in Paper II and the results were compared to the ex-
perimentally obtained values. The observed versus predicted plot is shown in 
Figure 13. On average, the Sm was underestimated by 15 Jmol-1K-1, al-
though the Sm of five compounds (chlorpropamide, glyburide, probenecid, 
piroxicam and diethylstilbestrol) was overestimated. 
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Figure 13. Sm for the 26 drugs investigated in Paper II as predicted by the Dan-
nenfelser semi-empirical equation (Eq. 7). 

The Dannenfelser equation provides a simple means for the estimation of 
Sm directly from molecular structure of a drug. However, it would be desir-

able to achieve predictions with slightly higher accuracy if it is to be really 
useful.
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4.6. Molecular descriptors for drug solubility 
4.6.1. Two dimensions or three? (Papers I and IV) 
The information encoded by 2D and 3D molecular descriptors differs in the 
sense that the effect of the molecular conformation is taken into account by 
3D descriptors, but not by 2D ones. Consequently 3D descriptors are more 
computationally demanding, i.e. they take a longer time to generate. How-
ever, the increased complexity of 3D molecular descriptors is not a guaran-
tee that the information content will be higher than for 2D ones. Both 2D and 
3D molecular descriptors were used for the model development in each of 
the Papers I and IV. The aim was to determine whether one or the other of 
the descriptor types was more predictive and more informative for S0 and 

Ghyd.
In Paper I, 2D Selma and Molconn-Z descriptors were used as well as 3D 

surface area descriptors (see Section 3.8.) to develop solubility models for 
both global and local datasets (see Section 4.3.). In the case of the global 
dataset, the 2D Selma and Molconn-Z descriptors turned out to be superior 
to the 3D surface area descriptors, although the most predictive model was 
achieved by combining both 2D and 3D descriptors in a consensus approach 
(Table 1). In the case of the local datasets, the 2D Selma descriptors outper-
formed the 3D surface area descriptors for acids and for ampholytes, how-
ever for bases the 3D surface area descriptors were superior. 

In Paper IV, 2D Selma descriptors and 3D VolSurf descriptors were used 
to build models for Ghyd. These models were composed by adding together 
the various contributions from the different forces, that, together, make up 

Ghyd. Thus, Ghyd was composed from the respective contributions from 
cavitation forces ( Gcav), dispersive and repulsive forces ( Gvdw), electro-
static forces ( Gele) and interaction forces ( Gint= Gvdw+ Gele) (as described 
in Section 1.2.2.4.). For all four energy terms, the 2D Selma descriptors gave 
more predictive models than did the 3D VolSurf ones (Fig. 14). 

The reason for the apparent superiority of the 2D descriptors over the 3D 
descriptors is not immediately apparent. Brown and Martin showed that de-
scriptors of 2D structure produced better separations than those of 3D struc-
ture when they were used to distinguish between active and inactive com-
pounds160. The same authors also found the 2D descriptors to be more useful 
than 3D ones for predicting logP and pKa

161. The information overlap be-
tween 3D ALMOND162,163 descriptors and 2D Selma descriptors was inves-
tigated by Oprea164. He found that the first PLS component (which mainly 
encoded molecular size) showed 60% correlation, while information in the 
following components (mainly encoding information related to pharma-
cophoric patterns and hydrogen bonding) was only captured by the 3D AL-
MOND ones. A similar result was obtained by the same author and others 
when using 2D Selma and 3D VolSurf descriptors in combination with 
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ChemGPS to map the medicinal chemistry space with respect to permeabil-
ity and solubility165. They recommend the use of 3D VolSurf descriptors for 
the mapping of properties related to the biopharmaceutics classification sys-
tem (BCS)6.
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Figure 14. Root mean square error (RMSE) for models of the respective energy 
terms contributing to the Ghyd as modelled by 2D and 3D molecular descriptors. 

From the above studies it seems that the 2D molecular descriptors are gener-
ally more information rich and have a greater ability to discriminate between 
closely related chemical structures, but that the 3D molecular descriptors 
better capture specific information related to receptor-ligand interactions. It 
is, therefore, advisable to use both 2D and 3D molecular descriptors for the 
prediction of properties of drugs, as is supported by the results in Paper I 
where the most predictive global solubility models were achieved for the 
consensus approach where both 2D and 3D molecular descriptors were used. 

4.6.2. The solid state – LogP-independent solubility (Paper III) 
As mentioned previously, for certain compounds, the solubility is governed 
by solid-state properties rather than by solvation properties. Paper III was 
devoted to identifying structural features that describe the solubility of those 
compounds. This was achieved through the selection of a dataset for which 
logP explained none (R2=0.04; Fig 11a) of the variance in solubility and 
instead Tm and Hm explained a large proportion (R2=0.70 and R2=0.71;
Fig. 11b-c) of the variance in solubility. This dataset is interesting for two 
reasons. Firstly, it illustrates that the solid-state properties are important de-
terminants of drug solubility, and secondly, it provides us with a tool for the 
identification of molecular descriptors that are related to solid-state limited 
solubility. 
For the 20 compounds in our logP-independent dataset, PLS models were 
built to describe logS0 using 2D Selma descriptors. With only five descrip-
tors, the best model was able to explain 76% of the variability in logS0 of 
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this dataset (Fig. 15a). The descriptors were (in decreasing order of impor-
tance): the number of rigid bonds, the Balaban index, the number of rigid 
fragments, the second smallest eigenvalue (Min eV #2) and the third largest 
eigenvalue (Max eV #3) (Fig. 15c). 
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Figure 15. PLS models of logS0 and Tm for the 20 compounds studied in Paper III. 
(a) Observed versus predicted logS0, (b) observed versus predicted Tm, (c) loadings 
for molecular descriptors included in the final logS0 model and (d) loadings of mo-
lecular descriptors included in the final Tm model. Error bars represent the 
95% confidence intervals. 

The selected molecular descriptors were interpreted as being related to the 
rigidity (i.e. lack of flexibility) and to the aromaticity of the molecule. The 
model predicted that large, flat molecules with an extended ring-structure 
and conjugated -systems would be poorly soluble, while small spherically 
shaped molecules with flexible side-chains would be highly soluble. 

In addition, PLS models for the Tm of this dataset were constructed since 
Tm is such an important factor controlling the solubility (Fig. 15b). They 
identified descriptors similar to the ones identified by the logS0 models 
(Fig. 15d). By examining the intermolecular interactions present in the crys-
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tal structures for the compounds in the dataset, we were able to better under-
stand and explain the solubility behaviour predicted by the model. This 
analysis showed that even though the model considered the effect of non-
specific van der Waals interactions present in the crystal, it did not account 
for the effect of highly specific hydrogen bonding. Consequently there is a 
need for new molecular descriptors that not only consider single molecules, 
but also capture the intermolecular interactions. This should enable the ef-
fects of hydrogen bonding in crystals to be taken into account. 
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Figure 16 Compounds containing structural features that are indicative of low solu-
bility due to high melting point (top panel) and compounds containing structural 
features that are indicative of high solubility due to low melting point (bottom 
panel). Compounds are (a) triamcinolone acetonide, (b) griseofulvin, (c) lorazepam, 
(d) secobarbital, (e) lidocaine and (f) disopyramide. 

These results suggest that compounds with a solid-state limited solubility 
could be identified using molecular descriptors related to rigidity (or the lack 
of flexibility) and aromaticity. Examples of compounds containing (top 
panel), and not containing (bottom panel), such structural features are given 
in the in Fig. 16. 
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4.6.3 Solvation – The free energy of hydration (Paper IV) 
For many reasons it would be appealing to be able to calculate S0 from first 
principles by adding the contributions from Ghyd and Gsub (see Sec-
tion 1.2.1.). With the accuracy of free energy calculations steadily improving 
and the advancement of computer technology resulting in ever decreasing 
calculation times, this might be feasible in the not too distant future. 

In Paper IV the possibility of developing QSPR models for simulated 
Ghyd values of 48 drugs was investigated. It was also of interest to identify 

the structural features that govern the hydration process of drugs. In order to 
better understand how the chemical structure was related to the different 
energy terms ( Gcav, Gvdw, Gele and Gint) making up Ghyd the terms 
were modelled separately. We found that it was possible to develop models 
of high accuracy for Gcav (R2=0.98), Gvdw (R2=0.94) and Gint (R2=0.91),
while the accuracy was lower for Gele (R2=0.75) (data not shown). The 
resulting QSPR for Ghyd fulfilled our expectations, with a RMSE of 
12.0 kJmol-1, which is equal to 10% of the range. These results are displayed 
in Fig. 17. Improvements in the Gele model should be expected by incorpo-
rating descriptors specifically designed to take into account the electrostatic 
properties of the molecule, like for instance electrotopological state indi-
ces166,167.
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Figure 17. Observed versus predicted Ghyd for the 48 drugs modelled in Paper IV. 
Predicted Ghyd values were calculated by summing the predicted Gcav and Gint
values (Eq. 9). 

The structural features associated with poor hydration can be summarised as 
large size, high flexibility, low polarisability and a lack of possibilities to 
form hydrogen bonds. Molecular size works in opposite direction for Gcav
and Gint, because, while it is energetically more expensive to incorporate a 
large molecule into the solvent, it is quite comprehensible for drug mole-
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cules that an increased molecular size correlates with an increased number of 
heteroatoms, which are both polarisable and can engage in hydrogen bond 
interactions. The models were interpreted as selecting small, rigid and po-
larisable molecules containing hydrogen bond acceptors and donors for fa-
vourable interactions with the surrounding water molecules. Consequently 
these structural features (small, rigid and polarisable) resulted in large nega-
tive values of Ghyd. In direct contrast to this, large, flexible, non-polarisable 
molecules with few hydrogen bond acceptors and donors interact poorly 
with water and, subsequently, have smaller negative values of Ghyd.

Solubility depends on the balance between hydration and sublimation. 
The value of Ghyd has to be numerically larger than the value of Gsub for 
dissolution to occur. It is therefore not possible to draw conclusions regard-
ing the solubility of a compound from the value of Ghyd alone; Ghyd must 
be considered in connection with the value of Gsub for that molecule. How-
ever, the molecular descriptors identified above can be used to flag poten-
tially poorly soluble on the grounds of poor hydration. 
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5. Conclusions 

The research conducted for this thesis has involved the development of com-
putational models of aqueous drug solubility. The work presented here in-
cludes a presentation of these models, as well as providing an analysis of 
several aspects related to model development and interpretation. It highlights 
the importance of selecting a training set that is representative of the chemi-
cal space to which the solubility model should apply. Furthermore, solvation 
was found to be the dominating factor limiting the solubility, although ex-
perimental solid-state properties were found to contribute significantly to the 
solubility of drugs. Calculated molecular descriptors that were associated 
with logP-independent solubility were identified, with the intention of mak-
ing it possible to incorporate the solid-state properties in future solubility 
models. Finally, the solvation properties of drugs were studied and molecu-
lar descriptors related to the poor hydration of drugs were revealed. The 
specific conclusions were: 

Global models provide solubility estimations with lower ac-
curacy that are universally applicable, while local models are 
more accurate, but are restricted to a specific chemical series 
of compounds. 
External test sets used for model validation should represent 
the range of S0 and the physicochemical properties of the 
training set if they are to constitute a fair validation. 
The major limiting factor for drug solubility in general was 
shown to be the solvation, as quantified by logP. However, 
solid-state properties indisputably play an important role. 
The relative importance of solvation and solid state contribu-
tions to the solubility was highly compound specific. 
The contribution to the solubility of drugs from their solid 
state can be modelled by calculated molecular descriptors re-
lated to size, flexibility and aromaticity. 
The contribution to drug solubility from the free energy of 
hydration can be modelled by calculated molecular descrip-
tors related to the size, flexibility, polarisability and hydro-
gen bond potential of the drugs. 



55

Through the identification of groups of molecular descriptors associated with 
either solid-state limited or solvation limited solubility, it is expected that the 
results presented here will contribute to the development of computational 
models for the classification of compounds according to their solubility be-
haviour and, thereby, the design of rules-of-thumb that could be applied as 
computational filters. Such filters could provide valuable guidance for deci-
sion-making in the early drug discovery. 
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