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‘Oh my God, it’s full of stars!’ 
David Bowman 

2001: A Space Odyssey 
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Introduction 

Over the last decade researchers have miniaturized the molecular biologists’ 
analytical tools in order to perform massively parallel analyses (Fodor, Rava 
et al. 1993). The first and foremost example is the mRNA microarray that in 
a single analysis measures expression of tens of thousands of different 
transcripts (Schena, Shalon et al. 1995). Massively parallel techniques are 
typically used to generate hypotheses for further investigation. For instance, 
mRNA microarrays can be used to generate hypotheses about what 
molecular pathways are involved in a phenotypic trait or a disease’s 
etiology. This can be done with a genome-wide comparison against a control 
group that provides a list of genes differentially expressed betwixt the groups 
and associates genes with group differences. The mRNA microarray was the 
first massively parallel technique to reach wide-spread use but many have 
followed such as genome-wide location analysis aka ChIP-on-chip (Buck 
and Lieb 2004), comparative genome hybridization (Albertson and Pinkel 
2003), and single nucleotide polymorphism array analysis (Chee, Yang et al. 
1996). This thesis investigates different ways in which data obtained from 
such high-throughput analyses can be combined with background knowledge 
about the biology (domain knowledge) to analyze and generate sophisticated 
hypotheses about the molecular underpinnings of biological systems. The 
background knowledge we use include experimentally determined facts 
about the systems, e.g. gene functions, as well as ancilliary experimental 
data. We found the applications for our methods in two related areas of 
research: regulation of the cell cycle and cancer chemotherapy. 

In Paper I we investigate an approach for analyzing in vitro 
chemosensitivity profiles across a cancer cell line panel together with 
mRNA microarray profiles of the cell lines. By using a simple visualization 
the investigator may identify groups of co-regulated genes that appear 
associated with chemoresponse to compounds that have similar 
chemosensitivity profiles. This suggests a relationship between a biological 
pathway and compounds with similar mechanisms of action. In principle the 
same relationship could be discovered by piecing together lists of genes 
differentially expressed between cell lines sensitive and resistant to the 
compounds, but such an approach would be much more laborious. A key 
point in Paper I is that domain knowledge in the form of genetic 
relationships between the cell lines must be accounted for in order to provide 
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an unbiased analysis. Inclusion of domain knowledge in integrative analyses 
of biological systems is a recurrent theme in this thesis.  

In Papers II and III we study the cell cycle in the budding yeast 
Saccharomyces cerevisiae. In Paper II we propose a detector of periodicity 
that is derived from Bayesian principles and uses user-supplied domain 
knowledge about the period time. After evaluating the detector on simulated 
data we apply it to microarray time series analyses of synchronized yeast 
cultures. We then analyze to what degree putative binding sites for 
transcription factors can explain the appearance of periodic expression. Our 
analysis provides hypotheses about which motifs confer periodic expression. 
We also study to what degree domain knowledge about cell cycle genes 
explain periodicity as predicted by the detector. In Paper III we study 
whether combinations of cis-regulation descriptors explain the appearance of 
periodic expression that depends on the synchronization method used. The 
cis-regulation descriptors are integrated from genome-wide location analysis 
of transcription factor binding and putative binding sites for transcription 
factors. Not only does our analysis provide some systems-wide observations 
on the overall connectivity of gene regulation, but the hypotheses generated 
take the form of statements about how a gene’s expression behaves under 
different experimental conditions. Each hypothesis suggests which 
transcription factor needs to bind to what motif in order for a gene to exhibit 
phase specific expression.  Importantly, we demonstrate that by describing 
time profiles of gene expression on a semantic level (periodic expression) we 
are able to provide sophisticated hypotheses about cell cycle regulation that 
focus on known cell cycle related cis-regulation descriptors.  
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In Paper IV and V we return to the context of cancer chemotherapy but 
our findings are much more general. Specifically the research originated 
from problems that arise in the construction of predictors of chemoresponse 
from mRNA microarray data. Although the situation is improving as the 
price and complexity of microarray analysis drops there are typically few 
samples available for the design and evaluation of classifiers. The 
investigator faces a trade-off between how good the predictor will be 
(number of samples allocated to design) and how well its performance is 
estimated (number of samples allocated to validation). In Paper IV we 
investigate whether better performance estimates can be obtained by using 
information from independent tests of the predictor on design data as prior 
knowledge. This prior knowledge, expressed as a probability distribution 
function of classification error rates represents information about how 
difficult the problem of classification is, i.e. the prior is specific to the 
domain of the application. In Paper V we demonstrate how we can integrate 
additional unlabeled data in the design of classifiers, thus making full use of 
all data available. The method should be particularly useful when the data 
used for design comes from a different distribution than data the classifer 
should be applied to, a situation faced when designing classifiers of 
chemoresponse from cell line data and applying them to patient data.  

In the following chapters I will briefly review the biological and 
biomedical context the papers originated within, followed by a short 
introduction to the different computational methods used, methods for 
generating the high-throughput data analyzed and a discussion of each the 
papers. Bioinformatics is an inter-disciplinary subject so the background is 
presented on a level suitable to all interested readers with pointers to 
additional information for readers with special interests.  
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Biological and Biomedical Context 

This thesis investigates how domain knowledge can be used to integrate 
heterogeneous types of high-throughput data in a number of specific 
applications. Our applications fall within two related biological and 
biomedical contexts: in Papers II and III we study the cell cycle in S. 
cerevisiae; Paper I investigates analysis of gene expression-chemosensitivity 
associations and Papers IV and V were prompted by investigations into the 
design of predictors of cancer chemosensitivity.  

The Cell Cycle 
Mitosis is the process by which two identical cells are formed from a mother 
cell. Its molecular regulation is highly conserved in eukaryotes. For a full 
description the reader should see any textbook on molecular cell biology, 
e.g. “Molecular Biology of the Cell" (Alberts 2002). Briefly, cell division 
was first observed using light microscopy and was seen to cycle between 
two phases dubbed interphase and mitosis (M-phase). Interphase does not 
have any morphological characteristics, but the M-phase can be further 
subdivided based on morphological changes (see Figure 2a). First come 
prophase which is recognized by the condensation of chromatin and a 
dissolving nuclear envelope. Then follows metaphase in which the fully 
condensed chromosomes align at the equatorial plane of the cell in a 
structure called the metaphasic plate. At each pole, structures called polar 
bodies attach through microtubuli to the centrosomes of the chromosomes. 
Metaphase is followed by anaphase which is characterized by the 
chromosomes being pulled apart. The cycle ends after telophase, where two 
distinct cells and the formation of nuclear envelopes in each of the daughter 
cells can be recognized. 
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Interphase can be further subdivided by events taking place at the 
molecular level (see Figure 2b). Obviously, the genome must be replicated 
prior to division. Replication is prepared for in Gap 1 (G1), the first stage of 
interphase.  A copy of the genome is then synthesized in S-phase which is 
followed by Gap 2 (G2) in which the cell prepares for mitosis. Incidentally, 
the quiescent state in which the cell is not committed to mitosis is called Gap 
0 (G0). The cell cycle is a carefully concerted process and the molecular 
regulation is carried out by cytoplasmic proteins. A group of proteins called 
cyclins rise and fall in concentration in the different stages of the cell cycle. 
Cyclin D concentration increases in G1, cyclins E and A in S-phase and 
cyclins B and A in M-phase. In addition, there are a number of kinases that 
depend on cyclins for activation, the cyclin dependant kinases (cdk). By 
transferring phosphate moieties they activate proteins that control cell cycle 
processes. 
Cell division is a precarious undertaking and cells have a number of 
checkpoints to ensure high fidelity of replication. If the cell fails beyond 
recovery at these checkpoints it enters apoptosis (programmed cell death). 
For instance, the process is stopped if DNA damage is detected either prior 
to (G1 checkpoint), during, or immediately after synthesis (the G2 
checkpoint). In addition there is a checkpoint in M-phase that arrests the cell 
in metaphase if a microtubule fails to attach to a chromosome. 
Understanding these mechanisms is of great medical interest for the 
treatment of cancer as is illustrated in the next section. The core machinery 
has been intently studied, but much remains to be discovered about the cell 
cycle, in particular about events downstream of the cell cycle regulators 
which are studied in Papers II and III.  
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Figure 1.  a) Stylized representations of the phases of mitosis as seen in a light 
microscope. b) Graphical representation of the chronological order of the cell cycle 
phases.  
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Cancer Chemotherapy 
The overall structure and function of organs and tissues is maintained by 
controlling cell replication by e.g. contact inhibition. Occasionally control 
over the carefully concerted cell replication machinery is lost and a clone 
will start to proliferate. The loss of control may be due to either an activating 
mutation of a proto-oncogene or a loss-of-function mutation in a tumor 
suppressor gene. This is not an uncommon event, but the immune system has 
cells with an innate ability to eliminate cells that do not respect tissue 
boundaries. However, if an uncontrolled growth evades the immune system 
a cancerous growth may develop. It is difficult to say at what stage a new 
growth becomes a cancer tumor and pathologists usually characterize 
suspected cancer tumors by the degree of de-differentiation in the growth. If 
the growth has lost all phenotypic characteristics of the original tissue it is a 
clear sign of an emerging cancer. Clinically cancer typically presents 
symptoms due to interference with the surrounding tissue, the notable 
exception being endocrine tumors that may produce a plethora of symptoms 
by overproducing different hormones. For an excellent review of cancer 
biology, see (Hanahan and Weinberg 2000). 

Treatment of solid cancers usually starts with surgical removal of the 
tumor mass followed by chemotherapy, for hematological malignancies 
chemotherapy is the first line treatment. The majority of cancer 
chemotherapies target dividing cells in general causing the well known side 
effects of nausea (due to loss of gastrointestinal epithelia) and hair loss. Most 
cancer chemotherapies work by triggering apoptosis by causing damage 
either to microtubuli or DNA, causing the cell to fail irrevocably at the cell 
cycle checkpoints. There are four classic mechanisms of action for cancer 
cytostatics: microtubule inhibitors, topoisomerase I and II inhibitors, 
antimetabolites and alkylating agents. Microtubule inhibitors act by either 
destabilizing or hyperstabilizing the tubulin polymers causing the cells to fail 
in M-phase. The topoisomerase inhibitors prevent the cells from replicating 
the DNA. Antimetabolites are nucleotide analogs that prevent further 
replication by inhibiting enzymes that catalyze production of 
deoxyribonucleotides, the building blocks of DNA needed for synthesis of a 
new DNA strand. Alkylating agents cause direct damage to the DNA by 
cross-linking strands and thus preventing further replication. Although 
targeted drugs such as tyrosine kinase inhibitors are becoming available, 
most chemotherapy is based on drugs having one of the above mechanisms 
of action. 
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The most common reason for failed treatment of cancer is drug resistance 
where the cancer cells either acquires or presented with mechanisms for 
evading chemotherapy. Cells may for instance express drug efflux pumps 
such as the Multi-Drug Resistance transporter that remove the drug from the 
cytosol. By analyzing chemoresponse data together with mRNA expression 
data it is possible to identify pathways that confer resistance as well as 
sensitivity, Paper I analyzes one method for doing that.  

The phenomenon of drug resistance motivates current best clinical 
practice that uses a combination of drugs with different mechanisms of 
action. Thus the cancer cells must have several different mechanisms of 
resistance to escape treatment. However, even if originating within the same 
tissue, each individual instance of cancer develops against the patient’s 
unique genetic background. Even if two therapies have shown similar effects 
on overall survival clinical experience shows that individual patients may 
benefit from one therapy but not the other. It is hoped that overall cancer 
survival rates can be improved by selecting therapy on a patient to patient 
basis. 

Cell culture based drug resistance tests such as the fluorometric 
microculture cytotoxicity assay can be used to select the appropriate therapy 
(Larsson and Nygren 1993) but has thus far failed to gain wide-spread 
acceptance in the clinic. Unfortunately the number of drugs that can be 
evaluated is usually severely limited by the amount of tissue available. 
However, it has recently been suggested that response to therapy could be 
predicted from microarray analysis of cancer cells (Hess, Anderson et al. 
2006; Potti, Dressman et al. 2006; Dressman, Berchuck et al. 2007). Since a 
microarray analysis requires far less tissue, this would open up the 
possibility of evaluating all approved drugs for effect on a patient to patient 
basis. Issues arising in the design of predictors of cancer chemosensitivity 
motivated the research presented in Papers IV and V. 
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Elements of Learning from Data 

For the purposes of this thesis, bioinformatics is the science of analyzing and 
testing hypotheses using models constructed from the voluminous datasets 
generated in molecular biology. The sheer amount of information available 
means processing must be done computationally. Throughout this thesis we 
employ computer algorithms for the construction of models from data, i.e. 
machine learning. In Papers II and IV we present new algorithms derived 
using the Bayesian formalism of probability which I describe below, 
followed by a brief description of different methods of machine learning.   

Statistical Inference 
Probability theory plays a central role in life sciences as the formalism of 
statistical inference: the process of drawing conclusions from data, or more 
specifically, the process of drawing conclusions about a population using 
data collected from a sample of the population. For conclusions to be 
objective a formal procedure is needed. In the common school of statistics 
the basic procedure for stating that some effect is visible in the data is as 
follows. A mathematical model is stated that describes how frequently the 
effect would appear by chance if it is actually absent. The hypothesis that 
there is no effect is called the null hypothesis. Then the model is used to 
calculate the probability that the observed effect would occur by chance, the 
p-value. If it is very unlikely to occur by chance the null hypothesis is 
rejected in favor of the alternative hypothesis that there actually is an effect. 
Each investigator may choose how unlikely the effect must be for the null 
hypothesis to be rejected. The point is that quantitative rather than 
qualitative judgment can be cast, which makes communication of scientific 
results much easier. 

The key step in turning qualitative judgment into quantitative in the above 
procedure is to capture the notion of chance in a mathematical formalism. 
There are two different schools of thought regarding probability, frequentist 
and Bayesian. The main differences are outlined below. 
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Bayesian Probabilities 
In the frequentist school the probability of an event is defined as the 
frequency with which the event occurs in an infinite number of trials. In the 
Bayesian view probability reflects ignorance on part of the investigator: 
probability is interpreted as a degree of truth, or plausibility. Although this 
notion may seem too vague to be formalized, R.T. Cox demonstrated that the 
Bayesian calculus of probabilities can be derived from a set of basic 
desiderata (desidered properties) on how a measure of plausibility should 
behave (Cox 1946), stated by Jaynes (Jaynes and Bretthorst 2003) as: 

(I) Degrees of plausibility should be represented by real numbers 

(II) The measure should qualitatively correspond with common 
sense 

(III) The measure should be consistent 

where consistent means that all possible ways of reasoning should give the 
same result, always taking into account all evidence, and that equal states of 
knowledge are represented with equivalent assignments of plausibility. For a 
good introduction to Bayesian probability in the sense we use it, the reader 
should see (Jaynes and Bretthorst 2003). In this brief review we shall use the 
usual P to denote probability measures. In contrast to conventional 
probability theory P is not a measure of the size of some set of outcomes, but 
rather a measure of the degree of truth in a statement. Thus P(q) should be 
interpreted as the degree of truth in the statement that the parameter q takes 
some value.  

Bayes’ Theorem  
To illustrate Bayesian probabilities, consider the following law of 
probability: 
 

)()|()()|(),( qPqDPDPDqPDqP �� .  (1) 
 

From (1) it follows that  
 

(2) 
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which is known as Bayes’ theorem. Now, suppose q is a parameter such as 
the weight of an object and D is a set of measurements of the weight.  
Although in full accordance with the laws of probability, the left hand side 
of (2) is a forbidden quantity in frequentist statistics since q is not a random 
variable. In other words, although not exactly known, the object has a well 
defined weight which is a property of the object. Weight is not subject to 
chance. In the Bayesian view, probabilities denote a degree of belief and 
there is nothing strange about (2). Furthermore, the function P(q|D) 
expresses the plausibility of q taking different values and can be used for 
estimating the value of q. For instance, choosing the most probable value of 
q is called the maximum a posteriori estimate. The function may also be 
used for constructing a credibility interval for the parameter q, which we do 
for error rates in Paper IV. 

Prior and Posterior Probability 
The function P(q) in (2) is called the prior, and P(q|D) the posterior. These 
names allude to the entry of data into the calculations, i.e. the functions 
describe uncertainty about q prior and posterior to seeing data. P(D|q) is 
known as the likelihood function which incidentally forms the basis of 
likelihood-based statistics  (a field of classical statistics). The denominator of 
(2), P(D), is simply a normalization constant which ensures that the left hand 
side sums to one. It may be calculated by summing up P(D|q)P(q) for all 
possible values of q, a technique known as marginalization. Here we may 
note an important fact: if P(q) is independent of q (i.e. a constant), which 
corresponds to all values of q being equally likely, P(q|D) is directly 
proportional to the likelihood function P(D|q). Then, when selecting an 
estimate of q, there would be no difference between using a Bayesian 
treatment or likelihood-based statistics. 
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Figure 2. Illustration of how the posterior density is affected by different priors for 
the same likelihood. a) If the prior is uninformative, the posterior will be directly 
proportional to the posterior (same shape). b) A prior suggesting that smaller values 
of t are more likely will shift the probability mass towards smaller values. c) When 
the prior specifies one and only one value (represented by a Dirac impulse function), 
data cannot change the information. 

The prior is a source of controversy as it on the surface introduces 
subjectivity into the analysis that is not present in frequentist statistics: two 
researchers might draw different conclusions from the same dataset if their 
prior knowledge differs. This is not as serious as may appear at first. With a 
bit of thought it is obvious that if an investigator possesses different prior 
information the data should be interpreted differently. If there is prior 
information excluding certain values of a parameter it doesn’t matter if some 
value has a high likelihood, those values should be excluded in the posterior 
as well. Figure 2 graphically illustrates the interaction between prior and 
likelihood in estimation of a continuous parameter.  

Although it is only natural for two investigators with different prior 
information to draw different conclusions, an objective analysis require that 
two investigators with the same prior express it as the same probability 
function using some procedure. Such procedures are available, e.g. Laplace 
indifference principle, transformation group invariance and maximum 
entropy (Jaynes and Bretthorst 2003). We illustrate how these principles 
provide objectivity by using Laplace indifference principle. It states that if 
any set of outcomes are considered equal by the prior information at hand, 
all outcomes in that set should be assigned equal probabilities. Consider the 
toss of a coin. What probabilities should be assigned to the outcomes Heads 
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and Tails respectively? Since the only available information is that there are 
two possible outcomes that are mutually exclusive, the only consistent 
assignment would be P(Heads) = P(Tails) = ½.  

The Maximum Entropy Principle 
In Papers II and IV we use the maximum entropy principle for expressing 
prior information. Entropy is a measure of uncertainty, much like probability 
is a measure of chance or plausibility. For example, returning to the coin 
toss, if the outcome was known to be Heads prior to tossing, there would be 
no uncertainty. Intuitively, the largest degree of uncertainty about the 
outcome is the fair coin with P(Heads) = P(Tails) = ½. Given a set of 
probabilities pi of the different possible outcomes, the entropy function H is 
defined as: 

. 

  (3) 

For the case of the coin toss, the maximum entropy is obtained when 
P(Heads) = P(Tails) = ½ as desired, an assignment consistent with Laplace 
indifference principle. The unit of the uncertainty measure is determined by 
the base of the logarithm in (3). For example, if base 2 is used, uncertainty 
will be measured in bits. The measure originated within communication 
theory where a measure of information was needed for mathematical 
analysis of communication channel capacity (Shannon 1948). Its functional 
form was derived from a set of basic desired properties in much the same 
way as the Bayesian calculus was derived. Specifically, Shannon argued that 
a measure H of uncertainty should: 
 

(I) Be a continuous function of the probabilities. Otherwise 
arbitrarily small changes in the probability distribution could 
lead to a large change in the amount of uncertainty. 

(II) Should correspond qualitatively to common sense in that we are 
more uncertain when there are more possibilities than when 
there are few. 

(III) Be consistent 

(Jaynes and Bretthorst 2003) where consistent is given the same definition as 
was given above for the derivation of the Bayesian calculus of probabilities. 
It can be shown that the functional form of the entropy function is the only 
one satisfying these desiderata, and there is a straightforward extension to 
probability density functions, the differential entropy functional. 

The principle of maximum entropy dictates that if a set of constraints on a 
variable is given, e.g. a known mean value, the uncertainty about the 
parameter should be expressed as the probability distribution that maximizes 
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the entropy function and thus the measure of uncertainty. In other words, by 
using the maximum entropy principle one ensures that no additional, implicit 
information is added when the prior information is expressed as a probability 
function. Incidentally, the functional form of the maximum entropy 
probability distribution function for a given mean and variance is the 
standard Normal distribution1, something which is often touted as an 
explanation for the success classical inferences has had using the Normal 
distribution even when the true distribution doesn’t follow it. 

Bayesian Inference 
A point of radical departure between frequentist statistics and Bayesian 
inference is that of hypothesis testing. Using Bayesian inference it is 
possible to calculate the probability that hypothesis i is true given the data as  

  (4) 

As in classical statistics, the decision as to which hypothesis to declare true 
is left to the investigator. However, in Bayesian inference the decision is 
based on whether the hypothesis is sufficiently probable given the data, not 
what the risk is of making an error if it is declared true. Now, to illustrate an 
important point, consider the denominator of (3), P(D). It can be calculated 
as 
 

.  (5) 
 

Thus, in a Bayesian treatment it is not possible to calculate the probability of 
a hypothesis being true without fully specifying the alternate(s). Since the 
probability of observing data under the alternate hypothesis never is 
calculated in classical tests, it is possible to draw some erroneous 
conclusions. A low p-value does not necessarily mean that data supports the 
alternative hypothesis; the p-value under the alternate may be exactly equal, 
in which case the data is not informative.  

                               
1 Strictly speaking this is only true for if the probability density function has support (non-
zero density) for all real numbers, a distinction that is important in Paper IV. 
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Computational Techniques 
Bayesian methods are not yet widely accepted. Besides being criticized for 
being subjective, it is very common for multidimensional integrals to arise in 
Bayesian calculations. These integrals appear when the model contains many 
parameters, only a few of which are of interest. For instance, when 
comparing two models as in (4), the parameters of the models are not of 
interest. This is handled by integrating over all parameters (marginalization). 
Unfortunately, the integrals are rarely amenable to analytical treatment and 
numerical integration becomes very costly when there are many variables to 
be integrated (the number of points at which the integrand must be evaluated 
grows exponentially with the number of parameters if each parameter is 
discretized in the same number of steps). There are several solutions to this 
problem. One solution is to use conjugate priors (Gelman 1995). This simply 
entails choosing functional forms of the prior which makes the integrals 
analytically treatable. From a purist point of view, however, this amounts to 
changing the problem to fit the calculations. Another possibility is to employ 
Monte Carlo integration schemes (Gelman 1995) which escape the problems 
associated with calculating high dimensional integrals numerically by 
stochastically seeking out the parameters that contribute the most to the 
integral. However, such schemes are computationally intensive and require 
monitoring convergence to a stationary distribution. A more palatable 
approach is the use of approximation techniques and heuristics. 

By virtue of the Central Limit Theorem, the posterior will tend to a 
Gaussian form as more samples are collected. Thus, one strategy is to use a 
quadratic approximation of the log-likelihood at the maximum of the 
posterior. This is known as the Laplace approximation (Gelman 1995) and 
has been applied with great success in many applications. In calculating the 
Laplace approximation one must obtain the maximum of the posterior as 
well as the Hessian evaluated at the maximum. An even simpler heuristic is 
the Bayesian Information Criterion (BIC), also known as Schwartz 
Information Criterion (Hastie, Tibshirani et al. 2001), used in Paper II.  
 

Bayesian Information Criterion 
As it turns out, the Laplace approximation can be further approximated. The 
determinant of the Hessian can be bounded, which results in an even simpler 
criterion, requiring only the maximum of the posterior to be located. 
Specifically, the BIC for a model (hypothesis) H is 

 
 (6) 
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where the first term is the log likelihood function of the model evaluated at 
the maximum a posteriori parameter setting �MAP,  k is the number of 
parameters in the model and n the number of observations. BIC has been 
used as a criterion for model selection outside the Bayesian community. 
Although the approximation only is valid for large sample sizes, it can be 
motivated from a pragmatic standpoint as a measure of fit of the model (the 
likelihood evaluated at the maximum of the posterior), penalized by the 
number of parameters of the model. The latter part can be construed as an 
application of Occams razor, trading between model fit and complexity. 

Reconciling Bayesian and Frequentist Probability 
It must be noted that for Bayesian inference to have use in real world 
applications, a higher degree of belief must on average correspond to higher 
frequency, i.e. if probabilities do not correspond to frequencies, why would 
it make sense to base our decisions on them? On the other hand, frequentist 
statistics needs to embrace Bayesian views. If the investigator has prior 
information that contradicts the result of the statistical test, she is likely to 
doubt the test. Bayesian inference allows this prior information to be 
described and quantitated (Kendall 1949).  

On an ending philosophical note, frequentist probabilities, just like 
Bayesian, are mathematical representations of real world phenomena in the 
same way as the points, lines and circles of geometry are mathematical 
representations of everyday objects. It can be argued that randomness and 
chance in its very nature reflects ignorance on part of the investigator. That 
the most useful description is statistical does not mean it is impossible to 
describe the process in detail. For example, statistical mechanics 
successfully describes matter, e.g. the distribution of molecules’ kinetic 
energy in a volume of gas. Nevertheless, it could, in principle, be described 
by conventional mechanics. It is our lack of knowledge that leads to a 
statistical description. Thus, in our view, whether “true” randomness exists 
in nature is a moot point since it is indiscernible from lack of knowledge. 
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Machine Learning 
The concept of machine learning arose in the artificial intelligence 
community. In practice it involves running an algorithm with some dataset 
as input which outputs a model describing the data. The algorithms can be 
divided into supervised and unsupervised learning algorithms. Unsupervised 
learning algorithms construct models that highlight relationships between 
samples and variables. Supervised algorithms take samples with group labels 
and construct a model that describes the differences between samples with 
different labels, i.e. a classifier. Machine learning algorithms come in many 
different shapes, many of which are inspired by statistical theory. Popular 
unsupervised algorithms are hierarchical and k-means clustering and 
principal components analysis. Examples of supervised machine learning 
algorithms include k-Nearest Neighbor, decision trees, linear discriminant 
functions, neural networks and support vector machines (Hastie, Tibshirani 
et al. 2001). Such algorithms are developed in parallel in many different 
communities, artificial intelligence, statistics and pattern recognition to name 
a few. This is reflected in the different terminologies in use. For instance, in 
statistics a model for predicting group labels is a discriminant function, in 
pattern recognition a classifier. Furthermore, the terms variable, attribute and 
feature are used interchangeably for denoting a value that has been recorded 
for each sample. Below I will use the terminology used in the community in 
which the algorithm originated in. 

The relative values of heuristic machine learning algorithms and those 
derived from assumptions about the functional form of the data distribution 
are debatable and there is an emerging view that statistically founded 
algorithms come up short when applied to the high-dimensional and 
structured data available today (Breiman 2001). However, algorithms 
derived from principles of mathematical statistics have their own value since 
usually at least some of their properties can be proven mathematically. 

When using supervised learning for the mere purpose of predicting labels 
it would seem that whatever algorithm produces the most accurate labeling 
would be most desirable. However, if one would like to learn something 
from the resulting model, it must be possible to interpret it. The 
interpretation will of course depend on the formalism the output model is 
described in. Most classifiers used in microarray analyses, such as the one 
used in Paper V, were derived using a vector space representation of the 
samples, that is each sample is described by some vector x in Rn which can 
be interpreted geometrically. In Paper III however, we use a classifier 
derived from the theory of rough sets (Pawlak 1982) which produces a 
model described in terms of rules.   

Regardless of how the model is expressed, an important aspect of 
classifier design is how to evaluate the classifiers performance, which is the 
subject of Paper IV. Below I will briefly outline how vector space classifiers 
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can be interpreted, the idea behind rough set based classification, some 
aspects of performance evaluation of classifiers and finally describe how two 
popular unsupervised learning algorithms work. 
 

Vector Space Classifiers  
Many classifiers assume samples are described by a vector and can be 
described as real valued vector functions f: Rn � R. For a binary classifier of 
some classes C1 and C2, we may assume without loss of generality that the 
classifier predicts class C2 if f(x) > 0, class C1 otherwise. The set of points x 
for which f(x) = 0 is called the decision boundary. Figure 3a-b visualizes the 
decision boundary for classification from two variables as well as the 
difference between a linear classifier and a non-linear classifier. The shape 
of the decision boundary is computed from the design data using an 
algorithm that selects parameters of the function f that minimizes the error 
rate or some other criteria on the set of samples used for learning. Non-linear 
classifiers are known to be more sensitive to outliers than linear classifiers 
and in general require more data for learning. Thus it is common to use 
linear classifiers when predicting from microarray data. 

Figure 3.  Graphical visualization of a classifiers decisions boundary when the 
examples are described by two variables. Squares and circles indicate samples from 
different classes. a) A linear decision boundary with one misclassified example. b) 
Non-linear decision boundary that separates the examples without errors. c) There 
could be many different choices of decision boundary which all classify the 
examples perfectly. 

The differences between different linear classifiers such as the support 
vector machine (SVM), partial least squares-discriminant analysis (PLS-DA) 
and the diagonal linear discriminant (DLD) (Hastie, Tibshirani et al. 2001; 
Webb 2002) lie in how the coefficients are computed: linear support vector 
machines choose coefficients that maximize the margin between design data 
from the different classes; diagonal linear discriminant choose coefficients 

a) b) c)
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optimal when variables in each of the classes follow independent Normal 
distributions; PLS-DA builds a linear discriminant on a small number of 
(hidden) latent variables that it assumes the observed features are correlated 
to.  

When there are more variables than samples available for design, there 
are typically an infinite number of choices that minimize the error rate to 
zero on the design set (see Figure 3c). The linear SVM and PLS-DA 
methods have been designed with this in mind and makes what would appear 
to be rational choices. For instance, in many real-world problems with high 
dimensionality many of the features will actually be correlated to an 
underlying variable suggesting that PLS-DA is a good choice. It is for 
example reasonable to expect gene expression patterns to be correlated. The 
DLD on the other hand may suffer greatly by using variables for 
discrimination that appeared informative by chance. A general strategy for 
overcoming this is feature selection where informative features are chosen 
prior to designing the classifier. The simplest strategy for doing this is 
applying some test of how well each of the features separates the classes on 
their own choosing the top-ranked features. In Paper V we examine if 
unlabeled data can be used to boost supervised feature selection.  

Rough Set Classification 
In the rough set classifier the model is represented as a set of rules, each 
stating conditions the example should fulfill to obtain a given label. For a 
full introduction to rough sets in classification, see e.g. (Ohrn and Rowland 
2000). Briefly, rough set classifiers are based on the mathematical theory of 
rough sets for describing uncertainty in data. In contrast to probability theory 
that provides a measure of uncertainty, rough set theory is concerned with 
computing what is uncertain. However, the workings of rough set classifiers 
can be explained without a formal introduction to the theory. Given a dataset 
D, where each object is described by a set of discrete valued attributes 
(features) A, the algorithm computes minimal subsets of A that suffice to 
distinguish as many objects in D as the entire set of attributes A can.  
Consider e.g. the dataset in Table 1. 
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Attribute 1 Attribute 2 Attribute 3 Label 
Blue 
Blue 
Red 
Blue 

Wet 
Wet 
Wet 
Dry 

Funny 
Funny 
Boring 
Boring 

Crunchy 
Crunchy 
Smooth 
Smooth 

 

Table 1: Fictive data set for illustration of the rough set classifier methodology. See 
text for details. 
 
Each observation is labeled with values in {Crunchy, Smooth} and is 
described by three attributes {Attribute 1, Attribute 2, Attribute 3}, valued in 
{Red, Blue}, {Dry, Wet} and {Boring, Funny} respectively. Now we ask 
what the minimal subsets of attributes are that retain the same discriminative 
power as all three attributes. Furthermore, in devising a classification 
scheme we are not interested in discriminating between observations 
belonging to the same class (same label). Now, from inspection it is obvious 
that only Attribute 3 could be used on its own to discriminate between the 
two classes. Furthermore, we note that Attribute 1 and 2 together could be 
used to discriminate between the classes. Thus, {Attribute 3} and {Attribute 
1, Attribute 2} are the minimal subsets that retain the full discriminatory 
power of the full attribute set. Each such minimal subset is termed a reduct. 
It is important to note here that even when there is overlap between different 
classes, the reducts are still well defined.  
Computing all reducts is computationally expensive and heuristics such as 
genetic algorithms must be applied for large datasets. Furthermore, instead 
of computing reducts which distinguish all members of one class from those 
of another class (a full reduct) it is common to compute reducts which 
discriminate one object from a class from all other of another class (object 
based reducts). A further development is approximate reducts in which the 
restrictions are loosened; the idea is to compute reducts which distinguish an 
object (or set of objects) from at least some user specified fraction of objects 
from other classes.  
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Regardless of the manner they were computed a rule may be formed from 
each reduct such as “IF Attribute 1 = Blue and Attribute 2 = Wet THEN 
Crunchy”. In a resulting rough set classifier there are typically many such 
rules and it can be difficult to appreciate any general characteristics of them. 
Nevertheless, each of the rules is easy to interpret and general rules, i.e. rules 
which apply to a large set of examples, can be very valuable. When a new 
example is to be classified, its attributes are checked against each of the 
rules’ left hand side and matches are noted. In order to arrive at a final 
classification a voting scheme is employed which corresponds to the practice 
of boosting (Hastie, Tibshirani et al. 2001) in which a large number of 
classifiers are built and the final classification is formed from the consensus.  

The primary motivation for employing a rough set classifier is that the 
model has a rather pleasant and intuitive interpretation. It generates a 
minimal description of objects in a set (i.e. a class) in terms of a set of values 
of attributes. That being said, the method requires the attributes to take 
discrete values, thus continuous valued features requires discretization. 
However, this will not be covered here since in this work rough set 
classifiers have only been used for discrete, binary valued attributes. In 
Paper III we use rough sets classification for computing minimal subsets of 
cis-regulation descriptors that explain gene expression. 

Performance Evaluation 
Regardless of how the classifier was built its performance must be evaluated 
on unseen data. Performance of classifiers is usually measured by the error 
rate: the probability that a sample is misclassified.  If the design data were to 
be used for performance evaluation the estimate is very likely to be 
positively biased since most learning algorithms output the classifier that 
minimizes the error rate on that particular data set. The straight-forward 
solution is to use a hold-out dataset for test. If the hold-out dataset is very 
large the empirical error rate in the test set will be a good estimate of the true 
error rate. However, in many bioinformatics applications there are typically 
few samples available for test and the error rate estimate is uncertain.  The 
uncertainty about the error rate q after misclassifying k out n samples in a 
hold-out set can be described as a Bayesian probability density function as: 

 

(7) 

where we have assumed that we have no prior information about the error 
rate, that is P(q) is uniform on the interval [0,1], and that the n tests were 
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independent of each other. The function P(q|k,n) can be used to obtain useful 
numbers such as an estimate of what error rate the true error rate is smaller 
than with some probability, or a credibility interval around the expected 
error rate. Proper estimates require much data. Suppose the true error rate of 
the classifier is 0. When using (7) to state with 95% confidence that the 
classifier performs no worse than guessing (50% error rate), only 4 samples 
are needed. However, about 30 samples are needed to state that the error rate 
is lower than 10%, 60 samples for below 5% and some staggering 300 
samples to state that the error rate is below 1% with 95% confidence. Many 
microarray datasets contain on the order of 20 samples in total and the trade-
off between how good the classifier will be (number of samples allocated to 
design) and how certain one is about the performance (number of samples 
allocated to validation) becomes crucial. 

There are a number of computational techniques for alleviating the 
problem, such as cross-validation and bootstrapping (resampling). Cross-
validation (Hastie, Tibshirani et al. 2001) is the most commonly used 
method for alleviating this problem, presumably because of its 
computational simplicity. The basic strategy is to divide data in to k blocks. 
One of the blocks is left out from classifier design which is performed on the 
remaining k-1 blocks and the resulting classifier is tested on the remaining 
block to produce an error rate estimate. This procedure is then repeated k 
times. The mean of the individual error estimates is an unbiased estimator of 
how well the particular learning algorithm performs on the problem. 

There are a number of problems with this strategy however. For instance, 
commonly only the mean error is reported, should the variance be large it 
indicates that there is a high risk of building a bad classifier. Also, although 
the test sets are independent, the classifiers tested are not since they all share 
k-2 blocks of data with other classifiers tested. Furthermore, if k is small in 
comparison to the number of samples, the performance estimate may very 
well be pessimistic: performance increases greatly with increasing design 
sample size for small design sets. On the other hand if k is taken equal to the 
number of samples, a special case called leave one out cross-validation, the 
classifiers will become very similar and consequently the performance 
estimates correlated. 

In Paper IV we investigate a different route for obtaining better 
performance estimates than what a straight-forward hold-out test can provide 
for small sample sets. Specifically, we study whether tighter bounds can be 
obtained by updating the prior P(q) with descriptive statistics obtained from 
three independent hold-out tests. 
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Unsupervised learning 
A common task in bioinformatics is to identify subgroups within data. This 
can be accomplished using unsupervised learning algorithms that output a 
model of the data that identify relationships between samples and variables. 
Unsupervised learning algorithms in common use in bioinformatics are 
clustering algorithms such as k-means clustering and agglomerative 
hierarchical clustering (Hastie, Tibshirani et al. 2001).  

In k-means clustering the algorithm’s objective is to divide the samples 
into k coherent clusters by finding the partitioning of the samples that 
minimize the mean distance within the clusters.  Each sample is initially 
assigned to one of the clusters (e.g. at random). Then each of the samples is 
reassigned from cluster i to cluster j if and only if the mean distance between 
the sample and other samples in cluster j is smaller than in cluster i. This is 
iterated until no sample can be reassigned or a limit on the number of 
iterations is reached. Of course, the distance function must be specified. 
Common choices for real valued features include the Euclidean metric and 
angular separation, for binary features the Manhattan distance is a natural 
choice. The main advantage of k-means clustering is the speed of the 
algorithm, the main drawback that the output depends on the initial 
assignment. It is good practice to check the output clusters for stability by re-
running the algorithm with a different initial assignment. 

Agglomerative hierarchical clustering algorithms sequentially clusters 
objects together by choosing the closest pair of objects, where objects may 
be either individual observations or clusters formed in a previous step. The 
process stops when all observations are joined into a single cluster. It is 
common to present the results as a binary tree which graphically represents 
the computational process, the dendrogram. Distance between pairs of 
observations is determined by the metric in use. The distance between two 
clusters is determined by another function, the linkage function. There are 
three linkage functions in wide-spread use: average, single and complete 
linkage. Average linkage function calculates the distance between two 
clusters as the average pair-wise distance between observations in one of the 
clusters to observations in the other cluster. Single linkage computes the 
smallest distance between any pair samples from the clusters, complete 
linkage the largest distance. It is well-known that cluster structure is greatly 
affected by the choice of linkage and metric function. There is a large 
literature available debating the appropriateness of different settings, but, by 
and large, the choice is arbitrary and left to the investigator.  
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High-Throughput Data Sources 

A high-throughput analysis processes a large number of samples rapidly 
where as massively parallel analyses perform a large number of analyses 
simultaneously on a single sample. For instance, even though an mRNA 
microarray measures tens of thousands of transcript concentrations in a 
single analysis, the analysis of each sample can be quite laborious. However, 
high-throughput and massively parallel techniques alike generate vast 
amounts of information and similar computational challenges are faced in 
the analysis. In this thesis we have used primary data from mRNA 
microarrays, genome-wide location analysis and microculture cytotoxicity 
assays.  

 
mRNA microarrays 
By now, mRNA microarrays is a standard part of the molecular biology tool 
chest. Although there are a number of different approaches, the basic 
principle is the same: short segments of DNA are attached to a surface in 
spots (Schena, Shalon et al. 1995). A sample of mRNA is reverse transcribed 
and labeled with fluorophors and hybridized to the spots on the chip. Then 
the signal intensity of the fluorophors in each spot is recorded. The signal is 
roughly proportional to the amount of the corresponding mRNA in the 
sample. 

Commercial interests have brought quality control in the production of 
chips and few laboratories produce their own microarrays today. With 
modern microarrays, reproducibility is high and only few vendors 
recommend technical replicates. The technology is still expensive however, 
running upwards 5 kSEK per chip. Thus the number of experiments that can 
be performed is limited within reasonable economic constraints. In addition, 
in e.g. clinical use, the number of samples is limited by the available 
material. This is a problem when the measurements are used for exploratory 
purposes. The risk of finding spurious correlations increases as the number 
of correlations tested grows. 

Another issue is the samples themselves. Typically, one is only interested 
in a subpopulation of cells in the sample. Careful protocols are needed for 
sample preparation to not draw false conclusions, e.g. a marker for 
contamination of normal tissue in a tumor sample may appear linked to 
characteristics of the tumor. Techniques that allow the study of individual 



 35

cells such as laser capture microdissection (Emmert-Buck, Bonner et al. 
1996) and single cell PCR (Emmert-Buck, Bonner et al. 1996; Fink, Seeger 
et al. 1998) are emerging, but those techniques are still expensive and time-
consuming. 

In Paper II and III we use cDNA microarray data from dividing 
Saccharomyces cerevisiae cultures (Spellman, Sherlock et al. 1998), in 
Paper I we analyze microarray data from two different cancer cell line panels 
(Dhar, Nygren et al. 1996; Weinstein and Pommier 2003). 

Genome-Wide Location Analysis 
Also called ChIP-on-chip, genome-wide location analysis is a technique for 
determining the location of binding sites for DNA-binding protein. The basic 
idea is to cross-link any DNA-binding proteins to the chromatin and 
hybridize the cross-linked complex to a DNA microarray. Labeled 
immunoglobulins targeting the DNA-binding proteins are then allowed to 
bind to the hybridized complexes, thus providing a view of where the 
transcription factor binds in the genome. Importantly, the analysis only 
provides information about the general vicinity of the binding site; the 
specific locus is not resolved. In Paper III we use the genome-wide location 
analysis data of 251 transcription factors in Saccharomyces cerevisiae  (Lee, 
Rinaldi et al. 2002; Harbison, Gordon et al. 2004).  

Microculture Cytotoxicity Assays 
There are several different methods for measuring the cytotoxic and/or 
cytostatic effect of compounds in vitro, such as the MTT assay (Mosmann 
1983) and fluorometric microculture cytotoxicity assay (FMCA) (Larsson 
and Nygren 1989). Both methods measure the cytotoxic effect of a 
compound by comparing the cell count in a treated culture to that in a 
control culture. Since actually counting the number of cells would be far too 
laborious a surrogate for the cell count is used. In the case of the FMCA 
method the conversion of fluorescein diacetate into its fluorescent derivate 
fluorescein by living cells is used. This allows the analysis to be carried out 
in a massively parallel high throughput fashion by growing cell 
microcultures in a microtitre plate. The activity of a compound is reported as 
either the fraction of cells surviving at some fixed concentration or the 
estimated concentration for which half of the cells die (known as the 
inhibitory concentration 50, IC50). 

In Paper I we use drug-response data for cytotoxic compounds generated 
by using the FMCA method on a panel of cancer cell lines (Dhar, Nygren et 
al. 1996) as well as drug-response data generated in a screening program 
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using the MTT assay at National Cancer Institute, USA (Alley, Scudiero et 
al. 1988; Shoemaker, Monks et al. 1988). 
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Applying Domain Knowledge in Integrative 
Analyses 

This thesis investigates different ways that heterogeneous data obtained from 
high-throughput analyses can be merged to analyze and generate 
sophisticated hypotheses about the molecular underpinnings of biological 
systems. Merging of heterogeneous data is commonly called data fusion, a 
term that originated in signal processing where the heterogeneous data is 
collected from different sensor systems in order to make better decisions 
than could be made by using only a single sensor system. A related term is 
integrative analysis, used to denote analyses that merge different types of 
data. In our integrative analyses we focus on how to use domain knowledge, 
specifically how to create algorithms that can help the investigator interpret 
data in view of existing knowledge. Below I will highlight these aspects of 
each of the Papers as well as summarize the main results. 
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Genome-Wide Correlation analysis of Gene expression 
and Chemosensitivity 
In Paper I we study data fusion between drug activity and gene expression in 
the context of cancer chemotherapy. It has been shown that the cytotoxic 
activity profile of a compound across a cancer cell line panel can be used to 
identify the compounds’ mechanism of action by comparing the profile to 
profiles of compounds with known mechanisms of action (Dhar, Nygren et 
al. 1996). Identifying the mechanism of action is an important problem since 
high-throughput screening of chemical libraries for cytotoxic activity is a 
routine operation that generates many leads for future therapies. In parallel, 
mRNA microarrays analysis is being used to find molecular pathways whose 
regulation reflects cancer drug response. The underlying idea is that 
correlations between drug activity and gene expression in a cancer cell line 
panel can identify molecular pathways conferring resistance or sensitivity 
(Rickardson, Fryknas et al. 2005). Many drugs depend on the same 
chemoresponse mechanisms, and furthermore, many genes are co-regulated. 
Thus, it is only natural to seek to lift the analysis to correlations between 
subsets of similar genes and drugs. A visual method for subset analysis was 
suggested by Weinstein and coworkers who used it to find a set of 
compounds that were actively transported out of the cells by Pgp/Mdr-1, a 
well-known system for cellular detoxification (Weinstein, Myers et al. 
1997). In brief their method was as followed: the genome-wide pattern of 
correlations for all pairs of drug sensitivity and gene expression profiles is 
displayed in an array of colored blocks where the Pearson correlation 
coefficient between drug activity and gene expression is indicated by the 
color of the blocks. Each row corresponds to a drug and each column to a 
gene. The rows and columns correspond to the order of the leaves in 
dendrograms obtained from hierarchical clustering of the correlations 
between drugs and genes, respectively. Using this presentation makes it 
possible to visually identify groups of similar genes and drugs with strong 
correlations between the corresponding drug sensitivity and gene expression 
profiles as a coherent region in the map of correlations as shown in Figure 4. 
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Figure 4. Example of a visualization of gene expression-drug activity correlations 
that can be used for identifying associations between drugs and molecular pathways. 
The framed rectangles denote examples of related drugs that all correlate to a set of 
co-regulated genes. See text for details. 

However, since the clustering is based on the correlation coefficients 
there is little information in the coherent regions. In fact, they are likely to 
appear even if the primary data contained only noise.  Furthermore, several 
researchers have pointed out that drugs with similar mechanisms of action 
tend to cluster together whether clustered based on the correlations with a set 
of gene expression profiles or directly based on drug sensitivity profiles. 
However, the resulting dendrograms are not identical (Scherf, Ross et al. 
2000; Dan, Tsunoda et al. 2002).  

In Paper I we demonstrate that the distance between two drugs described 
by the correlations of their activity profiles with a set of genes’ expression 
patterns is mathematically equivalent to using a different distance function 
(metric) for the original activity profiles that depends on the gene expression 
data. We then analyze this new metric and show that by clustering 
correlation coefficients instead of primary data, statistical dependencies due 
to genetic relationships between the cell lines are reinforced and information 
is lost.  Thus we recommend that the visualization is based on independent 
clustering of drug activity profiles and gene expression respectively, and that 
if there is domain knowledge suggesting that there are strong correlations 
between cell lines, a more informative analyses could be obtained by 
employing the Mahalanobis distance (Webb 2002). 
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Using Semantics of Time Profiles:  Applications to the 
S. cerevisiae Cell Cycle 
In Papers II and III we study the cell cycle in the budding yeast 
Saccharomyces cerevisiae. The organism is of great economical value 
because of its use in fermentation processes, particularly for brewing and 
baking. However, it is also a very important as a eukaryotic model organism, 
and this is also how we view it: as a simple, molecularly well annotated 
model organism for evaluating our analysis methods. 

In many microarray studies the gene expression patterns recorded are 
clustered using some unsupervised learning algorithm. The resulting clusters 
are then inspected to see if some biological insight can be delivered by cross-
checking against domain knowledge such as annotations of gene function to 
see if some gene function is overrepresented in the cluster. It is at this stage 
the data gains semantics, that is, starts to have some meaning in the view of 
the investigator. In the analyses of Paper II and III we define which groups 
of genes are relevant to the system ourselves in a problem specific manner: 
we use time-series data to tell us whether a gene is periodically or not during 
the cell cycle under a given experimental condition. The fact that a gene is 
periodically expressed implies that it is regulated by the cell cycle. It is this 
implied meaning of periodic expression which motivates our studies of 
associations between sequence motifs and periodic expression. In Paper II 
this distinction is quite trivial, however, in Paper III it becomes important as 
it facilitates the generation of sophisticated hypotheses about cell cycle 
regulation. 
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Assigning Semantics to mRNA Microarray Time Profiles: 
Bayesian Inference for Periodicity Detection 
One of the first applications of microarrays was to identify genes involved in 
the cell cycle of S. cerevisiae (Spellman, Sherlock et al. 1998) and this was 
done by identifying genes that were periodically expressed during the cell 
cycle. Since the original analysis, many different algorithms have been 
proposed for the purpose of identifying periodically expressed genes most of 
which rely on supervised learning methods, that is they require a training set 
consisting of genes known to be periodically expressed. Thus we saw a need 
for a detector that did not require a training set but was able to use an 
estimate of the period time. Such a detector would be valuable for cell cycle 
studies in poorly annotated organisms where the relevant genes to be used 
for training aren’t known. Furthermore, there are other periodic processes 
that are less well studied than the cell cycle, such as circadian rythms and 
glycolytic oscillations. In Paper II we develop a model-based detector of 
periodicity in the Bayesian formalism that is able to use uncertain 
information about the period time of the process. In the case of the cell cycle 
this information would be an estimate of the cell division time. We 
demonstrate its applicability on simulated and compare it to two other 
detectors that do not require a training set (Wichert, Fokianos et al. 2004; de 
Lichtenberg, Jensen et al. 2005). Our detection algorithm has been 
independently benchmarked by Adhesmäki and coworkers (Ahdesmaki, 
Lahdesmaki et al. 2007) who confirmed that it was optimal for the input 
signals we assume in our derivation, but that it was quite sensitive to outliers 
in the data. This might offer an alternative explanation for the weak 
performance we see on a set of benchmark sets (de Lichtenberg, Jensen et al. 
2005) which we initially attributed to our unbiased analysis (in contrast to 
the supervised methods we did not use any information from these 
benchmark sets). 

We apply the detector to microarray time series from synchronized yeast 
cultures and investigate whether previously described upstream sequence 
motifs (Hughes, Estep et al. 2000) could account for the periodicities 
observed. This was done by analyzing whether our detector of periodicity 
could predict the presence of different upstream sequence motifs. In doing so 
we merged two very different data sources, DNA sequence and quantitative 
time series of gene expression. The genes detected as periodically expressed 
were found to have a statistically significant overrepresentation of known 
cell-cycle regulated sequence motifs. One known sequence motif and 18 
putative motifs, previously not associated with periodic expression, were 
also overrepresented.  

In the same manner we analyzed functional annotations to cell cycle and 
periodicity, i.e. whether periodicity could predict domain knowledge about 
cell cycle involvement. The domain knowledge we used took the form of 
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Gene Ontology annotations (Ashburner, Ball et al. 2000). In practice an 
ontology is a controlled vocabulary of terms that may be combined 
according to a strict syntax. The Gene Ontology has three different branches: 
localization, molecular function and biological process. The terms are 
organized in a top-down fashion2 and a distinction is made between lower 
level terms that are parts of the parent term e.g. M-phase is part of the cell 
cycle or whether the relationship constitutes a subclass e.g. the insulin like 
growth factor 1 receptor is a tyrosine kinase. Little studied entities will be 
annotated with more general terms. In addition, each term carries a tag 
denoting the type of evidence used for the annotation (literature, inferred by 
computation, inferred by a mutant phenotype et cetera). When we applied 
our detector to mRNA expression time profiles from S. cerevisiae shows that 
the genes detected as periodically expressed only contain a small fraction of 
the genes annotated to the biological process of cell cycle as inferred from 
mutant phenotype. For example, when the probability of false alarm was 
equal to 7%, only 12% of the cell cycle genes were detected. 

When a labeled dataset of genes that are periodically expressed is 
available, it would make sense to use that information in a detector based on 
supervised learning. However, as shown by simulations, the detector we 
propose is useful in situations when the only domain knowledge available is 
vague prior information about the period time of the process for which one 
wants to find the relevant genes. 

 

Revealing Cell Cycle Control Mechanisms  
A seminal article by Beer & Tavazoie showed the possibility of predicting 
gene expression from upstream sequence features (Beer and Tavazoie 2004). 
The models they constructed generated testable mechanistic hypotheses on 
gene regulation and their paper stimulated research into alternative methods 
for predicting gene expression from sequence. For instance, Hvidsten and 
Wilczynski with coworkers used a rough set model to explain mRNA 
expression clusters in terms of the presence of upstream sequence motifs 
(Hvidsten, Wilczynski et al. 2005) and transcription factor binding data 
obtained from ChIP-on-chip data (Wilczynski, Hvidsten et al. 2006).  The 
main drawback of these approaches and others is that the generated 
hypotheses take the form of rules stating ‘IF gene has some genomic feature 
THEN the gene’s expression pattern clusters into some cluster’.  Thus the 
hypotheses have no useful biological meaning a priori; meaning must be 
inferred by finding general characteristics of the genes that are members of 
‘some cluster’ by using e.g. Gene Ontology (Ashburner, Ball et al. 2000) 
annotations. 
                               
2 Formally, the Gene Ontology is a directed acyclic graph (DAG). 
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In Paper III we demonstrate how more useful hypotheses can be 
generated by assigning semantics to the time profiles a priori. In our 
prototype application we study the regulation of periodically expressed 
genes in the yeast S. cerevisiae. Specifically, we target cell cycle regulation 
using prior knowledge about the shape of the time profiles that are 
characteristic to the process and study the well known phenomenon that 
there are genes that only appear as periodically expressed during the cell 
cycle when some synchronization methods are used (Shedden and Cooper 
2002).  This is done by dividing the genes into different classes depending 
on which synchronization methods produced a detectable periodicity. Each 
gene is described by novel descriptors of cis-acting regulation that are based 
on statistical associations between upstream sequence motifs inferred from 
sequence (Hughes, Estep et al. 2000) and experimentally determined 
transcription factor binding sites (Lee, Rinaldi et al. 2002; Harbison, Gordon 
et al. 2004). These novel descriptors thus integrate two heterogeneous data 
sources: sequence derived motifs and ChIP-on-chip data. This allows us to 
generate sophisticated hypotheses that suggest which combinations of 
transcription factors binding and sequence motifs effect cell cycle regulation 
when a particular synchronization method is used. We are able to 
demonstrate that targeting periodically expressed genes enriches the model 
with more known cell cycle regulators than when clustering is used for 
grouping the genes. Furthermore, when analyzing the combinations of 
transcription factors and sequence motifs we find evidence for a hierarchical 
additive structure of gene regulation. The presence of this structure in the 
organization of gene suggests it is less rich than the initial studies that found 
diverse and complex rules (Beer and Tavazoie 2004). Indeed it was recently 
demonstrated that it is possible to generate predictions as accurate as those 
of Beer & Tavazoie using a model that doesn’t take combinatorial 
information into account (Yuan, Guo et al. 2007), in other words a less rich 
model than that originally used by Beer & Tavazoie.  

The generic structure of our method could be used study any process 
where there is prior knowledge about time profile shapes, such as e.g. in 
infections which proceed through discernable phases and generates rich 
hypothesis. Furthermore, since the rough set classifier we employ has 
features which allows the investigator to constrain how the subsets used to 
discriminate between different classes of genes are computed we believe it 
could be a useful tool in future studies. 
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Improving Error Rate Estimation 
It has been pointed out that many of the performance estimates reported 
from tumor classification studies using mRNA microarrays are so uncertain 
that it cannot be excluded that the classifiers perform no better than random 
guessing (Simon, Radmacher et al. 2003). Given the great interest in 
developing diagnostic (Fryknas, Wickenberg-Bolin et al. 2006), prognostic 
(van 't Veer, Dai et al. 2002) and predictive (Hess, Anderson et al. 2006; 
Potti, Dressman et al. 2006) tests using microarray analysis it is crucial to 
obtain good performance estimates of the classifier before a decision could 
be made to put it into clinical use. 

Theoretical approaches have made significant progress towards 
determination of bounds on the error rate of supervised classifiers. However, 
the estimates obtained from a conventional holdout test using Bayesian 
inference still deliver tighter bounds than these new approaches. For sample 
sizes less than a few hundred and no prior knowledge about the true 
performance even the Bayesian estimates become unacceptably uncertain in 
many applications.  

In Paper IV we use simulations to show how improved estimates can be 
obtained based on the maximum entropy principle. These intervals, 
maximum entropy empirically based credibility intervals (MEECIs), are 
based on the results from a few non-overlapping designs and tests which 
provides information about how well the classification algorithm performs 
on the particular problem domain. This domain knowledge may then be used 
as a prior in the Bayesian framework when obtaining the final estimate. In 
practice, the improvement can be used to reduce the uncertainty about the 
unknown performance. Alternatively, the improvement can be used to keep a 
fixed level of uncertainty based on a smaller number of examples. 
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Extracting Information from Unlabeled Data 
The first problem faced when designing a classifier is feature selection. 
Selecting features is a particularly pressing problem when designing 
classifiers from microarray data. There are thousands of features to consider, 
only a small subset of which discriminates between the classes. Since there 
are far fewer samples than features the risk of including non-informative 
features in the classifier is high.  In Paper V we investigate a method for 
eliminating non-informative features when there is additional unlabeled data 
available. The method is tailored for the situation when the classifier should 
be applied to data from a different distribution than the design data. This 
situation is faced when designing predictors of chemosensitivity from cell 
line panel microarray data that are to be applied to patient samples (Potti, 
Dressman et al. 2006; Lee, Havaleshko et al. 2007). If successful, a patient’s 
chemotherapy could be tailored on an individual basis. 

The reason for designing the classifier using cell line data is that it is 
possible to measure the effect of a single drug using cell lines where as in the 
clinic, patients are almost exclusively treated using a combination of drugs, 
and there is no way of determining which drugs were actually effective. 
However, one would not expect all of the genes that discriminate between 
sensitive and resistant cell lines to be relevant for prediction in patient 
material so there is a need for methods that can select only the features 
relevant in the patients. Furthermore, many publicly available datasets are 
not labeled, and even if there is labeled data available one typically has to 
use it all for estimating the performance of the classifier. Thus there is a need 
for algorithms that can design a classifier tailored for the patient samples 
without using the class labels. The unlabeled dataset thus constitutes prior 
knowledge about the distribution of gene expression which the algorithm is 
able to use for selecting relevant features. 

The algorithm we study uses a list of candidate features obtained by 
supervised feature selection on the design set. It then constructs a classifier 
using the candidate list and predicts class labels on the unlabeled data set. A 
new list of candidates is computed by applying the supervised feature 
selection scheme to the unlabeled data using the predicted class label as true 
labels. Those which were also selected initially are saved, and a new 
classifier is built using those features in the design data. The process is then 
iterated, adding features from the initial selection that also discriminate 
between predicted class labels. In this manner we are able to integrate 
unlabeled data into a supervised feature selection scheme. We demonstrate 
using simulated as well as real data that the proposed method can eliminate 
false positives and in some cases dramatically improve classifier 
performance. 
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Final comments 

We have proposed new methods for learning molecular biology that provide 
better analyses and estimates by integrating domain knowledge into the 
analysis. This is important since the throughput of biological analyses is 
increasing and automated analyses are called for, analyses that can help 
interpret data in the view of the investigator’s prior knowledge. In the words 
of Theodosius Dobzhansky: 

Scientists often have a naive faith that if only they could discover enough 
facts about a problem, these facts would somehow arrange themselves in a 
compelling and true solution. 

The subject of this thesis is bioinformatics, a relatively young, inter-
disciplinary field of research. Bioinformatics attracts researchers from many 
other fields such as computer science, statistics, signal processing and 
machine learning who find interesting problems to which they can apply 
their methods. At the fringe of bioinformatics we find the consumers of their 
results: the experimentalists. Due to the language barriers that arise when 
different disciplines intersect much research has been devoted to what can be 
done rather than what should be done. However, I believe the language 
barriers between experimentalists and bioinformaticians are starting to break 
down and soon even high-level bioinformatics analyses will be employed in 
everyday research by experimentalists.  
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Svensk sammanfattning 

 
Dagens molekylärbiologer har tillgång till kraftfulla mättekniker som kan 
mäta tusentals molekylärbiologiska analyter parallellt.  En av de första 
metoderna som blev allmänt tillgänglig var mRNA-mikroarrayen som kan 
mäta ett provs innehåll av tiotusentals olika mRNA i en enda analys.  
Sedermera har ytterligare massivt parallella metoder tillkommit. Till 
exempel ChIP-on-chip där kromatinimmunoprecipiteringstekniken som 
används för att identifiera var i arvsmassan en transkriptionsfaktor binder 
parallelliserats med hjälp av mikroarraytekniken, arraybaserad komparativ 
genomhybridisering som kan detektera förändringar i geners kopietal samt 
SNP-arrayer som kan identifiera polymorfier i arvsmassan. Dessa massivt 
parallella tekniker brukar användas för att generera hypoteser om vilka 
molekylära system som ger upphov till en fenotyp eller är inblandade i en 
sjukdoms etiologi. Till exempel kan cellprover från sjuka och friska 
individer jämföras med hjälp av mRNA-mikroarrayer för att se vilka geners 
uttryck som skiljer sig mellan sjuka och friska. På så sätt skapas en bild av 
vilka gener som är inblandade vilken sedan kan testas i uppföljande 
experiment. Denna avhandling som består av fem delarbeten undersöker hur 
data som genererats med hjälp av massivt parallella tekniker kan kombineras 
för att skapa mer sofistikerade hypoteser om den underliggande biologin. 
Eftersom så många hypoteser kan genereras är det viktigt att kunna begränsa 
analysen till hypoteser som är relevanta givet den bakgrundskunskap som 
finns om biologin. Bakgrundskunskapen kan antingen ta formen av 
annoteringar av gener där tidigare experiment har utrett deras funktion eller 
vara resultatet av en tidigare upparbetning av relevanta data. Våra 
tillämpningar fann vi inom två besläktade forskningsfält: i två av delarbetena 
studerar vi cellcykelns reglering, i de resterande tre delarbetena avhandlar vi 
frågeställningar som uppstått i samband med utveckling och val av 
kemoterapi mot cancer (en sjukdom som beror på felaktig cellcykel-
reglering).  

I det första delarbetet undersöker vi en metod som används för att 
identifiera samreglerade gener som ger upphov till resistens mot eller är 
nödvändiga för en lyckad behandling med en grupp av cytostatika. I 
laboratoriet studeras cytostatika med hjälp av cellinjemodeller. Genom att 
mäta den cytotoxiska effekten av en substans i flera olika cellinjemodeller 
och korrelera den mot respektive cellinjes genuttrycksmönster kan gener 
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inblandade i kemoresponsen identifieras. När flera substanser testas kommer 
varje substans ge upphov till ett korrelationsmönster gentemot genuttrycket i 
cellinjerna. Liknande substanser som har samma verkningsmekanism 
kommer att ge upphov till liknande korrelationsmönster. Genom att 
visualisera dessa korrelationsmönster är det möjligt att identifiera substanser 
med samma verkningsmekanism och samtidigt associera dem till en grupp 
samreglerade gener. I vår undersökning visar vi att eftersom analysen inte tar 
hänsyn till släktskapet mellan cellinjerna kan resultatet vara missledande. 
Detta behov av att ta hänsyn till bakgrundskunskap är ett återkommande 
tema. 

Delarbete två och tre studerar cellcykelns reglering i jästsvampen 
Saccharomyces cerevisiae, ett ofta använt modellsystem för eukaryota celler. 
I delarbete två föreslår vi en periodicitetsdetekor som kan användas för att 
identifiera gener som är cykliskt uttryckta. Vår detektor utvecklades för att 
använda bakgrundskunskap om periodtiden för att avgränsa möjligheten att 
en gen är cykliskt uttryckt. Vi utvärderar detektorn på simulerade data och 
tillämpar den sedan på mRNA-tidsserier (mätta med mikroarray) från 
synkroniserade jästkulturer. Sedan analyserar vi huruvida tidigare föreslagna 
inbindningsplatser för transkriptionsfaktorer i jästsvampens arvsmassa kan 
förklara varför vissa gener detekteras av periodicitetsdetektorn. På så sätt 
generar vi hypoteser om vilka inbindningsplatser som används för att reglera 
genuttryck under cellcykelns gång. Vi undersöker också huruvida 
bakgrundskunskap i form av tidigare känd inblandning i cellcykeln kan 
förklara geners cykliska uttryck. I det tredje delarbetet skapar vi nya särdrag 
för generna med hjälp av associationer mellan inbindning av 
transkriptionsfaktorer och sekvensmotiv i arvsmassan. Sedan studerar vi 
huruvida dessa särdrag kan förklara fenomenet att vissa gener endast 
förefaller vara cykliskt uttryckta när en viss (eller vissa) synkroniserings-
metod(er) används. På detta sätt genereras hypoteser om hur cellcykeln 
regleras. En viktig skillnad mot tidigare föreslagna metoder är att dessa 
hypoteser uttrycks i termer som är meningsfulla för experimentalisten: varje 
hypotes föreslår vilka transkriptionsfaktorer som behöver binda var i 
närheten av gen för att den ska bli cykliskt uttryck under ett givet 
experimentellt förhållande.  

I delarbete fyra och fem återvänder vi till sammanhanget kemoterapi mot 
cancer, om än våra fynd är mer allmängiltiga. Problemen som avhandlas 
uppstår i samband med utveckling av prediktiva test för kemoterapisvar som 
baseras på multivariat analys av mRNA-mikroarraydata. Eftersom 
mikroarrayanalyser är kostsamma finns det vanligtvis få prov tillgängliga för 
att utveckla och testa det prediktiva testet. En avvägning måste göras mellan 
hur god uppskattning av testets prestanda kan göras och hur bra testet 
kommer att bli (multivariata metoder kräver i regel mycket data för 
parameteranpassning).  
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Delarbete fyra behandlar problemet med att uppskatta hur bra ett 
prediktivt test kommer att fungera. Specifikt så undersöker vi huruvida 
information från flera oberoende test på data som använts för att designa det 
prediktiva testet kan användas för att bättre uppskatta testets prestanda. 
Informationen uttrycks som en sannolikhetstäthetsfunktion som speglar 
vilket prestanda som är troligast och kan användas för att avgränsa vilka 
prestanda som är troliga när ett slutgiltigt test utförs på testdata. Med 
simulerade data visar vi att metoden vi använder kan ge rättvisande och 
förbättrade estimat av prestanda. 

Avslutningsvis så undersöker vi i delarbete fem en metod som kan 
använda data från prover med där behandlingsutgången är okänd (omärkta 
prover) för att välja ut relevanta gener vid konstruktionen av prediktiva test 
från mikroarraydata. En sådan metod är nödvändig då man önskar 
skräddarsy en kemoterapi utifrån ett prediktivt test eftersom data som 
används för att konstruera testet av nödvändighet kommer från 
cellinjemodeller, men testet ska användas på prover från patienter. 
Anledningen till att testet måste konstrueras baserat på cellinjemodeller är att 
det saknas data på genuttryck för patienter som behandlas med enstaka 
läkemedel eftersom man i praktiken alltid använder flera läkemedel i 
kombination. Därmed vet man inte vilka av patienterna som hade nytta av 
vilket läkemedel i kombinationerna. Vidare är det troligt att prover från 
cellinjemodeller skiljer sig från patientprover eftersom vissa av generna som 
förefaller vara prediktiva i cellinjemodellerna kanske inte ens är uttryckta i 
patientproverna. Vi föreslår och utvärderar en lovande metod för att välja ut 
de gener som är prediktiva i både cellinjer och patientprover med hjälp av 
omärkta patientprover som är mer tillgängliga än märkta patientprover. 
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