
REVIEW

A Hitchhiker’s guide through the bio-image analysis
software universe
Robert Haase1,2 , Elnaz Fazeli3 , David Legland4,5 , Michael Doube6 , Siân Culley7 ,
Ilya Belevich8 , Eija Jokitalo8 , Martin Schorb9,10 , Anna Klemm11 and Christian Tischer10

1 DFG Cluster of Excellence “Physics of Life”, TU Dresden, Germany

2 Center for Systems Biology Dresden, Germany

3 Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, Finland

4 INRAE, UR BIA, Nantes, France

5 INRAE, PROBE Research Infrastructure, BIBS Facility, Nantes, France

6 Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong

7 Randall Centre for Cell & Molecular Biophysics, King’s College London, UK

8 Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland

9 Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany

10 Centre for Bioimage Analysis, European Molecular Biology Laboratory, Heidelberg, Germany

11 VI2 – Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Sweden

Correspondence

R. Haase, DFG Cluster of Excellence

“Physics of Life”, TU Dresden, 01307

Dresden, Germany

E-mail: robert.haase@tu-dresden.de

(Received 1 February 2022, revised 1 May

2022, accepted 12 May 2022, available

online 29 July 2022)

doi:10.1002/1873-3468.14451

Edited by Jan Borst

Modern research in the life sciences is unthinkable without computational

methods for extracting, quantifying and visualising information derived from

microscopy imaging data of biological samples. In the past decade, we

observed a dramatic increase in available software packages for these pur-

poses. As it is increasingly difficult to keep track of the number of available

image analysis platforms, tool collections, components and emerging tech-

nologies, we provide a conservative overview of software that we use in daily

routine and give insights into emerging new tools. We give guidance on which

aspects to consider when choosing the platform that best suits the user’s

needs, including aspects such as image data type, skills of the team, infras-

tructure and community at the institute and availability of time and budget.
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Scientific bio-image analysis software plays a key role

in modern life sciences [1]. New insights are virtually

impossible without computational methods for image

acquisition, processing, segmentation, feature extrac-

tion and visualisation. In the past decade, biologists

have increasingly applied statistical data analysis of

imaging data and machine learning for image process-

ing and particularly for image segmentation, as these

allow overcoming the limitations of purely descriptive

methods. We also perceive that tools and methods are

converging: if a single software platform provides

image processing, feature extraction, statistical analysis

and visualisation, it is superior and preferred to soft-

ware that is only good at one of those tasks, at least

from a user’s perspective. Possible applications are

highly diverse and spread across multiple sub-

disciplines such as developmental biology, cancer

research, immunology, cell and molecular biology,
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biophysics, agronomy, bioengineering and biomateri-

als. Often software solutions are created to address a

particular analysis challenge in one of those sub-

disciplines. As it becomes increasingly hard to keep an

overview of existing software, corresponding key appli-

cations and targeted scientific questions, we provide a

detailed overview of current state-of-the-art software,

upcoming next-generation tools and give hints as to

which aspects to consider when deciding among the

many available software solutions for current bio-

image analysis questions.

An early career scientist searching for the right soft-

ware for their image analysis might have the hardest

decision to make. Even if most of them know search

engines specialised for bio-image analysis software such

as https://biii.eu or https://bio.tools [2,3], for beginners

in the field it is hard to make any decisions as they often

do not know the right search terms yet. Hence, the glos-

sary provided below may be a good starting point to get

an overview of available software and related use-cases.

Furthermore, we recommend attending institutional

image-analysis courses, for example, for PhD students

in their first year. In addition, getting in touch with

senior scientists in their own group, with collaborators

and local light or electron microscopy facilities is a good

opportunity to find out which software is used in similar

projects on campus.

Glossary

Inspired by Adams and Lloyd [4] we give an overview

of the bio-image analysis software universe by means

of a glossary of software routinely used by bio-image

analysts. To further classify those software-related

terms, we refer to previously defined groups of soft-

ware [5]: Firstly, image/data analysis algorithms pro-

vided in a sustainably reusable fashion are referred to

as ‘components’. Secondly, software libraries and stan-

dalone applications that combine multiple components

are ‘collections’. Thirdly, software that combines mul-

tiple components, potentially from multiple collections

to solve a given variety of image analysis questions in

a standardised form are referred to as ‘workflow tem-

plates’. If the software is specific for solving particular

scientific questions using given components in one

specific assembly, these are called ‘workflows’. We

extend this classification with ‘frameworks’ of scientific

software which are collections upon which many other

software solutions are built. We add ‘programming

languages’ that allow assembling components into

workflows. We furthermore categorise the presented

software in additional categories such as open-source,

free of charge and major application categories such as

acquisition, registration, segmentation and statistical

analysis in Table S1. The table also contains properties

of the listed software such as preferred dimensionality

of input image data and typical imaging modality. The

software in the following were selected to reflect long-

term available, reliable, sustainably maintained and

supported software solutions. We analysts often have

to have a conservative perspective on existing software

as we need to rely on established, reliable and main-

tained software to build workflows for our collabora-

tors and trust the given software to be still available in

5–10 years allowing reproducible image data analysis.

To this end, the number of citations served as a crite-

rion to select software but we also considered software

packages that have been available for about 5–
10 years with continuous maintenance and reliable

support by a vivid community. A less formal criterion

that we applied for selecting software was considering

the knowledge of which tools would have allowed a

starting bio-image analyst to follow a conversation at

one of the Network of European Bio-Image Analysts

(NEUBIAS) meetings. The given description of the

glossary items highlights the main application of the

software and its relationships with other glossary

items. While the glossary focuses on general software

and terms used in the field, this should not hide the

large number of software or plugins developed for a

specific task or context. In the domain of plant science,

the quantitative plant initiative [6] proposes a curated

list of software solutions that may also be useful to

know. Similarly, in the microscope hardware and con-

trol oriented context, a list of useful software was pub-

lished [7]. Also for lightsheet microscopy, there is a

specific list of software for acquisition and analysis

available [8].There are a large number of software

tools and applications that have been specifically

developed for the cryo-electron microscopy (cryoEM);

a comprehensive list of software for the cryoEM com-

munity can be found from wikibooks [9].

3D IMAGEJ SUITE [10] is a collection of IMAGEJ plugins

for filtering, segmentation and analysis of geometry,

shape and spatial organisation of objects in 3D

images.

3D SLICER [11] is an image processing software based

on the ITK library focused on medical imaging with 3D

surface extraction, rendering and analysis capabilities.

It is increasingly used for visualising and analysing 3D

structures such as cells, tissues and organs in micro-

scopy data.

ANTS [12], or Advanced Normalisation Tools, is a

collection of methods for image registration, segmenta-

tion, and analysis, mostly developed in the context of

neuro-imaging and the comparison of cohorts. ANTS
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depends on ITK, an image processing library to which

ANTs developers contribute.

ARIVIS VISION 4D (Arivis AG, Rostock, Germany) is

an image analysis software for processing multi-

channel 2D, 3D and 4D data, focused but not limited

to microscopy data. It is scalable, supports processing

big image data, and has intuitive image stitching and

alignment tools.

AMIRA-AVIZO (Thermo Fisher Scientific Inc., Wal-

tham, MA, USA) is a 2D–5D image processing, visu-

alisation and analysis software. It can be customised

using PYTHON and MATLAB and offers additions for

incorporating artificial intelligence.

BIGDATAVIEWER [13] is an n-dimensional image viewer

component for slicing volumes in arbitrary directions.

The FIJI plugin can handle terabyte-sized image data

composed of multiple channels and time points.

BIGSTITCHER [14] is an automated and interactive

image registration/fusion FIJI plugin capable of han-

dling terabyte sized image data. It is based on the BIG-

DATAVIEWER.

BIOFORMATS [15] is an image file format interoper-

ability library which serves multiple image analysis

software applications such as FIJI, OMERO and QUPATH,

and programming environments such as MATLAB, JAVA

and PYTHON to load image data from many formats

and vendors.

BLENDER [16] is a 3D surface rendering, modelling

and visualisation software with PYTHON scripting, simu-

lation and video editing capabilities. The home of

BLENDER is in design and arts, and it is increasingly

used for microscopy image data visualisation.

BONEJ [17] is a collection of image processing opera-

tions and IMAGEJ plugins for skeletal/bone image anal-

ysis. It is used often in the soil, food and materials

science communities. Some of the tools were updated

to work with IMAGEJ2.

C/C++ are programming languages traditionally used

in computing. Most operating systems are pro-

grammed in C and C++. Furthermore, many PYTHON

and also some JAVA libraries contain components and

collections of processing routines written in these lan-

guages because C and C++ offer higher performance.

CATMAID [18] is a web application to navigate, share

and collaboratively annotate massive volume image

data sets.

CCP-EM [19] the Collaborative Computational Project

for electron cryo-microscopy is a community guiding

the users of CRYO-EM software tools as well as develop-

ers of software packages and file formats.

CCPI [20] the Collaborative Computational Project in

Tomographic Imaging provides a collection of

software tools for tomographic imaging and recon-

struction.

CELLPOSE [21] is a deep-learning based segmentation

algorithm for biological structures such as cell and cell

nuclei in microscopy images. It is accessible as a

PYTHON library and standalone application. CellPose

plugins exist for CELLPROFILER, QUPATH and FIJI.

CELLPROFILER [22] is an image analysis software applica-

tion with graphical user interface (GUI) for user-friendly

configuration of standardised image analysis workflows

focusing on high-throughput microscopy imaging data of

cells with capabilities for extracting tabular image feature

data in high-performance-computing environments.

CELLPROFILER ANALYST [23] is a data exploration soft-

ware for further visualisation and analysis of tabular

data produced with CELLPROFILER. It offers advanced

plotting, dimensionality reduction and machine learn-

ing based object classification for dealing with big data

as it is common in pharmaceutical research.

DECONVOLUTIONLAB2 [24] is a collection of image

deconvolution algorithms accessible as standalone

command-line interface and as user-friendly IMAGEJ

plugin.

DRAGONFLY (ORS, Montr�eal, QC, Canada) is a pow-

erful standalone software featuring an extensive set of

tools for image processing, segmentation and 3D visu-

alisation.

DRISHTI [25,26] is a visualisation tool for 3D pixel

data, which has been extended with segmentation and

measurement tools.

ELASTIX [27] is a standalone command-line tool for

registration of 2D and 3D image data based on the

ITK library. A PYTHON compatible interface, Sim-

pleElastix, is available as well.

EMAN2 [28] is a software application focusing on

cryoEM, covering techniques such as single particle

analysis, cryo-electron tomography or sub-tomogram

averaging.

FAIRSIM [29] is an IMAGEJ plugin for reconstructing

structured illumination microscopy super-resolution

images from raw data.

FIJI [30] is an image analysis software based on IM-

AGEJ and a collection of IMAGEJ- and IMAGEJ2 compati-

ble plugins focusing on general-purpose image analysis

in the life sciences. It Is scriptable using multiple pro-

gramming languages compatible with the Java ecosys-

tem, extensible and capable of handling big image data

through integration of components such as IMGLIB2

and BIGDATAVIEWER.

GROOVY [31] is a scripting language that can be used

for automating image analysis routines in QUPATH and

FIJI.
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GWYDDION [32] is a modular program for scanning

probe microscopy data visualisation and analysis, pri-

marily focused on the analysis of altitude maps such

as obtained by atomic force microscopes.

HUYGENS (Scientific Volume Imaging B.V., Hilver-

sum, the Netherlands) is an image processing software

dedicated to deconvolution of 3D stacks from fluores-

cence microscopy, potentially multi-channel and time-

lapse data.

ICY [33] is an image analysis software focusing on

general purpose image analyses in the life sciences

compatible with IMAGEJ. ICY is scriptable using Java-

Script and a visual programming approach using so

called protocols.

ILASTIK [34] is an image analysis software offering

easy-to-use machine learning capabilities for image

segmentation, object classification, object tracking and

statistical analysis of microscopy image data. Ilastik

classifiers can be used from FIJI and CELLPROFILER. Fur-

thermore, it supports execution on high-performance-

computing clusters.

IMAGEJ [35] is an image analysis software and frame-

work for image analysis algorithms integrated in FIJI,

ICY, MICROMANAGER, QUPATH and others. We conserva-

tively estimate tens or hundreds of thousands of plug-

ins and scripts have been developed in its 20+ year

history making it one of the most important platforms

for image analysis in the life sciences.

IMAGE J2 [36] is a modern rewrite of the IMAGEJ code-

base with focus in scientific image processing and anal-

ysis of big image data. It serves as an extensible

platform underlying FIJI and other software platforms

in the life sciences.

IMAGEJ MACRO [37] is a limited programming lan-

guage specific to the IMAGEJ platform useful for

automating image processing routines.

IMAGE.SC [38] is an online discussion forum based on

the Discourse platform [39] that serves as a questions

and answers forum for many open source projects

from the image science field. It plays a key role in

knowledge exchange and community support for many

open source bio-image analysis software projects. See

Fig. 1 for a list of community partners.

IMARIS (Oxford Instruments, Oxon, UK) is an image

processing and visualisation software supporting 3D

volume rendering and quantitative analysis. Through

extra modules it is interoperable with FIJI, PYTHON and

MATLAB.

IMGLIB2 [40] is an image processing framework and

collection of algorithms. It is the basis for software

such as BIGDATAVIEWER, BIGSTITCHER, IMAGEJ2, FIJI, KN-

IME and others to handle terabyte-sized big image

data.

IMOD [41] is an image processing, modelling and

visualisation software collection for electron micro-

scopy. Aside from command line tools for image pro-

cessing, it offers a GUI for reconstruction, registration

and segmentation of data.

ITK [42] is an image registration and segmentation

algorithm collection and library with a long history in

medical imaging. It is the underlying framework for

tools such as 3D SLICER, ELASTIX, ANTS, and ITK SNAP.

ITK SNAP [43] is a software application specifically for

segmentation and surface rendering of 3D medical

imaging datasets based on ITK.

JAVA is the programming language ICY, IMAGEJ, FIJI,

QUPATH and compatible plugins are written in. It is

also interoperable with IMARIS and MATLAB.

JAVASCRIPT is a scripting language used for automa-

tion of image analysis routines in ICY, IMAGEJ and FIJI.

It is also the most popular web programming language

world wide [44].

JUPYTER NOTEBOOKS [45] is an interactive, cloud com-

patible programming environment suitable for image

data analysis, statistics and scientific plotting. It is a

key component for reproducible data science in the sci-

entific PYTHON ecosystem and is extensively used for

documentation and training.

JYTHON is a Java-compatible scripting language

based on the syntax of PYTHON 2. It can be used for

automation of image analysis routines in FJIJ but is

technically not compatible with NUMPY, SCIPY, SCIKIT-

IMAGE and other PYTHON-based libraries. It is compati-

ble with Java-based components.

KNIME [46] is a visual and interactive programming

environment focusing on data science with image anal-

ysis and machine learning capabilities. Its image pro-

cessing capabilities are based on IMAGEJ, IMAGEJ2,

SCIJAVA and IMGLIB2.

KNOSSOS [47] is an image visualisation and annota-

tion software for large connectomics (electron micro-

scopy) data extensible using PYTHON modules.

LEICA APPLICATION SUITE X (Leica Microsystems

GmbH, Wetzlar, Germany) is a software for micro-

scope control, image acquisition, visualisation and

analysis. It offers modules for computational clearing

and deconvolution (lightning), Fluorescence lifetime,

FRET, and FCS analysis, CARS calculations, 2D and

3D measurements.

MATLAB (Mathworks, Natick, MA, USA) is a soft-

ware environment for numeric computing that pro-

vides a multi-paradigm programming language and a

number of dedicated applications and toolboxes, for

example, for image processing, computer vision, statis-

tics and machine learning. It can be extended using

Java and Python libraries.
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MATPLOTLIB [48] is a scientific plotting and image

visualisation collection commonly used for image data

science by the PYTHON community.

MICROMANAGER [49] is a microscope control software

with built-in image processing capabilities based on IM-

AGEJ. It can be scripted using the BeanShell language

and recently using PYTHON [50].

MICROSCOPY IMAGE BROWSER [51] is a MATLAB-based

software for advanced image processing, segmentation,

quantification, and visualisation of multi-dimensional

light and electron microscopy datasets. It works with

BIOFORMATS, allows batch processing operations and

can be directly linked to FIJI.

MORPHOGRAPHX [52] is a software for visualisation

and analysis of 4D datasets. It focuses on the analysis

of organ growth from 4D live-imaging confocal data

of plants. Various algorithms implemented in MOR-

PHOGRAPHX extract surfaces from 3D data and post-

process the intensities along those surfaces, which can

be seen as an efficient 2.5 dimensional approximation

of 3D quantification.

MORPHOLIBJ [53] is a collection of methods and plug-

ins for IMAGEJ implementing mathematical morphology

operations such as dilation, opening, watershed and

reconstruction as well as methods for quantitative

analysis of label images.

NANOJ [54] is a toolbox of IMAGEJ plugins for super-

resolution microscopy processing and analysis tasks,

including drift correction and channel registration. It

also incorporates the widely used SRRF method for

live-cell super-resolution image reconstruction [55].

NEURONJ [56] is an IMAGEJ plugin for neurite tracing

and analysis.

NIS-ELEMENTS (Nikon, Tokyo, Japan) is a software

for microscope control, computer-assisted image acqui-

sition and analysis. It integrates artificial intelligence

solutions for de-blurring, segmentation and image

restoration. Image analysis components can be com-

bined to a workflow within a visual programming

environment.

NUMPY [57] is a PYTHON library and a collection of

efficient array processing algorithms. It is among the

most used PYTHON libraries in the world [58] and the

basis for many image processing components and col-

lections in the PYTHON ecosystem.

PARAVIEW [59] is a software for vector and surface

data analysis and visualisation based on the ITK

library.

Fig. 1. Screenshot of the image.sc forum in April 2022 showing the logos of the community partners and related communities. Listed open-

source projects provide online support for their software on this platform, which might be a key criterion when deciding which software to

use.
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PYTHON is a programming language, potentially the

most popular language in science and surely among

the top used programming languages in general [44]. It

is commonly used to assemble various image process-

ing, data analysis and visualisation libraries in scien-

tific workflow.

ORIENTATIONJ [60] is an IMAGEJ plugin to characterise

the orientation and isotropy properties of regions of

interest in images.

OMERO [61] is a research data management solution

for microscopy image data. It was initially developed to

facilitate analysis of large amounts of high-throughput

imaging data. OMERO can be used as a remote-server

storing image data that is highly interoperable with

other software such as CELLPROFILER, FIJI and QUPATH.

OPENCV [62] (open computer vision) is a collection of

image analysis components that includes several hun-

dred computer vision algorithms. OPENCV focuses on

2D+time imaging data acquired with video cameras

and has also many applications in microscopy.

QUPATH [63] is an image analysis software for quanti-

tative pathology. It allows visualisation and analysis of

large 2D slide scanner imaging data of histological

slices. Its user-friendly GUI offers tools for manual

annotation, machine-learning based tissue classification

and deep-learning based cell segmentation. It is exten-

sible using JAVA-based plugins and scriptable using the

GROOVY programming language. It is interoperable

with OMERO and BIOFORMATS.

R [64] is a programming language for statistical com-

puting and plotting. It is commonly used for the

downstream statistical analysis of the output of image

analysis packages. R-packages also exist for image pro-

cessing [65].

RELION [66], or REgularised LIkelihood Optimisa-

tioN, is a software package for cryo-EM structure

determination processing data from single particle or

tomography experiments.

RSTUDIO [64] is a standalone application allowing

interactive programming using the R language. Users

can view existing variables, manipulate tables and

plots.

SCIJAVA [67] is a collection of image analysis data

structures and algorithms such as IMGLIB2 and serves

as the basis for IMAGEJ2.

SCIKIT-IMAGE [68] is a general purpose collection of

scientific image analysis algorithms based on NUMPY

and SCIPY. Image analysis workflows using scikit-image

can be written in PYTHON and it is commonly used with

JUPYTER NOTEBOOKS.

SCIKIT-LEARN [69] is a collection of PYTHON-based

algorithms for machine learning commonly used in the

context of image for pixel, object and image classifica-

tion.

SCILS (Bruker, Billerica, MA, USA) is a software for

analysis of mass-spectrometry imaging (MSI) data,

including machine learning algorithms and tools for

visualising ion images and mass spectra.

SCIPY [68,70] is a collection of algorithms for scien-

tific data processing, simulation, optimisation and

analysis. It serves as the basis for other software such

as SCIKIT-IMAGE.

SERIALEM [71] is an acquisition software for a variety of

transmission electron microscopes. It provides different

means of automation through navigation, a built-in script-

ing language and PYTHON integration. Typical applications

are electron tomography, large areas for 3-D volume imag-

ing from serial sections or single-particle cryoEM.

SINGLE NEURITE TRACER [72] is a FIJI plugin for pro-

cessing three-dimensional, multi-channel, timelapse

data to trace neurites including analysis and plotting.

SMAP [73] is a MATLAB-based framework for 2D and

3D single-molecule localisation microscopy analysis

encompassing tasks such as molecule localisation,

image rendering and quantitative analysis.

SR-TESSLER [74] is a standalone software for quantita-

tive analysis of localisation-based super-resolution

microscopy data.

STACKREG [75] is an IMAGEJ plugin for 2D + time

image registration. It is also commonly used for other

types of image registration, for example, for alignment

of slices in 3D image stacks.

STARDIST [76,77] is a deep-learning based PYTHON

library for segmenting star-shaped objects such as cell

nuclei which is also available as plugins for CELLPRO-

FILER, FIJI and QUPATH.

THUNDERSTORM [78] is an IMAGEJ plugin for auto-

mated processing, analysis and visualisation of data

acquired by single-molecule localisation microscopy.

THUNDERSTORM is at the moment of writing not actively

maintained and may in the future be replaced by other

solutions.

TOMOPY [79] is an open-source PYTHON package for

processing tomography data and image reconstruction.

It is mainly used for X-Ray tomography.

TOMVIZ [80] is a software package tailored for pro-

cessing, visualisation, and analysis of 3D tomographic

data acquired with transmission electron microscopy.

It is compatible with PYTHON scripting to accommodate

custom algorithms.

TRACKMATE [81] is a FIJI plugin for object tracking in

2D+t and 3D+t image data. It comes with advanced

plotting, track visualisation and cell lineage tree visual-

isation tools. It is extensible using Java-based plugins
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and scriptable using advanced scripting languages in

FIJI such as Groovy, JavaScript and Jython.

TRAINABLE WEKA SEGMENTATION [82] is a user-friendly

IMAGEJ plugin for pixel classification using various

machine learning techniques based on the Waikato

Environment for Knowledge Analysis [83].

TRAKEM2 [82,84] is a FIJI plugin for registration,

stitching and management of large-scale electron

microscopy data which offers tools for segmentation

and reconstruction of objects such as neurons in 3D.

ZEN (Zeiss AG, Oberkochen, Germany) is a software

and collection of components for microscope control,

image acquisition, visualisation and analysis. Its inte-

gration of image analysis and microscope control

allows feedback microscopy applications.

Emerging software

Apart from our conservative view on the field, we also

perceive recent software developments which presum-

ably will become part of the above glossary within the

next 5–10 years. Most prominently, deep learning

approaches are flooding our field with promising image

processing components especially for image restoration

[85-87] and cell/nuclei segmentation [21,76,77,88], classi-

fication and tracking [89] within complex scenes. Read-

ers interested in an extended list of new applications and

ready-to-use software [2,3] are referred to [90] and the

bioimage model zoo online repository [91]. Those deep-

learning-based components rely on technical frame-

works such as TensorFlow [92] and PyTorch [93] which

are not directly accessible to end-users. Multiple user-

friendly GUIs were recently developed offering modern

deep-learning tools to a wide target audience [94-97].

User-friendly deep-learning-based image processing is

also already integrated within some of the applications

listed in the glossary, namely ILASTIK, MICROSCOPY IMAGE

BROWSER, almost all of the listed commercial software

packages. New commercial solutions, such as AIVIA

(Leica Microsystems GmbH) and APEER (Zeiss AG),

focusing on machine learning for microscopy image

analysis are arising as well.

In the same context, the NAPARI project [98] is bridg-

ing the PYTHON community towards the life scientists

community by offering automatically generated, user-

friendly GUIs to the most recent deep-learning and

data science components and strives to become a

major framework of the bio-image analysis commu-

nity. From a PYTHON community perspective, napari is

already a game changer as it brings widely usable n-

dimensional viewing to the otherwise scripting centred

PYTHON community [99]. From a wider perspective,

more image visualisation tools have been published

recently and show high potential to become major

players within the next decade since, compared to cur-

rent default solutions, they provide opportunities to

processing big image data and applying deep learning

to microscopy image data [100-102].

Processing big image data, in the form of large 3D

image stacks, long 3D+time data or large collections

of 2D or 3D image data sets, is also a hot topic where

new tools developed using remote-data, remote-

computing and network-based approaches are emerg-

ing [103-109] and also semi-commercial solutions are

appearing such as APEER (Zeiss AG). Graphics-

Processing-Unit (GPU)-accelerated classical image pro-

cessing [110-113] will play a major role for overcoming

current limitations concerning processing times for

large image data. From our perspective, such big-data

capable solutions will also facilitate analysing spatial

relationships in biological specimen and tissues using

modern data-science approaches in the context of

spatial-omics and transcriptomics [114-119].

For single molecule localisation microscopy analysis,

improved methods for molecule detection and localisa-

tion are in active development [120]. In the field of

super-resolution microscopy more broadly, there is

also a focus on developing user-friendly methods for

ensuring the fidelity of reconstructed images [121-123].

Last but not least, new file formats and solutions

for research image data management [124-126] are

under development and we expect those to have a

huge impact on how analysts handle image data within

the next decade.

Aspects to consider when choosing
bio-image analysis software for your
research

The choice of the right bio-image analysis software is

closely related to the purpose of a given research pro-

ject and more broadly to the field a research group is

working in. We suggest becoming confident in a single

software that broadly fits the planned research needs

instead of switching the used software from project to

project just because a single feature may be more

accessible or more accurate in another software. Get-

ting to know software and maintaining expertise comes

at a high cost when numerous potentially incompatible

platforms are used.

Interoperability between software is another key fea-

ture to consider. For example, we discourage using

software that comes with proprietary custom file for-

mats and suggest using broadly available file formats

instead. Most prominently, there are some software

packages with custom formats for project files. We

2478 FEBS Letters 596 (2022) 2472–2485 � 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

Hitchhiking bio-image analysis R. Haase et al.

 18733468, 2022, 19, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14451 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



recommend making sure these project files can be

accessed with common text editors and contain

human-readable text that is based on standard formats

such as XML, JSON, YAML or CSV. It also appears

beneficial if software has capabilities for workflow

automation or, in the case of plugins, can be auto-

mated using the platform they can be integrated with.

For example, software with a great built-in segmenta-

tion algorithm can become a major bottleneck if the

algorithm cannot be integrated with other software,

for example, for pre-processing, post-processing,

feature-extraction and statistical analysis.

Striving for reproducible bio-image analysis work-

flows with minimal manual interaction steps is key for

analysing large amounts of image data leading to

insights cemented by appropriate measurements

exhibiting statistical power. If the software supports

forming and properly documenting such automated

workflows, reproducibility and interpretability of

results can be ensured [127].

Other technical aspects such as big data capabilities

play a key role, especially when new microscopy tech-

niques potentially producing more and more data are

published every year. Many software packages claim

the ability to work with big data, but often refer to

visualisation only or refer to big data as many images

with a size of megabytes to gigabytes each. On the

other hand, software packages capable of processing

big volumetric image data in the range of terabytes

and petabytes to produce quantitative analysis results

are still rare and often limited in other aspects, for

example, image data dimensionality or imaging modal-

ity. We see more and more web-based solutions being

published diminishing the need to buy expensive com-

putational hardware, to train and execute neural net-

work architectures. When using web-based solutions in

the cloud, institutional, national and international laws

have to be respected. Additional technical burdens hin-

der the wide adoption of cloud computing at the

moment. For example, uploading multiple terabytes of

imaging data from a European institute to an Ameri-

can computing server is not just challenging from a

legal but also from the file transfer bandwidth perspec-

tive. We assume these burdens will fall in the next dec-

ade and the technology will become available to more

and more researchers as the benefits of using it out-

weigh the risks. Hence, choosing a software that is

interoperable with cloud-computing and cloud-storage

technologies appears a future-proof approach.

Many image analysis tasks have a substantial num-

ber of solutions that have been developed, and it can

often be unclear which solution is most appropriate

for a user’s specific problem. Several image analysis

fields have established benchmarking challenges,

whereby software is applied to exemplar datasets and

performance is automatically and independently

assessed. Such challenges exist for cell tracking

[128,129], cell segmentation [130], electron microscopy

image segmentation [131] and single molecule localisa-

tion [120]. These provide users with a quantitative

comparison of the state-of-the-art, along with test

datasets and guidance for quality reporting.

Community aspects should also be taken into

account when choosing the right image analysis soft-

ware. A key role in bio-image analysis for microscopy

is played by the Image Science community https://

image.sc, an online forum where developers and users

of most software listed in the glossary are actively sup-

porting each other by providing support and feedback

(Fig. 1). Before using a software mid�/long-term,

users may want to explore this forum and other online

platforms to figure out how actively supported the

software is by a broader community. Furthermore,

some software communities hold regular virtual com-

munity meetings, where users and plugin-developers

can get in touch with core-developers to exchange

ideas, use-cases and receive support. The weekly com-

munity meeting of the napari community and the open

office hours of the CellProfiler community shall be

highlighted here as well-appreciated examples. For

staying up-to-date with new developments in bio-

image analysis software, following new media channels

such as the NEUBIAS Academy YouTube channel

[132] and the @Talk_BioImg Twitter bot which

retweets posts containing the #BioImageAnalysis hash-

tag should be considered as well for an audience with

general interest in the field, for example, postdocs and

core-facility staff working on applied bio-image analy-

sis and image data science. In addition, the Global

Bioimaging infrastructure is organising image analysis

courses and providing a training resource for core

facility staff and image analysis community.

From a group leader’s and an institutional decision

maker’s perspective, guiding scientists towards using a

common software platform makes sense. The more

local collaborators work with the same software, and

maybe just use different plugins, the more they can

support each other and exchange knowledge. If it is

apparent that a majority of the group or institute

members are using the same software, an institute can

strengthen this community by inviting the developers

of that software annually for courses and seminars.

Building this bridge between users and developers is of

mutual benefit: While the users receive support and

training from the experts, the experts can establish col-

laborations with power users leading to scientific
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publications. These applied-science publications are

key to grant applications and sustainable maintenance

of research software.

Conclusions and perspectives

Comparing the bio-image analysis software universe

one decade ago to its current state clearly shows that

it is expanding. Multiple huge ecosystems grew from a

small number of general-purpose software developed

more than a decade ago. Recently, many of such plat-

forms are building bridges among them, which is

appreciated from our bio-image analysis workflow

designers’ perspective. Hence, users are well advised to

use interoperable, established, sustainably maintained

software packages for their research. It is also impor-

tant to stay alert on recent developments, especially in

the deep learning context, even though one should stay

a brave scientist and question those new methods.

Such critical thinking is necessary to solidify knowl-

edge about new methods before eventually adopting

them as community standards. Last but not least we

want to emphasise that the decision on which software

to use for specific research projects should be made in

groups. Getting in touch with local, regional and glo-

bal experts and discussing advantages and disadvan-

tages is the right path in a growing universe of bio-

image analysis software.
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