
ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2007

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 267

Design and Implementation of
Multi-Device Services

STINA NYLANDER

ISSN 1651-6214
ISBN 978-91-554-6781-4
urn:nbn:se:uu:diva-7447

To all of you who took care of me when I could not take care of myself,
who believed in me when I did not believe in myself,
and who gave me a home when I did not have one…

without you I would not be where I am today.

Summary of included papers

Paper A: Stina Nylander. Real-Life Use of Multi-Device Services. SICS
Technical Report T2006:18
This paper reports results from a user study of multi-device service use. In-
terviews were conducted with users of three different multi-device services
to investigate practices, benefits, and problems with their use.

Paper B: Stina Nylander. Towards Design Guidelines for Designing
Multi-Device Services. SICS Technical Report T2006:19
This paper presents guidelines for multi-device services based on analysis of
a set of multi-device services.

Paper C: Stina Nylander, Markus Bylund, Annika Waern. The Ubiqui-
tous Interactor - Device Independent Access to Mobile Services. In Pro-
ceedings of Computer-Aided Design of User Interfaces 2004. Eds : Rob
J. K. Jacob, Quentin Limbourg, and Jean Vanderdonckt. Kluwer Aca-
demic media.
This paper describes the design and the implementation of the Ubiquitous
Interactor. The main concepts of the system, interaction acts, customization
forms and interaction engines are presented along with a detailed description
of how they are implemented. Two sample services for UBI are also de-
scribed, a calendar service and a stockbroker service. The design work pre-
sented in this paper was a joint work between the co-authors. Stina Nylander
has done most of the implementation work and the writing of the paper.

Paper D: Stina Nylander, Markus Bylund, Annika Waern. Ubiquitous
Service Access through Adapted User Interfaces on Multiple Devices.
Journal of Personal and Ubiquitous Computing, 9(3), Springer Verlag.
This paper elaborates on paper C, giving more details on the design and im-
plementation of the Ubiquitous Interactor. The design work presented in this
paper is a joint work between the co-authors. Stina Nylander has done most
of the implementation work and the writing of the paper.

Paper E: Stina Nylander, Markus Bylund, Magnus Boman. Mobile Ac-
cess to Real-Time Information - The Case of Autonomous Stock Broker-
ing. Journal of Personal and Ubiquitous Computing, 8(1), Springer Ver-
lag.
This paper focuses on one aspect of the Ubiquitous Interactor: the ability to
provide information push. The system features that make this possible are
described, and the stockbroker service is presented in detail as an example of
a service that depends on push of real-time information. Stina Nylander has
done the design and implementation work with the TapBroker service, and
most of the writing of this paper.

Paper F: Stina Nylander. Evaluating the Ubiquitous Interactor. SICS
Technical Report T2003-19
In this paper the work with the Ubiquitous Interactor is evaluated, both in
terms of the quality of the results and in terms of how well the research goals
are achieved. A pilot study is presented and some pointers are given on how
to proceed the evaluation.

Papers C, D, and E are republished with kind permission of Springer Science
and Business media.

Contents

Introduction...9
Definitions..10
Contributions..11
Outline..12
Theoretical Foundation ..12
Methodology ..13
Related Work..15
Other Related Research Areas..18

Adaptive User Interfaces ...18
Context Awareness ..18
Model-Based Development ...19

Designing Multi-Device Services ...20
Real-Life Use of Multi-Device Services ..20

Access and Awareness...21
Some Contexts Favor Mobile Devices ..21
Desktop Service Use Affects Mobile Service Use22
Different Activities on Different Devices..22
Mobile Usability ..23

Guidelines for the design of Multi-Device services23
Chapter Summary...25

Implementation of Multi-Device Services ..27
Conceptual Separation..27
The Ubiquitous Interactor ..29

System Design ...29
System Implementation ...31
Service Example ..32
Preliminary User Testing...34

Closing Discussion..36
Future Work ...37
Summary and Concluding Remarks...37

Utveckling av tjänster med multipla användargränssnitt39

References...43

9

Introduction

The goal of the work presented here is to find a method for development of
multi-device services which makes it possible to create services that are
adapted to a wide range of devices. To attain this goal, studies of how users
handle multi-device services, identification of guidelines for the design of
multi-device services, as well as technical work to create a framework for
developing multi-device services have been carried out.

Users can choose from a wide selection of electronic services in areas such
as shopping, banking, gaming, and messaging. They interact with these ser-
vices using the computing devices they prefer or have access to, which can
vary between situations. Sometimes a desired service does not function with
the available device and users are forced to use a different service or to not
use the service at all. Sometimes the desired service works with the available
device, but the user interface does not suit the device and thus the worth of
using the service is limited. To allow users to experience their full benefits,
electronic services will need to be more flexible in the future. They will need
to be multi-device services, i.e. be accessible from different devices. It has
been shown that multi-device services are often used in different ways on
different devices due to variations in device capabilities, purpose of use,
context of use, and usability between the various devices (Paper A). This
suggests that multi-device services not only need to be accessible from more
than one device, they also need to be able to present functionality and user
interfaces that suit various devices and usage situations (PaperD) (Trewin et
al., 2003, Banavar et al., 2000, Shneiderman, 2002, Calvary et al., 2004).

The key problem addressed in this work is that there are too many device-
service combinations to develop a service version that is adapted to each
device. This would simply demand too much development and maintenance
work. Creating a single version of a service that is accessible from all de-
vices would also be difficult since devices have different capabilities. Fur-
thermore, service use is different on different devices. Thus, there is a need
to find methods for developing multi-device services that allow the creation
of services that are adapted to various devices and situations without multi-
plying development and maintenance problems.

10

The problem of how to design and implement multi-device services has been
addressed in two ways in the present work: through study of real-life use of
multi-device services and through the creation of a development method for
multi-device services. Studying use of multi-device services has generated
knowledge about how to design multi-device services that provide users with
good worth. The work with the development method has resulted in a sepa-
ration between form and content that makes it possible to create different
presentations of the same content. Automation is an important tool in this
process but needs to be complemented with means of control (Calvary et al.,
2004, Ponnekanti et al., 2001), given that automated user interface genera-
tion failed much due to the unpredictability of the generated user interfaces
(Myers et al., 2000). It is important for service providers to be able to control
the presentation of services (Myers et al., 2000, Esler et al., 1999) since the
appearance of services is used e.g. for branding. Therefore, we have chosen
to combine the automation with strong means for controlling the process of
user interface generation.

The work has resulted in design guidelines for multi-device services (Paper
B) and a system prototype based on the principles of separation between
form and content, and presentation control. The system prototype, the Ubiq-
uitous Interactor (Papers C-F) (UBI), provides a format for describing inter-
action between users and multi-device services based on a set of description
units called interaction acts. They do not contain any presentation informa-
tion and the user-service interaction can therefore be described in a device
and modality independent way. The prototype has functionality for generat-
ing user interfaces from such descriptions. Device and service specific in-
formation can be fed to the process in the form of customization forms to
gain detailed control of how the service is presented on a given device. This
way it is possible to create different presentations for the same service with-
out any changes in the service logic.

Definitions
The term service will in the present work follow the definition of Espinoza
(Espinoza, 2003) where a service is considered a set of functions and abili-
ties that manifests itself on a device. It is made available when needed, and
might not reside locally on the device. A service distinguishes itself from an
application by its loose coupling to the device. An application is installed on
the device and executes locally while a service might be executing remotely
as long as it is accessible from the device. With this definition of a service it
comes naturally that the same service could be accessed from different de-
vices and that the device is a portal to services (Banavar et al., 2000) (Saha
and Mukherjee, 2003) rather than their “home”. A common example of a

11

service is a calendar that users can access both from their desktop computer
and from their handheld device. However, we do not follow Epinoza in that
services demand a particular payment model. In the present work, no as-
sumptions on how, and if, users pay for their services are made.

A multi-device service is defined as a service that can be used from more
than one type of device (desktop/laptop computer, PDA, cell phone), but
only from one device at a time. Simultaneous use from more than one device
is not required, neither is multimodal use.

The term device will denote an electronic apparatus that is used to manipu-
late something more than itself. Services or objects are manipulated through
a device. Devices have user interfaces, and in some cases a device only sup-
ports one type of user interface while other devices (such as desktop com-
puters) can support many different user interfaces.

Contributions
The contributions of this dissertation concern the process of both designing
multi-device services and implementing them.

Two main contributions are made to the design process: empirical data on
the real-life use of multi-device services, and design guidelines based on
those empirical data as well as experiences from different research projects
(Bylund, 2005, Nylander et al., 2005a, Johansson et al., Forthcoming,
Nylander, 2006). The empirical data from study of several multi-device ser-
vices show that service use is different on different devices and in different
situations. Factors such as device capabilities, context of use, purpose of use,
and usability are important and can support the design of multi-device ser-
vices.

The contributions to the implementation process are both theoretical and
practical. The main theoretical contribution is the identification of user-
service interaction as a suitable level of abstraction between form and con-
tent, and a formal language to describe the interaction: the interaction acts.
Interaction acts are units of description that do not contain any presentation
information and therefore are independent of devices, services, and interac-
tion modalities. This makes it possible to create many different user inter-
faces from the same set of interaction acts without any changes in the service
logic. To give service providers the possibility to control the presentation of
their services we have defined the concept of customization forms which
contain service and device specific presentation information. By providing a

12

customization form, detailed control can be gained over the user interface
that is generated from a given set of interaction acts.

The practical contributions to the implementation process are a system pro-
totype and sample services that show that it is possible to generate different
user interfaces to a service using interaction acts to describe the user-service
interaction and customization forms to control the presentation.

Outline
The remainder of this dissertation can be seen as three sections. The first
describes the theory and methods behind this work, followed by related re-
search. The second section, Design of Multi-Device Services, describes the
results from a study of multi-device service use and then presents design
guidelines for multi-device services. The second section is based on paper A
and paper B. The third section, Implementation of Multi-Device Services,
describes the results from the technical work with the Ubiquitous Interactor.
The system design and implementation is described, and a sample service is
shown. The third section is based on papers C-F. The dissertation is con-
cluded with a discussion of the work and some closing remarks.

Theoretical Foundation
The present work encompasses on the one hand the “traditional” human-
computer interaction (HCI) which is mainly concerned with services de-
signed for desktop computers and their usage, and on the other hand mobile
computing which is a much more recent area in HCI. The traditional HCI
has a well-established body of knowledge in design, usability, development,
and evaluation (Preece et al., 1994), while the body of knowledge on mobile
computing is still emerging, see for example (Weiss, 2002). Here, the two
areas are combined into multi-device computing which includes the issues of
traditional and mobile HCI, and the new issues of managing and combining
services on multiple devices. This work also covers a smaller, but still im-
portant, part of the HCI research that is concerned with user interface devel-
opment tools. Better tools and development methods are important factors in
the HCI work for creating better services for end-users. If the time used for
software development in a project can be reduced due to efficient develop-
ment tools, then more time can be used for design and testing (Myers et al.,
2000), something that could benefit end-users. The aim of the UBI work has
been to create multi-device services that benefit users without creating extra
development and maintenance work.

13

HCI has a strong foundation of working close to end-users during design,
development, and evaluation. A certain phenomenon or problem is studied
as close as possible to its natural settings to gather design information using
a variety of methods such as participating and non-participating observation,
surveys, and interviews. Some of the methods involve users actively, while
others allow designers to gather information about the user situation without
intruding. The HCI influence has also reached development work promoting
methods like user-centered design (Norman and Draper, 1986) and participa-
tory design (Schuler and Namioka, 1993) where users take part in iterative
testing and modification during the development process. Intermediate and
finished products are tested with end-users in laboratory experiments or field
experiments.

We have not been able to adhere fully to the above described method, for a
number of reasons. First, our research in the sView project (Bylund and
Espinoza, 2000, Bylund, 2005) started out with a vision of how future elec-
tronic services could be used, thus there was no actual use or usage setting to
study. Implementing the system showed that the vision was feasible and
identified new research areas such as that of user interface generation. Sec-
ond, the system has primarily been tested within our research group and it
has been used in projects in other research groups (Bylund, 2005). It has not
been tested with end-users since it relied on devices and infrastructure that
were not available at the time. Third, a holistic view of the use of electronic
services, such as the one presented with the sView system, needs a critical
mass of services to show its power and potential in user tests. The goal of the
project was to prove that the vision was feasible, thus developing a large
number of services was outside the scope of the project. During the years
that this work has been conducted, industry and the web community have
come closer to our visions and at the time of writing it has been possible to
for example conduct a study on real-life multi-device service use on publicly
available services and end-users outside the research community (Paper A).

Methodology
This work covers several methodological areas. For the part that is con-
cerned with the real-life use of multi-device services, methods such as inter-
views and heuristic evaluation of services have been borrowed from HCI.
Prototyping and systems development have also been two important methods
for the work presented in this dissertation, both when it comes to identifying
the research problem and when it comes to solving the technical part of the
same research problem.

14

The primary beneficiaries of this work are end-users and therefore it has
been important to create a basis for the work on design of multi-device ser-
vices in real-life usage. Methods and tools for developing multi-device ser-
vices need to be grounded in usage rather than be technology driven. To get
input to the technical development, it is important to find out how users are
handling multi-device services. Multi-device computing takes place in vari-
ous contexts which affects how services are used (Perry et al., 2001). Due to
variations in context it is virtually impossible to even partially recreate the
impact of context on service use in a research lab. Therefore, laboratory
studies are not enough as empirical grounding for the design of multi-device
services. Data from real-life use need to be collected even though it is diffi-
cult since it takes place whenever and wherever users find it suitable and not
when researchers would like to study it. Moreover, there is always a risk that
users get affected by the fact that they are studied and alter their behavior.

For the study presented in paper A, interviews were chosen as method for
two main reasons. First, interviews make it possible both to collect informa-
tion about issues relevant for the current study, and to identify questions for
future work. Second, interviews give users the possibility to tell their story
about motives, experiences, and problems using multi-device services. These
two reasons were particularly relevant for this study since the study of multi-
device service use is a new research area. It was important to identify the
important research questions, and to get an understanding of how users per-
ceive their situation.

A variety of methods have been used to study mobile service use which
takes place at various locations and is carried out on small devices which
makes it difficult to capture user actions camera. Methods that have been
used are interviews, self reporting (Grinter and Eldridge, 2001, Palen and
Salzman, 2002, Hulkko et al., 2004, Isomursu et al., 2004), non-participating
observation (Weilenmann and Larsson, 2001), logging software
(Demumieux and Losquin, 2005) and other techniques for capturing user
actions. These methods are often combined (Grinter and Eldridge, 2001,
Isomursu et al., 2004) since logging software and observation seldom give
information about context or user intention, and self reporting and interviews
often give unreliable information about how users actually interact with their
services.

The technical work has its origin in the sView project (Bylund, 2005) that
presented a vision of future use of electronic services. In the case of sView,
prototyping and systems development were tools for explaining and demon-
strating the vision of a new way of using electronic services as well as for
showing technical feasibility and technical challenges.

15

The prototyping process for sView also revealed whole new research areas
that needed to be investigated to fulfill the vision behind the system, one of
them giving birth to the work with UBI. Again, prototyping became a tool
for validating the approach and showing its feasibility. UBI has grown in-
crementally in many steps where the language for describing services and
the functionality of the user interface generating system has expanded with
every step. In the work with UBI, prototyping served both as a verification
method and a dissemination method. By implementing new principles and
ideas, we ensured that our approach had a solid foundation at all times. A
working prototype proved the general feasibility and made it easy to demon-
strate the concept of controllable user interface generation both to the re-
search community and to industry partners.

Related Work
One of the contributions of this dissertation is the interaction acts, a set of
units to describe the user-service interaction. Inspiration has come from ear-
lier attempts to describe user-service interaction or user interfaces, some
with the purpose of user interface generation and some with other purposes.

Foley et al. created sets of interaction tasks and control tasks (Foley et al.,
1984) as a tool to help designers assign appropriate interaction devices to
graphical user interfaces, e.g. mouse, light pen, and keyboard. Myers’ inter-
actors (Myers, 1990) were an effort to standardize user input to applications
on a higher level. This way, developers would get device independent user
input, and would not need to treat user input from various input devices.
Neither Foley et al. nor Myers considered output in their categorization of
interaction, and they were all limited to targeting GUIs. However, even
though their goal was not user interface generation they provided the first
steps in describing user-service interaction on a higher level.

Much of the technical inspiration for the Ubiquitous Interactor (UBI) comes
from early attempts to overcome hardware diversities and achieve device
independent applications or in other ways simplify development work. For a
more comprehensive overview, see (Nylander, 2003).

MIKE (Olsen, 1987) and ITS (Wiecha et al., 1990) were among the first
systems that separated form and content to make it possible to specify pres-
entation information separately from the application, and thus change the
presentation without changes in the application. Both were limited to graphi-
cal user interfaces, and imposed important restrictions on the interfaces they
could generate. MIKE, for example, could not handle application specific
data. In ITS, presentation information was considered to be application inde-

16

pendent and stored in style files that could be moved between applications.
As pointed out by Wiecha et al. this was not an adequate approach. In UBI,
we instead consider presentation as both application specific and tailored to
different devices (Paper C, D).

With Selectors (Johnson, 1992), Johnson established a classification of inter-
active controls in the ACEKit based on application semantics rather than on
appearance. The purpose was to go one step further than previous systems,
and not only provide possibilities to change the look and feel of an applica-
tion but also possibilities to specify the presentation for individual elements
of the user interface. This corresponds to the way individual interaction acts
can be mapped to different presentations in the Ubiquitous Interactor.

During the eighties, the hardware for the personal computer was standard-
ized, and the need for device independent applications and methods to de-
velop them diminished. The problem has returned with mobile and ubiqui-
tous computing and the multitude of new computing devices. Again, service
logic is separated from presentation to create device independent services. It
is likely that standardization in hardware will appear in ubiquitous comput-
ing too, but the need for adapted multi-device services will persist. Usage
will still be influenced by different contexts and different purposes of use
which will pose different demands on services.

XWeb (Olsen et al., 2000) and SUPPLE (Gajos and Weld, 2004) encode the
data sent between application and client in a device independent format us-
ing a small set of predefined data types, and leave the generation of user
interfaces to the client. Unlike UBI, they do not provide any means for ser-
vice providers to control the presentation of the user interfaces. It is com-
pletely up to the client how a service will be presented to end-users. In other
words, these approaches enable device specific but not service specific pres-
entations. Nichols et al. found when evaluating the PUC system (Nichols et
al., 2002) that users expected an application to adhere to the look-and-feel of
the current operating system, and added smart templates for that (Nichols et
al., 2004). However, the adaptation allowed by the templates is quite super-
ficial.

The Web has often been presented as a way of achieving device independent
applications through separation between content and form. The content was
structured with HTML and the formatting was left to the browser. Most de-
vices can run a Web browser and thus access any service and generate a
Web user interface. However, letting the browser generate the user interface
provided poor control to the designer which led to more and more presenta-
tion information in the HTML code. The Cascading Style Sheets (Bos et al.,
1998) were an effort to make it possible for designers to control the presenta-

17

tion of web pages without including presentation in the HTML code. The
Web has some other drawbacks too. It can only provide page-based, user-
driven interaction, which makes it less suitable for real-time applications (for
example games). The device independence of Web pages can also be ques-
tioned. In many cases transformations or adaptations of pages are needed, for
example to display a regular Web page on a handheld device with a smaller
screen, and the research community has proposed many different solutions
(Bickmore and Schilit, 1997, Lam and Baudisch, 2005, Baudisch et al.,
2004, Trevor et al., 2001, Wobbrock et al., 2002, Menkhaus, 2002). To face
the challenges of many different devices, the World Wide Web Consortium
has created a working group addressing device independence for the Web.
No recommendations have been issued yet, but two working drafts are pub-
lished, one on content selection for device independence (DISelect) (Lewis
and Merrick, 2005) and one on DIAL, the Device Independent Authoring
Language (Smith, 2006). The combination of DISelect and DIAL allow ser-
vice providers to specify alternative content to deliver to users based on their
device. For example it would be possible to state that a picture will only be
delivered to devices with a certain screen size while devices with smaller
screens would get alternative content. This approach resembles UBI in that it
makes it possible to create various service presentations to a single service.
However, it differs from UBI in that their solution is to create a single ser-
vice description that contains all the possible user interfaces. In UBI, we
have chosen not to include the different variations in the interaction acts and
instead provide presentation information and media resources separately in
customization forms.

However, allowing separation of service logic and presentation is not enough
for service providers. They also want to be able to control how their services
are presented to the end-users (Myers et al., 2000, Esler et al., 1999). The
user interface is the promoting channel for the provider, and it is important
to be able to control that. Control of the presentation of user interfaces is
provided in UBI, and also in the Unified User Interface system.

Unified User Interfaces (UUI) (Stephanidis, 2001) is a design and engineer-
ing framework for adaptive user interfaces. In UUI, user interfaces are de-
scribed in a device independent way using categories defined by designers.
Designers then map the description categories to different user interface
elements. This means that designers have control of how the user interface
will be presented to the end-user, but since different designers can use their
own set of description categories the system cannot provide any default
mappings. In UBI, we have chosen to work with a pre-defined set of descrip-
tion categories, along with the possibility for designers to create mappings.
This makes it possible for the system to provide default mappings at the
same time as designers can control the presentation of the user interface.

18

Other Related Research Areas
Other research areas that are not directly related to multi-device services but
still are relevant here are adaptive user interfaces, context awareness, and
model-based development. Below, they are presented and their relation to
multi-device services described.

Adaptive User Interfaces
Adaptive user interfaces can change their behavior or appearance at run-time
based on the user’s interaction with the system either by maintaining a user
model or by mechanisms for inferring patterns in user behavior (Schneider-
Hufschmidt et al., 1993). Benyon (Benyon, 1993) argues for the use of adap-
tive systems in situations where variations in user behavior make it difficult
to create a single design solution. An adaptive system can instead contain
several designs for various tasks or users. Our approach to multi-device ser-
vices also addresses variation, but differ from adaptive user interfaces in this
sense on two main points. First, UBI user interfaces adapts to more than the
user, mainly the device and its capabilities. Second, there is a technical dif-
ference. Most adaptive systems have predefined frames within which it can
adapt based on user actions. UBI services have no predefined limits to what
service presentations can be generated from a given set of interaction acts.
This depends on the customization forms and generators that are created, and
if new customization forms or new generators are created after the service is
created, new unpredicted user interfaces can be created.

Context Awareness
Context aware services are generally defined as services that can gather in-
formation about their environment and react to changes in it without end-
user input (Dey et al., 2001). The prime examples are location-based ser-
vices that keep track of the users’ location and adapt their content (for exam-
ple by recommending nearby restaurants). The design of multi-device ser-
vices as it is discussed in the present work does not include context aware-
ness. Multi-device service design is primarily concerned with less dynamic
factors such as device capabilities and the users’ purpose for using a service.
Context of use is also an important factor when designing multi-device ser-
vices, but in more general aspects such as designing for mobility or limited
attention, which change less often than users’ location. These two areas can
of course be combined, creating context aware multi-device services.

19

Model-Based Development
An early approach to creating services that adapt themselves to different
devices was the model-based systems which strived for automatic user inter-
face generation. Their goal was to allow developers to specify the user inter-
face in a high level language and then automatically generate the user inter-
face (Myers et al., 2000). Some of the systems had a separate device model
and could thus generate different user interfaces for different devices
(Wiecha et al., 1990, Olsen, 1987). The model-based approach did not catch
on, however. Since the decisions of how to present the user interface were
made by the system, based on for example a set of rules interpreting the
high-level description, the appearance of the resulting user interfaces was
unpredictable. The model-based systems could also only generate a limited
range of user interfaces. Their failure adds support to our belief that although
automation is a useful tool for generating user interfaces, the control of the
result must lie with the service designers and service providers.

20

Designing Multi-Device Services

Multi-device service use is little studied, even though today it is possible to
study publicly available services that users themselves have chosen to use on
multiple devices every day. Real-life use of multi-device services provides
valuable information on how to design multi-device services. In a study con-
ducted by the author (Paper A) based on interviews with users of three multi-
device services, study participants reported different usage patterns on dif-
ferent devices. They also reported other benefits with mobile service access
than with desktop access, and different problems.

Findings from the study, analysis of a set of multi-device services, and ex-
periences from several research projects (Bylund, 2005, Nylander et al.,
2005a, Johansson et al., Forthcoming, Nylander, 2006)have been compiled
into design guidelines for multi-device services. This chapter will first de-
scribe the differences in use between devices and then present the guidelines.

Real-Life Use of Multi-Device Services
The studied multi-device services were email, a teenagers’ web community
and a web dating service. Participants that used one of the services daily on
both desktop computer and mobile devices were recruited.

Semi-structured individual interviews were made with 23 participants: seven
email users, eight users of the teenagers’ web community, and eight users of
the dating service. The interviews were made in Swedish and all interviewed
participants were residents of Sweden. About two thirds of the interviews
were made over the phone due to large geographic distances. An interview
form with open-ended questions was used, and participants were encouraged
to elaborate their answers. Follow-up questions were asked when needed, as
well as clarification questions. Each interview lasted about 30 minutes.

Multi-device service use has been little studied, and existing work has been
conducted on research prototype services (Järvinen, 2005, Nikkanen, 2003,
Marti and Schmandt, 2005). Studying a research prototype that was intro-
duced to participants for the study implies that novice use will be studied,
and also that participants may not have a personal motivation to use the ser-

21

vice. This will influence the results of studies of this kind. In several cases
the focus also was on technical aspects of the systems rather than on usage
(Nikkanen, 2003, Marti and Schmandt, 2005).

The remainder of this section will summarize the findings from the study.

Access and Awareness
Study participants reported the ability to easily check the state of their mes-
sage box to be the most important benefit they gained when they could ac-
cess their services from mobile devices (all three services provided messag-
ing functionality). They carry their mobile devices all the time, and at any
time they can check if any new messages have arrived. Since the mobile
devices are always on and always connected through GPRS it is a quick and
simple operation. Participants also stated that they often did not want to in-
teract with their services from a mobile device in the same way as they do
from the desktop computer, but to see if something had arrived or if they
needed to do something. They wanted to check if they had received email or
other messages, if they needed to answer (which they often chose to do from
the desktop computer) or take some other action.

Some Contexts Favor Mobile Devices
The situations in which participants said they preferred to access their ser-
vices from the mobile device could in many cases be characterized by lack
of access to a desktop computer. However, sometimes discretion, simplicity,
or comfort made participants choose a mobile device even though they had
access to a desktop computer.

Participants reported that in some situations they chose to access their ser-
vice from a mobile device even though they had access to a desktop com-
puter. In some cases this was due to the discretion of the mobile device
which makes it possible to access email during a meeting or during a family
activity without being too obvious. In other cases it was considered easier to
use the mobile device than going to the computer, for example while lying in
bed, watching a movie, or cooking. The mobile device was also considered
as more private and thus better to use when not wanting to share the service
content with present friends.

Several of the participants had jobs that required a lot of movement, both
within the city and over longer distances, for example visiting customers.
When away from the office, they used their mobile device to access their
email since they could not be sure when they would get to a desktop com-
puter next time. In some situations, participants stated that it would be use-

22

less to bring a laptop computer since the situation would not allow placing it
and using it anyway, for example when inspecting a construction site.

Participants also said that they were often engaged in other activities, for
example at work, when using their services from a mobile device and thus
had limited time and attention for the service. Another external factor that
influences service use is cost.

Desktop Service Use Affects Mobile Service Use
Even though functionality on mobile devices was restricted for the services
in the study compared to functionality on desktop computers, the desktop
use “flows over” to the mobile devices. Functionality that is frequently used
on desktop computers but not supported on mobile devices can cause prob-
lems in the mobile use in other ways than just being absent. A good example
of this was email with attached documents. High end mobile devices can
open MS Word and PDF documents but most of today’s mobile devices
cannot. Even the devices that can open documents usually work with low
bandwidth so downloading attached documents becomes very slow. How-
ever, it is so common to attach documents to emails that it is almost impos-
sible to offer mobile email without handling them in some way. This does
not mean that all mobile devices should be able to open MS Word and PDF
documents, but it is important to look at smooth ways to handle attached
documents. For example allow for downloading the email but not the at-
tached document to save time and money for the user. IMAP provides this,
but also requires a server that supports it. The majority of the participants
using email reported problems with attachments.

Different Activities on Different Devices
Several study participants stated clearly that they organized their use in such
a way that some tasks were only attended to on the desktop computer, or that
they strongly preferred to attend to them on the desktop computer and
avoided them on the mobile device if they could. Tasks that require a certain
overview, such as sorting emails into folders or looking at a personal presen-
tation with text and pictures, were almost exclusively handled on the desktop
computer. Tasks that were considered as central to the service, such as
checking messages, were handled on both desktop and mobile devices.
Browsing or other more unstructured use (surfing around) was done on the
principal device which was the desktop computer for most participants but
the mobile device for some of them. Many participants also reported that
they tried to minimize input on the mobile device (see below in the section
on usability).

23

Using different functionality on different devices as described above is con-
nected to the capabilities of the devices and partly explains how a device
gets the role of principal device. The majority of the participants considered
the desktop computer as their main device for interacting with the case ser-
vices. Choosing the desktop computer as the principal device was often mo-
tivated by its advantages in screen size and interaction possibilities. The
principal device was used for unstructured use in situations that were not
time critical (browsing around) and for more time consuming tasks.

Mobile Usability
Many participants reported usability problems with the mobile versions of
the services. The main problems were related to the small size of the mobile
devices and their limited input techniques.

The majority of the participants reported that they found input on mobile
devices slow and tedious, and preferred to use the desktop computer with its
standard keyboard for text input. If possible, they postponed writing mes-
sages or taking notes until they got to a desktop computer, and if they had to
write on the mobile device they kept it very short.

Mobile devices have small screens and thus it is sometimes difficult to get an
overview of service functionality or the service state compared to a desktop
screen. Participants found it difficult to compose longer messages on mobile
devices since they experienced difficulties seeing how the paragraphs would
look on a larger screen. They also found that they got an immediate impres-
sion of the service and its functionality on the desktop screen since there is
more space to present links and information, while a lot of navigation is re-
quired to obtain the same impression on a mobile device.

Guidelines for the design of Multi-Device services
As described above, device capabilities, usage situation, purpose of use, and
service usability are factors that influence the use of multi-device services,
and the differences in use between devices are notable. To design services
for these conditions demands attention to specific problems such as how to
adapt services to various devices, and service management on multiple de-
vices (Paper A), as well as to the usual body of design knowledge. Based on
those results and our experience from several research projects, we have
formulated design guidelines for multi-device services (Paper B). These are
high level guidelines focusing on the whole service, not just the user inter-
face on the different devices. Guidelines on interaction design, graphic de-

24

sign, and usability can be found elsewhere; here we focus on the specifics of
multi-device services.

Guideline 1: Create service versions that complement each other

Different devices have different capabilities and are thus more or less suit-
able to different tasks. When adapting a service to a new device it is impor-
tant to take that into consideration and not try to squeeze in all service func-
tionality. Taking advantage of the strengths of a device gives a better service
than providing functionality that is cumbersome to use, even though only a
subset of the functionality is available. Moreover, in the same way as it is
important not to squeeze in service functionality in a device where it does
not fit, it is not necessary to use every capability of a device. The home care
service Joliv Mobile Omsorg described in (Johansson et al., Forthcoming) is
an excellent example of a service that is better off without network connec-
tion even though it is used from network enabled devices.

Guideline 2: There should be overlap between service versions

It is important to keep an overlap in functionality between different versions
of a multi-device service. Users of a service have knowledge about what
their service can offer them and a new version of the same service should
offer a subset of the functionality they are used to (and possibly new func-
tionality too). If service versions do not have any functionality in common
they risk being viewed as two different services by users, which could be
confusing for users and negative from a service provider’s point of view.

Guideline 3: Use context and purpose of use as design support

The context in which a new service version will be used gives valuable input
to the design process. Some usage situations are connected to certain devices
and certain service functionality and therefore can provide natural design
choices, such as pointing out a subset of functionality to prioritize on a de-
vice. The purpose of use can provide the same support. The context of use
can also provide more detailed guidance: for example users reporting that
they do not have time to write notes in the mobile service (to difficult and
slow with stylus) which indicates that only providing the standard input of
the device is not enough. More support is needed, such as templates, speech-
to-text or other means that make the input smoother.

Guideline 4: Do not forget usability

Multi-device services must live up to the same usability level as every other
electronic service. For versions of multi-device services primarily targeting

25

desktop use there is a solid body of literature to guide the usability work.
The usability work for mobile services is less mature but there are sources.
Text input for example is known to be difficult on small devices and usabil-
ity guidelines recommend keeping input to a minimum (Weiss, 2002). How-
ever, it is important not to remove the possibility. Most mobile email users
prefer to write email on the computer and use the mobile device to check and
read email, but they would not accept mobile email where it was not possible
to write a reply when necessary.

Usability can be extra important in work situations where users have to use a
service to perform their work. If such a service is difficult to use, the conse-
quences can be severe for users.

Chapter Summary
The findings presented above strongly support the need for adapting multi-
device services to various devices. Participants reported prioritizing different
functionality on different devices. It has also been shown above that users do
not have exactly the same purpose for each device when using a multi-
device service, which also supports the need for adaptation. There are sev-
eral reasons behind the differences in usage and purpose.

First, the context of use strongly affects service use. Participants of this
study reported on for example the amount of available time or attention,
accessibility, and cost as factors that influenced their choice of device and
what functionality they chose to use in a given situation. In certain situations
participants reported that they chose the mobile device even though they had
access to a desktop computer. The most common reasons for choosing a
mobile device in the presence of a desktop computer were that the mobile
device was ready at hand, always connected, and more discreete.

Second, various devices provide different capabilities and advantages, which
is an important factor when users decide how to interact with their services.
Mobile devices are easy to keep at hand and can quickly provide state infor-
mation about a service. Desktop computers have screen real estate that gives
good overview and support more visual tasks, and offers easy input trough
standard keyboards and mice. Device capabilities also control what func-
tionality it is technically possible to provide on a device. Participants often
stated that they preferred the desktop computer for browsing and organiza-
tion tasks, while the mobile device provided quick access.

This suggests that design of multi-device services should not aim for the
same functionality on all devices since the needs and uses are different for

26

the various devices. Instead it is important to take advantage of the strengths
of each device. Mobile devices cannot compete with desktop computers in
displaying data or providing overview, but they offer for example small form
factor and means for notification.

Third, the usability of the mobile versions of the studied services was an-
other factor influencing the usage. Many participants reported that usability
issues made them avoid some tasks on the mobile device. Most notably, text
input caused problems. The struggle for improving usability on mobile de-
vices needs to continue.

 These guidelines have been formulated to help designers keep these findings
in mind when designing multi-device services, or, for example, when adding
a mobile version to a service that has been designed for desktop use. How-
ever, it is important to note that following guidelines does not guarantee a
successful result. Guidelines are only a complement, not a replacement of
the understanding of users, technology, and their interaction.

27

Implementation of Multi-Device Services

To make it possible to create multi-device services that are adapted to many
different devices, we need tools and methods to support their development.
Creating a specific version for each device-service combination is not a vi-
able option. Using the same version for all devices is not a good alternative
since the differences between devices and situations of use are too large.

We have developed a method based on the separation of form and content
that uses the user-service interaction as level of abstraction. By separating
form and content it is possible to create many different presentations of the
same content. We have also developed a system prototype, the Ubiquitous
Interactor (UBI), that generates user interfaces based on an abstract descrip-
tion of the user-service interaction. The approach is semi-automatic genera-
tion, meaning that it is possible to add presentation information to the gen-
eration process to control the result. Sample services show that it is possible
to generate user interfaces of different types and with different structure
from the same abstract description.

The remainder of this chapter will further elaborate on our use of separation
of form and content and the implementation of UBI.

Conceptual Separation
To create multi-device services we need methods and tools that support their
development and allow for a certain degree of automation. We have chosen
to work with a conceptual separation between form and content to create a
technical framework for development of multi-device services. Separating
form and content allows different presentations of the same content. Instead
of having multiple versions of a service, the same service version can have
multiple presentations. Development and maintenance work can be reduced.

However, separating form and content is not enough. Mechanisms for user
interface generation are necessary as well as mechanisms to control the gen-
eration process. Having to make each change or each new user interface by
hand is not an option even if form and content are separated. At the same
time, fully automated user interface generation is equally undesirable, as

28

described above. We need partial automation that can help designers with
adaptation and creation of multi-device services, and we also need room for
design in the process. Therefore, we have chosen to work with semi-
automation where user interfaces to services are generated from an abstract
description of the service while it is still possible to feed presentation infor-
mation into the process to control the appearance of the resulting user inter-
face.

The purpose of separating form and content is to find a suitable intermediate
level of abstraction where content can be represented without including ele-
ments of form. A representation of content that does not contain any infor-
mation specific to a device or a type of user interface can serve as a base for
adapting services to new devices and creating new user interfaces. The aim
to separate form and content is certainly not new; it has been used to over-
come diversity among devices and facilitate the development of applications
for a long time. Early examples are Myers’ interactors (Myers, 1990) and
Foley’s interaction tasks and control tasks (Foley et al., 1984) which tried to
separate the form of input techniques from the application so that developers
would only have to deal with input and not the different ways input was cre-
ated. The Web is another well-known example which originally used HTML
to mark up content and let browsers format the content and present it to end-
users. As the Web and its content evolved, service providers took more and
more control over the presentation of their content. As the range of devices
used to access the web increased from desktop computers to handheld com-
puters and cell phones, the smallest common denominator for all web
browsers decreased, and many service providers now use a database ap-
proach to keep track of what markup to send to different user agents (brows-
ers). Many solutions for how to transform standard web content to fit small
devices have been proposed (Bickmore and Schilit, 1997, Lam and Baud-
isch, 2005, Baudisch et al., 2004, Trevor et al., 2001, Wobbrock et al., 2002,
Menkhaus, 2002).

The work with UBI has its origin in the sView (Bylund, 2005) project which
delivered a system prototype allowing users to gather a wide range of ser-
vices in a personal environment. In sView, all services could share informa-
tion about the user and users could administrate their services from a single
place. The environment could migrate between devices through the network
with unchanged service state and thus offer a continuous and seamless user
experience in many different situations. To prove that it was possible for the
service environment to follow the user to various devices and that users
could interact with their services from these devices we needed to create not
only working services but also a number of different user interfaces for each
service, one user interface for each device. This quickly became cumber-
some and time consuming, and the idea of generating different user inter-

29

faces from a single description surfaced, giving birth to the UBI project. We
decided early not to go for a fully automatic approach since history had
proved that automatic user interface generation was not very attractive
(Myers et al., 2000). Our approach became to combine a device-independent
service description with device specific presentation information to achieve
controllable semi-automatic user interface generation.

In the present work, we have chosen the interaction between users and ser-
vices as our level of abstraction between form and content in order to obtain
units of description that are independent of device type, service type, and
user interface type. Interaction is defined as:

actions that services present to users, as well as performed user actions, de-
scribed in a modality independent way (Paper D, p. 125).

Some examples of interaction according to this definition would be: making
a choice from a set of alternatives, presenting information to the user, or
modify existing information. Pressing a button or uttering a command would
not be examples of interaction, since they are modality specific actions. By
describing user-service interaction this way, the interaction remains the same
regardless of which device is used to access a service. It is also possible to
create services for an open set of devices. Interaction offers a high level ab-
straction that allows for large freedom in how to instantiate the units of the
abstract service description into actual user interface elements. In return, the
high abstraction level reduces the possibilities for fully automated user inter-
face generation. Since our goal is to provide possibilities to control the adap-
tation of services, flexibility and control are more important than the ability
for automatic user interface generation.

The Ubiquitous Interactor
We have realized our ideas of semi-automatic generation of user interfaces
for multi-device services in a system prototype called the Ubiquitous Inter-
actor (UBI). UBI provides controlled semi-automatic generation of user in-
terfaces based on a separation of form and content. User interfaces are gen-
erated from an abstract service description, and presentation information can
be fed into the process to control the result.

System Design
The user-service interaction in UBI is expressed in interaction acts that are
exchanged between services and devices. In some cases the service in ques-
tion will actually be running on the device, in other cases it might be on a

30

server. Interaction acts are interpreted by the device and user interfaces are
generated based on interaction acts and additional presentation information.
Whether services are running locally or on a server does not affect the way
they express themselves, or the way interaction acts are interpreted.

Interaction acts are abstract units of user-service interaction that contain no
information about modality or presentation. This means that they are inde-
pendent of devices, services, and interaction modality. User-service interac-
tion for a wide range of services can be described by combining single inter-
action acts and groups of interaction acts.

The latest set of interaction acts (see Paper D for details) that are supported
in UBI has eight members: input, output, select, modify, create,
destroy, start, and stop. input and output are defined from the sys-
tem’s point of view. select operates on a predefined set of alternatives.
create, destroy, and modify handle the life cycle of service specific
data, while start and stop handle the interaction session. All interaction
acts except output return user actions to services. output only presents
information that users cannot act upon.

In more complex user-service interaction, there might be a need to group
several interaction acts together, because of their related function, or the fact
that they need to be presented together. An example could be the create mail,
reply, reply to all, and forward mail functions of an e-mail application. The
structure obtained by the grouping can be used as input when generating the
user interfaces. These groups allow nesting.

To allow for association of presentation information with interaction acts
and groups of interaction acts, both groups and individual interaction acts
have symbolic names that are used in presentation mappings. Groups and
individual interaction acts can also be arranged in named presentation sets to
allow for association of media resources to many interaction acts at a time.

In UBI, presentation information is specified separately from user-service
interaction in customization forms. This allows for changes and updates to
the presentation information without changing the service. The main forms
of presentation information are directives and resources. Directives link
interaction acts to for example widgets or templates of user interface compo-
nents. Resources are used for providing pictures, sounds, or other media that
are used to present an interaction act in the user interface. Both directives
and resources can be specified on three different levels: group level, type
level or name level. Information on group level affects all interaction acts of
a group, information at type level provides information for all interaction
acts of the given type; and information on name level provides information

31

about all interaction acts with the given symbolic name. The levels can also
be combined, for example creating specifications for interaction acts in a
given group of a given type, or in a given group with a given name.

It is optional to provide presentation information in UBI. If no presentation
information, or only partial information is provided, user interfaces are gen-
erated with default settings. However, by providing detailed information
service providers can fully control how their services will be presented.

Service
Interpreter /

UI Generator

Interpreter /
UI Generator User Interface

User Interface

Presentation
Information

Figure 1. Services offer their interaction expressed in interaction acts, and an inter-
preter generates a user interface based on the interpretation. Different interpreters
generate different user interfaces.

Based on interaction acts and customization forms, if provided, user inter-
faces to services are generated. Different types of user interfaces can be ob-
tained by using different user interface generators, for example generators
for Java Swing widgets, HTML, or speech would generate different user
interfaces from the same set of interaction acts, see figure 1. Different user
interfaces of the same type can be obtained by providing different customi-
zation forms.

System Implementation
The Ubiquitous Interactor has three main parts: the Interaction Specification
Language, customization forms, and interaction engines. The Interaction
Specification Language is used to encode the interaction acts sent between
services and user interfaces, customization forms are used to control the
presentation of user interfaces, and interaction engines generate user inter-
faces based on interaction acts and presentation information in customization
forms. The different parts are defined at different levels of specificity, where
interaction acts are device and service independent, interaction engines are
device dependent, and customization forms are service and device depend-
ent, see figure 2Figure 2.

32

Device independent Device specific
Service independent

Device specific
Service specific

User Interface

Customization
Form

Interaction
EngineService

Interaction
Acts

Figure 2. The three layers of specification in the Ubiquitous Interactor. Services and
interaction acts are device independent, interaction engines are service independent
and device or user interface specific, and customization forms and generated user
interfaces are device and service specific.

The Interaction Specification Language is XML compliant and is used to
encode information about interaction acts that is used in the user interface
generation, such as id, name, group, life cycle, and modality. Customization
forms are also encoded in XML, and use name, group, or type of the interac-
tion acts to map presentation information to them.

We have implemented interaction engines for Java Swing, HTML, Java
AWT, Tcl/Tk, and VoiceXML. These interaction engines can generate user
interfaces for desktop computers. The default renderings of the Tcl/Tk inter-
action engine are designed to create user interfaces suitable for PDAs, and
the Java AWT interaction engine has defaults for cellular phones of the Sony
Ericsson P800/P900 type. The VoiceXML interaction engine generates
speech based user interfaces (Nylander et al., 2005b). The system handles all
interaction acts, and both directives and resources in the customization
forms.

Service Example
One of the sample services that has been developed for UBI is a stockbroker
service, the TAP Broker (paper F). It was developed as a part of a research
project working with autonomous agents that trade stocks on the behalf of
users (Lybäck and Boman, 2003). Each agent is trading according to a built-
in strategy, for example buy low, sell high, or buy and hold (Boman et al.,
2001), and users can have one or more agents trading for them. Since agents
are autonomous, users cannot control them other than contacting the agent
trade server manager and ask to have the agent shut down. Our service pro-
vides users with feedback on how their agents are performing so that they
know when to switch agents, or shut one down.

33

The TAP Broker service provides agent owners with feedback on the agent’s
actions: order handling of the agent (placing and cancelling orders), and
transactions performed by the agent (buying or selling stocks). It also pro-
vides information about the state of the agent: the account state (the amount
of money it can invest), status (running or paused), activity level (number of
transactions per hour), portfolio content, and the current value of the portfo-
lio. However, it does not provide any means to configure or control the
agent. The agents are created to work autonomously and cannot be manipu-
lated from outside for security and fairness reasons.

We have implemented customization forms for Java Swing, Java AWT, and
HTML (see figures 3 and 4 for sample pictures). For Java Swing, two quite
different customization forms have been developed: one that generates a user
interface appropriate for desktop screens, and one that generates a user inter-
face for very small devices like Java enabled cellular phones. Since the
screen size and presentation capabilities of desktop computers, PDAs and
cellular phones are very different, user interfaces for the smaller devices
only present parts of the available information.

Figure 3. Two example user interfaces to the TapBroker service. To the left, a Java
AWT user interface for a Sony Ericsson P800 smart phone. To the right a Java
Swing user interface for a small device.

34

Figure 4. Two example user interfaces to the TapBroker service. The one to the left
is an HTML user interface and the one to the right is a Java Swing user interface.
Both user interfaces are designed for desktop computers. The user interfaces in fig-
ure Figure 3 andFigure 4 are generated from the same set of interaction acts.

Preliminary User Testing
We have conducted a small pilot study where we let four students work in
pairs to develop Java Swing customization forms for the TapBroker (Paper
F). The goal of the study was to find out if people that had not been involved
in the development of UBI had problems understanding the concepts, and to
collect information about how a larger study should be conducted.

The participants had no problems understanding the concepts of the system
and the procedure of creating a customization form. However, neither of the
two pairs got even close to creating a sufficiently complete customization
form during the two hours. In the post-interview, the participants said that
they got a good understanding of the basic principles of UBI. However, they

35

got a more vague understanding of the TapBroker service. They had no
problems working with a service they had not developed themselves.

The experiences from this pilot study showed that participants needed more
information about the service to fully understand it. For a larger study it will
also be very important to recruit participants that are skilled in the user inter-
face language and also to use a development environment that they are fa-
miliar with. Otherwise, programming problems risk hiding issues that are
relevant for the study.

36

Closing Discussion

This work was initiated by our research group needing a method for creating
several user interfaces to a single service. Throughout the work we have
learned that when presenting a service on a new device, it is as important to
present the right functionality on the device as it is to present it in the right
way. It is not enough to transform one user interface into another. This is one
of the reasons why we opted for a high abstraction level.

Context has also changed during this work. When it started in 2000, the
range of handheld network capable devices was limited to a few WAP en-
abled cell phone models. Consequently, the number of existing multi-device
services was small to say the least. Today, 2006, things are different. Not
everyone owns a networked handheld device that lets them use multi-device
services, and not everyone that owns one uses multi-device services, but
quite a lot of people do both. This means that part of the sView vision is now
reality; people can use at least some of their services from multiple devices.
This development has made it possible to inform our work by studying ac-
tual use of multi-device services. It has also shifted the author’s interests
more towards user-oriented issues for future work.

This contextual change has introduced new parameters into the work. The
starting point was mostly technical, and thus the focus was on device capa-
bilities and differences between devices. This remains a strong issue but as
the results of this work shows, studying the use of multi-device services has
introduced new important issues such as context of use and purpose of use.
Their importance for the design of multi-device services suggests that tech-
nical progress will not eliminate the need for adapting multi-device services.
Differences in context of use and purpose of use will persist and thus the
need for adapted multi-device services.

In the development of UBI, we have taken a clear standpoint in favor of
providing developers with means for controlling the user interface genera-
tion process. We believe that automation is a powerful help in creating
adapted multi-device services, but history has proved that automation with-
out control is the wrong way to go. There are two main reasons behind the
failure. First, lack of control. It is important for service providers to control
how their product is presented to end-users. Second, the difficulties provid-

37

ing perfect defaults. It is very difficult to find presentation defaults for units
of service functionality that result in adequate user interfaces for a majority
of services, especially when dealing with service specific data. This means
that there is no free lunch. We have to make a tradeoff between control and
automation. We have chosen a solution where control has priority to be able
to cover a wider selection of services. This means that we will seldom get
the benefit of 100% automation, but in return we have a large freedom in the
user interfaces we are able to generate.

Future Work
The existing set of interaction acts needs to be validated against other service
domains. The sample services used in this work are information services,
and other service domains could reveal the need for additional interaction
acts. The subset of interaction acts handling service specific data, currently
create, modify, and destroy, may also need to be refined to provide
better basis for default presentations.

Further evaluation with developers is needed to assess this approach as a
method for development of multi-device services. The aim is to reduce de-
velopment and maintenance work compared to developing a separate version
of a service for each device. To make such an evaluation possible more de-
velopment work must be carried out. Libraries of presentations for the dif-
ferent interaction acts are needed to create realistic conditions for evaluation.

The real-life use of multi-device services provides important information to
the design process and therefore needs further investigation. The study pre-
sented above discovered several interesting areas that merit more attention,
such as how the context of use affects multi-device service use, what func-
tionality should be assigned to what device, and how to solve the problem
with overflow of use between devices. Other interesting issues that have
caught the authors’ attention during this work are how to convey community
awareness on mobile devices and why the mobile version of a service some-
times becomes the primary version.

Summary and Concluding Remarks
The goal of this work has been to find a method for developing multi-device
services. A study of users of multi-device services showed that their service
use was different on different devices. Different functionality was prioritized
on different devices and participants also reported on different purposes for
using a service on different devices. Based on these findings, and experi-

38

ences from previous research projects, guidelines for multi-device services
have been formulated.

A method for creating multi-device services has been developed. It is based
on the separation between form and content to make it possible to create
more than one presentation for a single service. User-service interaction has
been defined as the level of abstraction, and is described using interaction
acts, i.e. description units free from presentation and modality information.
From a set of interaction acts, different user interfaces can be generated. To
control the resulting user interface, it is possible to provide presentation in-
formation in the form of customization forms.

It has been shown here that UBI provides a method for developing multi-
device services. It is possible to create multiple user interfaces from a single
set of interaction acts and it is possible to control the resulting user interfaces
through customization forms. This is an important step towards more flexi-
ble services. The need for adapted services will remain even if standardiza-
tion will emerge in the mobile computing area just as it did in desktop com-
puting during the eighties. The variations in context of use and purpose of
use will remain and call for adapted services.

So, what will the future of multi-device services look like? I strongly believe
that web user interfaces will be the dominating way of interacting with
multi-device services. Web user interfaces have, wrongly, been considered
device-independent for quite some time already. However, with the W3C
working group for device independence important steps have been taken in
the right direction. Moreover, given the recent evolution of the web, also
called Web 2.0, web user interfaces have gained power and flexibility. How-
ever, web user interfaces compose a more limited approach to interacting
with multi-device services than an approach like UBI could offer. For exam-
ple the range of possible user interfaces would be limited to various markup
languages.

Regardless of whether I am right or wrong about the future domination of
the Web, multi-devices services will exist in the future and people will use
them. Therefore, let us hope that future multi-device services will make us
happy rather that driving us crazy…

39

Utveckling av tjänster med multipla
användargränssnitt

Syftet med denna avhandling är att ta fram en metod för att utveckla elektro-
niska tjänster som gör det möjligt att skapa tjänster som är anpassade till
många olika sorters datorer. Att utveckla en version av en tjänst för varje
sorts dator blir ohållbart i längden eftersom antalet versioner då kan bli
mycket stort.

En dator är inte längre inte bara den traditionella skrivbordsdatorn, utan tar
sig många olika former. Vi har till exempel handdatorer och mobiltelefoner
som fungerar som små, mobila datorer som delvis kan erbjuda samma saker
som en traditionell skrivbordsdator. Termen apparat kommer i denna text att
beteckna alla dessa typer av datorer.

I detta arbete definieras tjänst som en mängd funktioner som manifesterar sig
på en apparat. Den finns tillgänglig när den behövs, men är inte nödvändigt-
vis lokalt installerad på apparaten. En tjänst skiljer sig i detta avseendet från
en applikation som är installerad och kör lokalt på en viss apparat. Tjänsten
är inte lika tätt knuten till apparaten.

Idag finns ett stort utbud av elektroniska tjänster. Vi kan handla en mängd
olika sorters saker, uträtta bankärenden, spela spel och skicka meddelanden
till vänner med hjälp av elektroniska tjänster. Vi använder dessa tjänster från
den apparat vi har tillgång till vilket kan variera mellan olika situationer.
Ibland fungerar inte den tjänst vi vill använda tillsammans med den apparat
vi har tillgång till. Ibland fungerar den, men har ett användargränssnitt som
inte är riktigt anpassat för en sådan apparat och då begränsas vårt utbyte av
tjänsten. För att användare ska få fullt utbyte av elektroniska tjänster i fram-
tiden kommer tjänsterna att behöva vara flexibla och gå att använda från
många olika sorters apparater.

Vi har jobbat på två olika sätt för att lösa problemet med hur tjänster ska
kunna utvecklas för olika sorters apparater. Vi har dels tittat på användning
av tjänster från olika sorts apparater, dels arbetat tekniskt med att ta fram en
utvecklingsmetod. Studiet av hur tjänster används har givit kunskap om hur
tjänster ska designas för många olika sorters apparater, och arbetet med ut-

40

vecklingsmetoden har resulterat i en separation mellan form och innehåll för
att kunna skapa olika presentationer för samma tjänst.

Användning av tjänster från olika sorters apparater har studerats genom in-
tervjuer med användare av tre olika tjänster. I studien framkom att tjänster
ofta används olika på olika sorters apparater, bland annat beroende på appa-
raternas olika förmåga, olika användningssyften och olika kontext. Till ex-
empel uppgav studiedeltagarna att de ofta håller på med något annat samti-
digt som de använder en tjänst från mobiltelefonen. De uppgav också att de
föredrar att skriva meddelanden från skrivbordsdatorn medan de gärna kon-
trollerar om de fått nya meddelanden från mobiltelefonen. Riktlinjer för de-
sign av tjänster som ska användas från många olika sorters apparater har
formulerats baserade på studieresultaten samt analyser av ytterligare tjänster
och erfarenheter från tidigare forskningsprojekt.

Vi har valt att skilja form från innehåll för att kunna utveckla tjänster för
många olika sorters apparater för att kunna skapa olika presentationer för
samma tjänst utan att behöva ändra i koden för tjänstens funktion. Som ab-
straktionsnivå har vi valt att använda interaktionen mellan användare och
tjänst. Interaktionen kodas med hjälp av interaction acts, som är beskriv-
ningsenheter som inte innehåller någon information om dator, modalitet eller
presentation. En systemprototyp har utvecklats, the Ubiquitous Interactor,
som kan generera användargränssnitt baserat på en uppsättning interaction
acts. För att kontrollera utseendet hos de användargränssnitt som genereras
finns även möjlighet att tillföra presentationsinformation till genereringspro-
cessen. Presentationsinformation kodas i separata filer kallade customization
forms. Olika användargränssnitt kan skapas utifrån samma uppsättning inter-
action acts genom att låta olika gränssnittsgeneratorer tolka uppsättningen.
Generatorer för Java Swing widgets, Tcl/Tk, HTML, Java AWT widgets,
och VoiceXML har tagits fram. Generatorerna för Java Swing widgets och
HTML skapar användargränssnitt som i första hand lämpar sig för skriv-
bordsdatorer. Generatorerna för Java AWT och Tcl/Tk skapar användar-
gränssnitt som i första hand lämpar sig för handdatorer. Generatorn för Voi-
ceXML skapar talgränssnitt. Genom att tillföra olika presentationsinforma-
tion kan samma gränssnittsgenerator skapa olika användargränssnitt. Exem-
peltjänster med flera olika användargränssnitt för olika datorer har utvecklats
för att testa systemet och visa dess potential.

41

Acknowledgements

First, I would like to thank my supervisors Bengt Sandblad and Annika
Waern for guiding me through this work, each one with their own strategy to
keep me on track and make me finish.

Thank you to VINNOVA for funding parts of this work, and to Playahead
and Mötesplatsen for important help with the data collection to Paper A.

Anna Sandin, Thomas Nyström, and Ola Hamfors have given me important
practical help: Anna with the implementation of the HTML interaction en-
gine, Thomas with the implementation of the VoiceXML interaction engine,
and Ola with crucial advice concerning the sView system.

Many people have given me valuable feedback in different stages of my
writing, thereby substantially improving the quality of this dissertation:
Magnus Boman, Markus Bylund, Mats Carlsson, Jussi Karlgren, Marie
Sjölinder and Martin Svensson at SICS, John J. Barton at IBM Almaden
Research Center, and David Benyon at Napier University. Thanks for your
time and effort.

I would like to thank Erik Klintskog and Per Mildner for excellent support
and friendship both in Uppsala, in Kista, and on the battlefield. You have
been both faithful supporters and worthy opponents at the coffee table, and
you have been good friends. Too bad Erik has left SICS.

Special thanks to Markus Bylund who has followed every step of my work.
You have been my best colleague and most faithful supporter for almost
seven years. Without your patience, encouragement, and ability to clarify
things on a whiteboard this work would not be finished today. We have had
great fun together, and I have learned a lot from you. And you have shown
over and over again that you can stand the pressure!

Stort tack till min familj som har stått ut med mina studier i åratal utan att
gnälla eller ifrågasätta. Men nu är det slut. Tro mig!

Thank you to all my friends that have supported me through ups and downs
over the years. Thanks for being there, in good times as well as bad times:
Eva, Madeleine, Karin, Nils, Rigmor, Ullis, and Ingrid. And Evy-Ann, for
being the best possible aunt ever!

42

Åsa has been my very best friend for more than 20 years. Thank you for all
the patience, encouragement, pushing, and honesty you have shown me over
the years. And for all the fun we have had. I am also very grateful to you and
Pelle for keeping your home open to me, feeding me meatballs when ever I
am hungry, and for trusting me with taking care of your children every now
and then. Finally, I would like to thank Lukas and Hannes for being two of
my very best teachers in how to have fun, and for having a fabulous talent
for saving even the worst day of dissertation writing. You certainly have
your priorities in much better order than I do...

43

References

Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman, J. and Zukowski,
D. (2000) Challenges: An Application Model for Pervasive Comput-
ing, In proceedings of 7th International Conference on Mobile Com-
puting and Networking (MobiCom), pp. 266-274.

Baudisch, P., Xie, X., Wang, C. and Ma, W.-Y. (2004) Collapse-to-zoom:
viewing web pages on small screen devices by interactively remov-
ing irrelevant content, In proceedings of Symposium on User Inter-
face Software Technology (UIST), Santa Fe, NM, pp. 91 - 94.

Benyon, D. (1993) Adaptive Systems: a solution to usability problems, User
Modeling and User-Adapted Interaction, 3(1), pp. 65-87.

Bickmore, T. W. and Schilit, B. N. (1997) Digestor: Device-Independent
Access to the World Wide Web, In proceedings of 6th International
World Wide Web Conference.

Boman, M., Johansson, S. and Lybäck, D. (2001) Parrondo Strategies for
Artificial Traders, In Intelligent Agent Technology, (Eds, Zhong,
Liu, Ohsuga and Bradshaw), pp. 150-159.

Bos, B., Wium Lie, H., Lilley, C. and Jacobs, I. (1998) Cascading Style
Sheets, level 2. CSS2 Specification, W3C Recommendations, World
Wide Web Consortium.

Bylund, M. (2005) A Design Rationale for Pervasive Computing - User Ex-
perience, Contextual Change, and Technical Requirements, Doctoral
Thesis, Department of Computer and Systems Science, Royal Insti-
tute of Technology, KTH.

Bylund, M. and Espinoza, F. (2000) sView - Personal Service Interaction, In
proceedings of 5th International Conference on The Practical Appli-
cations of Intelligent Agents and Multi-Agent Technology.

Calvary, G., Coutaz, J., Dâassi, O., Balme, L. and Demeure, A. (2004) To-
wards a new generation of widgets for supporting software plastic-
ity: the “comet”, In proceedings of Engineering Human Computer
Interaction and Interactive Systems, EHCI-DSVIS, pp. 306-324.

Demumieux, R. and Losquin, P. (2005) Gather Customer’s Real Usage on
Mobile Phones, In proceedings of International Conference on Hu-
man Computer Interaction with Mobile Devices and Services, pp.
267-270.

44

Dey, A., Abowd, G. and Salber, D. (2001) A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Ap-
plications, Human Computer Interaction Journal, 16(2-4).

Esler, M., Hightower, J., Anderson, T. and Borriello, G. (1999) Next Cen-
tury Challenges: Data-Centric Networking for Invisible Computing.
The Portolano Project at the University of Washington, In proceed-
ings of 5th International Conference on Mobile Computing and
Networking (MobiCom), pp. 256-262.

Espinoza, F. (2003) Individual Service Provisioning, Doctoral Thesis, De-
partment of Computer and Systems Science, Stockholm Univer-
sity/Royal Institute of Technology.

Foley, J. D., Wallace, V. L. and Chan, P. (1984) The Human Factors of
Computer Graphics Interaction Techniques, IEEE Computer Graph-
ics and Applications, 4(6), pp. 13-48.

Gajos, K. and Weld, D. S. (2004) SUPPLE: Automatically Generating User
Interfaces, In proceedings of International Conference on Intelligent
User Interfaces, pp. 93-100.

Grinter, R. E. and Eldridge, M. (2001) y do tngrs luv 2 txt msg?, In proceed-
ings of European Conference on Computer-Supported Cooperative
Work (ECSCW), pp. 219-238.

Hulkko, S., Mattelmäki, T., Virtanen, K. and Keinonen, T. (2004) Mobile
probes, In proceedings of Nordic Conference on Human-Computer
Interaction (NordiCHI), pp. 44-51.

Isomursu, M., Kuutti, K. and Väinämö, S. (2004) Experience Clip: Method
for User Participation and Evaluation of Mobile Concepts, In pro-
ceedings of Participatory Design Conference, pp. 83-92.

Johansson, N., Nylander, S. and Sandblad, B. (Forthcoming) IT Supported
Work in Home Health Care - a Case Study.

Johnson, J. (1992) Selectors: Going Beyond User-Interface Widgets, In pro-
ceedings of Conference on Human Factors in Computing Systems
(CHI), pp. 273-279.

Järvinen, T. (2005) Hybridmedia as a tool to deliver personalised product-
specific information about food, Research notes 2304, VTT, Espoo.

Lam, H. and Baudisch, P. (2005) Summary Thumbnails: Readable Over-
views for Small Screen Web Browsers, In proceedings of Confer-
ence on Human Factors in Computing Systems (CHI), Portland,
Oregon, pp. 681-690.

Lewis, R. and Merrick, R. (2005) Content Selection for Device Independ-
ence (DISelect) 1.0, W3C Working Draft May 2005, W3C.

Lybäck, D. and Boman, M. (2003) Agent trade servers in financial exchange
systems, ACM Transactions on Internet Technology, 4(3).

Marti, S. and Schmandt, C. (2005) Active Messenger: filtering and delivery
in a heterogeneous network, Human Computer Interaction, 20(1-2),
pp. 163-194.

Menkhaus, G. (2002) Adaptive User Interface Generation in a Mobile Com-
puting Environment, Doctoral Thesis, University of Salzburg.

45

Myers, B. A. (1990) A New Model for Handling Input, ACM Transactions
on Information Systems, 8(3), pp. 289-320.

Myers, B. A., Hudson, S. E. and Pausch, R. (2000) Past, Present and Future
of User Interface Software Tools, ACM Transactions on Computer-
Human Interaction, 7(1), pp. 3-28.

Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris, T. K., Rosenfeld,
R. and Pignol, M. (2002) Generating Remote Control Interfaces for
Complex Appliances, In proceedings of Symposium on User Inter-
face Software and Technology, Paris, France, pp. 161-170.

Nichols, J., Myers, B. A. and Litwack, K. (2004) Improving Automatic In-
terface Generation with Smart Templates, In proceedings of Interna-
tional Conference on Intelligent User Interfaces, pp. 286-288.

Nikkanen, M. (2003) One-Handed Use as a Design Driver: Enabling Effi-
cient Multi-channel Delivery of Mobile Applications., In proceed-
ings of Mobile and Ubiquitous Information Access: Mobile HCI
2003 International Workshop, Udine, Italy.

Norman, D. and Draper, S. (1986) User Centered System Design: New Per-
spectives on Human-Computer Interaction, Lawrence Erlbaum As-
sociates.

Nylander, S. (2003) Different Approaches to Achieving Device Independ-
ence - an Overview, Technical Report T2003-16, Swedish Institute
of Computer Science.

Nylander, S. (2006) Real-Life Use of Multi-Device Services, Technical Re-
port T2006:18, Swedish Institute of Computer Science.

Nylander, S., Bylund, M. and Waern, A. (2005a) Ubiquitous Service Access
through Adapted User Interfaces on Multiple Devices, Personal and
Ubiquitous Computing, 9(3).

Nylander, S., Nyström, T. and Pakucs, B. (2005b) Generating Speech User
Interfaces from Interaction Acts, T2005:13, Swedish Institute of
Computer Science.

Olsen, D. J. (1987) MIKE: The Menu Interaction Kontrol Environment,
ACM Transactions on Graphics, 5(4), pp. 318-344.

Olsen, D. J., Jefferies, S., Nielsen, T., Moyes, W. and Fredrickson, P. (2000)
Cross-modal Interaction using XWeb, In proceedings of Symposium
on User Interface Software and Technology (UIST), pp. 191-200.

Palen, L. and Salzman, M. (2002) Voice-mail diary studies for naturalistic
data capture under mobile conditions, In proceedings of CSCW
2002, New Orleans, Louisiana, pp. 87-95.

Perry, M., O’Hara, K., Sellen, A., Brown, B. and Harper, R. (2001) Dealing
with Mobility: Understanding Access Anytime, Anywhere, ACM
Transactions on Computer-Human Interaction, 8(4), pp. 323-347.

Ponnekanti, S. R., Lee, B., Fox, A., Hanrahan, P. and Winograd, T. (2001)
ICrafter: A Service Framework for Ubiquitous Computing Environ-
ment, In proceedings of Ubicomp 2001, pp. 56-75.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T.
(1994) Human-Computer Interaction, Addison-Wesley.

46

Saha, D. and Mukherjee, A. (2003) Pervasive Computing: A Paradigm for
the 21st Century, Computer, 36(3), pp. 25-31.

Schneider-Hufschmidt, M., Kühme, T. and Malinowski, U. (1993) Adaptive
User Interfaces, North Holland.

Schuler, D. and Namioka, A. (Eds.) (1993) Participatory Design: Principles
and Practices, Lawrence Erlbaum Associates.

Shneiderman, B. (2002) Leonardo’s Laptop, MIT Press.
Smith, K. (2006) Device Independent Authoring Language, W3C Working

Draft May 2006, W3C.
Trewin, S., Zimmerman, G. and Vanderheiden, G. C. (2003) Abstract User

Interface Representations: How well do they Support Universal Ac-
cess?, In proceedings of ACM Conference on Universal Usability,
Vancouver, Canada, pp. 77-84.

Trevor, J., Hilbert, D. M., Schilit, B. N. and Khiau Koh, T. (2001) From
Desktop to Phonetop: A UI for Web Interaction on Very Small De-
vices, In proceedings of 14th Annual ACM Sympoisum on User In-
terface Software and Technology, Orlando, FL, pp. 121-130.

Weilenmann, A. and Larsson, C. (2001) Local Use and Sharing of Mobile
Phones, In Wireless World: Social and Interactional Aspects of the
Mobile Age, (Eds, Brown, B., Green, N. and Harper, R.) Springer
Verlag.

Weiss, S. (2002) Handheld Usability, John Wiley & Sons.
Wiecha, C., Bennett, W., Boies, S., Gould, J. and Greene, S. (1990) ITS: a

Tool for Rapidly Developing Interactive Applications, ACM Trans-
actions on Information Systems, 8(3), pp. 204-236.

Wobbrock, J., Forlizzi, J., Hudson, S. and Myers, B. A. (2002) WebThumb:
Interaction Techniques for Small-Screen Browsers, In proceedings
of Symposium on User Interface Software and Technology, Paris,
France, pp. 205-208.

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 267

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through the
series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-7447

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2007

	Abstract
	Summary of included papers
	Contents
	Introduction
	Definitions
	Contributions
	Outline
	Theoretical Foundation
	Methodology
	Related Work
	Other Related Research Areas
	Adaptive User Interfaces
	Context Awareness
	Model-Based Development

	Designing Multi-Device Services
	Real-Life Use of Multi-Device Services
	Access and Awareness
	Some Contexts Favor Mobile Devices
	Desktop Service Use Affects Mobile Service Use
	Different Activities on Different Devices
	Mobile Usability

	Guidelines for the design of Multi-Device services
	Chapter Summary

	Implementation of Multi-Device Services
	Conceptual Separation
	The Ubiquitous Interactor
	System Design
	System Implementation
	Service Example
	Preliminary User Testing

	Closing Discussion
	Future Work
	Summary and Concluding Remarks

	Utveckling av tjänster med multipla användargränssnitt
	Acknowledgements
	References

