
ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2007

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 285

Design of High Performance
Computing Software for
Genericity and Variability

MALIN LJUNGBERG

ISSN 1651-6214
ISBN 978-91-554-6837-8
urn:nbn:se:uu:diva-7768





List of Publications

This thesis is based on the following publications, which are referred to in the
text by their Roman numerals.

I Malin Ljungberg and Michael Thuné: Mixed C++/Fortran 90
implementation of parallel flow solvers. Parallel Computational
Fluid Dynamics, Trends and Applications: 233–240 (2001).

II Malin Ljungberg: High Performance Generative Programming
with a Fortran 95 Application. Proceedings of the workshop
Parallel/High-Performance Object-Oriented Scientific
Computing: (2005), submitted to Scientific Programming.

III Malin Ljungberg, Kurt Otto, Michael Thuné: Design and Usabil-
ity of a PDE Solver Framework for Curvilinear Coordinates. Ad-
vances in Engineering Software 37: 814-825 (2006).

IV Malin Ljungberg: Composable Difference Operators for Coordi-
nate Invariant Partial Differential Equations. Technical Report
2007-007, Department of Information Technology, Uppsala Uni-
versity (2007).

V Krister Åhlander and Malin Ljungberg: Generic Programming
Aspects of Symmetry Exploiting Numerical Software. Proceedings
of ECCOMAS (2004), Also available as Technical Report 2004-
020, Department of Information Technology, Uppsala University
(2004).

VI André Yamba Yamba, Krister Åhlander, Malin Ljungberg: De-
signing for Geometrical Symmetry Exploitation. Scientific Pro-
gramming, 14: 61-80 (2006)

iii





Comments on my participation

In this section I list my main contributions for the manuscript included in this
thesis.

I I was the main contributor.
II I am the sole author of this manuscript.

III I was the main contributor. This is a condensed and slightly re-
worked version of my licentiate thesis.

IV I am the sole author of this manuscript.
V I was the main responsible for the generation and presentation of

the symmetric geometries. The code development, the analysis,
the conclusion as well as the presentation was done jointly.

VI This manuscript is based on the Master thesis of André Yamba
Yamba. I acted as assistant advisor, with particular responsibil-
ity for issues concerning software architecture. I also played an
important role in converting the Master thesis into a publishable
manuscript.

v





Acknowledgements

First I wish to thank my advisor Michael Thuné who has been my guiding
light and inspiration during my many years as a graduate student. I also wish
to thank my assisting advisors Kurt Otto and Krister Åhlander, who have very
patiently spent many hours answering questions and giving me feedback. All
my colleagues at the Department of Scientific Computing make it a wonderful
workplace, with a spirit of warmth and friendliness that I will dearly miss.
Finally I would like to thank my three children, Benjamin, Salman, and Nora,
who make everything worthwhile.

vii





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Software development models in high performance computing . . . 3
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Problem Domain I:Modular PDE solver frameworks . . . . . . . 7
3.1.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Problem Domain II:Symmetry exploiting algorithms . . . . . . . 11
3.2.1 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Sammanfattning på svenska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix





1. Introduction

Computer simulations have emerged as a cost efficient complement to lab-
oratory experiments, as computers have become increasingly powerful. This
explains the growing interest in the field of Computational Science and En-
gineering. Developing software for simulations of physical processes poses
particular challenges, because of the advanced mathematical models that are
used when describing the problems to be solved. This is one of the reasons
why software development practices that are commonly used within other ar-
eas are not well spread within the field of Computational Science and Engi-
neering.

The aim of my work has been to explore the particular needs of the high
performance computing community within the area of software development
practices. In particular I have looked at how some such practices can be uti-
lized in combination with advanced mathematical models for the solution of
Partial Differential Equations (PDEs). Two specific areas have been explored;
flexible composable operators for Finite Difference Methods (FDM) on curvi-
linear structured grids, and symmetry exploiting operators based on the Gen-
eralized Fourier Transform (GFT).

In order to approach the question of software development practices for
high performance computing, I need to specify what I mean by “software
development practices” and by “high performance computing”. Both of these
are actually very general areas, and I will satisfy myself with dealing with
what I consider to be relevant sub-areas.

In this work, when I talk about “high performance computing”, I am par-
ticularly considering a research environment. New numerical methods and
algorithms are developed and tested by numerical analysts. The focus in this
context is to show that an algorithm or a method, which quite often is based
on a mathematical derivation, is efficient for a certain set of problems. The re-
sults are often presented in the form of conference contributions or as articles
in scientific journals, before they are eventually picked up by an application
area specialist and utilized to solve specific numerical problems.

The difference between the aims of the numerical analyst and those of the
application area specialist leads to different needs with regards to software
support. For the application area specialist it is crucial to be able to vary pa-
rameters and models pertaining to the physical scenario that is being modeled.
The numerical analyst, on the other hand, needs software that supports vari-
ability with respect to the numerical methods and algorithms. In my work,

1



I am considering flexible software that caters to the needs of the numerical
analyst. It is important to note that “flexibility” in this thesis means flexibility
with regard to the kinds of modifications to numerical operators that numerical
analysts experiment with.

Within the area of software development practices, I have not included the
use of complete development environments, such as the Rational Unified Pro-
cess, RUP [12]. Most industrial software projects use a process that is inte-
grated with software support for that process. Because of this, their choice of
software development process is to a large extent governed by the choice of
development environment.

Within the academic community, we are less bound by software develop-
ment environments, simply because most software projects do not have the
money and time required to get and make efficient use of such an environ-
ment. There are two sides to this. On one hand, the quality control in a soft-
ware project may suffer because of the lack of supporting software for pro-
cesses such as version control, bug tracking and regression testing. On the
other hand, without a rigid software development process you get a better op-
portunity to explore alternative paradigms.

The software development practices that I consider are thus such, that do
not require any more software support than a word processor, an editor and a
compiler. I have not fallen for the temptation to think that there is no point to
have a software development process, unless you have a supporting environ-
ment. All software projects do have a development process, but in some cases
it is less well described.

The aim of the present work is to explore the ideas of some state of the art
software development practices, and ways in which these can be useful for
developing high performance research codes.

2



2. Software development models in
high performance computing

The number of software development models is as large as the number of soft-
ware developers. I discuss models that have an impact on how the software is
structured. This means that I do not consider models that focus on how the
development work is performed, such as for example Agile Software Devel-
opment [2].

When the number of lines of code grows, so does the need to divide the
software up into manageable units. A successful modularization will allow
the developer to consider each module in terms of how it can be used rather
than in terms of how it is implemented. Design decisions will be contained,
as discussed by Parnas [14], and concepts and operations from the problem
domain are instead made visible. This will allow the developer to add new
functionality to an existing code without getting entangled into the implemen-
tation details of the modules that are already present.

One key to success, when modularizing a code, is to ensure that the func-
tionality contained in each module is easy to understand and easy to use. Find-
ing a good conceptual basis for the modularization of the software may thus
be crucial for its usability and maintainability.

Within high performance computing, the goal of development efficiency,
through flexible modularity, may be in conflict with the goal of runtime effi-
ciency. It is a challenge to increase flexibility without suffering a decrease in
performance. For high performance codes, it is also crucial for the application
programmer to be able to perform low level optimization through the selec-
tion of an appropriate data layout for a particular problem. Parallelization is
another approach that is commonly used within high performance computing,
in order to decrease execution time. The questions of flexible modularity and
performance give rise to the following research questions:

Can highly modular flexible codes be written without compromising per-
formance and the ability to perform low level optimizations?
How do we measure the flexibility of a set of software modules?
How can parallelization be introduced in a code, which has been modular-
ized based on mathematical abstractions?

The aims of tools such as the Unified Modeling Language, UML [3], and
analysis processes, such as object-oriented analysis and design [13], are to
ensure that the software modules used will be easy to use and understand. Of

3



particular importance here is that conceptually related data should be collected
in the same module, in order to simplify modification of the software.

The use of modularization based on high level mathematical abstractions
for the numerical solution of PDEs has been successfully explored in a num-
ber of software efforts. Sophus [9] is a particularly relevant example, since
it is based on curvilinear coordinates, just like our efforts. Sophus also sup-
ports low level optimizations and parallelizations. Sophus uses Finite Element
Methods (FEM), rather than FDM, which means that its problem domain dif-
fers slightly from that of the present work.

Overture [6] is a set of object-oriented tools for solving PDEs using FDM.
One of the incentives for the present work was our need for a greater flexi-
bility with regard to operator composition, as compared with that offered by
Overture. In particular we wanted to be able to select the discretization of each
term of an operator expression independently. We also wanted a more efficient
direct evaluation of operator expressions than that offered by Overture. These
differences are explained in more detail in Paper IV.

As the software industry has gotten more mature, an increasing amount of
effort is spent on the update and modification of existing software, and also on
the production of sets of related software, such as for example the versions of
an operating system for a computer. This has lead to a developing interest in
how change and variations are handled [10]. Techniques that are used include
feature and variability modeling [5]. The terminology and graphical tools used
for feature and variability modeling constitute a language, which enables the
developers to define software modules that can be configured and reused in
several different contexts. Such a collection of software modules, which can
be used to construct several different complete programs, is commonly called
a framework. Considering the design of a framework for high performance
applications leads to the following question.

How can object oriented analysis and design, together with feature and
variability modeling, be used to design flexible, domain specific, high per-
formance computing software?

It is common for a framework to contain different versions of the same mod-
ule, but with slightly different functionality. For these cases, it is convenient
to have configurable modules. The technique of generating software modules
based on given parameters is called generative programming [5]. Parameter-
ized modules can be custom designed for a particular purpose, and thus en-
hance the flexibility of the software.

How can generative techniques be used in modular high performance com-
puting software to enhance flexibility without a loss of performance?

Generics, or templates, can be used as a method of parameterizing modules,
in the languages that provide support for them, such as Java and C++. Con-
cepts, which provide an extension of the structure and generative powers of
templates, have recently been proposed as an update to the C++ standard [8].

4



The proposed concepts offer a conceptual enhancement of the C++ language
which is a promising modeling option for mathematically based codes.

The Matrix Template Library, MTL [16] provides an example of how pow-
erful generative techniques can be when applied in the area of high perfor-
mance computing. POOMA (Parallel Object-Oriented Methods and Applica-
tions) [4], together with PETE (the Portable Expression Template Engine) [4],
on which it is built, uses expression template techniques to achieve efficient
evaluation of algebraic expressions on large datasets.

When developing software for a specific problem domain, such as the high
performance codes that I am considering, the most important basis for mod-
ularization is the relevant domain specific knowledge. Modeling the software
on the preexisting entities in the domain is a safe way of ensuring that devel-
opers will have a correct intuition for how to put the modules together into a
complete code. The need for agreement between modules and domain specific
entities is equally true for high performance codes. Because of the scarcity of
descriptions of how such models are arrived at, I find myself asking the fol-
lowing question.

How is modularization done in a highly abstract domain, such as mathe-
matical software?

Considering the fact that a problem of some complexity may contain parts
that are best modeled using quite diverse conceptual frameworks, it is not
uncommon to end up with modules that are written in different languages.
This leads me to wonder the following.

Is it possible to combine specialized modules, written in different lan-
guages, without increasing execution time?

The present trend for computer languages is to offer unambiguous interfaces.
This makes it a straightforward task to combine different language modules
into complete programs.

The work at hand is an investigation of how these software modeling prac-
tices can be used to exploit the general aspects of high performance codes, in
order to enhance their performance, in terms of runtime as well development
efficiency. In particular, I investigate the seven questions that I have identified:

1. Can highly modular flexible codes be written without compromising per-
formance and the ability to perform low level optimizations?

2. How do we measure the flexibility of a set of software modules?
3. How can parallelization be introduced in a code, which has been modular-

ized based on mathematical abstractions?
4. How can object oriented analysis and design, together with feature and

variability modeling, be used to design flexible, domain specific, high per-
formance computing software?

5. How can generative techniques be used in modular high performance com-
puting software to enhance flexibility without a loss of performance?

5



6. How is modularization done in a highly abstract domain, such as mathe-
matical software?

7. Is it possible to combine specialized modules, written in different lan-
guages, without increasing execution time?

As stressed in the Introduction, in these questions “flexibility” is considered
in regard to the kinds of modifications to numerical operators that numerical
analysts experiment with.

6



3. Results

I performed investigations within two different problem domains, in order to
address the research questions. The first domain consisted of modular frame-
works for the numerical solution of PDEs. Such frameworks proved a suitable
setting, since several of my research questions revolved around the issue of
modularity.

The second problem domain was that of symmetry exploiting algorithms.
These algorithms are based on group theory, and make ample use of mathe-
matical abstractions from that field. The domain of symmetry exploiting al-
gorithms gave us opportunities to investigate difficulties in combining modu-
larity based on high level abstractions with low level optimizations using data
layout and parallelization, which are issues pertaining to research questions 1,
3 and 6.

3.1 Problem Domain I:
Modular PDE solver frameworks
The area of modular PDE solver frameworks is huge, and I have limited my
scope to solvers using finite difference methods, FDM. These methods require
the problem geometry to be discretized, using structured grids. One of the
challenges when using FDM is to find a structured grid that fits the domain.
The use of curvilinear coordinates is often required, in order to produce a
body fitted grid. Lately the effectiveness of such grids have been emphasized
by for example Knoll et al. [11]. Metric coefficients need to be included when
a FDM is defined on a curvilinear structured grid. Paper III and Paper IV
describe the development of software modules supporting the inclusion of
metric coefficients in FDM.

Two different PDE solver frameworks have been investigated. In Paper I we
extend the Cogito [17] framework, and thus investigate inter language mod-
ularity. In Papers II, III, and IV, we look at extensions of the TENGO [1]
framework. For these papers, the focus is on enhancing usability by introduc-
ing modules that simplify the process of discretizing general PDEs.

7



3.1.1 Paper I
In Paper I, we investigated the integration of Cogito [17], a Fortran 95 li-
brary supporting implementation of parallel PDE solvers, with two different
time stepping algorithms, implemented in C++. The paper addresses research
question 7, which is

7. Is it possible to combine specialized modules, written in different lan-
guages, without increasing execution time?

The purpose of the investigation was to see whether the Cogito legacy code
could be used by the C++ time stepping module, with the same performance
as an implementation using only Fortran 95 modules.

Integration between the C++ module and the relevant Cogito modules, im-
plemented in Fortran 95, was done using wrapper classes, as described by
Gray et al. [7]. Time measurements were made for two different PDE prob-
lems. The first was an advection simulation, using Leap-Frog time stepping,
and the second was a compressible Navier-Stokes problem, using a five step
Runge-Kutta time stepping method. Execution time, as well as speedup and
sizeup for up to 12 processors were compared for the mixed language and
pure Fortran 95 implementations. The differences between the two implemen-
tations were in all cases negligible.

In conclusion, Paper I demonstrated that a flexible PDE solver framework
can be achieved by integrating specialized modules, which may also be imple-
mented in different languages. This can be done without loss of performance.

3.1.2 Paper II
Paper II describes the development and evaluation of a module for the dis-
cretization of general, coordinate invariant, differential equations. This mod-
ule is written in C++, using generative techniques, and integrated with the
TENGO [1] framework, written in modular Fortran 95. Within this context,
we address the following research questions

5. How can generative techniques be used in modular high performance com-
puting software to enhance flexibility without a loss of performance?

7. Is it possible to combine specialized modules, written in different lan-
guages, without increasing execution time?

The expression template programming technique [18] is used in the new mod-
ule in order to provide efficient evaluation of general algebraic expressions.
This technique is expanded to include not only algebraic operators, but also
discretized differential operators. The module supports efficient direct evalu-
ation of general expressions, as well as automatic formation of a matrix oper-
ator representation of such expressions.

We find that the new module

can easily be integrated into the existing framework,

8



increases the usability of the framework by supporting a flexible notation
for the discretization of differential expressions, and
does not draw an “abstraction penalty” in the form of increased execution
time, relative to special purpose implementations.

The use of expression template techniques on Fortran 95 data structures,
demonstrated in Paper II, provides a unique way of combining the efficient
evaluation offered by the former with the powerful legacy implementations
that exist in the latter.

3.1.3 Paper III
In Paper III, we study the design and usability of a PDE solver framework
for curvilinear coordinates. In particular, we explore the use of feature and
variability modeling, combined with object-oriented analysis and design in
developing a metric framework. The purpose of the metric framework is to
supply relevant metric coefficients, which are to be used when discretizing
PDEs on curvilinear structured grids.

Feature and variability modeling are well established analysis tools within
product line design [10]. The similarities between products being constructed
from modules in a product line on one hand, and PDE solvers being imple-
mented from modules in a PDE solver framework on the other, indicates that
feature and variability modeling are suitable tools to use when designing such
a framework.

Object-oriented analysis and design is a well established development prac-
tice. Our interest lies in how it is used in a highly abstract context, such as
the implementation of FDM on curvilinear structured grids. We explore how
classes and objects are identified based on abstract concepts from the math-
ematical domain. By ensuring that the software model is consistent with the
mathematical concepts on which it is based, we get a framework that is easy
to understand and use.

In order to draw any conclusions regarding the suitability of the develop-
ment methods explored, it is necessary to establish a way to evaluate the per-
formance of a modular framework, both in terms of execution time and in
terms of usability. In Paper III, we compare the execution time of a special
purpose implementation to that of an implementation based on the modular
framework. Usability is measured by comparing the number of code changes
that would be necessary to perform on each of these implementations in order
to introduce certain functionality changes. The changes considered are

switching from an orthogonal to a non-orthogonal metric,
increasing the order of accuracy from 2 to 4,
changing from planar to axial symmetry, and
introducing domain decomposition parallelism.

9



Out of the research questions that were identified in Chapter 2, Paper III ad-
dresses the following:

4. How can object oriented analysis and design, together with feature and
variability modeling, be used to design flexible, domain specific, high per-
formance computing software?

6. How is modularization done in a highly abstract domain, such as mathe-
matical software?

2. How do we measure the flexibility of a set of software modules?

The results presented in Paper III consist of

a description of how feature and variability modeling can be used within
the context of PDE solver frameworks,
a design for a metric framework, to be used when discretizing PDEs using
FDM on curvilinear structured grids, and
an evaluation of the performance of the new framework, with respect to
execution time as well as usability.

3.1.4 Paper IV
In Paper IV, I combine the inter language modularity of Paper I with the gen-
eral difference expressions of Paper II, and the metric framework presented in
Paper III. The result is a set of software representations of continuous differ-
ential operators. I call these representations the Flexible Operators (FlexOp).
They are intended as a tool for the numerical analyst. The FlexOp support flex-
ible discretization of general algebraic expressions, including representations
of continuous differential operators, on curvilinear structured grids.

The major benefits of the FlexOp are

a high level of agreement between the mathematical description of the con-
tinuous PDE and the implementation of its discretization,
flexibility with respect to selection of discretization schemes,
automated inclusion of metric coefficients when discretizing coordinate in-
variant differential operators,
efficient direct evaluation, using expression template techniques, as well as
support for matrix operator formation, thus enabling efficient evaluation
using matrix-vector multiplication.

The research question that is treated in Paper IV is

5. How can generative techniques be used in modular high performance com-
puting software to enhance flexibility without a loss of performance?

The design of FlexOp demonstrates one way of answering this question. The
FlexOp use parameterized modularity to provide high flexibility and usability,
without loss of performance, where performance is measured relative to a
single language, special purpose implementation.

10



3.2 Problem Domain II:
Symmetry exploiting algorithms
The idea behind symmetry exploiting algorithms is to use results from the
mathematical area of group theory to find more efficient ways of solving PDEs
in domains that exhibit symmetries. An example of a symmetry exploiting
algorithm is the Discrete Fourier Transform (DFT), which may be used to
find a more efficient solution for problems that are periodic. In our work, we
study more general symmetries, such as for example a triangle or a cube, and
we use the Generalized Fourier Transform (GFT) to find efficient solutions to
PDEs.

The mathematical machinery involved when working with GFT is extensive
and highly abstract. Our aim has been to find general and flexible, yet efficient,
software representations of the mathematical concepts, in order to meet the
demands on performance as well as usability.

In Paper V we achieve flexibility through the use of parameterized classes,
while a parallel, object-oriented code developed in C is presented in Paper VI.

3.2.1 Paper V
In Paper V, we use a boundary element method to solve an electrostatic prob-
lem on a cube. The GFT is used to develop a more efficient solution method
on this symmetric domain. In the paper, we outline both the boundary element
method and how the GFT is used to find a solution. The GFT based solution
is compared with a direct solution of the same problem, with respect to exe-
cution time. We verify that the GFT based solution is much faster, particularly
for large problems.

We also describe the software representations of the mathematical abstrac-
tions used in implementing the GFT code. We find that generic programming,
through the use of parameterized classes, is suitable for expressing mathemat-
ical abstractions. The highly efficient GFT algorithm is easily implemented
based on software representations that contain a high level of abstraction.

In Paper V, we address the following research questions

5. How can generative techniques be used in modular high performance com-
puting software to enhance flexibility without a loss of performance?

6. How is modularization done in a highly abstract domain, such as mathe-
matical software?

We demonstrate how a design using parameterized classes, based on highly
abstract mathematical concepts, enables us to implement a GFT based algo-
rithm for the solution of PDEs on symmetrical domains. High flexibility can
be achieved, without loss of performance, since parameterized classes offer
compile time polymorphism.

11



3.2.2 Paper VI
In Paper VI, we present a software design for GFT based solution methods,
similar to that of Paper V, but in this case neither inheritance, nor parameter-
ized classes are used, and the implementation is in C. In Paper VI, we explore
how the GFT algorithm can be fine tuned for different contexts, through the
use of customized data layout. We also enhance the performance of the algo-
rithm by introducing a low level parallelism.

The research questions addressed are:

1. Can highly modular flexible codes be written without compromising per-
formance and the ability to perform low level optimizations?

3. How can parallelization be introduced in a code, which has been modular-
ized based on mathematical abstractions?

The results are very encouraging, as we find that the high level of abstraction
in the software design in no way compromises the ability to introduce low
level optimizations and parallelism.

12



4. Conclusions

In Chapter 2, I identified a number of questions regarding software design for
high performance computing software. In Chapter 3, I presented six different
investigations that cover aspects of these software design questions. Here I
summarize the answers that I found.

1. Can highly modular flexible codes be written without compromising per-
formance and the ability to perform low level optimizations?

3. How can parallelization be introduced in a code, which has been modular-
ized based on mathematical abstractions?

In Paper I, we demonstrated that a flexible PDE solver framework can be
achieved by integrating specialized modules, written in different languages.
We found that this inter language operatbility could be introduced without
loss of performance.

In Paper VI, we described how context dependent low level optimizations,
in the form of specialized data layouts, are introduced in a code, which is
modularized based on high level mathematical abstractions. I find that the
high level of abstraction in the software design in no way compromises the
ability to introduce low level optimizations and parallelization.

2. How do we measure the flexibility of a set of software modules?

One of the results presented in Paper III is a usability evaluation of a modular
software design. I find that the results of such evaluations provide important
input to the software design process, as high performance codes evolve and
get increasingly complex.

4. How can object oriented analysis and design, together with feature and
variability modeling, be used to design flexible, domain specific, high per-
formance computing software?

In Paper III, we also explored how feature and variability modeling can be
used as an aid in the analysis and design of a software frameworks for han-
dling metric coefficients. This framework is highly specialized and is intended
to be used in the implementation of PDE solvers, using FDM on curvilinear
structured grids.

I find that feature and variability modeling are powerful tools for the anal-
ysis of such frameworks, since they allow for the inclusion of variational as-
pects, which are not covered by an ordinary object-oriented analysis and de-
sign process.

13



5. How can generative techniques be used in modular high performance com-
puting software to enhance flexibility without a loss of performance?

We explored the use of generative techniques in Papers II, IV, and V. We found
that they are very suitable for use in high performance computing, because
they offer a combination of high flexibility and static polymorphism. Static
polymorphism opens up for an increased opportunity of optimization relative
to the dynamic polymorphism of pure object-orientation. Generative tech-
niques thus give us polymorphism without the loss of efficiency that would
come with the use of virtual functions and inheritance.

6. How is modularization done in a highly abstract domain, such as mathe-
matical software?

In Papers III and V, we describe software designs that are based on the math-
ematical domains of differential geometry and group theory, respectively. We
find that a software model which closely mimics the mathematical framwork
leads to highly usable code. Such a model enables the developer to express
concepts and algorithms more or less directly in terms of the relevant mathe-
matics. This, in turn, facilitates the development of new algorithms and meth-
ods.

7. Is it possible to combine specialized modules, written in different lan-
guages, without increasing execution time?

In Papers I and II, we explore the issue of inter language modularity. In partic-
ular, we combine specialized modules written in C++ and Fortran 95. We find
that such modules can be combined without an increase in execution time,
relative to single language implementations. This means that it is possible to
use the powerful structure of the C++ language in combination with the many
efficient implementations of numerical algorithms that exist in Fortran 95.

Paper II gives an example of this by demonstrating how expression tem-
plate techniques can be used on Fortran 95 data structures, thus combining the
efficient evaluation offered by the former with the powerful legacy implemen-
tations that exist in the latter.

Fortran 95 is not designed with interoperability in mind, but the
Fortran 2003 standard includes a well specified inter language interface. As
high performance computation software gets more involved, the trend is
increased use of inter language operability. This trend is backed up by an
increased level of standardization of inter language interfaces, such as for
example the new Fortran standard [15].

In conclusion, my investigation of software development practices for the
area of high performance computing has proved very fruitful indeed. I have
found that none of the concerns that I voiced in Chapter 2 should lead us to
refrain from the use of the practices that I have considered. On the contrary,
in the two case studies presented here, these practices lead to designs that
perform well in terms of usability as well as runtime efficiency.

14



Bibliography

[1] K. Åhlander and K. Otto. Software design for finite difference schemes based
on index notation. Future Generation Computer Systems, 22:102–109, 2006.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Suther-
land, and D. Thomas. Manifesto for agile software development.
http://www.agilemanifesto.org/.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999. ISBN 0-201-57168-4.

[4] J. Crotinger, J. Cummings, S. Haney, W. Humphrey, S. Karmesin, J. Reynders,
S. Smith, and T. J. Williams. Generic programming in POOMA and PETE.
In Selected Papers from the International Seminar on Generic Program-
ming, Lecture Notes in Comp uter Science, Vol. 1766, pages 218–231, Lon-
don, UK, 2000. Springer-Verlag.

[5] K. Czarnecki and U. W. Eisenecker. Generative Programming. Addison-
Wesley, 2000. ISBN 0-201-30977-7.

[6] William D. Henshaw David L. Brown and Daniel J. Quinlan. Overture: An
object-oriented framework for solving partial differential equations on overlap-
ping grids. In Michael E. Henderson, Christopher R. Anderson, and Stephen L.
Lyons, editors, Object Oriented Methods for Interoperable Scientific and
Engineering Computing. SIAM, 1999.

[7] M. Gray, R. Roberts, and T. Evans. Shadow-object interface between Fortran 95
and C++. Computers in Science and Engineering, 1:63–70, 1999.

[8] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine. Con-
cepts: Linguistic support for generic programming in C++. In Proceedings of
the 2006 ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA ’06). ACM Press, October
2006.

[9] M. Haveraaen, H. A. Friis, and T. A. Johansen. Formal software engineering for
computational modelling. Nordic Journal of Computing, 6:241–270, 1999.

15



[10] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse, Architecture, Process
and Organization for Business Success. ACM Press, 1997. ISBN 0-201-
92476-5.

[11] D. Knoll, J. Morel, L. Magonlin, and M. Shashkov. Physically motivated dis-
cretization methods; A strategy for increased predictiveness. Los Alamos Sci-
ence, 29:188–212, 2005.

[12] P. Kruchten. The Rational Unified Process: An Introduction. Addison Wes-
ley, 3rd edition, 2004.

[13] B. Oestereich. Developing Software with UML. Addison-Wesley, 1999. ISBN
0-201-39826-5.

[14] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972.

[15] J. Reid. The new features of Fortran 2003. JTC1/SC22/WG5 N1579, ISO/IEC.

[16] J. G. Siek and A. Lumsdaine. The matrix template library: Generic compo-
nents for high-performance scientific computing. Computing in Science and
Engineering, 01(6):70–78, 1999.

[17] M. Thuné, E. Mossberg, P. Olsson, J. Rantakokko, K. Åhlander, and K. Otto.
Object-oriented construction of parallel PDE solvers. In E. Arge, A. M. Bru-
aset, and H. P. Langtangen, editors, Modern Software Tools for Scientific
Computing, pages 203–226. Birkhäuser, 1997.

[18] D. Vandevoorde and N. Josuttis. C++ Templates: The Complete Guide. Ad-
dison Wesley, 2002. ISBN 0201734842.

16



Sammanfattning på svenska

Allteftersom datorer har blivit kraftfullare har datorsimuleringar blivit ett kost-
nadseffektivt komplement till experiment. Detta förklarar det växande intres-
set för vetenskapliga beräkningar. Att utveckla mjukvara för simulering av
fysikaliska processer medför speciella utmaningar på grund av de avancerade
matematiska modeller som används vid problemformuleringen. Detta är en
av anledningarna till att mjukvaruutvecklingsmodeller som används inom an-
dra områden inte har spridits sig i samma utsräckning inom beräkningsveten-
skapen.

Syftet med mitt arbete har varit att undersöka de speciella förutsättningar
som råder för mjukvaruutveckling för högprestandaberäkningar. Jag har tit-
tat speciellt på hur några mjukvaruutvecklingsmodeller kan användas tillsam-
mans med avancerade matematiska modeller för att numeriskt lösa Partiella
Differentialekvationer (PDE). Två områden utforskas; flexibla, komponerbara
operatorer för finita-differensmetoder (FDM) på kurvilinjära strukturerade nät
och symmetriutnyttjande operatorer baserade på den generaliserade fourier-
transformen (GFT).

Mitt arbete har särskilt gällt mjukvara lämpad för utveckling av nya nu-
meriska metoder. Användaren är alltså en numeriker i en forskningsmiljö.
För denna grupp av användare fås hög användbarhet genom hög flexibilitet
med avseende på skapandet av nya numeriska metoder. En numeriker behöver
mjukvara som gör det lätt att experimentera med variationer av algoritmer och
metoder.

Baserat på numerikerns behov formulerar jag här sju frågor om
användandet av några utbredda mjukvaruutveckingsmodeller inom
högprestandaberäkningar. Generellt rör sig dessa frågor omkring en eventuell
konflikt mellan mjukvarans användbarhet för att skriva nya program å ena
sidan, och exekveringstiden för dessa program å andra sidan. De sju frågorna
är

1. Hur kan man skriva modulära flexibla koder med hög prestanda, och
utrymme för lågnivåsoptimeringar?

2. Hur mäter man flexibiliteten hos en uppsättning mjukvarumoduler?
3. Hur kan man parallelisera en kod som har modulariserats baserat på

matematiska abstraktioner?
4. Hur kan objektorienterad analys och design användas tillsammans med

variabilitetsmodellering för att skapa flexibel, domänspecifik mjukvara för
högprestandaberäkningar?

17



5. Hur kan man använda generativa tekniker för att öka flexibiliteten hos mod-
ulär högprestandakod, utan att tappa prestanda?

6. Hur modulariserar man mjukvara inom en mycket abstrakt domän som
matematisk mjukvara?

7. Är det möjligt att kombinera specialiserade moduler, skrivna i olika språk,
utan ökad exekveringstid för programmet?

Sex olika artiklar används för att besvara ovanstående frågor. De fyra
första av dessa artiklar handlar om flexibla, komponerbara operatorer för
finita-differensmetoder på kurvilinjära strukturerade nät, medan de två sista
handlar om symmetriutnytjande operatorer baserade på den generaliserade
fouriertransformen.

Frågorna 1 och 3 besvaras av Papper I och IV. Papper I visar hur man kan
bygga ett flexibelt ramverk för numerisk lösning av PDE, genom att kombin-
era specialiserade moduler, skrivna i olika programmeringsspråk. Prestandan
för ett program skrivet utifrån ett sådant ramverk är densamma som för ett
specialskrivet program, som använder bara ett programmeringsspråk.

I Papper IV, visar vi hur kontextberoende lågnivåoptimeringar, i form av
speciella dataformat, kan introduceras i en kod som är modulariserad baserat
på matematiska abstaktioner. Vi finner att denna typ av modularisering kan
kombineras med de eftersträvade lågnivåoptimeringarna.

Fråga 2 besvaras i Papper III, där vi bland annat presenterar en utvärdering
av användbarheten av en modulär mjukvarudesign. Denna typ av utvärder-
ing blir en allt viktigare del av mjukvaruutvecklingsmodellen när högpre-
standakoder blir större och mer sammansatta.

Papper III besvarar också fråga 4, genom att presentera hur en
mjukvaruutvecklingsmodell baserad på objektorienterad analys och design,
tillsammans med variabilitetsmodellering, används för att utveckla ett
ramverk för hantering av metriska koefficienter. Detta mycket specialiserade
ramverk är ett stöd vid utvecklingen av numeriska PDE-lösare, baserade på
finita-differensmetoder på kurvilinjära strukturerade nät.

Variabilitetsmodellering är ett kraftfullt verktyg vid analysen av den här
typen av ramverk, eftersom den ger möjlighet att inkludera variabilitetsaspek-
ter vid modelleringen. Dessa aspekter täcks inte av traditionell objektorien-
terad analys och design.

De generativa tekniker, som är ämnet i fråga 5, behandlas i Papper II, IV och
V. Generativa tekniker är passande för mjukvara för högprestandaberäkningar,
eftersom de erbjuder en kombination av hög flexibilitet och statisk polymor-
fism. Statisk polymorfism ger större möjlighet till optimeringar än den dy-
namiska polymorism arvsmekanismen erbjuder. Genom att använda genera-
tiva tekniker kan vi alltså få den flexibilitet som polymorfismen erbjuder utan
den effektivitetsförlust som vi skulle få om vi implementerade denna poly-
morfism med hjälp av arv och virtuella funktioner.

Fråga 6 rör modularisering av matematisk mjukvara. Denna fråga besvaras
av Papper III och V, som beskriver modularisering av programvara för differ-

18



entialgeometri respektive gruppteori. Vi finner att mjukvarumodeller som tätt
följer det matematiska ramverk som de är baserade på ger mycket användbar
kod. Sådana mjukvarumodeller ger utveckaren möjlighet att uttrycka koncept
och algoritmer mer eller mindre direkt i termer av de matematiska begrepp
som används vid algoritm- och metodutvecklingen.

Papper I och II undersöker möjligheten att kombinera mjukvarumoduler
skrivna i olika språk. Vi kombinerar specialiserade moduler skrivna i C++
och Fortran 95. Vi finner att sådana moduler kan kombineras utan att exekver-
ingstiden ökar, i jämförelse med en implementering skriven i bara ett språk.
Detta betyder att det är möjligt att kombinera den kraftfulla strukturen i ett
objektorienterat språk, som C++, med de många effektiva bibliotek som redan
finns skrivna i Fortran.

Papper II ger ett specifikt exempel genom att beskriva hur uttrycksmal-
lar (expression templates) kan användas på datastrukturer definierade i For-
tran 95. På detta sätt kan man i en och samma kod både använda uttrycks-
mallarnas effektiva evaluering och ha tillgång till de många kraftfulla imple-
menteringar av numeriska metoder som finns i Fortran.

Sammanfattningsvis finner jag att min utvärdering av mjukvaruutveck-
ingsmodeller för högprestandaberäkningar har givit god avkastning. De
frågeställningar som jag identifierade har alla blivit besvarade på ett
tillfredsställande sätt. Jag har inte funnit någon konflikt mellan mjukvarans
användbarhet för att skriva nya program å ena sidan, och exekveringstiden
för dessa program å andra sidan. Tvärtom, inom de två områden som jag
utforskat resulterade de utprovade mjukvaruutveckingsmodellerna i program
som visade sig vara mycket användbara både vad det gäller flexibiltet och
effektivitet.

19



Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 285

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through the
series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-7768

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2007


	Abstract
	List of Publications
	Comments on my participation
	Acknowledgements
	Contents
	1. Introduction
	2. Software development models in high performance computing
	3. Results
	3.1 Problem Domain I: Modular PDE solver frameworks
	3.1.1 Paper I
	3.1.2 Paper II
	3.1.3 Paper III
	3.1.4 Paper IV

	3.2 Problem Domain II: Symmetry exploiting algorithms
	3.2.1 Paper V
	3.2.2 Paper VI


	4. Conclusions
	Bibliography
	Sammanfattning på svenska

