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Summary

Accelerometers placed on the thigh provide accurate measures of daily physical activ-

ity types, postures and sedentary behaviours, over 24 h and across consecutive days.

However, the ability to estimate sleep duration or quality from thigh-worn acceler-

ometers is uncertain and has not been evaluated in comparison with the ‘gold-
standard’ measurement of sleep polysomnography. This study aimed to develop an

algorithm for sleep estimation using the raw data from a thigh-worn accelerometer

and to evaluate it in comparison with polysomnography. The algorithm was devel-

oped and optimised on a dataset consisting of 23 single-night polysomnography

recordings, collected in a laboratory, from 15 asymptomatic adults. This optimised

algorithm was then applied to a separate evaluation dataset, in which, 71 adult males

(mean [SD] age 57 [11] years, height 181 [6] cm, weight 82 [13] kg) wore ambulatory

polysomnography equipment and a thigh-worn accelerometer, simultaneously, whilst

sleeping at home. Compared with polysomnography, the algorithm had a sensitivity

of 0.84 and a specificity of 0.55 when estimating sleep periods. Sleep intervals were

underestimated by 21 min (130 min, Limits of Agreement Range [LoAR]). Total sleep

time was underestimated by 32 min (233 min LoAR). Our results evaluate the perfor-

mance of a new algorithm for estimating sleep and outline the limitations. Based on

these results, we conclude that a single device can provide estimates of the sleep

interval and total sleep time with sufficient accuracy for the measurement of daily
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physical activity, sedentary behaviour, and sleep, on a group level in free-living

settings.

K E YWORD S

actigraphy, activity tracker; wearables, physical activity, sedentary behaviour

INTRODUCTION

Time spent asleep, in different physical activities, sedentary behav-

iours and postures (‘physical behaviour’) have important implications

for health. These physical behaviours are interrelated over the

24-h cycle. To date, most of our knowledge about the interplay

between sleep, physical activities, sedentary behaviours, and health

comes from self-reported data (i.e., data reported by the participant

themselves; Bull et al., 2020). Self-report data on physical activity,

sedentary behaviour, and sleep are influenced by bias, which can lead

to inaccurate estimates of the duration (Cespedes et al., 2016; Ekblom

et al., 2015; Shephard, 2003; Troiano et al., 2020).

Body-worn accelerometers are emerging as a more objective

alternative to self-reported data. In particular, the use of a single

accelerometer placed on the thigh is increasing, as demonstrated by

their adoption in large cohort studies and consortiums globally

(Stamatakis et al., 2020, Stevens et al., 2020). A single thigh-worn

accelerometer can provide accurate estimates of a wide range of daily

physical behaviours from sitting, standing, and walking (Edwardson

et al., 2016; Skotte et al., 2014; Stemland et al., 2015; Stevens et al.,

2020) to stair climbing, running, cycling (Migueles et al., 2017; Skotte

et al., 2014; Stevens et al., 2020), and lying down (Hettiarachchi

et al., 2021; Lyden et al., 2016). More objective measures of a wide

range of activities are increasing as recognition of the inherent inter-

dependence between daily physical behaviours across 24 h grows

(Troiano et al., 2020). Interdependence demands that we measure a

range of physical behaviours across 24 h, including physical activity,

sedentary behaviour, and sleep, so that we can understand how they

interact and relate to health. There are established algorithms for

deriving physical activity and sedentary behaviour from thigh-worn

accelerometers, which have been evaluated against the ‘gold stan-

dard’ (Edwardson et al., 2016; Skotte et al., 2014; Stemland

et al., 2015; Stevens et al., 2020; Migueles et al., 2017; Hettiarachchi

et al., 2021; Lyden et al., 2016). However, we lack algorithms for

deriving sleep duration, or other dimensions of sleep that could indicate

sleep quality from thigh-worn accelerometers, which have also been

evaluated against the gold standard of polysomnography (PSG). To the

best of our knowledge, there are just two published non-proprietary

algorithms for deriving ‘waking time’ and a single proprietary algorithm

that estimates ‘bedtime’ using the data from thigh-worn accelerometers

(Carlson et al., 2021; van der Berg et al., 2016; Winkler et al., 2016).

None of these algorithms have been evaluated against the gold stan-

dard (Carlson et al., 2021; Inan-Eroglu et al., 2021; van der Berg

et al., 2016; Winkler et al., 2016). Similarly, although numerous studies

exist evaluating the use of hip- and wrist-worn accelerometers to

measure several dimensions of sleep (Conley et al., 2019), we are not

aware of any evaluations that have used thigh-worn accelerometers to

measure anything else than ‘bedtime’ or ‘waking time’.
Our primary aim was to develop a non-proprietary algorithm for

the estimation of sleep duration, derived using the raw data from a

tri-axial thigh-worn accelerometer, and to evaluate this algorithm

against PSG. Our secondary aim was to evaluate the performance of

the algorithm when used to estimate other sleep quality variables

such as: sleep latency, wake after sleep onset (WASO), sleep effi-

ciency, and awakening index.

SUBJECTS AND METHODS

The algorithm was developed using a two-step process. In step one, the

algorithm was optimised to maximise the sensitivity and specificity of

sleep estimation in comparison with PSG recordings collected in a sleep

laboratory (see below and Table 1). We refer to this dataset as the optimi-

sation dataset. In step two, the optimised algorithm was tested on a new

dataset, consisting of ambulatory PSG recordings collected from a new

sample of participants, at their homes (see below and Table 1). We refer

to this dataset as the evaluation dataset. Step two was performed because

the performance of the algorithm may differ from laboratory conditions

to ambulatory/free-living conditions. As our algorithm is intended for use

in free-living settings, the results section will focus on the performance of

the algorithm when applied to the evaluation dataset.

Informed consent was provided by all participants prior to inclu-

sion, in accordance with the Helsinki Declaration. For the optimisation

dataset, data collection was approved by the Regional Ethics Review

Board in Stockholm (identification [ID] number: 2016/193), with addi-

tional approval for adding extra participants and accelerometers on

the thigh (ID number: 2018/2196-32) and by the Scientific Ethics

Committee for the capital region, Denmark (ID number: 18005389).

For the evaluation dataset, data collection was approved by the local

Ethics Committee in Uppsala, Sweden (ID number: 2016/029), with

an additional approval for the addition of accelerometers on the thigh

(ID number: 2016/029/1).

Optimisation dataset

A total of 23 overnight PSG recordings were obtained from 15 asymp-

tomatic adults between the ages of 22 and 38 years (Table 1) at the

Stress Research Institute, Stockholm University, Sweden. Participants

were recruited through a university website and offered a small monetary
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compensation for participation and a complimentary breakfast. Data were

collected during late autumn in 2018. Exclusion criteria included any pre-

viously diagnosed sleep disorder, self-reported poor sleep quality or the

use of medication for any sleep-related problems. Moreover, participants

were excluded if they reported finding it difficult to sleep in other places

than one's own bed or having insomnia symptoms such as difficulties fall-

ing asleep and waking up often without being able to go back to sleep.

Further exclusion also included participants who reported heavy snoring,

having current physical or mental health problem, heavy consumption of

alcohol or drugs, shift work, having travelled more than one time zone in

the last 3 weeks, pregnancy, fever, or allergy to adhesive bandages. All

participants in the optimisation dataset, underwent a preliminary over-

night recording to allow for habituation to the sleep laboratory and study

protocol. This recording was also used for screening of sleep disorders

and restless leg syndrome. Participants were monitored for at least an

additional 1 night in a controlled laboratory environment. A further eight

participants completed 2 non-consecutive nights of PSG recordings. To

increase the data available for algorithm optimisation, all recordings were

included. For the full PSG assessment (TEMEC Technologies, VitaPort

3, Heerlen, the Netherlands), PSG electrodes were placed according to

the American Association of Sleep Medicine (AASM) guidelines (Berry

et al., 2015) and included two electroencephalography (EEG) leads

(C3-A2 and C4-A1), two electro-occulogram (EOG) leads, and submental

electromyogram (EMG). In addition, a single accelerometer (Axivity AX3,

Axivity Ltd, Newcastle Upon Tyne, UK) was attached with adhesive tape,

on the participant's thigh, midway between the patellar ligament and the

anterior superior iliac spine. Acceleration data were sampled at a fre-

quency of 100 Hz, with a range ± 8 g. To ensure synchronisation

between devices, a ‘synchronisation event’ at the start and end of each

registration was included. In short, when participants were equipped with

all devices and recording active, they were asked to step out of bed and

stand still in an upright position for 15 s. Then, they were asked to bite

their teeth together three times, perform a single hop, and bite their teeth

together a further three times, before again standing still for 10–15 s. This

procedure provided a clearly identifiable event in the signals of the vari-

ous devices, providing a reference point for time synchronisation.

Evaluation dataset

The evaluation dataset consisted of a single night of ambulatory PSG

registration from 71 males recruited from the ‘Men in Uppsala; a

Study of sleep, Apnea and Cardiometabolic Health’ (MUSTACHE)

study (Table 1). The MUSTACHE study is a population study initiated

in 2016 and aimed at reaching 400 male participants within the age

range of 35–65 years. The 71 males in the present study were

recruited as a convenience sample from the last round of recruitment

in the MUSTACHE study. Participants who were not expected to

manage to carry out the ambulatory recordings due to self-reported

severe somatic or psychiatric disease were excluded. All participants

wore ambulatory PSG equipment (Embla Flaga Inc., Reykjavik,

Iceland). The PSG recording included EEG (C3-A2, C4-A1), EOG and

submental EMG. Additional sensors used were electrocardiograms

(V5), airflow with a three-port orinasal thermistor and a nasal flow

pressure sensor, respiratory effort from piezo-electric belts (Resp-Ez,

EPM Systems, Midlothian, VA, USA), bilateral anterior tibialis muscles,

finger pulse oximetry (Embla A10 flex sensor), a piezo vibration sensor

for snoring, and a body position sensor. In addition, a single acceler-

ometer (Axivity AX3, Axivity Ltd) was attached with adhesive tape, on

the participant's thigh, midway between the patellar ligament and the

anterior superior iliac spine. Acceleration data were sampled at a fre-

quency of 25 Hz, with a range of ±8 g. Participants were required to

attend an afternoon appointment on the first day, where trained per-

sonnel ensured correct sensor placement. Thereafter, participants

returned home and wore the sensors continuously until the following

morning. PSG recordings began once the participants went to bed and

stopped when they awoke the following morning. Each accelerometer

and PSG recording was synchronised and then visually inspected to

ensure synchronisation was correct. Data collection was carried out

between July 2018 and May 2019.

The sleep algorithm

A simple algorithm was developed to estimate sleep from raw accelerom-

eter data, based on the algorithm of Cole–Kripke (Cole et al., 1992). Wake

and sleep thresholds were set for each second of lying periods >15 min,

based on a constantly changing variable, called the ‘sleep index’ (SnÞ. A
sleep index >1 was considered as ‘awake’ and a sleep index <1 was

considered as ‘asleep’ (see Formula 1). Thus, thigh movement would

increase the value of the sleep index, and time without thigh move-

ment would decrease the value of the sleep index (Figure 1).

Raw accelerometer data were re-sampled to 30 Hz. Data were

then band-pass filtered 0.5–10 Hz, whilst further background noise

was removed from the signal using a cut-off value of 0.02 g. Then, the

sleep index was calculated using the following formula:

TABLE 1 Characteristics of the separate samples of participants in the optimisation and ambulatory validation dataset

Optimisation dataset (N = 15; 8 females, 7 male) Validation dataset (N = 71; all male)

Mean SD Median Range Mean SD Median Range

Age, years 28 5.3 28 22–38 57 11.2 60 34–73

Weight, kg 65 11.1 67 49–82 82 12.6 81 59–113

Height, cm 169 10.1 167 158–190 181 5.5 181 166–192

Body mass index, kg/m2 23 2.6 23 19–27 25 3.9 24 18–35

JOHANSSON ET AL. 3 of 10
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Sn ¼ exp
�1
τ

� �
�Sn�1þk �An, ð1Þ

Where

‘An’ is the mean band-pass-filtered vector magnitude in nth

second.

‘τ’ is the time constant.

‘k’ is the gain parameter.

Both τ and k are held constant and were optimised through

iterative comparison between the algorithm output and PSG

recordings, as described in paragraph 2.5 (Figure 2). An upper limit

of exp(1) = 2.71 was set for Sn, meaning that when An = 0, the value

of Sn decreases exponentially in line with the time constant τ (i.e.,

sleep is only defined after τ-seconds, if no further movements are

detected) (Figure 1). Sleep or wake-state bouts that lasted <10 s were

removed using a median filter. Furthermore, in order to account for

the time taken for the sleep index Snð Þ to rise above the movement

detection threshold during awakening, each awakening was consid-

ered to occur 2min prior.

Data analysis

The PSG recordings were scored in 30-s epochs according to standard

criteria to detect sleep (Ancoli-Israel et al., 2007; Rechtschaffen &

Kales, 1968). This was performed separately by trained specialists for

both the optimisation and evaluation datasets.

The output from the accelerometer algorithm was down-sampled

with mode-filtering in order to fit the same 30-s epoch lengths as

PSG. Then the thigh accelerometer data and PSG recordings were

synchronised and manually inspected to assure that the time synchro-

nisation was correct. Epoch-by-epoch comparisons were then made

to calculate the sensitivity, specificity, and accuracy of the sleep algo-

rithm to estimate sleep with respect to PSG detection, according to

the following formulas:

Sensitivity¼ TP
TPþFN

Specificity¼ TN
TNþFP

F IGURE 1 An example portraying (from top to bottom) vector magnitude of thigh accelerations, the sleep index (Sn), sleep and awake
according to the sleep algorithm, and sleep and awake according to polysomnography

4 of 10 JOHANSSON ET AL.

 13652869, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.13725 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [25/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Accuracy¼ TPþTN
TPþTNþFPþFN

where

TP (true positive) = the number of epochs flagged as ‘asleep’
both from the accelerometer and PSG.

FP (false positive) = the number of epochs flagged as ‘asleep’ by
the accelerometer but flagged as wake according to PSG.

TN (true negative) = the number of epochs flagged as ‘awake’
both from the accelerometer and PSG.

FN (false negative) = the number of epochs flagged as ‘awake’ by
the accelerometer but flagged as sleep by the PSG.

Optimisation

To optimise the constants τ and k in Formula 1, the sum of sensitivity

and specificity statistics over all recordings were evaluated iteratively

for different values of τ and k in the optimisation dataset. A constant

value τ = 18.5 min and k = 0.19 proved optimal, resulting in a sensi-

tivity of 0.90 and specificity of 0.85 derived from the optimisation

dataset (Figure 2).

Performance evaluation

To assess the performance of the optimised algorithm, comparison

between sleep defined by ambulatory PSG recordings and sleep defined

by the sleep algorithm was performed in the evaluation dataset.

The mean and standard deviation (SD) of sensitivity, specificity

and accuracy was calculated for all participants. In addition, the fol-

lowing variables were derived from both the PSG recordings and the

sleep algorithm according to Ibáñez et al. (2018): sleep interval, is

defined as the time between the onset of the first sleep period and

the last awakening; total sleep time, is defined as the total amount of

time the participants slept between the start of the PSG recording

until the last awakening, identified by PSG; sleep latency, is defined as

the time from the start of the PSG recording until the time the partici-

pant fell into a stage of sleep for the first time; WASO, is defined as

the total time awake after the first sleep onset until the last awaken-

ing; sleep efficiency, is defined as the percentage of recorded time

asleep until the last awakening; awakening index, is defined as the

number of awakenings >10 s per hour.

The difference between the sleep variables derived from PSG

recordings and that of sleep variables from the algorithm was calcu-

lated. The upper and lower 95% limits of agreement (LoA) of the sleep

interval and total sleep time were also calculated by taking the mean

differences ±1.96 � SD of the differences (Bland & Altman, 1999) and

presented in Bland–Altman plots (Figure 3 and Table 3). The range

between the upper and lower LoA (LoA Range [LoAR]) was used as a

measure of precision for comparison with earlier studies. Correlation

between the aforementioned variables between the sleep algorithm

and PSG was calculated with Pearson correlation.

In order to assess if outliers (i.e., those who had very short or very

long sleep duration relative to the norm) affected results, a sensitivity

analysis was performed excluding cases that had slept shorter than or

longer than 2 SDs from the mean sleep time, according to the PSG

recordings. All analysis was performed with Matlab 2020b Windows

version and Rstudio 2021.09.1.

RESULTS

Summary of sleep parameters derived from the PSG and the sleep

algorithm in the evaluation dataset are presented in Table 2.

The sleep algorithm detected sleep with a mean (SD; range) sensi-

tivity of 0.84 (0.12; 0.34–0.84), specificity of 0.55 (0.25; 0.07–1.00)

and accuracy of 0.80 (0.10; 0.45–0.95) when applied to the evaluation

dataset. The sleep algorithm on average underestimated the sleep

interval by 21 min (LoAR = 130) and total sleep time by 32 min

(LoAR = 233) (Table 3, Figure 3). The highest correlation between

PSG and the sleep algorithm was observed for sleep interval and total

sleep time (Table 3).

Using threshold values of ±2 SDs from the mean sleep time

according to PSG recordings, three outliers were identified. A subse-

quent sensitivity analyses excluding these outliers indicated that the

correlations between accelerometer measured, and PSG measured

total sleep time increased to r = 0.70 (0.55–0.80), WASO increased to

r = 0.57 (0.38–0.71) and sleep efficiency increased to r = 0.49 (0.29–

0.65). Bias of total sleep time increased with 5–37 min but LoAR

decreased with 25–208 min. Estimates of the sleep interval, sleep

efficiency, and the awakening index did not alter.

F IGURE 2 Sensitivity and specificity of the algorithm to identify
sleep time in the optimisation dataset for different values of the
constants τ and k
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TABLE 2 Sleep parameters from the polysomnography recordings and thigh accelerometer sleep algorithm in the validation dataset, N = 71

Polysomnography Sleep algorithm

Mean SD Range Mean SD Range

Sleep interval, min 441 45 322–565 420 53 252–554

Total sleep time, min 392 67 177–549 360 75 124–530

Sleep latency, min 10 13 0.5–107 33 33 19–222

Wake after sleep onset, min 50 49 0–223 60 48 0–243

Sleep efficiency, % 86 12 41–99 79 13 31–93

Awakening index, n/h 1.6 0.7 0.1–4.0 0.5 0.3 0.0–1.4

TABLE 3 Bland–Altman statistics, mean differences (bias), lower and upper limits of agreement (LoA) and correlation between
polysomnography- and accelerometer-derived sleep parameters, N = 71

Bias 95% CI Lower LoA 95% CI Upper LoA 95% CI Pearson correlation, r 95% CI

Sleep interval (min) �21 �29, �13 �86 �99, �72 44 31, 57 0.78 0.68, 0.86

Total sleep time (min) �32 �46, �18 �148 �173, �124 85 61, 109 0.66 0.5, 0.77

Sleep latency (min) 23 15, 30 �38 �51, �26 83 71, 96 0.37 0.16, 0.56

Wake after sleep onset (min) 10 �1.1, 22 �84 �103, �64 104 85, 124 0.52 0.33, 0.67

Sleep efficiency (%) �7.2 �10, 4 �34 �40, �29 20 14.1, 25 0.42 0.21, 0.6

Awakening index (n/h) �1.1 �1.2, �0.9 �2.3 �2.5, �2 0.1 �0.2, 0.3 0.49 0.28, 0.65

Abbreviation: CI, confidence interval.

F IGURE 3 Bland–Altman plots showing the individual differences between the sleep algorithm and polysomnography estimated sleep
interval (upper) and total sleep time (lower), in minutes. Each participant is represented as a dot. The upper and lower dotted line represent the
95% limits of agreement and the middle-dotted line represents the mean differences

6 of 10 JOHANSSON ET AL.

 13652869, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.13725 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [25/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DISCUSSION

We developed and optimised an algorithm to estimate sleep using a

thigh-worn accelerometer using laboratory PSG recordings, and then,

validated the performance of this algorithm against ambulatory PSG

on a separate sample of participants measured in free-living condi-

tions. The algorithm demonstrated good sensitivity (0.84) and accu-

racy (0.80) and moderate specificity (0.55) when compared with

ambulatory PSG recordings. This performance is comparable to the

findings of previous research attempting to estimate sleep using

wrist-worn accelerometers amongst healthy adults, where a mean

sensitivity, accuracy, and specificity of 0.89, 0.88, and 0.53, respec-

tively, has been reported (Conley et al., 2019).

The variable that corresponded best between the algorithm and

PSG was sleep interval, which was underestimated by 21 min (LoAR

130 min), equating to 5% of the total sleep interval registered by PSG.

Total sleep time was underestimated by 32 min (LoAR 233 min) on

average, equating to 7% of total sleep time registered by ambulatory

PSG. This estimation appears to be somewhat better than sleep diary

registrations of total sleep time (Zinkhan et al., 2014) and is in line

with the performance of hip-, trunk-, (Matsuo et al., 2016; Slater

et al., 2015; Zinkhan et al., 2014) and wrist-worn accelerometer

placements, even though the results from earlier validation studies of

accelerometers are heterogeneous in relation to the estimation of

total sleep time (Chinoy et al., 2021; Conley et al., 2019; de Souza

et al., 2003; Fuller et al., 2017; Kosmadopoulos et al., 2014; Markwald

et al., 2016; Matsuo et al., 2016; Montgomery-Downs et al., 2012;

Paquet et al., 2007; Rupp & Balkin, 2011; Sargent et al., 2016; Slater

et al., 2015; Zinkhan et al., 2014) (Figure 4).

Our algorithm underestimated total sleep time by 32 min,

whereas the previous trend for wrist-worn accelerometer estimates

of sleep has been towards an overestimation by �11 min (Conley

et al., 2019). An explanation for this discrepancy may lie in the algo-

rithm design, where each awakening was considered to occur 2 min

prior to the time indicated by sleep index (SnÞ. Another reason for

underestimation could be that the algorithm always takes at least

18.5min, due to the time constant τ, to detect sleep-onset from a full

awake status, even though in reality people can wake-up and go back

to sleep very quickly. These parameters were selected to optimise

specificity but may have inadvertently contribute to the underestima-

tion observed. Alternatively, the observed underestimation may indi-

cate that thigh movement during sleep is more prevalent than the

movement of other body parts, although further research is needed to

confirm this.

F IGURE 4 Performance of diary, and different accelerometer placements in measuring total sleep time (TST) compared to polysomnography.
Differences in minutes, bias and 95% limits of agreement ±2 SD (limits of agreement range), (n = number of nights). Only studies with healthy
adult populations and studies that have presented the mean differences (bias) and SD of differences of TST between the two methods are
presented
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Relatively low precision (high LoAR) was observed for all variables

indicating that the algorithm is mainly suited to studies where groups

of individuals are evaluated. We also observed poor correlations

between PSG- and algorithm-derived sleep quality variables, including

sleep latency; sleep efficiency; WASO; and awakening index. This sug-

gests that the algorithm is perhaps less suited to the measurement of

sleep quality. However, the performance is still comparable with many

observations using wrist-worn accelerometer (Conley et al., 2019).

The poor correlation across these variables is likely a result of the fact

that the sleep state is a multifactorial physiological process. Thus,

short awakenings or sleep episodes may not be related to any particu-

lar changes in thigh movement. Therefore, if the estimation of these

sleep quality variables with high precision is of priority, alternative

measurement methods should be considered.

When interpreting the results and comparisons above, the follow-

ing three points are important to consider. Firstly, the comparison of

sensitivity and specificity statistics across studies should not be consid-

ered as definitive, because differences in the total recorded sleep time,

and prevalence of sleep between the studies can affect the statistic.

Secondly, the comparison of findings using laboratory-based PSG with

those using ambulatory PSG should not be considered as a one-to-one

comparison, because ambulatory PSG is likely to contain much more

natural variation than laboratory-based PSG. Thirdly, as is evident from

Figure 3, short sleepers (<6 h) appear to have introduced greater dis-

agreement between PSG and accelerometer estimations than those

who slept longer (>6 h). This was also shown in the sensitivity analysis

where the precision slightly increased (i.e., LoAR decreased) for total

sleep time when very short sleepers were excluded from the analysis.

Therefore, it is important to consider that the performance of the algo-

rithm might vary depending on the population measured. The precision

will most likely be lower amongst groups of individuals with sleep dura-

tions that are considerably shorter than the norm. It has also been

shown, in other studies, that accelerometer estimates of sleep are bet-

ter when applied to healthy populations than to populations with

chronic disorders (Conley et al., 2019). For example, the performance of

our algorithm may have been affected by the fact that participants with

sleep disorders were excluded in the optimisation dataset but not in the

evaluation dataset. In theory disorders like periodic limb movements

and restless legs may affect the sleep estimations that are based on

thigh movements. Finally, the performance may also have been affected

by the fact that there were two different scorers that performed the

sleep scoring in the optimisation and evaluation datasets.

Our findings are strengthened by comparison against the ‘gold
standard’ for sleep measurement and the evaluation of the algorithm

using a separate dataset from the dataset it was developed

on. Another strength is that this evaluation was made using data col-

lected in free-living settings. However, PSG data were only recorded

during the night, meaning that our results can only tell us how well

the algorithm performs to estimate sleep during a given time-window

and not over 24 h. This is a problem frequently encountered when

comparing sleep algorithms with PSG recordings. A further consider-

ation is that the evaluation dataset consisted entirely of males

between the ages of 34 to 73 years. As people age the pattern of

sleep behaviours and prevalence of sleep disorders increases as life

and health circumstances change. Therefore, the dissimilarity between

the datasets may account for some of the decrease in performance of

the algorithm from the optimisation dataset to the evaluation dataset.

The development and evaluation of this algorithm has a number of

important practical implications. The first is that a thigh-worn accelerom-

eter performs almost as well as the traditional wrist-worn accelerometers

in the estimation of total sleep time. This has important implications in

research integrating sleep, physical activity, and sedentary behaviour.

Wrist-worn accelerometers are a feasible tool for sleep measurement

(Conley et al., 2019), but there are limitations when measuring other

daily physical behaviours. Neither wrist- nor hip-worn accelerometers

can delineate physical activity and posture types, and moreover, arm

movements can introduce measurement errors of total physical activity

estimation when wrist-worn accelerometers are used (Migueles

et al., 2017). Thigh-worn accelerometers have the advantage of being

able to distinguish different physical activities and postures (like sitting,

lying, standing, walking, running, stair-walking, bicycling [Hettiarachchi

et al., 2021; Lyden et al., 2016; Skotte et al., 2014; Stemland

et al., 2015]), and now, can also be considered as a valid option for future

device-based sleep measurement. Another implication is that the algo-

rithm is non-proprietary, transparent, and not dependent on the brand of

accelerometer. Such non-proprietary algorithms are necessary to fulfil

the needs of researchers in the field of physical activity, sedentary

behaviour, and sleep measurement, and to achieve scientific goals of

emerging consortia, such as, the Prospective Physical Activity, Sedentary

behaviour and Sleep (ProPASS) consortium (Stamatakis et al., 2020).

CONCLUSION

This study proposes a simple, transparent approach for estimating

sleep time from thigh-worn accelerometers. Our findings show that a

thigh-worn accelerometer was sensitive to sleep periods, but not sen-

sitive to periods where the participant awoke during the night without

detected thigh movements. Thus, our algorithm is less appropriate for

the measurement of sleep quality variables.

Our method performs almost as well as the traditional wrist-worn

accelerometers (actigraphy) for the estimation of total sleep time. This

demonstrates that there is now a feasible method for measuring sleep,

physical activity, sedentary behaviour, and postures, on a group level,

with just a single accelerometer.
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