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ABSTRACT
Objectives To find causal genes for rheumatoid 
arthritis (RA) and its seropositive (RF and/or ACPA 
positive) and seronegative subsets.
Methods We performed a genome- wide association 
study (GWAS) of 31 313 RA cases (68% seropositive) 
and ~1 million controls from Northwestern Europe. We 
searched for causal genes outside the HLA- locus through 
effect on coding, mRNA expression in several tissues 
and/or levels of plasma proteins (SomaScan) and did 
network analysis (Qiagen).
Results We found 25 sequence variants for RA 
overall, 33 for seropositive and 2 for seronegative RA, 
altogether 37 sequence variants at 34 non- HLA loci, 
of which 15 are novel. Genomic, transcriptomic and 
proteomic analysis of these yielded 25 causal genes in 
seropositive RA and additional two overall. Most encode 
proteins in the network of interferon- alpha/beta and 
IL- 12/23 that signal through the JAK/STAT- pathway. 
Highlighting those with largest effect on seropositive 
RA, a rare missense variant in STAT4 (rs140675301- A) 
that is independent of reported non- coding STAT4- 

variants, increases the risk of seropositive RA 2.27- fold 
(p=2.1×10−9), more than the rs2476601- A missense 
variant in PTPN22 (OR=1.59, p=1.3×10−160). STAT4 
rs140675301- A replaces hydrophilic glutamic acid with 
hydrophobic valine (Glu128Val) in a conserved, surface- 
exposed loop. A stop- mutation (rs76428106- C) in FLT3 
increases seropositive RA risk (OR=1.35, p=6.6×10−11). 
Independent missense variants in TYK2 (rs34536443- C, 

Key messages

What is already known about this subject?
 ⇒ Although many genetic risk loci have been 
identified in rheumatoid arthritis (RA) 
overall, there are limited data available on 
the seropositive and seronegative subsets. 
Furthermore, most reported RA associations 
outside the HLA- locus are with common non- 
coding variants with low risk,which lack a 
compelling candidate gene mediating the effect 
on RA.
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rs12720356- C, rs35018800- A, latter two novel) associate with 
decreased risk of seropositive RA (ORs=0.63–0.87, p=10−9–10−27) 
and decreased plasma levels of interferon- alpha/beta receptor 1 that 
signals through TYK2/JAK1/STAT4.
Conclusion Sequence variants pointing to causal genes in the 
JAK/STAT pathway have largest effect on seropositive RA, while 
associations with seronegative RA remain scarce.

INTRODUCTION
Rheumatoid arthritis (RA) is a heterogeneous clinical syndrome 
that affects around 0.5%–1% of the general population. It is 
characterised by inflammatory polyarthritis and progressive 
joint damage if insufficiently treated.1 RA is divided into sero-
positive and seronegative RA, where around two- thirds of RA 
patients are in the seropositive subset, based on autoantibodies 
(rheumatoid factor (RF) and/or antibodies against citrullinated 
peptide antigens (ACPA)).1 2 Although many risk loci have been 
identified in previous genome- wide association studies (GWAS), 
most reported RA associations are with common non- coding 
variants that confer low risk and lack a compelling candidate 
gene mediating the effect on RA.1 3–6 The main exceptions are 
the shared epitope encoded by certain alleles of HLA- DRB1 and 
two missense variants in the PTPN22 (rs2476601- A) and TYK2 
(rs34536443- C) genes.1 3

Previous GWAS have focused on RA overall,3–6 except for one 
study on ACPA- positive (n=1147) and ACPA- negative (n=774) 
RA that confirmed the strong association of HLA- DRB1 alleles 
with ACPA- positive RA but did not identify any genome- wide 
significant signals outside the HLA- locus7 and another report on 

ACPA- negative RA only (n=1922) that identified two genome- 
wide significant signals.8

Here, we searched for sequence variants outside the HLA- 
locus affecting the risk of RA overall, the seropositive and/or 
seronegative subsets of RA, using the largest GWAS study popu-
lation to date in RA (31 313 cases and ~1 million controls) 
from six countries in Northwestern Europe and searched for 
candidate causal genes through a genomic, transcriptomic and 
proteomic analysis.

METHODS
Study populations
Cases with RA were diagnosed by rheumatologists and/or 
captured through the nationwide Scandinavian rheumatology 
quality registries and/or the 10th revision of the International 
Statistical Classification of Diseases (ICD- 10) code- based regis-
tration of all inpatient and outpatient healthcare visits (see 
four- digit based ICD- 10 codes in table 1). If available, RF and 
anti- CCP measurement were used to define the seropositive/
seronegative RA subsets, according to classification criteria.2 9

An overview of the study populations is provided in table 1. 
In the study populations from Iceland (3613 cases and 341 788 
controls), UK Biobank (5798 cases and 402 767 controls of self- 
reported white British ancestry, confirmed by genetic analysis)10 
and FinnGen (https://www.finngen.fi/en/access_results version 
R4: 4701 cases and 125 923 controls), RA cases were compared 
with the remaining non- RA individuals, with the Icelandic study 
covering a large part of the Icelandic population and the latter 
two being nationwide genetic cohort studies. From Sweden, we 
included: (1) the population- based EIRA case–control study ( 
www.eirasweden.se) with 3436 newly diagnosed cases and 3058 
controls matched for age, sex and geographical area from mid 
and Southern parts of Sweden. In addition, we included 7488 
controls from the parallel Swedish EIMS study ( ki. se/ imm/ 
eims-  epidemiologisk-  undersokning-  av-  riskfaktorer-  for-  multi-
pel-  skleros); (2) the RA cohort from Umea (n=1935) and 1156 
controls from Umea biobank, matched for age and sex (www. 
umu.se/en/biobank-research-unit); and (3) the Swedish Rheuma-
tology Quality Register Biobank (n=3287, www.srq.nu).

From Denmark, RA cases were identified in four study popu-
lations: (1) Danish Biomarker Protocol11 (n=2544 with samples 
in the Danish Rheumatological Biobank and clinical data in 
the Danish Rheumatology Quality Register, DANBIO)12 (2) 
the Copenhagen Hospital Biobank (n=3282), (3) the TARCID 
cohort (n=1826) and (4) the nationwide Danish Blood Donor 
Study (DBDS; 10 RA cases).13 Controls for these 7662 cases 
were age- matched and sex- matched non- RA individuals from 
DBDS (n=86 964).

From Norway, 881 RA cases from the Oslo RA cohort and 
28 517 population- based controls from the Norwegian Mother, 
Father and Child Cohort Study were included.14 15

Patients were involved in the design and conduct of several of 
the studies that are included in this report.

Genotyping and multiomics analyses
For a detailed methodological description, see online supple-
mental information 2. In short, genotyping of all cohorts except 
UK Biobank and FinnGen was performed at deCODE genetics 
using the Illumina technology, and the sequence variants for 
imputation were identified through whole- genome sequencing 
of 67 645 individuals.

We used logistic regression to test the association of ~64 
million sequence variants with RA overall, the seropositive and 

Key messages

What does this study add?
 ⇒ In this largest genome- wide association study on RA to 
date, we studied both RA overall and the seropositive and 
seronegative RA subsets and found several unreported 
sequence variants with large effect on the risk of seropositive 
RA, while associations with seronegative RA were scarce. 
Through a genomic, transcriptomic and proteomic analysis, 
we identified candidate causal genes for most signals and 
show that the majority of those associated with seropositive 
RA are in the interferon alpha/beta and IL- 12/23 signalling 
networks. Furthermore, most sequence variants that confer 
the largest risk of seropositive RA point to causal genes 
encoding proteins in the JAK/STAT- pathway and have not 
been reported in RA before. This includes a missense variant 
in the STAT4 gene that confers 2.27- fold risk, larger than 
the lead signals at the well- known HLA- DRB1 and PTPN22 
loci, and two unreported missense variants in the TYK2 
gene, affecting levels of the interferon- alpha/beta receptor 1 
(IFNAR1).

How might this impact on clinical practice or future 
developments?

 ⇒ These findings highlight how a multiomics approach can 
reveal causal genes. Our findings support treatment of 
seropositive RA with the already registered JAK and IL- 6R 
inhibitors as well as CTLA4- Ig but also open for repurposing 
of other drugs that target proteins in the JAK/STAT- pathway, 
including inhibitors of FLT3, TYK2 and IFNAR1.
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the seronegative subset.16 Sequence variants were split into five 
classes based on their genome annotation, and the significance 
threshold for each class was based on the number of variants 
in that class,17 thereby adjusting for all ~64 million variants 
tested, maintaining an unadjusted significance threshold of 
8×10−10. The primary signal at each genomic locus has the 
lowest Bonferroni- adjusted p value. Conditional analysis was 
used to search for possible secondary signals (<500 kB from 
the primary signal, excluding HLA- locus). We tested whether 
primary and secondary signals were in strong linkage disequilib-
rium (R2 >0.8) with top cis- eQTL variants for genes expressed 
in various tissues (online supplemental tables 5 and 6), and/or 
with levels of 4789 proteins in plasma (pQTL, SomaScan, Soma-
logic) in 35 559 Icelanders (online supplemental table 7).18–21

We used the Ingenuity Pathway Analysis software (QIAGEN 
Inc) to evaluate whether there is experimental evidence for direct 
or indirect interaction between the proteins coded by candidate 
causal genes, supporting biological connection.

RESULTS
Genome-wide association study
Of the 31 313 RA cases, 26 534 (84.7%) had information on 
serological status. Of these, 18 019 (67.9%) were seropositive 
and 8515 (32.1%) seronegative (table 1).

In separate meta- analyses of RA overall and the seropositive 
and seronegative RA subsets, we found in total 37 sequence vari-
ants at 34 non- HLA loci (online supplemental figure 1a–c), as 
summarised in table 2. Thus, we identified 25 lead signals for 
RA overall (online supplemental table 2), 33 for seropositive and 
2 for seronegative RA (online supplemental table 3). When we 
searched for novel sequence variants, we adjusted for 82 inde-
pendent sequence variants previously reported to associate with 
RA (p<5×10−8 in the largest meta- analysis to date),4 6 and 15 
of the 37 sequence variants are previously unreported. The 15 
novel associations are at 12 loci and six of those loci are previ-
ously unreported. Little heterogeneity was observed between the 
study populations (see online supplemental tables 2 and 3 (Phet) 
and online supplemental figure 4 (average effect)).

Replication of previously reported signals
We replicated 53 of the 82 previously reported variants (online 
supplemental table 1, correcting for multiple testing, p value 
threshold=0.05/82 variants /3 phenotypes=2.03×10−4). 
However, only 36 of the 82 variants were previously reported to 
be genome- wide significant in Europeans,4 6 and we replicated 
34 of these 36 variants (94%).

Comparison of RA subsets
The heritability estimates (total observed scale h2) were higher 
for seropositive RA (0.19 (0.022)) than for seronegative RA 

(0.099 (0.019)). For a substantial proportion of the RA- associ-
ated sequence variants, their effect was greater on seropositive 
RA than seronegative RA risk (table 2, figure 1). However, the 
genetic correlation between seropositive and seronegative RA 
was high (rg 0.87, SE 0.13, p=4.5×10−12 (online supplemental 
table 9).

Genomic, transcriptomic and proteomic analysis of lead 
signals
We searched for candidate causal genes with an omics approach 
(figure 2A) and evaluated the effect of lead signals (or correlated 
variants, R2 >0.8) on amino acid sequence (online supplemental 
tables 2–4), mRNA expression (cis- eQTL (online supplemental 
tables 5 and 6) and/or plasma levels of proteins (pQTL (online 
supplemental table 7). This yielded a total of 27 candidate causal 
genes in RA overall and/or its subsets.

Seropositive RA
Twenty- four of the 33 lead signals in seropositive RA pointed to 
25 candidate causal genes, as shown in figure 2B ranked by effect. 
The one with the largest effect is a rare (MAF=0.14%) missense 
variant in the STAT4 gene (rs140675301- A, Glu128Val) that 
associates with 2.27- fold increased risk (p=2.1×10−9, table 2 
and figure 2B). Rs140675301- A is the first coding variant identi-
fied at the STAT4 locus that associates with RA and has not been 
reported in any disease before. This signal is independent (online 
supplemental table 8) of the common lead STAT4 intronic 
variant (rs4853458- A), which is strongly correlated (R2=1) with 
other intronic variants in STAT4, previously reported to asso-
ciate with RA22 23 (figure 3A and online supplemental table 1). 
STAT4 contains six domains that have different functions, and 
the rare missense rs140675301- A variant leads to an amino acid 
change from negatively charged, hydrophilic, glutamic acid to 
non- polar hydrophobic valine at position 128 (Glu128Val) in 
a loop on the surface of the protein (figure 3B), between the 
N- terminal domain and the helical coiled coil domain. The 
coiled coil domain provides a carbonised hydrophilic surface 
that binds to regulatory factors.24 The amino acid sequence and 
secondary structure of the loop is highly conserved between 
species (figure 3C) and within the family of STAT proteins,24 25 
indicating its importance for the function of STAT4. Tetramer 
formation of STAT at DNA binding sites is necessary for full 
transcriptional activation of many of its target genes,26 and STAT 
without the N- terminal domain cannot form tetramers.27

The second largest effect on the risk of seropositive RA had 
the well- known missense variant rs2476601- A in the PTPN22 
gene, followed by a novel missense variant in the TYK2 gene 
(rs35018800- A, Ala928Val), encoding tyrosine kinase 2, which 
is a member of the JAK/STAT- pathway like STAT4. This rare 
(MAF=0.60%) missense variant in TYK2 conferred reduced risk 

Table 1 RA study populations from six Northwestern European countries included in the present study*

Total
cases

Total
controls

Sweden Denmark Iceland Norway UK biobank FinnGen

Ca Co Ca Co Ca Co Ca Co Ca Co Ca Co

RA overall 31 313 995 377 8658 9418 7662 86 964 3613 341 788 881 28 517 5798 402 767 4701 125 923

Seropositive RA 18 019 991 604 6455 9423 4850 86 964 1746 313 704 587 28 517 913 407 652 3468 145 344

Seronegative RA 8515 1 015 471 1852 9436 2652 86 966 1069 322 808 455 28 517 1051 407 514 1436 143 312

Serology lacking 4779 – 351 – 160 – 798 – 0 – 3834 – 0 –

*The following ICD- 10 codes were used, in addition to clinical diagnoses validated by physicians, from case–control studies on RA or Scandinavian rheumatology quality 
and patient registers: RA overall (M05.8, M05.9, M06.0, M06.8, M06.9), seropositive RA (M05.8, M05.9 and/or positive rheumatoid factor (RF) and/or anti- CCP antibody 
measurement), seronegative RA (M06.0, M06.8 or M06.9 with negative RF measurement (and negative anti- CCP measurement if available). See Methods for further details.
Ca, number of cases; Co, number of controls; RA, rheumatoid arthritis.

P
rotected by copyright.

 on A
ugust 25, 2022 at U

ppsala U
niversitet B

IB
S

A
M

 C
onsortia.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2021-221754 on 25 A
pril 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
http://ard.bmj.com/


1088 Saevarsdottir S, et al. Ann Rheum Dis 2022;81:1085–1095. doi:10.1136/annrheumdis-2021-221754

Rheumatoid arthritis

Ta
bl

e 
2 

Se
qu

en
ce

 v
ar

ia
nt

s 
ou

ts
id

e 
th

e 
HL

A 
lo

cu
s 

th
at

 a
ss

oc
ia

te
 w

ith
 R

A 
ov

er
al

l, 
se

ro
po

si
tiv

e 
(rh

eu
m

at
oi

d 
fa

ct
or

 a
nd

/o
r a

nt
i- C

CP
 a

nt
ib

od
y 

po
si

tiv
e)

 a
nd

/o
r s

er
on

eg
at

iv
e 

RA
 in

 G
W

AS
 m

et
a-

 an
al

ys
is

 
w

ith
in

 s
ix

 N
or

th
w

es
te

rn
- E

ur
op

ea
n 

co
un

tr
ie

s 
(ta

bl
e 

1)
. A

ss
oc

ia
tio

n 
re

su
lts

 a
re

 s
ho

w
n 

fo
r t

he
 le

ad
 s

ig
na

ls
 fo

r a
ll 

th
re

e 
RA

 g
ro

up
s, 

an
d 

th
e 

he
te

ro
ge

ne
ity

 b
et

w
ee

n 
th

e 
se

ro
po

si
tiv

e 
an

d 
se

ro
ne

ga
tiv

e 
su

bs
et

s.†
 E

ffe
ct

 a
lle

le
s 

w
ith

 n
ov

el
 a

ss
oc

ia
tio

ns
 a

re
 m

ar
ke

d 
w

ith
.*

Ch
r

Po
si

ti
on

Ef
fe

ct
 a

lle
le

*
Cl

os
e 

ge
ne

A
nn

ot
at

io
n

Se
ro

po
si

ti
ve

 R
A

Se
ro

ne
ga

ti
ve

 R
A

RA
 o

ve
ra

ll

P he
t

O
R

P 
va

lu
e

O
R

P 
va

lu
e

O
R

P 
va

lu
e

ch
r1

2 
80

0 
05

9
rs

89
76

28
- T

*
TT

C3
4

M
is

se
ns

e
0.

90
3.

3E
- 1

6
0.

98
0.

18
0.

94
1.

9E
- 1

0
1.

6E
- 0

5

ch
r1

11
3 

83
4 

94
6

rs
24

76
60

1-
 A

PT
PN

22
M

is
se

ns
e

1.
59

1.
3E

- 1
60

1.
29

2.
9E

- 2
7

1.
41

3.
9E

- 1
44

7E
- 1

3

ch
r1

16
1 

50
6 

41
4

rs
94

27
39

7-
 T*

FC
G

R2
A

M
is

se
ns

e
1.

11
2.

2E
- 0

8
1.

02
0.

55
1.

07
3.

3E
- 0

6
0.

02
6

ch
r2

60
 8

81
 6

94
rs

67
57

42
66

- A
RE

L,
PU

S1
0

5-
 pr

im
e 

U
TR

1.
08

6.
2E

- 1
0

1.
01

0.
57

1.
05

3.
6E

- 0
7

2.
0E

- 0
3

ch
r2

11
1 

11
9 

03
6

rs
72

83
63

46
- C

*
BC

L2
L1

1
U

ps
tr

ea
m

 g
en

e
1.

14
2.

5E
- 1

0
1.

01
0.

75
1.

10
7.

5E
- 0

9
1.

4E
- 0

3

ch
r2

19
1 

07
3 

18
0

rs
14

06
75

30
1-

 A*
ST

A
T4

M
is

se
ns

e
2.

27
2.

1E
- 0

9
1.

23
3.

4E
- 0

1
1.

63
3.

9E
- 0

6
0.

01
7

ch
r2

19
1 

09
4 

76
3

rs
48

53
45

8-
 A

ST
A

T4
,G

LS
In

tr
on

1.
11

5.
2E

- 1
4

1.
10

1.
1E

- 0
6

1.
10

2.
7E

- 1
9

0.
71

ch
r2

20
3 

88
0 

28
0

rs
11

57
12

97
- C

CT
LA

4
Re

gu
la

to
ry

0.
89

2.
9E

- 2
0

0.
95

2.
2E

- 0
3

0.
92

4.
4E

- 1
9

7.
5E

- 0
4

ch
r3

58
 1

97
 9

09
rs

35
67

74
70

- A
D

N
A

SE
1L

3
M

is
se

ns
e

1.
13

2.
0E

- 0
7

1.
16

7.
4E

- 0
7

1.
10

1.
8E

- 0
8

0.
43

ch
r4

26
 0

83
 8

89
rs

10
51

70
86

- A
LI

N
C0

23
57

In
te

rg
en

ic
1.

11
6.

2E
- 1

6
1.

06
1.

8E
- 0

3
1.

09
7.

1E
- 1

8
0.

02
5

ch
r5

56
 1

48
 8

56
rs

77
31

62
6-

 A
A

N
KR

D
55

In
tr

on
0.

87
1.

2E
- 2

6
0.

87
8.

4E
- 1

7
0.

88
1.

1E
- 3

9
0.

83

ch
r6

13
7 

67
8 

42
5

rs
35

92
66

84
- G

TN
FA

IP
3

Re
gu

la
to

ry
1.

12
4.

3E
- 1

6
1.

02
0.

24
1.

09
1.

5E
- 1

4
1.

3E
- 0

4

ch
r6

15
9 

08
5 

56
8

rs
24

51
25

8-
 C

.
Re

gu
la

to
ry

0.
91

1.
6E

- 1
2

0.
99

0.
75

0.
96

1.
2E

- 0
5

4.
2E

- 0
5

ch
r6

16
7 

12
7 

77
0

rs
30

93
01

7-
 C

CC
R6

In
tr

on
1.

11
1.

8E
- 1

8
1.

04
0.

03
1.

07
7.

0E
- 1

5
6.

1E
- 0

4

ch
r7

50
 3

13
 5

96
rs

10
26

17
58

- G
*

IK
ZF

1
In

tr
on

1.
07

6.
9E

- 0
7

1.
04

0.
04

1.
07

3.
6E

- 1
2

0.
17

ch
r7

12
8 

93
8 

24
7

rs
20

04
64

0-
 G

*
IR

F5
Sp

lic
e 

do
no

r
0.

92
1.

4E
- 1

1
0.

94
1.

9E
- 0

4
0.

94
5.

1E
- 1

3
0.

25

ch
r8

11
 4

80
 0

78
rs

24
09

78
0-

 C
BL

K,
FA

M
16

7A
Re

gu
la

to
ry

1.
09

1.
1E

- 0
9

1.
05

9.
1E

- 0
3

1.
08

1.
3E

- 1
2

0.
1

ch
r8

10
0 

10
5 

50
6

rs
14

71
29

3-
 A*

RG
S2

2
5-

 pr
im

e 
U

TR
1.

08
7.

4E
- 1

0
1.

04
3.

4E
- 0

2
1.

05
9.

1E
- 0

8
0.

03
9

ch
r9

12
0 

93
3 

19
2

rs
35

94
20

02
-  A

TR
A

F1
U

ps
tr

ea
m

 g
en

e
1.

09
6.

3E
- 1

3
1.

05
9.

1E
- 0

4
1.

06
2.

8E
- 0

9
0.

1

ch
r1

0
6 

05
6 

98
6

rs
70

67
78

- T
IL

2R
A

In
tr

on
1.

09
1.

2E
- 1

1
1.

07
3.

7E
- 0

5
1.

07
2.

4E
- 1

2
0.

36

ch
r1

0
31

 1
22

 4
26

rs
15

38
98

1-
 C

ZE
B1

Re
gu

la
to

ry
0.

91
8.

1E
- 1

4
0.

99
0.

40
0.

94
9.

4E
- 1

2
9.

4E
- 0

5

ch
r1

1
64

 3
40

 0
05

rs
47

97
77

- C
*

CC
DC

88
B

U
ps

tr
ea

m
 g

en
e

0.
93

2.
7E

- 0
9

0.
92

7.
4E

- 0
7

0.
94

1.
4E

- 1
0

0.
68

ch
r1

1
11

8 
87

0 
44

8
rs

71
17

26
1-

 T
.

Re
gu

la
to

ry
0.

90
2.

0E
- 1

2
0.

94
1.

3E
- 0

3
0.

92
7.

6E
- 1

3
0.

13

ch
r1

1
12

8 
62

7 
05

7
rs

73
01

35
27

- C
LO

C1
05

36
95

68
In

te
rg

en
ic

1.
08

2.
7E

- 1
0

1.
04

0.
03

1.
06

7.
7E

- 1
0

0.
04

5

ch
r1

2
11

1 
44

6 
80

4
rs

31
84

50
4-

 T
SH

2B
3

M
is

se
ns

e
1.

10
7.

6E
- 1

6
1.

08
1.

6E
- 0

6
1.

08
1.

1E
- 1

7
0.

38

ch
r1

3
28

 0
29

 8
70

rs
76

42
81

06
- C

*
FL

T3
In

tr
on

1.
35

6.
6E

- 1
1

1.
15

0.
03

1.
23

1.
7E

- 0
8

0.
04

1

ch
r1

3
39

 7
88

 0
92

rs
80

02
73

1-
 C

CO
G

6
In

tr
on

0.
92

3.
5E

- 1
0

0.
94

2.
1E

- 0
4

0.
93

1.
7E

- 1
4

0.
35

ch
r1

4
92

 6
51

 8
84

rs
11

70
68

59
3-

 T*
RI

N
3

M
is

se
ns

e
0.

93
3.

2E
- 0

5
0.

94
9.

8E
- 0

3
0.

93
1.

9E
- 0

9
0.

59

ch
r1

5
69

 7
51

 8
88

rs
11

63
64

01
- G

*
.

TF
 b

in
di

ng
 s

ite
0.

91
2.

0E
- 1

6
0.

95
7.

1E
- 0

4
0.

93
4.

3E
- 1

5
0.

04
5

ch
r1

6
85

 9
82

 4
85

rs
99

39
42

7-
 A

IR
F8

In
te

rg
en

ic
1.

10
5.

2E
- 1

1
1.

06
4.

6E
- 0

3
1.

07
1.

7E
- 1

0
0.

14

ch
r1

6
88

 9
81

 2
46

rs
62

04
58

18
- C

*
CB

FA
2T

3
U

ps
tr

ea
m

 g
en

e
0.

93
8.

9E
- 1

0
1.

00
9.

3E
- 0

1
0.

96
3.

1E
- 0

5
5.

7E
- 0

4

ch
r1

7
39

 9
08

 2
16

rs
11

07
89

28
-  C

G
SD

M
B

Sp
lic

e 
ac

ce
pt

or
1.

07
1.

3E
- 0

7
1.

05
1.

3E
- 0

3
1.

04
1.

9E
- 0

5
0.

34

ch
r1

9
10

 3
52

 4
42

rs
34

53
64

43
- C

TY
K2

M
is

se
ns

e
0.

69
2.

7E
- 2

7
0.

81
1.

6E
- 0

6
0.

75
2.

5E
- 2

9
4.

0E
- 0

3

ch
r1

9
10

 3
59

 2
99

rs
12

72
03

56
- C

*
TY

K2
M

is
se

ns
e

0.
87

2.
3E

- 0
9

0.
90

7.
5E

- 0
4

0.
90

4.
3E

- 1
0

0.
38

ch
r1

9
10

 3
54

 1
67

rs
35

01
88

00
- A

*
TY

K2
M

is
se

ns
e

0.
63

1.
4E

- 1
1

0.
86

0.
07

0.
77

1.
4E

- 0
7

3.
7E

- 0
3

ch
r2

1
35

 3
40

 2
90

rs
81

29
03

0-
 T

.
Re

gu
la

to
ry

0.
92

1.
1E

- 1
1

0.
96

0.
01

0.
95

2.
3E

- 0
8

0.
03

8

ch
r2

1
44

 2
36

 8
91

rs
11

55
88

19
-  T

*
IC

O
SL

G
M

is
se

ns
e

0.
91

1.
6E

- 0
9

0.
98

0.
26

0.
95

1.
2E

- 0
5

1.
9E

- 0
3

*S
eq

ue
nc

e 
va

ria
nt

s 
th

at
 re

m
ai

n 
si

gn
ifi

ca
nt

 a
fte

r a
dj

us
tm

en
t f

or
 p

re
vi

ou
sl

y 
re

po
rt

ed
 s

eq
ue

nc
e 

va
ria

nt
s 

(o
nl

in
e 

su
pp

le
m

en
ta

l t
ab

le
 1

). 
Bo

ld
 in

di
ca

te
s 

ca
nd

id
at

e 
ca

us
al

 g
en

es
 (s

um
m

ar
is

ed
 in

 fi
gu

re
 2

).
†W

e 
pe

rfo
rm

ed
 a

 m
et

a-
 an

al
ys

is
 u

si
ng

 lo
gi

st
ic

 re
gr

es
si

on
 a

na
ly

si
s 

as
su

m
in

g 
a 

m
ul

tip
lic

at
iv

e 
m

od
el

, r
ep

or
tin

g 
O

R 
an

d 
tw

o-
 si

de
d 

p 
va

lu
es

 a
dj

us
te

d 
fo

r y
ea

r o
f b

irt
h,

 s
ex

 a
nd

 o
rig

in
 (I

ce
la

nd
) o

r t
he

 fi
rs

t 2
0 

pr
in

ci
pa

l c
om

po
ne

nt
s 

(o
th

er
 c

ou
nt

rie
s)

. V
ar

ia
nt

s 
w

er
e 

sp
lit

 in
to

 fi
ve

 c
la

ss
es

 b
as

ed
 o

n 
th

ei
r g

en
om

e 
an

no
ta

tio
n 

an
d 

si
gn

ifi
ca

nc
e 

th
re

sh
ol

d 
ba

se
d 

on
 th

e 
nu

m
be

r o
f v

ar
ia

nt
s 

in
 e

ac
h 

cl
as

s. 
Th

e 
ad

ju
st

ed
 s

ig
ni

fic
an

ce
 th

re
sh

ol
ds

 a
re

 1
.3

×
10

–7
 fo

r v
ar

ia
nt

s 
w

ith
 h

ig
h 

im
pa

ct
 (s

pl
ic

e 
do

no
r, 

sp
lic

e 
ac

ce
pt

or
, s

to
p 

ga
in

ed
, f

ra
m

es
hi

ft,
 s

to
p 

lo
st

, i
ni

tia
to

r c
od

on
), 

2.
6×

10
–8

 fo
r v

ar
ia

nt
s 

w
ith

 m
od

er
at

e 
im

pa
ct

 (m
is

se
ns

e,
 s

pl
ic

e 
re

gi
on

, s
to

p 
re

ta
in

ed
, i

nf
ra

m
e 

in
de

ls
), 

2.
4×

10
–9

 fo
r l

ow
- im

pa
ct

 v
ar

ia
nt

s 
(s

yn
on

ym
ou

s, 
5’

 U
TR

, 3
’ U

TR
, u

ps
tr

ea
m

 a
nd

 d
ow

ns
tr

ea
m

), 
1.

2×
10

–9
 fo

r o
th

er
 lo

w
- im

pa
ct

 v
ar

ia
nt

s 
in

 
DN

as
e 

I h
yp

er
se

ns
iti

vi
ty

 s
ite

s 
(in

tr
on

ic
, i

nt
er

ge
ni

c,
 re

gu
la

to
ry

- r
eg

io
n)

 a
nd

 5
.9

2×
10

–1
0  fo

r a
ll 

ot
he

r v
ar

ia
nt

s 
no

t i
n 

DN
as

e 
I h

yp
er

se
ns

iti
vi

ty
 s

ite
s. 

Pr
im

ar
y 

si
gn

al
 a

t e
ac

h 
lo

cu
s 

(1
 M

b)
 w

as
 s

el
ec

te
d 

ba
se

d 
on

 c
on

di
tio

na
l a

ss
oc

ia
tio

n 
an

al
ys

is
 o

f a
ll 

va
ria

nt
s 

at
 e

ac
h 

lo
cu

s, 
us

in
g 

Bo
nf

er
ro

ni
 c

or
re

ct
ed

 p
 v

al
ue

s 
(0

.0
5×

P/
cl

as
s-

 sp
ec

ifi
c 

p 
va

lu
e 

th
re

sh
ol

d)
. W

e 
re

po
rt

 th
e 

co
di

ng
 s

ig
na

l w
he

n 
tw

o 
m

ar
ke

rs
 

ar
e 

eq
ui

va
le

nt
 a

fte
r c

on
di

tio
na

l a
na

ly
si

s. 
Se

co
nd

ar
y 

si
gn

al
s 

ar
e 

se
qu

en
ce

 v
ar

ia
nt

s 
th

at
 re

m
ai

ne
d 

G
W

AS
 s

ig
ni

fic
an

t a
fte

r a
dj

us
tm

en
t f

or
 th

e 
le

ad
 s

ig
na

l a
nd

 o
th

er
 in

de
pe

nd
en

t (
se

co
nd

ar
y)

 s
ig

na
ls

 a
t t

he
 lo

cu
s. 

W
he

n 
di

ffe
re

nt
 b

ut
 c

or
re

la
te

d 
va

ria
nt

s 
ar

e 
le

ad
 in

 R
A 

ov
er

al
l a

nd
 s

er
op

os
iti

ve
 R

A,
 th

e 
se

ro
po

si
tiv

e 
RA

 s
ig

na
l i

s 
pr

es
en

te
d 

he
re

. S
ee

 fu
rt

he
r i

n 
on

lin
e 

su
pp

le
m

en
ta

l t
ab

le
s 

2 
an

d 
3.

G
W

AS
, g

en
om

e-
 w

id
e 

as
so

ci
at

io
n 

st
ud

y;
 P

he
t, 

a 
p 

va
lu

e 
fo

r t
es

t o
f h

et
er

og
en

ei
ty

 b
et

w
ee

n 
th

e 
ef

fe
ct

s 
in

 s
er

op
os

iti
ve

 a
nd

 s
er

on
eg

at
iv

e 
RA

 s
ub

se
ts

; R
A,

 rh
eu

m
at

oi
d 

ar
th

rit
is.

P
rotected by copyright.

 on A
ugust 25, 2022 at U

ppsala U
niversitet B

IB
S

A
M

 C
onsortia.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2021-221754 on 25 A
pril 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
http://ard.bmj.com/


1089Saevarsdottir S, et al. Ann Rheum Dis 2022;81:1085–1095. doi:10.1136/annrheumdis-2021-221754

Rheumatoid arthritis

of seropositive RA (OR=0.63, p=1.4×10−11), independently of 
a known missense variant in TYK2 (rs34536443- C, Pro1104Ala, 
MAF 4.3%), which we also found to decrease the risk of RA 
overall (OR=0.75, p=2.5×10−29), and here, we extend this asso-
ciation to the seropositive RA subset (OR=0.69, p=2.7×10−27; 
table 2, online supplemental table 3 and online supplemental 
figure 2). In addition, we identified a common missense variant 
in TYK2 that independently associated with reduced risk of 
seropositive RA (rs12720356- C, Ile684Ser, MAF=8.82%, 
OR=0.87, p=2.3×10−9). Analysis of the plasma proteome 
(online supplemental table 7) showed that the minor alleles of 
the variants encoding both Ile684Ser and Pro1104Ala in TYK2 
are the only sequence variants that associate in trans with plasma 
levels of interferon alpha/beta receptor 1 (IFNAR1, Ile684Ser: 
effect=−0.19 SD, p=7×10−25; Pro1104Ala, effect=−0.13 SD, 
p=6×10−10). These variants did not associate with levels of any 
other plasma protein measured. Notably, both the missense vari-
ants in TYK2 and STAT4 are predicted to damage the function of 
the encoded protein (online supplemental table 4).

An intronic variant (rs76428106- C) in the FLT3 gene, 
encoding another tyrosine kinase receptor that signals through 
the JAK/STAT- pathway, conferred 35% increase in risk of sero-
positive RA (p=6.6×10−11). This is in accordance with our 
previous report, where we discovered this variant in a GWAS 
on autoimmune thyroid disease and found that it also associ-
ated nominally with the risk of seropositive RA (OR=1.41, 
p=4.3×10−4) and with increased levels of 22 proteins in plasma 
(trans- pQTL), including the FLT3 ligand18 (online supplemental 
table 7). rs76428106- C associated with increased mRNA expres-
sion of FLT3 in lung tissue (beta=0.82 SD, p=1.3×10−10, online 
supplemental table 6).

We performed a network analysis of the 25 seropositive 
RA candidate causal genes and found that 18 of them encode 

proteins that are linked in the same network (online supple-
mental figure 3), either through direct protein–protein inter-
action (eg, STAT4- TYK2, PTPN22- IRF5 and FLT3- SH2B3) or 
indirectly (eg, one affecting the level of another). Other mole-
cules that are central in this network, and directly interact with 
proteins encoded by the candidate genes, are interferon alpha/
beta and IL12/IL- 23.

Among the other candidate causal genes, we also identified 
novel loss- of- function variants in genes encoding molecules in 
this network, although with more modest effect on seropos-
itive RA risk (table 2 and figure 2B). This includes a splice- 
donor variant in the IRF5 gene (rs2004640- G, OR=0.92, 
p=1.44×10−11) that encodes interferon regulatory factor 5. 
IRF5 rs2004640- G association with decreased risk of seropos-
itive RA was independent from previously reported non- coding 
variants at the IRF5 locus (online supplemental table 1) and 
rs2004640- G is also associated with decreased mRNA expres-
sion of IRF5 in several tissues (online supplemental table 6). 
Other novel coding variants pointing to putative causal genes 
were missense variants in ICOSLG (rs11558819- T, OR=0.91, 
p=1.56×10−9) encoding ICOS ligand and TTC34 (rs897628- T, 
OR=0.90, p=3.28×10−16). TTC34 encodes tetratricopeptide 
repeat protein 34 that has an unknown role in the pathogen-
esis of RA and belongs to another network that includes the 
remaining seven candidate causal genes for seropositive RA 
(online supplemental figure 3).

Seronegative RA
Both signals in seronegative RA were also found in sero-
positive RA and pointed to causal genes: a missense variant 
rs2476601- A in PTPN22 and intronic variant rs7731626- A 
in ANKRD55 (table 2 and online supplemental tables 2; 3). 

Figure 1 Effects of the lead sequence variants associated with seropositive RA (18 019 cases) compared with RA overall (31 313 cases, left 
graph) and seronegative RA (8515 cases, right graph). The x- axis and the y- axis show the logarithmic estimated ORs for the associations with the 
three phenotypes. All effects are shown for the RA risk increasing allele based on current meta- analysis of study population from six countries in 
Northwestern Europe (table 1). Error bars represent 95% CIs. The red line represents slope (SD) based on a simple linear regression through the origin 
using MAF (1- MAF) as weights. See further results in table 2 and online supplemental tables 2; 3.

P
rotected by copyright.

 on A
ugust 25, 2022 at U

ppsala U
niversitet B

IB
S

A
M

 C
onsortia.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2021-221754 on 25 A
pril 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
http://ard.bmj.com/


1090 Saevarsdottir S, et al. Ann Rheum Dis 2022;81:1085–1095. doi:10.1136/annrheumdis-2021-221754

Rheumatoid arthritis

PTPN22 rs2476601- A associated with plasma levels of several 
proteins (trans- pQTL), and it was the only variant in the genome 
to affect the levels of these proteins (online supplemental table 
7). ANKRD55 rs7731626- A associated with a decreased risk of 
RA and its subsets and a decreased mRNA expression in whole 
blood of two neighbouring genes at the locus: ANKRD55 and 
IL6ST.

RA overall
The lead signals pointing to causal genes in RA overall were 
also identified in the seropositive subset (table 2), with two 

Figure 2 Identification of sequence variants that associate with 
seropositive RA and the multiomics approaches used to recognise 
candidate causal genes. (A) schematic overview of the experimental 
approach used to identify sequence variants that associate with 
seropositive RA and their systematic annotation, applying multiomics 
approach to identify candidate causal genes, that is, based on whether 
lead variants or correlated variants (R2 >0.8) affect protein coding 
(online supplemental tables 2–4), mRNA expression (cis- eQTL (online 
supplemental tables 5 and 6)) or levels of proteins in plasma (pQTL 
(online supplemental table 7)). (B) Out of 33 lead variant associations 
outside the HLA- locus (online supplemental table 3), 25 candidate 
causal genes were identified as listed, ranked by effect (OR). All effects 
are shown for the risk increasing allele based on GWAS in RA study 
populations from Northwestern Europe (table 1). Associations that are 
previously unreported in RA are marked with *. Grey boxes highlight 
where data point to a candidate causal gene. GWAS, genome- wide 
association study; RA, rheumatoid arthritis.

Figure 3 STAT4 missense variant rs140675301 is associated with 
seropositive RA (18 019 cases), is not correlated with previously 
reported variants at the locus and leads to an amino acid change 
in a highly conserved area of the protein. (A) Locus plot for the 
association of variants at the STAT4 locus with seropositive RA. The 
upper graph illustrates that the intronic variant rs4853458, that is the 
lead variant at the locus, is not correlated (r2 <0.2) with the missense 
variant rs140675301, that is coloured in purple. The missense variant 
rs140675301 is only highly correlated (r2 >0.8) with one variant, the 
intronic variant rs189948717 (coloured in red), that has less effect 
(seropositive RA: OR=1.81, p=3.69×10−6). Neither of these variants 
have previously been reported in any disease. The lower graph 
highlights that the lead variant at the locus (rs4853458, coloured in 
purple) has many correlated variants, coloured by degree of correlation 
(r2) with rs4853458. (B) Secondary structure of STAT4 (viewed from 
two angles) based on a structural model with STAT1 crystal structure 
(PDB code: 1yvl.1.A (Mao et al, Molecular Cell 2005;17:761–71) as 
template. Glu128Val (red) is located in a loop connecting the N- terminal 
domain (blue), important for tetramer formation of STATs and nuclear 
translocation, and the coiled coil domain (green), which provides 
a carbonised hydrophilic surface that binds to regulatory factors.24 
α-Helices are drawn as cylinders. Invariant residues are marked with 
asterix. (C) multiple sequence alignment of the conserved STAT4 loop 
between the N- terminal domain (α8) and the coiled coil (α9) domain, 
performed with Clustal omega (https://www.ebi.ac.uk/Tools/msa/
clustalo/). RA, rheumatoid arthritis.

P
rotected by copyright.

 on A
ugust 25, 2022 at U

ppsala U
niversitet B

IB
S

A
M

 C
onsortia.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2021-221754 on 25 A
pril 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://dx.doi.org/10.1136/annrheumdis-2021-221754
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://ard.bmj.com/


1091Saevarsdottir S, et al. Ann Rheum Dis 2022;81:1085–1095. doi:10.1136/annrheumdis-2021-221754

Rheumatoid arthritis

exceptions: missense variants in DNASE1L3 (rs35677470- A) 
and RIN3 (rs117068593- T) (online supplemental table 2). Both 
these missense variants are predicted to damage the function of 
the encoded protein (online supplemental table 4). DNASE1L3 
rs35677470- A is a known signal in RA, but the RIN3 locus has to 
our knowledge not been reported to associate with any disease 
before. It encodes Ras and Rab interactor 3 that functions as 
a guanine nucleotide exchange factor of unknown relevance in 
RA.

DISCUSSION
In this largest GWAS study on RA to date, we studied both RA 
overall and the seropositive and seronegative RA subsets and 
found 37 sequence variants of which 15 were previously unre-
ported. Several of these have large effect on seropositive RA risk, 
while only two signals were identified in the seronegative subset, 
both previously reported in RA overall. Through a multiomics 
approach, we identified candidate causal genes for most signals 
and show that the majority of those associated with seroposi-
tive RA are in the interferon alpha/beta and IL- 12/23 signalling 
networks, with largest risk associated with sequence variants in 
genes encoding proteins in the JAK/STAT pathway.

Novel missense variant in the STAT4 gene (rs140675301- A) 
confers 2.27- fold increased risk that is higher risk than any 
previously reported RA association, including the well- known 
HLA- DRB1 shared epitope and the lead missense variant at the 
PTPN22 locus. Although the STAT4 locus has been reported 
in genome- wide studies, this is the first STAT4 coding variant 
found to associate with RA. This coding variant points directly 
to STAT4 as the causal gene at the locus. It has not been 
reported for any other disease before, and we found that it 
leads to an amino acid change in a surface loop of the protein 
that is highly conserved, thereby underscoring its importance 
for STAT4 function. STAT4 encodes STAT4, a cytoplasmic tran-
scription factor that regulates gene expression through the JAK/
STAT- pathway.28 It is phosphorylated in response to various 
cytokines and displacement of the N- terminal and coiled coil 
domains within the protein structure could interfere with DNA 
binding, transcriptional activation and/or target selectivity. As 
highlighted in the network analysis and illustrated in figure 4, 
both interferon alpha, IL- 12 and IL- 23, signal through STAT4 
via TYK2/JAK1 and TYK2/JAK2.29 Another RA- associated 
variant in STAT4 (rs7574865- T, R2=0.99 to lead intron variant 
rs4853458- A)23 increases IL- 12- induced IFN-γ production in T 
cells.30 STAT4 is expressed at inflammatory sites in activated 
peripheral blood monocytes, fibroblasts, dendritic cells and 
macrophages and also in synovial macrophages and dendritic 
cells from patients with seropositive RA.28 31–34 Furthermore, 
reduced expression of STAT4 has been observed in RA patients 
that have responded well to disease- modifying treatment.32 
Thus, STAT4 may have a central role in the inflammatory 
cascade in joints of RA patients.

Tyrosine kinase 2, encoded by the TYK2 gene, is another 
key molecule in the JAK/STAT pathway that regulates signal 
transduction pathways downstream of the receptors for several 
cytokines, including interferon alpha/beta and IL- 23/IL12 as 
described previously. We found that three independent coding 
variants in TYK2 associated with 25%–37% reduced risk of 
seropositive RA, and they associated with lower plasma levels 
of the IFNAR1 receptor for interferon- alpha/beta. Accordingly, 
one of the missense variants (Pro1104Ala) is located in the cata-
lytic kinase domain of TYK2 and has previously been shown to 
reduce signalling through IFNAR1.35

TYK2 also mediates the signalling of IL- 6, IL- 10 and IL- 4/
IL- 13.36 IL- 6 signals through the IL- 6 receptor (IL- 6R), thereby 
inducing IL6ST homodimerisation and activation of TYK2/
JAK1/2 and STAT3 signalling pathway (figure 4), known to play 
a role in RA.37 The intronic variant rs7731626- A in ANKRD55 
associated with a reduced risk of both seropositive and seroneg-
ative RA and also reduced expression of ANKRD55 and IL6ST. 
The effect on IL6ST expression and its biological function points 
to IL6ST as a candidate causal gene at that locus. Accordingly, 
drugs inhibiting IL- 6R are effective in RA.38

The FLT3 receptor is another activator of the JAK/STAT 
pathway that signals through STAT539 (figure 4), and an intronic 
variant in the FLT3 gene (rs76428106- C) conferred 35% 
increase in risk of seropositive RA. This confirms a non- genome- 
wide significant signal in our previous report, in which we iden-
tified this variant as a strong risk factor for autoimmune thyroid 
disease and found that it generates a cryptic splice site, intro-
ducing a stop codon in 30% of transcripts that are predicted to 
encode a truncated protein, lacking its tyrosine kinase domains.18 
FLT3 encodes fms- related tyrosine kinase 3 receptor, a key regu-
lator in the development of monocytes and dendritic cells. The 
cell- surface receptor is expressed on common dendritic cells and 
lymphoid/myeloid progenitors that give rise to both classical 
and plasmacytoid dendritic cells, which produce large amount 

Figure 4 The JAK- STAT pathway. The figure and table shows which 
receptors, JAK and STAT subtypes certain cytokines bind to, highlighting 
proteins encoded by and/or affected by causal genes in seropositive 
RA, based on the multiomics analysis of sequence variants associated 
with risk of seropositive RA (shown in bold). Binding of a cytokine to its 
receptor activates the associated Janus kinases (JAK). The JAK in turn 
phosphorylates (P) the receptor, which provides a docking for signal 
transducers and activators of transcription (STATs) and other signalling 
molecules to bind to the receptor. STATs also become phosphorylated 
and translocate to the nucleus, where they regulate gene expression. 
*Protein targeted by drugs that are registered for RA. **Proteins 
targeted by drugs registered or in pipeline for other diseases. RA, 
rheumatoid arthritis.
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of interferons when activated.40 As previously reported, FLT3 
rs76428106- C increases plasma levels of the FTL3 ligand,18 and 
RA patients have increased levels of FLT3 ligand both in serum 
and synovial fluid of inflamed joints.41 42 FLT3 ligand deficient 
mice are protected against collagen- induced arthritis,42 and in 
a mouse model of collagen- induced arthritis, an oral inhibitor 
of FLT3/JAK2/c- Fms was found to block signalling through 
TYK2 and STAT4 and decrease both inflammation and bone 
resorption.43

Yet another variant affecting interferon signalling is a splice- 
donor variant in the IRF5 (rs2004640- G) gene that encodes 
interferon regulatory factor 5 and reduced both RA risk and 
IRF5 expression. IRF5- rs2004640- G has not been reported in 
GWAS on RA before, although the locus is known, and a tenta-
tive association was reported in a meta- analysis of candidate 
gene studies (4818 cases, p=0.003).44

The size and homogeneous background of the study popu-
lations, with ~64 million sequence variants derived from over 
67 thousand whole- genome sequenced individuals, increases the 
likelihood to detect rare and low- frequency sequence variants 
that associate with disease. Furthermore, we were able to test 
their functional relevance through analysis of RNA sequence and 
plasma proteome. However, it remains to be seen whether the 
sequence variants associate with RA in populations of another 
ancestries.

The SNP- based heritability estimate for seropositive RA was 
the same as in a previous study (0.19),45 while lower for seroneg-
ative RA (0.099) where previous findings are scarce.46

In addition to the causal genes highlighted previously, the 
network analysis illustrated how majority of all candidate causal 
genes encode proteins in the interferon alpha/beta and IL- 12/
IL- 23 signalling network. Furthermore, we observed a consistent 
direction of the effect on seropositive RA risk, gene expression 
and protein levels in plasma, indicating that increased signal-
ling through the JAK/STAT- pathway is central in the inflamma-
tory cascade in seropositive RA. Our findings are in line with 
the documented effectiveness of IL- 6 receptor and JAK inhibi-
tors (baricitinib, tofacitinib, filgotinib and upadacitinib) as well 
as CTLA4- Ig in RA.1 36 38 47 Furthermore, there are inhibitors 
of other proteins in this pathway that are in development or 
already marketed for other diseases but have to our knowledge 
not been tested for treatment of RA, including FLT3 inhibitors 
used to treat acute myeloid leukaemia and other cancer forms,48 
TYK2 inhibitors that show promising results in clinical trials for 
psoriatic arthritis49 and IFNAR1 inhibitors in systemic lupus 
erythematosus.50

In summary, through a large genome, transcriptome and 
proteome analysis of RA and its subsets, we identified new RA 
risk loci and highlight candidate causal genes at the majority of 
RA- associated loci. Most sequence variants have larger effect on 
the risk of seropositive than seronegative RA. Majority of those 
with largest effect on RA risk have not been reported before and 
point to candidate causal genes encoding proteins in the network 
of interferon alpha/beta and IL- 12/IL- 23 that signal through the 
JAK/STAT pathway. Together, these data thus shed light on the 
molecular mechanism affected by most non- HLA sequence vari-
ants that predispose to seropositive RA. In contrast, the genetic 
background of seronegative RA remains largely unexplained.
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