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Abstract: Zebrafish (Danio rerio) are becoming one of the most important model organisms in be-
havioural neuroscience. It has been shown repeatedly that different zebrafish strains show large
behavioural differences. These divergent behavioural profiles may have a genetic basis, but environ-
mental factors and previous experience are also known to greatly affect the behavioural phenotype of
zebrafish. It could be expected that behavioural differences at the larval stage should be less affected
by environmental factors and experience. In the present study, we screened larvae of zebrafish of
the AB strain and offspring of wild-caught zebrafish for boldness, using an open field test. In order
to follow the behavioural development, we studied larvae at the age of 5-, 7-, 12- and 30-days post
fertilization (dpf). Behaviour, as well as behavioural development, clearly differed between the larvae
of the different strains. Wild larvae showed larger total distance moved than AB larvae, both at light
and dark conditions. These differences were already present at 12 dpf but became more pronounced
with age. Wild larvae had a greater variance compared to AB larvae for most of the variables. We have
previously shown that bold and shy adult zebrafish differ in the brain expression of dopamine and
opioid receptors. The results of the current study show that wild larvae display significantly higher
brain expression of drd2b than AB larvae at 30 dpf, a difference that could be related to differences in
activity. We did not detect any differences in the expression of opioid receptors.

Keywords: behaviour; boldness; anxiety; larvae; domestication; dopamine; opioid receptors

1. Introduction

Zebrafish (Danio rerio) are one of the most important vertebrate model organisms.
From initially being mainly used for studies on developmental biology, zebrafish are
now rapidly increasing as a model in all areas of biomedical research [1,2]. Behaviour
is usually one of the most important traits when it comes studies on neuroscience and
pharmacology. Moreover, zebrafish have been developed as models for studies on affective
and neurodegenerative disorders [1,3]. Even though the use of adult zebrafish is increasing,
zebrafish larvae are still frequently used in developmental biology, where their transparency,
allowing direct in vivo monitoring, is a clear advantage [4]. However, zebrafish larvae are
also used for behavioural studies, especially for screening of various pharmaceuticals and
xenobiotics; larvae being more cost efficient than adult zebrafish [5]. In addition, the use of
larvae has been motivated by ethical reasons [2].

In nature, zebrafish occur in highly diverse environments, ranging from rice paddies
to larger streams [6,7]. Not surprisingly, adult zebrafish from these different environments
have been shown to differ in behaviour [8]. Moreover, a great number of domesticated
laboratory strains of zebrafish are available. Previous studies have shown that fish from

Fishes 2022, 7, 197. https://doi.org/10.3390/fishes7040197 https://www.mdpi.com/journal/fishes

https://doi.org/10.3390/fishes7040197
https://doi.org/10.3390/fishes7040197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fishes
https://www.mdpi.com
https://orcid.org/0000-0003-4252-3144
https://doi.org/10.3390/fishes7040197
https://www.mdpi.com/journal/fishes
https://www.mdpi.com/article/10.3390/fishes7040197?type=check_update&version=2


Fishes 2022, 7, 197 2 of 14

these different strains may differ considerably in behaviour [9,10]. The AB strain (ZFIN
ID: ZDB-GENO-960809-7) is an often-used lab strain of zebrafish that was established in
the 1970s by crossing an A and a B strain of zebrafish available at a pet store in Albany,
Oregon, USA [6]. Thus, the AB strain is highly domesticated and may have diverted
considerably from wild zebrafish. In fact, Holden and Brown [11] reported considerable
differences in gene expression between adults of AB and Wild India Kalkutta (WIK) strains
of zebrafish. Similarly, Mustafa et al. [10], showed that adult zebrafish of the AB strain differ
in behaviour from offspring of wild caught fish. Overall, as adult AB fish appeared bolder
than wild fish, even though behavioural divergence differed depending on behavioural
tests.

Inter-strain behavioural differences is a serious problem when comparing results from
different studies and makes repetition of studies difficult. In fact, laboratory strains seem
to lose natural behavioural responses. For instance, Vossen et al. [12], showed that adult
zebrafish of the AB strain did not react to conspecific alarm substance, whereas wild strain
fish displayed a clear response to the alarm substance preparation.

Clearly, our knowledge on behavioural differences between different strains/lines of
zebrafish is still limited. Intra-specific differences in personality traits, such as boldness, has
been extensively studied in teleosts and other vertebrates [13–15]. Selection experiments
have provided evidence for a genetic component controlling boldness in teleosts [15].
Domestication has also been reported to result in increased boldness [16–18]. Still, teleost
fish are well known for their large plasticity, and this is especially true when it comes to
the development of behavioural phenotypes [19]. Thus, even though behavioural traits,
such as boldness, are to some degree heritable they are also most likely to be affected by
environmental factors, especially factors related to social interaction. The development of
dominance hierarchies, a phenomenon also occurring in zebrafish [20,21], is well known
to have large behavioural effects. The ontogenetic development of agonistic behaviour
in zebrafish is still not well described. However, Ricci et al. [22] showed that agonistic
behaviour increases with age being apparent first from 2 weeks of age. Thus, it could be
expected that larvae behaviour will be less affected by social interaction.

The first aim of the present study was to determine if boldness differs between th
zebrafish of the AB strain and offspring of wild caught fish at the larval and early juvenile
stages also, and to explore behavioural development by testing zebrafish at different ages,
i.e., 5, 7, 12 and 30 days post fertilisation (dpf). Boldness refers to risk taking and the
willingness to explore novel environments. The open field test is an often-used behavioural
assay for screening boldness in fish, as well as rodents. In this test, bold animals are
characterized by spending more time in the open area in the centre of the arena, whereas
shy animals move along the walls, a behaviour referred to as thigmotaxis [23].

Behavioural phenotypes are known to be modified by multiple neurotransmitter/
neuromodulatory systems, including brain monoaminergic systems and endogenous pep-
tides [19,24]. In a previous study, we showed that in adult zebrafish of the AB strain, bold
fish express higher levels of dopamine D2 receptors (drd2a and drd2b) and delta opioid
receptors (oprd1b) than shy fish [25]. The dopaminergic system is known to be important
in shaping bold and shy personality traits, as well as being involved in reward and stress
responses [24,26–28]. The knowledge on the role of endogenous peptides in controlling
teleost behaviour is limited. However, these systems appear to be evolutionary conserved
and in rodents opioids are known to be important in shaping behavioural profiles, in part by
interacting with the dopaminergic system [29,30]. Serotonin (5-hydroxytryptamine, 5-HT)
is another neuromodulator that appears to play a key role in shaping behavioural profiles,
as well as mediating behavioural effects of stress and social interaction [19]. Multiple 5-HT
receptors subtypes are expressed in the vertebrate brain but, in particular, the expression of
5HT1A receptors has previously been related to personality traits in teleosts [25]. Spexin
(spx) is a 14 amino acid peptide, also known as neuropeptide Q, which is highly conserved
across the vertebrate subphylum [31]. In zebrafish, spexin occurs in two different forms,
spx1 and spx2, with different expression in the brain. It has been shown that both spx1 and
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spx2 activates galanin receptor 2a (galr2a) and 2b (galr2b) in zebrafish [31]. Spexin has been
purported to be involved in anxiety and stress responses and to interact with the brain
5-HT system [32].

A second aim of the present study was to compare the expression of drd2a, drd2b,
oprd1b, 5ht1aa, spx1, galr2a and galr2b in the brain of wild and AB larvae, in order to clarify
possible neuroendocrine mechanisms that may mediate divergent behavioural profiles.

2. Material and Methods
2.1. Animals and Housing

Zebrafish (Danio rerio) of the AB strain were obtained from SciLifeLab, Evolutionary
Biology Centre, Uppsala University, a local zebrafish facility that regularly obtains AB
strain zebrafish from the Zebrafish International Resource Center (ZIRC at the University
of Oregon Eugene). The wild strain used was a fifth-generation offspring of wild-caught
zebrafish from West Bengal, India. The wild-caught fish were allowed to reproduce on
site and 1000 fertilized eggs were transported to the Norwegian Technical University,
Trondheim, Norway in 2016. Offspring (1000 third generation fish) of these fish were
transported to Uppsala University in November 2018 (courtesy of Dr. Fredrik Jutfält,
Norwegian Technical University, Trondheim, Norway). For breeding, 125–300 parental fish
were used to generate the following generations. Animals were kept in mixed-sex groups in
a stand-alone system (AquaNeering, San Diego, CA 92126, USA) in 9 L tanks, supplied with
recirculating copper-free Uppsala municipal tap water (10% daily exchange). Temperature
was maintained at 27 ± 1.5 ◦C, and the photoperiod was 14 L:10 D (lights on at 07:00 AM).
Animals were fed twice a day with a combination of granulated food (Sparos I&D, Olhao,
Portugal) and rotifer culture. Embryos were collected from separate spawning containers
provided inside the rearing tanks. In short, these modified glass containers (L: 15 cm,
W: 15 cm and H: 7 cm) were covered in mesh with plastic plants attached, which allowed
the eggs to fall through the mesh preventing the adults access. The eggs were harvested
the next day and age was set as post fertilization day (dpf) 1. The eggs were cleaned,
separated from nonfertilized eggs and were transferred to cylinders (Ø: 8 cm) with mesh
bottom suitable to fit into 1.8 L tanks in the rearing system. Eggs/embryos were grown at
a density of ~50 per cylinder. The eggs remained in free-flowing system water until they
were hatched and had consumed their yolk sac (5 dpf). Then, they were transferred to an
algae bath, which consisted of 400 mL rack water and 100 ml rotifer culture/50 larvae, for
the duration of 5 dpf to10 dpf. During this time, they were given 100 mL fresh rack water
every day, otherwise no free-flowing water. Dead embryos and eggs were removed every
other day until the day of behavioural analysis at 5 dpf. After 10 dpf the algae bath was
terminated, and the larvae placed in a 9-litre tanks with 50 individuals per tank supplied
with a slow drip off free-flowing system water. Naïve larvae were used for each trial.

Ethical approval for the use of animals was given by the Uppsala Regional Animal
Ethical Committee (permit C55/13), following the guidelines of the Swedish Legislation
on Animal Experimentation (Animal Welfare Act SFS1998:56) and the European Union
Directive on the Protection of Animals Used for Scientific Purposes (Directive 2010/63/EU).

2.2. Experimental Procedure

The age of the zebrafish used were 5 dpf, 7 dpf, 12 dpf and 30 dpf. At 30 dpf, zebrafish
may be referred to as juveniles, but for simplicity they will be referred to as larvae. The
24-well plates (5, 7 and 12 dpf) were filled with 2 mL of system water per well, and wells of
the 12-well plates (30 dpf) with 3 mL of system water (Figure 1). One larva per well and
12 (5 dpf, 7 dpf, 12 dpf) or 6 (30 dpf) wells per strain (AB/Wild) were used for each trial. In
total 3 trials with 12-well plates (5 dpf, 7 dpf, 12 dpf) and 6 trials with 6-well plates (30 dpf)
were performed, resulting in the analysis of 72 individuals at each age. The experiment
was carried out using Daniovision and Ethovision® XT 15 (Noldus Information Technology,
Wageningen, The Netherlands).
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Figure 1. Schematics of the outline of the experiment. Created with BioRender.com.

2.3. Daniovision and EthoVision

EthoVision settings were optimised using a test plate with larvae of an equivalent
life stage, which helped to establish the threshold for tracking. For the 24-well plate, each
arena (well) had a diameter of 1.7 cm with a centre zone diameter of 0.9 cm, whereas for
the 12-well plate the arena diameter was 2.4 cm, with a centre zone diameter of 1.2 cm.

The Daniovision was connected to a temperature control unit, which kept the tem-
perature of the water constant at 28 ◦C. After placing the larvae into the wells, they had a
30-min habituation period in dim light outside the DanioVision unit. The total test duration
was 40 min with two dark and two light intervals of 10 min each. EthoVision was set to
track parameters, such as distance moved (DM in cm), mean velocity (MV in cm/s), latency
to first (LTF in s), frequency in zone (F) and time in zone (T in min).

2.4. Larvae Body Length

Screen dumps were generated from video recordings and from the images generated
larvae length were measured using imageJ (ver. 1.53k, NIH, http://imagej.nih.gov/ij,
accessed on 6 June 2022). Well diameter of the 12- and 24-well plates were used for
converting pixels to mm.

2.5. Brain Sampling and qPCR

Whole brains were sampled from wild and AB larvae at the age of 30 dpf. These
larvae were sampled directly from the holding tanks, i.e., these larvae were not used in
behavioural tests but they were offspring from the same parental groups as the ones used
for behavioural studies.

Extraction of RNA from individual brains was performed using the method by Eyster
and Brannian [33] with small modifications. The tissues were homogenized in 300 µL
TRIzol reagent (ambion by life technologies, Carlsbad, California, USA) and all following
volumes were scaled down accordingly. GenElute mammalian total RNA mini prep kit
(Sigma, RTN70-1KT) was used together with a DNAse 1 digestion kit (TURBO DNA-free
Kit, Applied Biosystems) according to the manufacturer’s instructions. For quality and
quantity measures, the total RNA was measured using spectrophotometry (Nanodrop,
Thermo Scientific). The cDNA was prepared from 0.8 µg total RNA (Maxima First Strand
cDNA Synthesis Kit for RT-qPCR, K1641, Thermo Scientific) according to the manufacturer’s

http://imagej.nih.gov/ij
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instructions. After cDNA synthesis, the reaction volume of 20 µL was diluted to 800 µL,
divided into aliquots, and 4 µL of diluted cDNA was used in each qPCR reaction. Primers
were 19–24 nucleotides in length with a melting point around 60 ◦C and formed products
in the range 100–251 bp. From a set of seven reference genes, the four reference genes that
displayed the smallest variation were selected, peptidylprolyl isomerase A (ppia, Accession
number (ACCN; Genebank, NCBI), NM_212758.1 forward primer GTTTTTCGATCTGAC-
CGCCG reverse primer CACCTCCCTGGCACATGAAA), elongation factor 1 α (ef1α, ACCN,
NM_131263.1 forward primer CCCATGT GTGTGGAGAGCTT reverse primer CTTTGTGAC-
CTTGCCAGCAC), hypoxanthine phosphoribosyltransferase 1 (hprt1 ACCN, NM_212986.1
forward primer ATGGACCGAACTGAACGTCT reverse primer CTGTCA TGGGAATG-
GAGCGA), ribosomal protein L13a (rpl13a ACCN, NM_ 212784.1 forward primer TGA-
CAAGAGAAAGCGCATGGT reverse primer CTCTTCTCCTCCAGTGTGGC) and used for
subsequent normalization of qPCR data using geNorm [34]. Seven genes were selected for
expression studies htr1aa, drd2a, drd2b, garl2a, galr2b, oprd and spx1 (Table S3).

2.6. Statistical Analysis

Statistical analyses were performed using SAS software (version 9.4). Prior to anal-
yses, the variables were checked for normality. All variables were found to be normally
distributed, except MVLat1 where normality was achieved after log-transformation. After
analyses, data was extracted and transferred to SigmaPlot (version 14.5) for making the
graphs. The pooled-within class correlations were achieved by using the SAS procedure
PROC CANDISC. Body length was found to be correlated with several behavioural vari-
ables. Thus, length was used as a covariate in the analyses, where the two strains were
compared. Pair-wise comparisons were made using t-test on least-square means (PROC
GLM in SAS). The two groups were tested for differences in variance simply by dividing
the larger variance with the smaller variance. Prior to those analyses, the behavioural
(dependent) variables were adjusted by adding the residual of the variable on the indepen-
dent variable (length) with the mean of the dependent variable. This resulted in negative
values in a few cases. Differences in slope between groups (day post-fertilization being
the independent variable) were done by using PROC GLM in SAS. Probabilities have been
adjusted using Sidak correction (Sidak 1967).

Differences in gene expressions (relative mRNA levels) were analysed using t-test and
the p-values obtained were adjusted using Bonferroni correction (m = 7; c.f. Dunn 1961).

3. Results
3.1. Behavioural Development with Age

Pooling within class correlations showed that there were significant differences in be-
havioural development (Table 1). Distance moved during dark and light conditions increased
with body length and this increase was significantly more pronounced in wild larvae than in
AB larvae (Table 1). Angular velocity decreased with body length, as indicated with a negative
slope (Table 1), and there was no difference between the strains. Time in zone during the dark
period decreased with body length, whereas during the light period time in zone increased
with body length. However, for this relationship, there was no difference in slope between
wild and AB larvae during either light or dark periods (Table 1).
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Table 1. Behavioural variables in light and dark regimes compared between the two strains. This table
shows that there are no overall differences between the strains concerning the level of the variables
(distance moved, angular velocity and time in zone). Values for body length were log-transformed
prior to analysis, except for time in zone.

Variable (y) Strain Equation (y=) Prob (Slope) t-Value for Slope
Difference p (adj)

Distance moved (cm), dark period
AB 134.0 + 842.1 × length <0.001

8.36 <0.001
Wild –861.1 + 2348.0 × length <0.001

Distance moved (cm), light period
AB –386.5+1392.0× length <0.001

3.73 <0.001
Wild −816.4+2168.0× length <0.001

Angular velocity, dark period
AB 18.9 − 15.4 × length 0.444

0.94 1.000
Wild 17.6 − 17.0 × length 0.159

Angular velocity, light period
AB 2.24 − 1.10 × length 0.923

0.21 0.998
Wild −4.27 − 6.21 × length 0.780

Time in zone, dark period
AB 4.02 − 0.049 × length 0.264

1.85 0.236
Wild 3.93 − 0.183 × length 0.002

Time in zone, light period
AB 2.87 + 0.340 × length <0.001

0.94 0.819
Wild 2.36 + 0.215 × length 0.037

3.2. Differences in Total Body Length

There was no difference in total body length between AB and wild larvae at 5, 7 or
12 dpf. However, at 30 dpf, AB larvae were significantly larger than wild larvae (Figure 2).
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3.3. Strain Differences in Behavioural Variables

Behavioural divergence increased with age. At 5 and 7 dpf, there were no significant
differences in either distance moved, time in zone or angular velocity (Table 2). However,
at 12 dpf, wild larvae showed higher distance moved than AB larvae but only during light
periods, whereas at 30 dpf, wild larvae showed higher distance moved than AB larvae at
both light and dark testing conditions (Table 2, Figure 3A). Similarly, at 12 dpf, AB larvae
showed longer time in the zone than wild larvae during light conditions and again at 30 dpf
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AB larvae showed longer time in zone than wild larvae at both light and dark conditions
(Table 2, Figure 3B). Angular velocity did not differ between the strains at any age tested
neither in light nor in dark testing conditions (Table 2, Figure 3C).

Table 2. Differences between AB and wild strain in distance moved, time in zone and angular velocity
during light and dark periods. The number of observations in each group was 36 in all cases. The
level of significance was adjusted using Sidak method. The means are least square means, using fish
length as a covariate. Estimates are given as mean ± S.E.

Distance Moved

Dpf Strain Light Prob (Light) Dark Prob (Dark)

5
AB 497.6 ± 36.81

1.000
652.4 ± 77.83

1.000Wild 514.5 ± 36.45 682.6 ± 35.45

7
AB 594.4 ± 35.32

0.421
700.9 ± 35.32

0.928Wild 729.6 ± 35.36 810.2 ± 35.35

12
AB 764.6 ± 34.23

<0.001
869.9 ± 34.23

0.448Wild 984.2 ± 34.55 1004.0 ± 34.55

30
AB 1199.9 ± 53.05

<0.001
1100.8 ± 53.05

<0.001Wild 1480.1 ± 42.82 1612.4 ± 42.82

Time in Zone

Dpf Strain Light Prob (Light) Dark Prob (Dark)

5
AB 6.270 ± 0.464

1.000
5.183 ± 0.464

1.000Wild 5.475 ± 0.454 4.475 ± 0.454

7
AB 4.836 ± 0.427

1.000
4.740 ± 0.410

0.999Wild 4.515 ± 0.429 3.696 ± 0.429

12
AB 5.064 ± 0.407

0.039
4.050 ± 0.407

1.000Wild 2.776 ± 0.412 3.528 ± 0.412

30
AB 3.344 ± 0.664

0.002
0.463 ± 0.454

<0.001Wild 1.920 ± 0.555 −0.053 ± 0.556

Angular Velocity

Dpf Strain Light Prob (Light) Dark Prob (Dark)

5 AB 0.31 ± 5.17 1.000 7.57 ± 5.18 1.000
Wild 2.26 ± 5.12 15.26 ± 5.13

7 AB −0.70 ± 4.97 1.000 −0.59 ± 4.97 1.000
Wild −2.50 ± 4.96 3.81 ± 4.98

12 AB 8.22 ± 4.82 0.999 5.71 ± 4.82 1.000
Wild −3.63 ± 4.86 −2.07 ± 4.86

30 AB 5.45 ± 7.46 1.000 2.52 ± 7.46 1.000
Wild 6.19 ± 6.03 8.56 ± 6.02
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At 12 dpf, there was a significant difference in variance of distance moved with wild
larvae showing larger variance in light conditions than AB larvae (Table 3). Similarly, at
12 dpf, there was a significant difference in variance of time in zone, again only in light
conditions, but with AB larvae showing larger variance than wild larvae (Table 3). For
values of angular velocity, there were significant differences in variance between AB and
wild larvae at 5 and 7 dpf with wild larvae showing larger variance (Table 3).
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Table 3. Means and standard deviation for corrected values of; time in zone, distance moved and
angular velocity for dark and light period (using residuals of response variable on length) and
analyses of difference between strains in variance of response variable.

Distance Moved

Dark Light

Dpf Strain Mean ± S.D. F (For Variance) p-Value Mean ± S.D. F (For Variance) p-Value

5
AB 839.5 ± 90.2

1.45 1.45
715.3 ± 121.6 1.16 0.669

Wild 854.2 ± 176.7 713.9 ± 130.8

7
AB 819.3 ± 82.07

2.03 2.03
731.8 ± 127.2 1.22 0.564

Wild 931.6 ± 116.9 870.7 ± 115.3

12
AB 925.2 ± 134.7

1.48 1.48
828.4 ± 136.3 2.18 0.024

Wild 1081 ± 163.8 1073 ± 201.1

30
AB 669.6 ± 219.1

3.77 3.77
699.6 ± 331.2

1.84 0.085Wild 1301 ± 425.5 1118 ± 446.2

Time in Zone

Dark Light

Dpf Strain Mean ± S.D. F (For Variance) p-Value Mean ± S.D. F (For Variance) p-Value

5
AB 3.82 ± 1.50

1.45 0.277
5.69 ± 3.57 1.22 0.561

Wild 3.50 ± 18.1 4.97 ± 3.24

7
AB 3.88 ± 1.16

1.04 0.901
4.54 ± 2.39 1.90 0.062

Wild 2.81 ± 1.19 4.20 ± 1.73

12
AB 3.64 ± 1.54

1.37 0.351
5.00 ± 2.81 4.63 <0.001

Wild 2.97 ± 1.31 2.63 ± 1.31

30
AB 3.61 ± 2.20

1.10 0.777
4.38 ± 3.73

1.07 0.854Wild 2.21 ± 2.10 2.81 ± 3.85

Angular Velocity

Dark Light

Dpf Strain Mean ± S.D. F (For Variance) p-Value Mean ± S.D. F (For Variance) p-Value

5
AB 3.82 ± 1.50

1.45 0.277
6.86 ± 31.84 2.01 0.043

Wild 3.50 ± 1.81 14.65 ± 45.13

7
AB 3.88 ± 1.16

1.04 0.901
−0.90 ± 16.90 2.06 0.036

Wild 2.81 ± 1.19 3.48 ± 24.27

12
AB 3.64 ± 1.54

1.37 0.351
5.72 ± 17.40 1.60 0.171

Wild 2.97 ± 1.31 −2.16 ± 21.99

30
AB 3.61 ± 2.20

1.10 0.777
3.54 ± 21.00

1.75 0.104Wild 2.21 ± 2.10 9.59 ± 28.61

As expected, we found a clear relationship between body length and distance moved,
the larger the larvae the longer distance moved (Figure 4). In both wild and AB larvae,
the larger the larvae the longer distance moved and the larger the variance. However,
differences in activity appear even when distance moved is plotted against body length,
with wild larvae showing higher activity and larger variance (Figure 4A,B).
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3.4. Brain Gene Expression

Wild larvae showed significantly higher brain expression of drd2b than AB larvae at
30 dpf (Table 4). There was no significant difference between AB and wild larvae in the
expression of drd2a, 5ht1aa, galr2a, galr2b, oprd1b or spx1 (Table 4).

Table 4. Brain gene expression in 30 dpf zebrafish larvae of the strains AB and wild (see Materials
and Methods). Values indicate relative mRNA levels ± SEM.

Genes Wild AB p P Bonferroni

drd2a 0.528 ± 0.059 0.411 ± 0.046 0.141 0.987
drd2b 0.471 ± 0.085 0.165 ± 0.030 0.005 0.042
galr2a 0.305 ± 0.067 0.256 ± 0,056 0.589 1.000
galr2b 0.594 ± 0.082 0.578 ± 0.131 0.914 1.000
htr1aa 0.591 ± 0.089 0.678 ± 0.154 0.616 1.000
oprd1b 0.416 ± 0.061 0.295 ± 0.058 0.169 1.000
spx1 0.301 ± 0.050 0.258 ± 0.064 0.604 1.000

Gene names: htr1aa, serotonin receptor 1aa; drd2a, dopamine receptor d2a; drd2b, dopamine receptor d2b; galr2a,
galanin receptor 2a; galr2b, galanin receptor 2b; oprd1b, opioid receptor delta 1b; spx1, spexin 1.

4. Discussion

The results of the current study clearly show that wild and AB zebrafish differ in
behaviour even at the larval and early juvenile (30 dpf) stage. The most obvious behavioural
difference was the difference in activity, as shown by differences in distance moved, with
wild larvae being more active. This behavioural divergence became evident at 12 dpf. As
has been shown previously [35], distance moved was longer during darkness but similar
differences between wild and AB larvae were observed during both dark and light testing
conditions. However, the difference in activity between wild and AB larvae occurred at an
earlier age at light conditions. Moreover, we observed a striking difference in behavioural
development from 5 to 30 dpf. In both wild and AB larvae, activity increased with age
and body length, even though this increase was much more pronounced in wild larvae.
They also showed larger variance in travelled distance, as compared to AB larvae, and
the variance increased with age. Another behavioural difference is that AB larvae spent
more time in the central zone than wild larva. In an open field test, such as the one applied
in the current study, the central zone is considered risky and spending more time in this
zone is usually interpreted as bold behaviour. Shy, “anxious” and risk aversive animals
avoid the central zone, staying close to the walls of the arena, a behaviour referred to as
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thigomotaxis [23]. Still, this interpretation is complicated by the observation that wild fish
showed longer distance moved than AB larvae. Longer distance moved could either reflect
exploration, i.e., boldness, or panicking, i.e., anxiety-like behaviour and low boldness [36].
However, distance moved and time in zone may reflect different aspects of the behavioural
profile, e.g., distance moved reflecting activity, whereas time in zone may be more related
to boldness and risk taking.

The adult zebrafish of the AB strain has previously been reported to be bolder than
adult offspring of wild zebrafish [10]. In fact, in the study by Mustafa et al. [36], fish of the
AB strain were also compared to the spiegeldanio, a zebrafish strain carrying a mutation
in the fibroblast growth factor receptor 1a (fgrf1a) gene. The fgrf1a−/− mutation has been
reported to result in increased boldness and aggression in mirror tests, as compared to
zebrafish of the Tubingen strain, which was used to generate the fgrf1a−/− mutant [37].
However, Mustafa et al. [36] showed that AB fish were equally bold as spiegeldanio.
Moreover, even though spiegeldanio were more aggressive than AB fish in mirror tests,
there was no difference in aggression when studied in staged dyadic interactions [36]. Thus,
adult AB zebrafish appear to be bold and aggressive, behavioural traits that characterize a
proactive stress-coping style [38]. Moreover, AB larvae showed a faster growth rate than wild
larvae at 30 dpf, being significantly longer than the wild larvae. Proactive coping has been
linked to faster growth and development at conditions where growth is not limited by food
availability [39–41]. Taken together, the results from the current study suggest that zebrafish
of the AB strain are bolder than offspring of wild zebrafish even at the larval stage.

The AB strain was originally created from two pet store strain and has kept in the
lab for five decades [6]. Thus, the AB strain can be expected to be highly domesticated,
and domestication has been suggested to result in a shift towards a more proactive coping
style, including stress resilience, boldness and aggression, even though the effects of
domestication on aggression is somewhat ambiguous [16–18].

Lab strains, such as AB, are also inbred, since they are often generated from a relatively
small number of fish. Moreover, over time these strains may have gone through additional
genetic bottlenecks. Lab strains do not only differ from wild zebrafish, they also differ from
each other [42,43]. The results of the current study clearly show that wild larvae display
considerably larger variance in behaviour than AB larvae. Moreover, this variance increased
with age and body length, suggesting large intra-strain divergence in developmental
trajectories. The AB strain appear more homogenous in behaviour and development, a
difference that could be related to inbreeding in AB.

We observed significantly higher brain expression of drd2b in wild as compared to AB
larvae (30 dpf). Thörnqvist et al. (2019) reported higher expression of drd2b and also a small
but significant upregulation of drd2a in bold as compared shy adult AB males. Moreover,
they also reported a small but significantly higher expression of oprd1b in the brains of
bold adult males. The upregulation of drd2b expression that we observed in the current
study was relatively large and of the same magnitude as the one observed in bold adult AB
males [25]. However, we did not find any difference in the expression of drd2a or oprd1b;
neither showed any difference in the expression of 5ht1aa, galr2a, galr2b or spx1, in the brain
of wild and AB larvae (30 dpf). Another difference is that, in the current study, wild larvae
were the ones showing higher expression of drd2b, even though according to the behaviour
they appeared shyer than AB, as discussed above. It is difficult to speculate on the cause of
this opposite relationship to boldness. However, in the present study, AB larvae appeared
bolder than wild larvae since they spent more time in the central zone. Still, at the same
time, wild larvae were more active, showing longer distance travelled than AB larvae. In
the study by Thörnqvist et al. [25], the fish classified as bold showed a longer distance
travelled and higher mean velocity than those classified as shy. Thus, differences in the
brain expression of drd2b may be more related to activity [44]. D2 receptors occur both
as pre-synaptic autoreceptors and post-synaptic receptors [45]. Thus, it is also difficult to
speculate on the relationship between an upregulation of drd2b and the dopaminergic tone.
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5. Conclusions

The results of the present study show that AB and the offspring of the wild caught ze-
brafish clearly differ in behaviour, even at the larval and early juvenile stage. The behavioural
divergence is obvious from 12 dpf and becomes more pronounced with age and size. More-
over, wild larvae show much larger behavioural variance, and the variance is also increasing
with age. It appears likely that these behavioural differences are caused by domestication
and inbreeding in the AB strain. Larvae of these two strains also differ in brain expression of
drd2b receptors, a difference that could be related to differences in activity.
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