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Abstract
Lyme borreliosis (LB) is the most common tick-borne infection in Europe, with Lyme neuroborreliosis (LNB) its second 
most frequent clinical manifestation. Prognostic factors for clinical outcomes in LNB have not been identified. Elevated 
serum levels of the brain damage markers neuron-specific enolase (NSE) and S100 calcium-binding protein B (S100B) 
have been associated with poor clinical outcomes in other disorders of the central nervous system. The aim of this study 
is to assess NSE and S100B in serum as prognostic biomarkers for clinical outcomes in paediatric LNB patients. Children 
evaluated for LNB (n = 121) in Sweden were prospectively included during 2010–2014, serum samples were collected 
on admission, and all children underwent a 2-month follow-up. Patients with pleocytosis and anti-Borrelia antibodies in 
cerebrospinal fluid (CSF) were classified as having LNB (n = 61). Controls were age- and gender-matched non-LNB patients 
(n = 60). NSE was elevated in 38/61 (62%) LNB patients and in 31/60 (52%) controls. S100B was elevated in 3/60 (5%) LNB 
patients and 0/59 (0%) controls. NSE and S100B concentrations did not differ significantly when comparing LNB patients 
with controls. No differences were found in the concentrations when comparing the clinical recovery of LNB patients at 
the 2-month follow-up. NSE was detectable in the majority of LNB patients and controls, whereas S100B was detectable in 
only a few LNB patients and no controls. NSE and S100B in serum cannot be recommended as prognostic biomarkers for 
clinical outcomes in children with LNB.

Keywords Lyme neuroborreliosis · S100B · NSE · Clinical outcome · Brain damage markers · Biomarkers

Abbreviations
BBB  Blood-brain barrier
BMI  Body mass index
CNS  Central nervous system
CSF  Cerebrospinal fluid
ELISA  Enzyme-linked immunosorbent assay
GFAp  Glial fibrillary acidic protein
LB  Lyme borreliosis
LNB  Lyme neuroborreliosis
n  Number
NSE  Neuron-specific enolase
S100B  S100 calcium-binding protein B

Introduction

Lyme borreliosis (LB) is the most common tick-borne 
infection in Europe, caused by the spirochete complex 
Borrelia burgdorferi sensu lato [1, 2]. Lyme neuroborreliosis 
(LNB) is the second most frequent manifestation of LB in 
children, after the skin manifestation erythema migrans 
[3]. The incidence of LNB is 28/100,000 in the paediatric 
population in Sweden [4]. LNB is diagnosed according to 
European guidelines and requires neurological symptoms 
suggestive of LNB, pleocytosis in the cerebrospinal fluid 
(CSF), and intrathecally produced antibodies specific for 
B. burgdorferi [5]. LNB is treated with doxycycline or 
ceftriaxone according to the guidelines [5]. Among children 
affected by LNB, 11–25% report persistent symptoms after 
antibiotic treatment [6–8].

Despite various studies on serum biomarkers in different 
CNS pathologies, no biomarkers have specifically been 
identified as prognostic factors of importance for clinical 
outcomes in children with LNB. Glial fibrillary acidic protein 
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(GFAp), a protein expressed in astrocytes, has been shown 
to be significantly higher in the CSF of adult LNB patients 
as compared to healthy controls [9]. However, all adult 
LNB patients had signs of meningoradiculitis, a symptom 
relatively uncommon in children with LNB, making a 
similar study difficult to carry out in a paediatric population. 
Two biomarkers that have been studied in various clinical 
settings in both adults and children are neuron-specific 
enolase (NSE) and S100 calcium-binding protein B (S100B). 
Prospective analyses of these biomarkers in serum children 
upon admittance to paediatric intensive care units (PICU) 
have been shown to predict an unfavourable neurologic 
outcome in critically ill children with a broad spectrum of 
admission diagnoses (i.e., neurological disorders, serious 
infectious diseases, gastrointestinal diseases, and various 
postoperative complications) [10]. Furthermore, increased 
concentrations of NSE and S100B have been found in serum, 
presumably due to blood–brain barrier (BBB) damage, 
in children with conditions associated with brain damage 
such as traumatic brain injury [11, 12], in urine in hypoxic-
ischemic encephalopathy in asphyxiated full-term infants 
[13], as well as in CSF in neonatal bacterial meningitis [14].

NSE is a neuron-specific form of the glycolytic enzyme 
enolase, highly localised to neurons and neuroendocrine 
cells [15]. NSE is also found in extracerebral cells such as 
platelets and red blood cells [16, 17]. Increased concentra-
tions of NSE in CSF and serum have been identified in sev-
eral conditions and diseases, including encephalitis, cerebral 
infarction, neurodegenerative diseases, and traumatic brain 
injury [11, 18].

S100B is a member of the S-100 protein family and is 
produced by astrocytes, oligodendrocytes, and Schwann 
cells in the CNS [19]. The primary extracerebral sources 
for S100B are muscle and fat tissue, although S100B has 
been shown not to correlate with body mass index (BMI), 
and the extracerebral sources of S100B do not appear to 
have a significant effect on S100B levels in serum [20]. The 
serum levels of S100B decrease with increasing age [21], 
but no significant gender-related differences in serum S100B 
levels have been shown [21, 22]. Haemolysis is a physiologi-
cal factor that may interfere with NSE levels in serum, in 
contrast to S100B, where haemolysis is of no importance to 
the results of serum levels [22].

There have been problems to establish cut-off values for 
NSE and S100B in serum in children since values could 
depend on age, site of extraction, and cohort [23]. However, 
Bouvier et al. have mapped out reference ranges of serum 
levels of S100B for children via blood samples from a large 
cohort of 409 healthy children aged 0–16 years with a refer-
ence value of < 0.32 µg/L för children aged 2–16 years [22].

The aim of this study was to investigate whether the brain 
damage markers NSE and S100B are detectable in serum 
in paediatric LNB patients and controls and if so, to assess 

their possible value as prognostic biomarkers for clinical 
outcomes in children with LNB.

Material and methods

Patients and controls

Patients were selected from a previous study of a large 
cohort of children being evaluated for LNB in central and 
southeast Sweden during the years 2010–2014 [24]. All 
patients classified as definite LNB in which serum samples 
were available were included in this present study as LNB 
patients (n = 61). Children classified as non-LNB patients 
were included as controls (n = 60). Controls were matched 
for gender and age to the extent made possible by the avail-
ability of serum samples.

LNB patients and controls were followed up at 2 months 
to evaluate clinical recovery as part of the previous prospec-
tive study [24]. Based on information from the follow-up 
visit at a paediatric clinic, including a physical examination 
and a structured questionnaire for self-reported persistent 
symptoms (or in some cases, a telephone interview), LNB 
patients and controls were defined as having complete or 
incomplete clinical recovery. Clinical characteristics of LNB 
patients and controls are shown in Table 1.

Classification of LNB

LNB was diagnosed according to European guidelines and 
required neurological symptoms suggestive of LNB without 
other obvious reasons, pleocytosis in the CSF, and intrathe-
cally produced antibodies specific to B. burgdorferi [27]. 
Non-LNB controls did initially have neurological symptoms 
suggestive of LNB but had no pleocytosis in the CSF or 
intrathecally produced antibodies specific to B. burgdorferi 
and did therefore not meet the criteria for LNB. The non-
LNB controls consisted of patients with idiopathic facial 
nerve palsy (n = 20), headache (n = 35), fatigue UNS (n = 2), 
vertigo (n = 1), strabismus (n = 1), and paresthesia (n = 1). 
None of the patients in the non-LNB group were diagnosed 
with any other specific neurological disorder.

Laboratory methods

Serum samples were drawn from LNB patients and non-
LNB controls on admission and stored at − 70 °C. ELISA 
assays were applied for the detection of NSE and S100B in 
serum samples retrospectively. In calculating the levels of 
NSE and S100B in serum from the optical density values 
of the ELISA assays’ standard curves, a linear regression 
was used for NSE, and a 4 parametric logistic regression 
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was used for S100B, according to the manufacturers’ 
instructions.

NSE was analysed with the EDI™ Human Neuron-Specific 
Enolase ELISA Kit (Epitopic Diagnostics Inc, San Diego, 
USA), according to the manufacturer’s instructions [28]. 
Samples from all LNB patients (n = 61) and controls (n = 60) 
were available for NSE analysis. Samples with values below 
the lower detection range (5.0 µg/L) were given half of the 
value for the lowest standard, at a value of 2.50 μg/L [28]. 
According to the manufacturer and instructions to users 
at laboratory units, the reference value for NSE was set 
at < 16 μg/L [29].

S100B was analysed with the human soluble protein-
100B (S100B) ELISA Kit (Cusabio Biotech Co LTD, 
Wuhan, China), according to the manufacturer’s instruc-
tions, with a detection range of 0.078–5 µg/L [30]. Samples 

available from LNB patients (n = 60) and controls (n = 59) 
were analysed for S100B with values below the lower 
detection range given half of the value for the lowest stand-
ard, value 0.039  μg/L. The reference value for S100B 
(< 0.32 μg/L) was based on previous studies [22].

Intrathecally produced antibodies specific to B. burgdor-
feri (IgG and/or IgM) were analysed as part of the routine 
diagnostic workup with the IDEIA Lyme Neuroborreliosis 
Kit according to the manufacturer’s instructions (Oxoid 
Limited, Hampshire, UK) [31]. The anti-Borrelia antibody 
index (AI) was considered positive if > 0.3 [26]. Pleocyto-
sis was defined as a total count of leukocytes > 5 ×  106/L in 
CSF [25].

In clinical laboratory practice, the standard measure of the 
BBB function is the ratio between albumin in CSF (mg/L) 
and albumin in serum (g/L), where an elevated ratio (> 5) 
demonstrates BBB damage [32]. Data on BBB function, i.e. 
albumin ratios, were available from the previous study [33] 
on a number of LNB patients (n = 33) and controls (n = 45) 
and could be used in calculations in our present study.

Statistics

SPSS software was used for statistical calculations. The chi-
squared test and Fisher’s exact test were used for dichoto-
mous data, and Mann–Whitney U test was used for con-
tinuous nonparametric data. Spearman’s test was used in 
calculating correlations. A p-value < 0.05 was considered 
statistically significant.

Ethical considerations

The study was approved by the Regional Ethics Commit-
tee in Uppsala, Sweden (Dnr. 2010/106). Informed written 
consent was received from patients/guardians.

Results

The brain damage marker NSE was detectable in 115 out of 
121 (95%) serum samples drawn on admission from LNB 
patients and controls. NSE concentrations in serum were 
elevated above the reference value (16 μg/L) in 38 of 61 
(62%) LNB patients and in 31 of 60 (52%) controls. No sig-
nificant differences in NSE concentrations were found when 
comparing LNB patients and controls (Table 2).

The brain damage marker S100B was detectable in 12 
out of 119 (10%) available serum samples drawn on admis-
sion from LNB patients and controls. S100B concentrations 
were elevated above the reference value (0.32 μg/L) in 3 of 
60 (5%) LNB patients and 0 of 59 (0%) controls. No signifi-
cant differences in S100B concentrations were found in LNB 
patients as compared to controls (Table 2).

Table 1  Clinical characteristics and laboratory data in LNB patients 
and controls

LNB, Lyme neuroborreliosis; n, number; #, total count of leukocytes 
×  106/L in CSF [25]; *, anti−Borrelia IgG and/or IgM antibody index 
(AI)> 0.3 [26]

LNB patients (n = 61) Controls (n = 60)

Gender female, n (%) 26 (43) 27 (45)
Age, median (range) 6 (2–15) 10 (1–17)
Observed tick bite, n (%) 37 (61) 28 (47)
Duration of symptoms
   < 1 week, n (%) 28 (46) 16 (27)

  1–4 weeks, n (%) 29 (48) 12 (20)
  1–2 months, n (%) 1 (2) 4 (7)
   > 2 months, n (%) 1 (2) 12 (20)
  Not specified, n (%) 2 (3) 16 (27)

Clinical features on admission
  Facial nerve palsy, n 

(%)
42 (69) 20 (33)

  Headache, n (%) 43 (70) 40 (67)
  Fatigue, n (%) 55 (90) 39 (65)
  Fever, n (%) 31 (51) 12 (20)
  Neck pain, n (%) 32 (52) 11 (18)
  Neck stiffness, n (%) 20 (33) 6 (10)
  Loss of appetite, n (%) 38 (62) 26 (43)
  Nausea, n (%) 21 (34) 23 (38)
  Vertigo, n (%) 9 (15) 25 (42)
  Erythema migrans, n 

(%)
26 (43) 12 (20)

Laboratory data on admission
  Pleocytosis, median 

(range)#
153 (12–885) 0 (0–4)

  Positive Borrelia AI*, 
n (%)

61 (100) 0 (0)

  Complete clinical 
recovery at 2-months, 
n (%)

53 (87) 49 (82)
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No positive or negative correlations were found when 
comparing age and concentration of NSE (rho =  − 0.157, 
p = 0.086) and S100B (rho = 0.035, p = 0.703) in LNB 
patients and controls (data not shown). Nor did we find 
any correlations between the duration of symptoms on 
admission and levels of NSE (rho =  − 0.022, p = 0.808) or 
S100B (rho = 0.085, p = 0.355) in serum (data not shown).

Among LNB patients, 53 out of 61 (87%) showed a 
complete clinical recovery, and among controls, 49 out 
of 60 (82%) showed a complete clinical recovery at the 
2-month follow-up. Among LNB patients, there were no 
significant differences in NSE and S100B concentrations 
in serum when comparing patients with complete and 
incomplete clinical recovery at the 2-month follow-up 
(p = 0.571 and p = 0.321, respectively) (data not shown).

Data on albumin ratio (CSF/serum) was available for 
evaluation in 33 out of 61 (54%) LNB patients and in 45 
out of 60 (75%) controls. BBB damage (CSF/serum albu-
min ratio > 5) was found in 82% of LNB patients and in 
7% of controls (p < 0.001) (Fig. 1), and the ratio itself was 
significantly higher in LNB patients as compared to con-
trols (p < 0.001) (Table 2).

Complete clinical recovery was observed in 24 out of 
27 (89%) LNB patients with BBB damage and in 5 out of 
6 (83%) LNB patients without BBB damage (p = 0.571) 
(Fig. 2). Among controls with BBB damage, complete clini-
cal recovery was observed in all three patients, and 36 out 
of 42 (86%) controls without BBB damage (p = 0.644) (data 
not shown).

NSE levels in serum were elevated above cut-off in 16 out 
of 27 (60%) LNB patients with BBB damage and in 5 out 
of 6 (83%) LNB patients without BBB damage. The median 
concentration of NSE in serum did not differ between LNB 
patients with or without BBB damage (p = 0.424) (data 
not shown), nor did the median concentration of S100B 
(p = 0.451) (data not shown).

Discussion

In this study, it is shown that levels of NSE and S100B in 
serum on admission were not significantly higher in LNB 
patients as compared to non-LNB controls. To our knowl-
edge, there are only a few studies on brain damage markers 

Table 2  NSE, S100B, and 
Albumin ratios (CSF/serum) in 
LNB patients and controls

LNB, Lyme neuroborreliosis; NSE, neuron-specific enolase; n, number; S100B, S100 calcium-binding pro-
tein B; CSF, cerebrospinal fluid; BBB (blood–brain barrier) damage = CSF/serum albumin ratio > 5 [32]

LNB patients Controls P-value

NSE μg/L, median (range) 19.21 (8.25–70.47) 17.01 (2.50–393.28) 0.165
S100B μg/L, median (range) 0.04 (0.04–0.79) 0.04 (0.04–0.21) 0.908
NSE above cut-off (16 μg/L), n (%) 38 (62%) 31 (52%) 0.273
S100B above cut-off (0.32 μg/L), n (%) 3 (5%) 0 (0%) 0.244
Albumin in CSF mg/L, median (range) 383 (114–839) 99.4 (49.4–291)  < 0.001
Albumin in serum g/L, median (range) 40.5 (35.3–48.7) 40.3 (31.1–46.6) 0.856
Albumin ratio (CSF/serum), median (range) 8.86 (2.75–20.39) 2.61 (1.23–7.13)  < 0.001
BBB-damage, n (%) 27 (82) 3 (7)  < 0.001
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Fig. 1  Blood–brain barrier (BBB) damage in patients with Lyme neu-
roborreliosis (LNB) and controls (p < 0.001)
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Fig. 2  Clinical recovery in patients with Lyme neuroborrelio-
sis (LNB), with or without blood–brain barrier (BBB) damage 
(p = 0.571)
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in LNB patients, and no significant biomarkers for clinical 
recovery have yet been identified. A previous study showed 
detectable levels of the brain damage markers NSE, S100B, 
GFAp, and neurofilament protein (NFL) in CSF in adult 
LNB patients before antibiotic treatment [34], suggesting 
that LNB may affect CNS parenchyma. However, that study 
is not comparable to our present study since the markers 
were analysed in CSF as opposed to serum. In our present 
study, most LNB patients had BBB damage, which should 
allow for brain damage markers to pass from CSF to serum. 
However, relatively few LNB patients showed elevated 
brain damage markers in serum (above cut-off), which is 
somewhat unexpected. It could possibly be explained by 
paediatric LNB patients often having a milder CNS involve-
ment with a shorter duration of symptoms than adult LNB 
patients, or by the fact that the cut-off levels for the brain 
damage markers may vary with age, as reported in several 
previous studies [21, 22, 35, 36]. However, we found no 
correlation between the concentration of NSE or S100B and 
age. In addition, in the present study, only a few patients 
were under the age of 2 years, the age group in which the 
strongest negative correlation between age and S100B was 
seen in previous studies [22, 35, 36].

In our present study, there were no significant differences 
in the levels of NSE and S100B in serum on admission in 
LNB patients with complete or incomplete clinical recovery 
at the 2-month follow-up. This is in line with an earlier study 
that showed that the pretreatment levels of NSE and S100 
proteins in CSF were not significantly higher in adult LNB 
patients with sequelae [34]. Thus, our results confirm that 
NSE and S100B in serum could not be useful as prognostic 
biomarkers for clinical outcomes.

Dotevall et al. compared pre- and posttreatment levels of 
brain damage markers NSE, S100B, GFAp, and neurofila-
ment protein (NFL) in CSF in adult LNB patients and found 
that all four brain damage markers were reduced in CSF after 
treatment, indicating an improvement of CNS impairment 
[34]. In our paediatric LNB patients, data on posttreatment 
levels of NSE and S100B in serum or CSF were unfortu-
nately not available. However, most patients were assessed 
as being recovered at the 2-month follow-up as an indication 
of relevant post treatment clinical improvement.

Admittedly, there are limitations to our study. The ELISA 
assays on NSE and S100B were conducted with single sam-
ple testing, where duplicates would have given more reli-
able data, as always when performing laboratory testing. 
However, since we found no differences when comparing 
LNB patients and controls with nonparametric statistics, this 
limitation should not have had a large negative impact on 
our results.

Another possible weakness of our present study is that 
most of the analysed serum samples had an S100B concen-
tration below the lower detection range. When choosing 

from the several different ELISA test kits available, we based 
our choice on a kit with a reasonably wide detection range 
(0.078–5.0 µg/L), which also included previously docu-
mented levels of S100B in healthy children [22]. Admittedly, 
it could have been of interest to investigate even lower levels 
of S100B in pediatric LNB, but as most of our results were 
considerably lower than the reference value of 0.32 µg/L, the 
relevance may be questioned.

Our control group consisted of children with symptoms 
initially suggestive of neuroborreliosis but demonstrated nei-
ther pleocytosis nor intrathecally produced antibodies for B. 
burgdorferi and, as such, functioned as non-LNB controls. 
Theoretically, this group may have contained patients with 
very early LNB before any findings in CSF materialised, 
but this would arguably be true in only a few controls and 
thus presumably have a negligible effect on our results. A 
second control group of healthy children without any neu-
rological symptoms suggestive of LNB would potentially 
have added important information to our findings, but we 
nonetheless consider our control group very relevant in the 
clinical context. The group represents children that undergo 
lumbar punctures according to common practice in cases 
where LNB is suspected but, despite their symptoms, have 
negative CSF results.

At the 2-month follow-up, a few patients (and/or their 
guardian) were interviewed via telephone without a physical 
appointment and therefore did not undergo a physical exami-
nation by a paediatrician. This is a weakness of the study, 
which might have influenced the evaluation of clinical recov-
ery in a few cases. However, the follow-up always included a 
structured questionnaire for self/parent-reported symptoms 
(patient-reported outcome measures or PROMs), which is 
the most important measurement of clinical recovery. Con-
sequently, we find it highly probable that the LNB patients 
in our study were correctly assessed as having complete or 
incomplete clinical recovery at the 2-month follow-up. Thus, 
our results that serum levels of NSE and S100B did not dif-
fer between LNB patients with complete or incomplete clini-
cal recovery can be considered reliable, and therefore we 
deduce that these two brain damage markers, at least when 
analyzed in serum, are not useful for prognostic purposes.

Conclusion

The brain damage marker NSE was detectable in serum 
samples from a majority of LNB patients and controls, but 
S100B was detectable only in a few LNB patients and none 
of the controls. NSE and S100B concentrations did not dif-
fer significantly in LNB patients as compared to controls, 
nor were they significantly elevated when comparing LNB 
patients with complete and incomplete clinical recovery at 
the 2-month follow-up. Thus, NSE and S100B in serum 
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could not be recommended as prognostic biomarkers for 
clinical outcomes in children with LNB.
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