
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 13th ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS ), May 4-6, 2022, Online.

Citation for the original published paper:

El Yaacoub, A., Mottola, L., Voigt, T., Rümmer, P. (2022)
Poster Abstract: Scheduling Dynamic Software Updates in Safety-critical Embedded
Systems: the Case of Aerial Drones
In: 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems
(ICCPS) (pp. 284-285). Institute of Electrical and Electronics Engineers (IEEE)
ACM-IEEE International Conference on Cyber-Physical Systems
https://doi.org/10.1109/ICCPS54341.2022.00033

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-485359



Poster Abstract: Scheduling Dynamic Software Updates in
Safety-critical Embedded Systems - the Case of Aerial Drones

Ahmed El Yaacoub, Luca Mottola, Thiemo Voigt, Philipp Rümmer
Uppsala University

Sweden

ABSTRACT
Dynamic software updates enable software evolution and bug fixes
to embedded systems without disrupting their run-time operation.
Scheduling dynamic updates for safety-critical embedded systems,
such as aerial drones, must be done with great care. Otherwise,
the system’s control loop will be delayed leading to a partial or
even complete loss of control, ultimately impacting the depend-
able operation. We propose an update scheduling algorithm called
NeRTA, which schedules updates during the short times when the
processor would have been idle. NeRTA consequently avoids the
loss of control that would occur if an update delayed the execution
of the control loop. The algorithm computes conservative estima-
tions of idle times to determine if an update is possible, but is also
sufficiently accurate that the estimated idle time is typically within
15% of the actual idle time.

1 INTRODUCTION
Safety-critical embedded systems differ from other embedded sys-
tems because errors or failures in their operation can endanger
people and physical objects in their vicinity [4]. As a result, safety-
critical embedded systems are subject to stricter requirements than
embedded systems that are not safety-critical.

Aerial drones represent a challenging case of safety-critical em-
bedded systems, because their mobility is part of the application
logic. Therefore, drones are an appropriate case study for safety-
critical embedded systems because an incorrect program directly
affects the device physical mobility and therefore reduces its safety.

Mobile computing with drones enjoys a wide variety of possi-
ble applications. As an example, Mayer et al. [5] outlined different
ways drones are used in search and rescue. With dynamic updates,
a drone can be reprogrammed dynamically through an update to
deliver necessary supplies such as food to a lost boat that it found,
while the search and rescue personnel arrive. Without dynamic
updates, the drone would have to land, then perform the update,
which may not be feasible in search and rescue missions due to
hazardous conditions. On-the-fly software updates provide the flex-
ibility to make unforeseen and necessary adjustments regardless of
the environmental conditions and landing opportunities.

Drone control is categorized into low-level control, and high-
level control [2]. Low-level control uses sensor data and control
setpoints to compute motor throttle values that keep the drone
stable. Advanced drones feature high-level control that implements
more advanced features such as path planning. High-level control
generates control setpoints to feed into low-level control. It is not
uncommon that low-level and high-level control are implemented
on different boards, each of which communicates with the other
through the use of a messaging protocol such as MAVLink [1].

We focus on updating the low-level control software, known
as the autopilot. The autopilot is safety-critical because low-level

control is necessary to keep the drone in a safe state and updating
it is therefore a more difficult problem than updating the high-level
control software. Autopilots are typically composed of several tasks
that run hundreds of times per second. The higher the frequency of
the tasks, the faster the drone can react to environmental changes.
If the frequency is too low, the drone’s response may be sufficiently
delayed such that the drone enters an unsafe state and will crash.

2 PROBLEM AND BACKGROUND
Applying dynamic software updates during an inappropriate time
can result in the delayed execution of other tasks. This is caused
by the update process occupying the processor when a task would
otherwise be executing. Therefore, the time an update is performed
must be chosen carefully to avoid delaying others tasks, increasing
the probability of entering an unsafe state.

Wahler et al. [6] explored possible update points for dynamic
updates and determined that the idle time was a possible choice
of time to perform an update. However, they did not explore de-
termining how much idle time is indeed available. Zhao et al. [8]
elicited two requirements for update points, i) timeliness, meaning
that an update point is reachable within a reasonable amount of
time, and ii) correctness, meaning that the program should behave
correctly after the update. However, they did not explore the impact
of the update process while the update is performed. Key for us is
the impact on the physical device’s behavior, which can enter an
unsafe state if an update delays the execution of other tasks.

To bridge the gap in the literature, we develop NeRTA, an al-
gorithm that schedules updates by taking into account that the
program has strict timing requirements that must be met, thus
minimizing the impact of the update process on the device being
updated. NeRTA preserves the physical behavior of the device by
scheduling updates when the processor would have been idle.

3 NeRTA: NEXT RELEASE TIME ALGORITHM
NeRTA is an update scheduling algorithm targeted towards systems
composed of a fixed number of tasks that repeat indefinitely. Such
a configuration is common in drone autopilot software [3]. NeRTA
uses the next release time for each task as input data. The next
release time is defined as the earliest time when the next instance
of a task can execute and is a property of each task. NeRTA uses the
next release times to compute a conservative estimate of the idle
time available after a task completed its execution. Conservative
estimate means that we guarantee that the idle time computed is
smaller than or equal to the actual idle time, but cannot be larger.

We emphasize that the next release time is not the exact time a
task starts executing, but the earliest time that a task can possibly
start execution. If a task is released while another task is executing,
then the released task will not execute until the executing task



Ahmed El Yaacoub, Luca Mottola, Thiemo Voigt, Philipp Rümmer

Figure 1: Example demonstrating the next release times of
three tasks.

completes its execution. Therefore, the time a task actually starts
executing and the release timemay differ significantly. However, the
release time is always less than or equal to the time the execution
starts, which makes it useful as a guarantee that a task will not
execute before a specific time, allowing us to provide a conservative
estimate of the idle time available.

Figure 1 shows an example of using NeRTA in a system of three
tasks. Assume we are currently at time four and that Tasks 1, 2, and
3 executed at time two, zero, and one respectively and that each
task has an execution time of one time unit.

In the example, the next release times provided for Tasks 1, 2,
and 3 are ten, six, and eight respectively. Therefore, Tasks 1, 2, and
3 will not execute again before time ten, six, and eight respectively.
We update the figure with this information by marking out when
each task can execute again, which is any time greater than or equal
to the release time. We extend those blocks indefinitely because we
only know the earliest time that a task can start execution.

Using the next release times, we determine how much idle time
we have by taking the minimum of all the three next release times.
This is the earliest time that any task can execute again. We conser-
vatively estimate how much idle time we have by computing the
difference between the minimum of all future release times and the
current time. Since we are currently at time four, and the next time
any task can execute is time six, we have at least two time units of
idle time available and can perform an update that takes at most
two time units without delaying any of the other tasks.

4 EXPERIMENT
We conduct an experiment to compare the idle times predicted by
NeRTA and the actual idle times observed. We run Hackflight on a
flight controller called Ladybug [7]. Ladybug integrates an onboard
motion sensor, which is sampled by Hackflight at regular intervals.
We do not connect Ladybug to any motors, but still run all the tasks
that would be present in a drone. We measure the predicted and
actual idle times for 0.66 seconds, starting at ten seconds after boot
and capturing 587 samples. The data is captured into a buffer, which
is sent through a serial connection after data collection is complete.

We exclude from the results cases when the predicted idle time
is negative or zero. These cases occur in 260 of the 587 samples and
happen if one of the next release times is less than the current time
and therefore we cannot guarantee any idle time. At run-time, these

Figure 2: Histogram of errors between actual idle times and
NeRTA predicted idle times. Note that a significant number
of samples have an error of less than 15%.

situations are readily detected and only affect how many iterations
of NeRTA we need before an update is scheduled successfully, not
the maximum size of the update that can be scheduled.

Figure 2 demonstrates the results of the experiment. No bin
had an error larger than 90%. In most samples, the error is less
than 15%. Of the 240 samples that have less than 15% error, 143
of those have less than 5% error. Therefore, NeRTA estimates idle
times that are not significantly different from the actual idle times
making it a reasonable estimate of the idle time available that is
both conservative and also sufficiently close to the actual idle time.

We measure the performance impact of running NeRTA with
the same hardware configuration. Compared with the idle times
observed that are in the order of 1ms, the time required to check
schedulability with NeRTA is roughly 0.08ms, which is negligible.

5 OUTLOOK
For a complete dynamic update solution, other problems must be
considered as well. First, solving the problem of state transfer, i.e.,
how to transform the state of the program to be compatible with
and support the new version of the code, which is particularly
difficult because the state changes during runtime.

Second, solving the problem of how to generate a program binary
to optimize for dynamic update speed. Binaries are typically a
contiguous block of machine code, which may not be an ideal
structure for inserting code during dynamic updates because all
the code located after the newly inserted code would be shifted,
requiring changes to instruction and memory references.

REFERENCES
[1] 2022. MAVLink Developer Guide. https://mavlink.io/en/
[2] Endri Bregu, Nicola Casamassima, Daniel Cantoni, Luca Mottola, and Kamin

Whitehouse. 2016. Reactive Control of Autonomous Drones (MobiSys ’16). ACM.
https://doi.org/10.1145/2906388.2906410

[3] Zhuoqun Cheng, Richard West, and Craig Einstein. 2018. End-to-End Analysis
and Design of a Drone Flight Controller. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. (Nov. 2018).

[4] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze. 2017. Metamorphic Model-
Based Testing of Autonomous Systems. In 2017 IEEE/ACM 2nd International Work-
shop on Metamorphic Testing (MET).

[5] Sven Mayer, Lars Lischke, and Pawel W. Woźniak. 2019. Drones for Search and
Rescue. In 1st International Workshop on Human-Drone Interaction. ENAC, Glasgow,
United Kingdom. https://hal.archives-ouvertes.fr/hal-02128385

[6] MichaelWahler, Stefan Richter, andManuel Oriol. 2009. Dynamic software updates
for real-time systems (HotSWUp ’09). ACM, New York, NY, USA. https://doi.org/
10.1145/1656437.1656440

[7] Kris Winer. 2021. Ladybug Flight Controller by Tlera Corp on Tindie. https:
//www.tindie.com/products/TleraCorp/ladybug-flight-controller/

[8] Zelin Zhao, Xiaoxing Ma, Chang Xu, and Wenhua Yang. 2014. Automated recom-
mendation of dynamic software update points: an exploratory study (INTERNET-
WARE 2014). ACM, New York, NY, USA. https://doi.org/10.1145/2677832.2677853

https://mavlink.io/en/
https://doi.org/10.1145/2906388.2906410
https://hal.archives-ouvertes.fr/hal-02128385
https://doi.org/10.1145/1656437.1656440
https://doi.org/10.1145/1656437.1656440
https://www.tindie.com/products/TleraCorp/ladybug-flight-controller/
https://www.tindie.com/products/TleraCorp/ladybug-flight-controller/
https://doi.org/10.1145/2677832.2677853

	Abstract
	1 Introduction
	2 Problem and Background
	3 NeRTA: Next Release Time Algorithm
	4 Experiment
	5 Outlook
	References

