

Civilingenjörsprogrammet i informationsteknologi

Uppsal a universitets l ogotyp

UPTEC IT 22031

Examensarbete 30 hp

November 2022

Compiler Testing of C11
Atomics for Arm and RISC-V

Hampus Adolfsson
Civilingenj örspr ogrammet i inform ati ons teknologi

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/Visby

Handledare: Björn Bergman Ämnesgranskare: Bengt Jonsson

Examinator: Lars-Åke Nordén

Uppsal a universitets l ogotyp

Compiler Testing of C11 Atomics for Arm and RISC-V

Hampus Adolfsson

Abstract

The C11 standard introduced atomic types and operations, with an accompanying memory

model, to enable the use of shared variables in concurrent programs. In this thesis, I

demonstrate how compilers can be tested, in a way that is deterministic and covers the entire

set of atomic operations, to ensure they correctly implement C11 atomics and the C11 memory

model.

I use a large set of short concurrent programs (”litmus tests”), generated from a model written in

a specification language and based on a formalized C11 memory model. Each test program is

compiled and run with a model checker, to determine the possible outcomes; any program with

an outcome that is possible after compilation but not allowed by C11 is a failed test case. As an

alternative to model checking, I also test a nondeterministic, hardware-based method for

running tests, but I find that this method is too inaccurate to be useful.

I test IAR and gcc compilers for Arm and RISC-V; all of these compilers pass all tests. Out of

three compilers with purposefully inserted bugs, all are correctly identified as faulty. This testing

process thus shows some promise, but further evaluation is needed.

Teknisk-naturvetenskapliga fakulteten, Uppsala universitet . Utgivningsort U ppsal a/Visby . H andledare: Bj örn Bergman, Äm nesgranskar e: Bengt Jonsson, Examinator: Lars- Åke Nor dén

Popular scientific summary in Swedish

Den komponent i en dator som exekverar kod kallas för en processor. Prestandan
hos processorn, allts̊a hur snabbt den kan exekvera kod, är en av de viktigaste
delarna för datorns prestanda överlag. Traditionellt sett har man ökat proces-
sorers prestanda genom att ge dem fler och mindre transistorer. Detta lönar
sig dock inte längre lika mycket; istället tillverkar man processorer med flera
kärnor, där alla kärnor exekverar kod samtidigt, delvis oberoende av varandra.
Kod som körs p̊a de olika kärnorna kan kommunicera med varandra genom att
skriva och läsa data fr̊an ett gemensamt minne, men reglerna för hur s̊adan
kommunikation fungerar är ofta mycket komplicerade.

För att ett program ska kunna dra nytta av de flera kärnorna i en processor
krävs att programmet har flera kodavsnitt som kan köras p̊a varsin proces-
sorkärna, och som samarbetar för att uppn̊a sitt m̊al. I praktiken skrivs s̊adana
program (precis som andra datorprogram) ofta i ett programmeringsspr̊ak, som
är enkelt att formulera algoritmer i men som processorn inte först̊ar sig p̊a.
Programmet körs sedan genom en kompilator, som konverterar programmet till
maskinkod.

I den här avhandligen behandlar jag kompilatorer för programmeringsspr̊aket
C. I C finns s.k. atomiska operationer som ska användas för att skriva och
läsa gemensamt minne i program som körs p̊a flera kärnor. Dessa atomiska
operationer följer en uppsättning regler som gäller oberoende av vilken proces-
sor programmet ska köras p̊a. När en kompilator konverterar ett C-program
till maskinkod m̊aste den beakta de regler som gäller för den specifika proces-
sorn och dess minne, och generera maskinkod som inte bryter mot C:s proces-
soroberoende regler för atomiska operationer. Mitt m̊al med denna anvhandling
är att beskriva hur man kan testa en kompilator i syfte att verifiera att den alltid
genererar maskinkod som uppfyller C:s regler för atomiska operationer.

Det mest centrala i min testprocedur är en samling testprogram. Dessa är
korta C-program som ska kunna köras p̊a flerkärninga processorer och använder
atomiska operationer för att kommunicera mellan kärnorna. Om man vet vilka
resultat ett s̊adant program f̊ar ge utan att bryta mot C:s regler för atomiska
operationer kan det användas för att testa att kompilatorn är korrekt.

Testprogrammen behöver inte skrivas av en person utan genereras automa-
tiskt. Jag använder ett verktyg som utifr̊an en beskrivning av hur ett testpro-
gram ser ut och ett antal regler för vad som gör ett testprogram intressant, kan
generera alla intressanta testprogram upp till n̊agon storleksgräns. För varje
testfall räknas ocks̊a ut vilka utfall som g̊ar att f̊a när programmet körs, allts̊a
de utfall som till̊ats av C.

En kompilators korrekthet testas genom att för varje testprogram först kom-
pilera det, och sedan undersöka vilka utfall som g̊ar att n̊a genom att köra det
kompilerade programmet. De n̊abara utfallen jämförs med de till̊atna utfallen
som räknats ut när testet genererades; om det kompilerade programmet kan
n̊a n̊agot utfall som inte är bland de till̊atna utfallen har kompilatorn gjort en
felaktig kompilering av programmet. Att undersöka vilka utfall som ett kom-
pilerat program kan n̊a är dock inte helt trivialt och jag jämför därför tv̊a olika

v

metoder för att göra det, en matematisk (algoritmisk) metod och en som kör
programmet p̊a h̊ardvara.

Jag testar först olika populära kompilatorer. Alla kompilatorer klarar alla
testfall, men det är sv̊art att dra n̊agra slutsatser fr̊an detta eftersom vi inte
vet om dessa kompilatorer är korrekta eller inte. Därför testar jag ocks̊a tre
kompilatorer i vilka jag medvetet har stoppat in buggar. Med min testprocess
hittar jag alla tre av dessa fel.

Jag jämför ocks̊a de tv̊a olika metoderna för att undersöka kompilerade pro-
gram. Den matematiska metoden är deterministisk och i de flesta fall snab-
bare än den h̊ardvarubaserade metoden. Den h̊ardvarubaserade metoden är
enklare att applicera p̊a olika processorer men är alldeles för op̊alitlig för att
vara användbar.

vi

Contents

1 Introduction 1

2 Background 2
2.1 Glossary . 3
2.2 IAR Systems . 3
2.3 Concurrent programs . 3

2.3.1 Parallelism . 3
2.3.2 Interrupts . 4

2.4 Memory consistency models . 4
2.4.1 Hardware and software memory models 5

2.5 The C11 memory model . 6

3 Objective and motivation 6
3.1 Delimitations . 7

4 Theory 7
4.1 The C11 memory model . 7
4.2 Binary relations . 9
4.3 Axiomatic formal models . 10

5 Methods 11
5.1 Generating test cases . 12
5.2 Running compiled test cases . 13
5.3 Evaluation plan for the testing process 14

6 Synthesizing test cases 15
6.1 Instantiating tests . 16
6.2 Finalizing tests . 18

7 Running test cases 19
7.1 HERD . 19

7.1.1 From compiler to HERD 20
7.1.2 Running HERD tests . 21

7.2 Stress testing on hardware . 21
7.2.1 Optimizing for variability of outcomes 21

8 Results & discussion 22
8.1 Tests generated . 22
8.2 Finding compiler bugs . 23
8.3 Comparing model checker to stress testing 26

9 Conclusion 26

vii

10 Related work 28
10.1 Full-stack memory model verification 28
10.2 Litmus test generation . 28
10.3 Sequential compiler testing . 29
10.4 Validating optimizations under C11 29
10.5 Adjustments to the C11 memory model 30
10.6 Noise-based testing . 30

viii

1 Introduction

In recent decades, multicore processors have grown increasingly prevalent in al-
most all areas of computing. This has come with an increased need to write
concurrent programs, and a demand for programming languages with support
for such programs. The C11 standard for the C programming language ad-
dressed this demand by introducing, among other things, atomic data types,
which can be accessed concurrently by multiple threads or cores using atomic
operations. The semantics of atomic operations is described by the C11 memory
model, and it is up to compilers to implement the memory model for their target
architecture. Verifying that they do so correctly is difficult, both because of the
complexity of the memory model, and because of the inherent nondeterminis-
tism of concurrent programs.

In this thesis I present and describe a process for automated testing of a
compiler’s implementation of the C11 memory model, focusing on IAR and gcc
compilers for the Arm and RISC-V architectures. I exclusively test low-level
atomic operations (atomic reads, writes, read-modify-writes and fences), and
thus do not test locks, thread creation or any of the other high-level concurrency
features introduced with C11.

First, I present a method for generating a comprehensive suite of compiler
tests targeting C11 atomics. An axiomatic C11 model by Lahav et al. [LVK+17]
— rewritten in the Alloy modelling language by Lustig et al. [LWPG17] — is
used as the source-of-truth on what behavior C11 allows and forbids. I use
this model to generate short concurrent C programs that may exhibit some
interesting forbidden behavior (such tests are often called litmus tests). It is
up to the compiler to forbid this behavior; if the behavior is possible after
compilation with some compiler, then that compiler has failed the test.

Second, I present two competing methods for exploring the behavior of gen-
erated test cases after compilation. Since tests are concurrent and thus run non-
deterministically, it is nontrivial to determine whether some behavior is possible.
The first method uses HERD [AMT14], a model checker and simulator. HERD is
able to find all possible executions of a test, but can be slow for some tests
and suffers from limited instruction support. The second method, stress test-
ing, runs tests directly on hardware many times over, with the expectation that
all or most possible behavior will eventually be exhibited. This method is less
accurate, but is easier to apply to new architectures and does not suffer from
HERD’s poor instruction support.

I evaluate my testing process in three ways. First, I apply the process to
try to find bugs in gcc and IAR compilers, some of which are modified to insert
bugs (some from the literature and some made up). Testing deliberately buggy
compilers lets me make sure that the process is able to find realistic compiler
bugs. The non-modified compilers tested all pass every test. The modified (i.e.
deliberately buggy) compilers all fail some tests, and are thus correctly identified
as faulty. This shows that the process can be used to find bugs, but it would
have to be tested with more known or deliberately buggy compilers before one
could estimate how accurate it is.

1

Second, I examine whether the test generation method is able to find classic
litmus tests defined by Alglave et al. [Lit]; these tests represent common pro-
gramming patterns [AMT14] and are present in many litmus test suites. I find
that my test generation method finds at least one variant of each of the classic
tests, with the exception of a few tests that are not applicable to C11.

Third, I assess the accuracy of the stress testing test running method, by
examining how much of the behavior allowed by C11 is visible when running
tests on hardware. I find that stress testing is only able to find a third of all
outcomes found by model-checking with HERD. Moreover, when used to test
two of the deliberately buggy compilers mentioned above, stress testing fails to
find faults in either compiler. I conclude that my stress testing implementation
is too inaccurate to be useful.

Section 2 below introduces some background on compilation, concurrency
and memory models. Section 3 then lays out what is and is not the objective
of this thesis, and argues for why this work is important.

Then follows Section 4 on the C11 memory model and on memory model
theory, which is aimed at helping the reader fully understand the rest of the
thesis.

An overview and discussion is given in Section 5 of the process and methods
I use to test compilers, and of how I evaluate those methods. Details of how I
implement the process to generate tests, and run tests on compilers, are then
given in Sections 6 and 7 respectively.

Evaluation results are presented and discussed in Section 8, after which the
conclusions of the thesis are summarized in Section 9. Finally, previous work
relevant to this thesis is discussed in Section 10.

2 Background

This section introduces and provides context around some concepts that are
important to this thesis.

2

2.1 Glossary

Term Explanation

Embedded System A computer system that is embedded in
some larger system, such as a modern
car or an industrial robot. Typically
these are small, power-efficient and low-
cost boards.

Instruction Set Architecture (ISA) An abstract specification of some pro-
cessor, sometimes referred to as just ar-
chitecture. Examples: x86, ARMv7-A,
MIPS

Atomic operation An operation that is completed (as if)
in a single step, with no visible inter-
mediate state. The operation is either
fully executed, or not executed at all.

2.2 IAR Systems

IAR Systems is a Swedish company supplying tools and services for the develop-
ment of embedded systems. These tools include an IDE, a debugger, compilers
and more. IAR compilers are available for a range of architectures, and this
thesis uses those for the ARMv7 and RISC-V architectures. IAR compilers gen-
erate bare-metal programs that run without any operating system, and so a few
other IAR tools are also used to help flash programs onto hardware.

2.3 Concurrent programs

A concurrent program refers to any program that has several active components
or tasks that are executed or progress independently [AdBO10]. Conversely, a
sequential program executes all its tasks in sequence, without any interleaving
or overlapping. Without proper synchronization, the outcome of a concurrent
program is often non-deterministic, meaning it varies depending on the order in
which certain concurrent events happen or tasks are completed.

2.3.1 Parallelism

Concurrency is often conflated with parallelism, but they are distinct concepts.
I will use the term parallel to refer to a program executing on multiple CPU
cores at the same time (other forms of parallelism exist, but are not relevant
here). In this sense, parallelism is a means of achieving concurrency, but a
concurrent program is not necessarily parallel.

For some time, multi-core systems have grown more and more prevalent.
With the decline of Dennard scaling [EBA+11] (which roughly implies that a
processor’s power use is proportional to its area), it has become less feasible to
reduce a processor’s power draw or increase its frequency simply by using smaller

3

transistors. In response, many computer architects have turned to scaling the
number of cores in a processor, or the number of processors on a chip. Two
examples of this from the embedded world are the Cortex-A9 with up to 4
cores [Armc], and the Arm big.LITTLE architecture [Armb] which puts a low-
performance and power-efficient CPU on the same chip as a high-performance
and power-hungry CPU.

This trend creates a need for programs to be parallelized in order to take
advantage of the capabilities of the hardware. Thus, there needs to be program-
ming languages with support for parallel algorithms, as well as compilers that
can compile programs for multi-core hardware.

2.3.2 Interrupts

Interrupts are another common source of concurrency [WCM+16,SCGC19], and
are perhaps even more common in the context of embedded systems. Interrupts
“interrupt” the processor at the request of some external device, and cause an
interleaving of regular code and interrupt-handling code.

2.4 Memory consistency models

A concurrent program will often have some shared memory that is used by two
or more threads of execution, e.g. for communication [Han77]. How this shared
memory behaves is governed by the memory consistency model — hereafter re-
ferred to as just memory model — of the underlying system. Hill et al. define a
memory model as “a specification of the allowed behavior of multi-threaded pro-
grams executing with shared memory” [HWS11]. Informally, a memory model
describes the order in which stores to shared memory may happen and become
visible to the different threads of execution.

Thread 0 Thread 1

Initially, x0 = x1 = 0

x1 = 1

if (x0 == 0)

print("T0 won")

x0 = 1

if (x1 == 0)

print("T1 won")

Listing 1: Pseudo-code for a program requiring sequential consistency

Probably the simplest possible memory model is sequential consistency (SC),
first described by Lamport [Lam79]. Under SC, a concurrent program executes
as if the memory accesses from all threads were performed one-by-one in some
total order (i.e., in an interleaving fashion), and the effect of each access was
immediately visible to all threads. This is a fairly intuitive model. Consider the
example program in Listing 1. Under SC, it is obvious that both threads can not
“win”, since each thread must block the other thread before it can win itself. SC

4

is considered a strong memory model, since it makes strong guarantees about
the behavior of memory.

However, there are weaker memory models, that are not as strict as SC,
and where memory behavior is not as intuitive. For example, total store order
(TSO) mostly behaves like SC, but allows stores to not be immediately visible
to other threads [HWS11]. If we run the program in Listing 1 under TSO, it
would — perhaps counter-intuitively — be possible for both threads to win,
since the store to x0 may be invisible to thread 0 when it reads x0, and the
store to x1 may, in the same execution, be invisible to thread 1 when it reads
x1.

To avoid such problems, most memory models allow programs to insertmem-
ory fences (sometimes called barriers) to strengthen the guarantees made by the
memory model for some part of the program. A memory fence prevents memory
operations from being reordered across the fence, and some fences can force all
previous stores to become visible before the thread continues. Listing 2 shows
how the previous example can be amended to work under TSO, by inserting
memory fences that ensure the stores are visible to the other thread before
continuing.

Thread 0 Thread 1

Initially, x0 = x1 = 0

x1 = 1

mfence

if (x0 == 0)

print("T0 won")

x0 = 1

mfence

if (x1 == 0)

print("T1 won")

Listing 2: The example from Listing 1, but fixed for TSO

2.4.1 Hardware and software memory models

In many contexts, the term “memory model” alone is used to refer the memory
model of the computer architecture, which is specified by the ISA and imple-
mented by the hardware. This model determines how, for example, the effects of
store instructions become visible to other cores in the CPU. Most real hardware
does not implement SC; to improve performance or reduce hardware complexity
computer architects weaken the memory model. This can allow the use of —
for example — store buffers or out-of-order execution [HWS11]. As an example,
Arm has a relatively weak memory model [HWS11,MSS12], but this allows Arm
CPUs to implement lots of hardware optimizations [MSS12].

Similarly, a programming language may have a memory model that defines
how accesses to shared memory behave in that language. The memory model of
the programming language allows the semantics of concurrent programs to be
clearly defined and to be the same regardless of what hardware the program is
run on [HWS11]. Here, too, weaker memory models can promote performance,

5

by allowing more aggressive compiler optimizations and more efficient use of
weak hardware memory models [AG96]. As with any part of a language specifi-
cation, it is the job of the compiler to make sure that when code is compiled for
some specific hardware, the guarantees specified by the memory model of the
programming language are upheld.

For both hardware and software, there is a specification (for the ISA and
language, respectively) and many implementations (in the form of hardware
and compilers, respectively). It is not always practical or feasible to implement
a memory model exactly as specified, and implementations may forbid certain
behavior that is allowed by the specification (but they may not allow behavior
that is forbidden by the memory model).

2.5 The C11 memory model

Prior to the ratification of the C11 language standard in 2011, the C language did
not have much builtin support for concurrent programming, nor did it have a real
memory model. This made writing concurrent programs — especially platform-
independent concurrent programs — both tedious and difficult. To rectify this,
the C11 standard introduced a standardized memory model, and also extended
the standard library with atomic data types, locks and more [ISO10]. In this
thesis I discuss these atomic data types and the atomic operations that can be
performed on them (both referred to as “C11 atomics” or “the C11 atomics
library”). The C11 atomics library includes atomic loads and stores, as well as
some atomic read-modify-write operations, such as compare-exchange and fetch-
and-add. The C11 memory model and atomics library are described further in
Section 4.1.

3 Objective and motivation

As shown earlier in the thesis, memory models are often complex and non-
intuitive, both on the software- and hardware level. Nevertheless, it is essential
that the memory model is accurately obeyed and implemented by both software
and hardware, in order for concurrent programs to execute as intended by the
programmer. Previously, I mentioned that compilers have an important role
to play in this; when a concurrent C11 program is compiled, the compiler has
to take into account both the C11 memory model and the memory model of
the target architecture, and make sure that the semantics of the program is
completely preserved after compilation. This is, of course, not trivial, especially
for weak architectures like Arm and RISC-V.

This thesis is aimed at developing techniques for verifying the correctness of
compilers with respect to the C11 memory model, focusing on atomic variables.
Specifically, I present and detail a process for testing a compiler’s implementa-
tion of C11 atomics. This process involves generating and running a set of test
cases, and are intended to be able to show with high confidence that a compiler
passes the tests. An important part of this is maximizing and quantifying that

6

confidence. Two secondary desired properties of this process are traceability, so
that it is possible to analyze failed test runs after the fact, and reproducibility,
so that test runs are consistent.

My focus is specifically on the IAR C compilers for ARMv7 and RISC-V, as
well as their gcc equivalents. Both IAR and gcc compilers are available for a
range of architectures, and so a tertiary ambition is for this process to be easily
applicable to various architectures.

3.1 Delimitations

C11 introduced several features to help with parallel programs: a threading li-
brary, mutexes, futures and atomic variables. This thesis focuses only on testing
atomic variables (e.g. _Atomic int) and the functions used on them, as well
as fences. Moreover, I do not test the consume memory order. Its specification
is fairly complex, and its implementation is currently very impractical [Imp15];
in C++17 and later, the use of memory order consume is discouraged until its
semantics is reworked [ISO17].

I do not test the correctness of compiler optimizations, but rather focus only
on testing that the compiler is correct at some optimization level. The correct-
ness of common compiler optimizations under C11 is an active area of research
(see for example Morisset et al. [MPZN13] and Vafeiadis et al. [VBC+15]). It is
a complex topic on its own that requires a significantly different approach, and
is out of scope for this thesis.

As stated above, I only test compilers for ARMv7 and RISC-V. Additionally,
since I have not had access to any multicore RISC-V hardware, I only run
hardware tests on Arm.

4 Theory

This section introduces some theory around memory models in general and the
C11 memory model in particular. This theory is necessary to understand the
rest of the thesis. The expert reader may skip (or skim) this section.

4.1 The C11 memory model

This section contains a brief and informal description of the C11 memory model,
omitting locks since they are not dealt with in this thesis. For a more rigorous
and complete description, see Boehm and Adve [BA08], or — for a formal
description — Batty et al. [BOS+11].

Around the same time C11 was introduced, C++11 introduced an almost
identical memory model into C++. The two are similar enough that they are
often discussed as the same, the “C/C++11 memory model”. Some of the
literature referenced in this section refer to it only as the C++11 memory model,
but it applies to C11 as well. Besides some formatting and language syntax,

7

the specification of atomic operations for the two standards are almost word-
for-word identical [ISO10, ISO12].

C11 introduces atomic data types, which are qualified with the Atomic

keyword (i.e. Atomic int gives an atomic integer type). These are types on
which one can perform atomic operations. The operations available on atomic
types are read operations, write operations and read-modify-write operations
(e.g. fetch-and-add).

Besides the guarantees of atomicity, C11 also lends atomic operations some
synchronization guarantees, dictating the order in which atomic operations may
be executed and their effects may become visible. By default, atomic operations
are sequentially consistent. They behave as if:

� There is a total order in which all atomic operations are executed, that
respects the order in which the operations are sequenced (i.e. the order in
which they appear in the code).

� Once an atomic operation is executed, its effects become instantly visible
to all threads.

With SC atomics, we can correctly implement the store-buffering test from
earlier in C11, as shown in Listing 3.

Thread 0 Thread 1

Initially, _Atomic int x0 = 0, x1 = 0;

atomic_store(x1, 1);

if (atomic_load(x0) == 0)

puts("T0 won")

atomic_store(x0, 1);

if (atomic_load(x1) == 0)

puts("T1 won")

Listing 3: The store-buffering test from Listing 1, implemented in C11

However, as described by Boehm and Adve [BA08] enforcing SC can sig-
nificantly impact a program’s performance, especially on architectures where it
requires inserting hardware memory barriers. For this reason, C11 allows the
programmer to tag an atomic operation with an explicit memory ordering, in
order to weaken the guarantees made about the operation. For example, tag-
ging an operation with memory_order_relaxed removes all ordering guarantees
from it. A store tagged with memory_order_release prevents reordering mem-
ory operations after it. A load tagged with memory_order_acquire prevents
reordering memory operations before it. None of these memory orderings re-
quire the sometimes expensive total order of execution that SC does. Manually
specifying memory orderings can be quite difficult, and using an ordering that
is too weak can break one’s program in subtle ways.

An important feature of the C11 memory model is that a program that con-
tains any data race is considered to have undefined behavior (C11 defines a
data race as two concurrent accesses to the same location where at least one is

8

a store, and at least one is non-atomic). This means that shared variables are
not allowed to be accessed non-atomically, unless such accesses are protected
by some synchronization primitive (e.g. a mutex lock) [ND16]. It also allows to
“extend” some of the synchronization properties of atomic operations to non-
atomic operations around them: a block of non-atomic operations surrounded
by synchronizing sequentially consistent atomic operations can be thought of
as sequentially consistent itself, since no other thread is allowed to observe an
intermediate result of those non-atomic operations. Indeed, for a race-free pro-
gram using sequentially consistent atomics, C11 guarantees SC for all memory
operations, not just atomic ones [BA08].

To exemplify a few features of the C11 memory model, consider the program
shown in Listing 4. The first thread stores a message to val, and then signals
the other thread via an atomic flag. The release ordering used to update the
flag ensures that the store to val is not reordered after the store to the flag. The
second thread reads the value of the flag, and when its value is 1, we can be sure
that this thread also sees val = 42. The acquire ordering additionally ensures
that the read from val is performed after the flag is read. Thus, transitively
the store to val always happens before it is read by the other thread. This
program would have been just as correct had the two atomic operations been
sequentially consistent (i.e. without giving them explicit memory orderings). In
this case, however, there is no need for the extra synchronization that would
provide. Thus, the explicit memory orderings let us relax the memory model
and — hopefully — lets the compiler produce more performant code.

Thread 0 Thread 1

Initially, _Atomic _Bool flag = 0; int val = 0;

val = 42;

atomic_store_explicit(flag, 1,

memory_order_release);

while (atomic_load_explicit(flag,

memory_order_acquire) == 0);

int received_val = val; // will always read 42

Listing 4: The message-passing test, implemented in C11

C11 also allows inserting fences. These support the same memory orderings
as regular atomic operations, but do not perform any memory operations.

4.2 Binary relations

As we will see below, binary relations are often practical when describing mem-
ory models. A binary relation is a set of ordered pairs of elements from some set
A (this is a slightly narrow definition, but it suffices here). For every pair (x, y)
in the relation, we say that x is related to y. For example, for A = {1, 2, 3}
we can define the relation greater-than — which relates each number to those
smaller than it — as gt = {(3, 2), (3, 1), (2, 1)}.

The following are some relevant properties of binary relations:

9

� An acyclic relation is one that does not contain any cycles.

� An irreflexive relation is one in which no element is related to itself.

� A transitive relation R is one in which (a, b) ∈ R∧ (b, c) ∈ R =⇒ (a, c) ∈
R.

� The composition R;S of two relations R and S is given by (a, b) ∈
R;S ⇐⇒ ∃x : (a, x) ∈ R ∧ (x, b) ∈ S.

As an example, the greater-than relation described above is acyclic, irreflexive
and transitive.

4.3 Axiomatic formal models

Memory models are often specified in prose text written in natural language,
such as in Section 4.1 above, in the C11 standard [ISO10] or in the AArch64
documentation [Lea]. In order to study them and remove the ambiguity that
often comes with natural language descriptions, memory models are formalized.
This thesis is concerned specifically with axiomatic formal models.

Axiomatic memory models represent programs as a set of memory events
E (e.g. loads and stores), and then define a number of binary relations over
E ordering the events. For example, the sequenced-before (sb) relation orders
events from the same thread by the order in which they are sequenced (roughly,
the order in which they appear in the code); for some e1, e2 ∈ E, we can write
(e1, e2) ∈ sb to say that e1 is sequenced before e2. sb is determined entirely by
the program, and does not change between runs of the same program. Other
relations do vary between runs. Examples of such relations are mo (modification
order), which orders all store events to the same location (e.g. variable, memory
address), and rf (reads-from), which relates each store to any loads that took
their value from that store. Note that the names and exact meanings of these
relations vary from model to model, these are simply a few of those used for the
C11 model. Together, an instance of all model relations describe an execution
of the program.

The memory model is given its properties by specifying axioms over pro-
gram executions (i.e. over the model relations), that must hold in order for an
execution to be valid. As an example, a trivial axiom under all memory models
is that sb (or its equivalent) must be irreflexive: it would not make sense for
an event to be sequenced before itself. Another example used in some models
is that given the modification order mol for each location l, mol ∪ sb must be
acyclic. This states that writes to the same location must be performed in the
order they appear in the code.

For a more in-depth explanation of axiomatic models, see Alglave et al. [AMT14].
The boolean nature of axiomatic models makes them well-suited to use with

SAT solvers, something several of the tools used in this thesis take advantage
of.

10

5 Methods

This section outlines the methods used for each step of the testing process, to
generate tests and test compilers, and provides motivation for why the methods
were chosen. The implementation of the methods are detailed and discussed in
later sections.

A common approach to verifying the correctness of a compiler is to produce
a formal proof. Doing so can be a daunting task, and requires sound formal
models of both the language being compiled and the target architecture. For C11
atomics, there are formally proven compilation schemes for x86-TSO [BOS+11]
and Power/Arm [SMO+12].

Another approach — the approach I take in this thesis — is to rely on
testing. Testing can be used in cases where it would be too difficult to produce
a formal proof, or as a complement to formal proofs; Trippel et al. used testing
to find a mistake in a formally proven compilation scheme from C11 atomics to
POWER [TML+17]. Moreover, while formal proofs are only able to prove that
some mappings between C11 and some instruction set is correct, testing is able
verify that a compiler correctly implements those mappings.

Testing brings with it its own set of difficulties, especially for concurrent
language features. Writing and executing concurrent tests involves many of
the same challenges that come with concurrent programming; reasoning about
concurrent code is much more difficult than about serial code, and subtle bugs
— whether introduced in the code code or by the compiler — are often difficult
to detect and pin down. A concurrent program or test that runs correctly once
is far from guaranteed to be free from errors.

To test a compiler, I use the following testing process:

1. Create a suite of parallel C11 test cases, where the allowed outcomes of
each program are known.

2. Compile the tests with the compiler that is being evaluated.

3. Examine the reachable outcomes of each compiled program, and compare
to the known outcomes allowed by C11.

If a compiled program is able to reach an outcome that is not in the list of allowed
outcomes, it has been compiled incorrectly. Steps 1 and 3 can be considered
in some separation, since the compiler acts as a stable interface between them.
This testing procedure is similar to one published by Trippel et al. [TML+17],
but differs in its purpose and implementation. Their methods are discussed
further in Section 10.1.

11

Figure 1: An overview of the testing process

I use IAR compilers and gcc to run tests on, focusing on the Arm and
RISC-V architectures.

5.1 Generating test cases

The test programs used are litmus tests. These are small, parallel programs that
demonstrate specific features of a memory model, and are meant to exhibit dif-
ferent behaviors under different memory models [LWPG17]; they are frequently
used to test and study (the implementation of) memory models [LWPG17,
AMSS12,ABD+15,BA08,FGP+16]. The mutual exclusion program described in
Section 2.4 is an example of a litmus test. Litmus tests typically only contain a
few memory operations per thread; the number of possible executions grows ex-
ponentially with the number of operations (the ‘state space explosion’ problem),
making it difficult to reason about larger tests. Instead, a very large number
of small tests tests are often used. This aligns with the ‘small-scope hypothe-
sis’ [ADK03,OPP+12], which posits that testing a system thoroughly within a
small scope can be just as or more effective than testing it incomprehensively
within a larger scope.

For some hardware platforms, there are publicly available collections of lit-
mus tests (e.g. for Arm [AMSS,ARMa]). However, no such collections seem to
exist for C11; most research applying litmus tests to C11 only use a handful of
test cases, as a means of highlighting specific features of the model rather than
for rigorous testing. Moreover, it is non-trivial to rewrite test cases written in
assembly to C11, since most ISAs do not have C11-style memory orderings.

To solve this, I use an automatically generated suite of test cases. I base my
work on Lustig et al. and their litmustestgen tool, which models C11 litmus
tests and uses a solver to find all litmus tests that are sufficiently interesting. The
model considers all litmus tests up to some size bound, and should thus provide
good coverage, but only generates tests that are as small and simple as possible,
and should thus avoid generating redundant tests. Since litmustestgen does
not determine the allowed outcomes of each test, I use HERD — an exhaustive
memory model checker — to do this.

A few other methods for litmus test generation are discussed in Section 10.2,
but they are not easily applicable to C11 and as such are not worth discussing

12

here.

5.2 Running compiled test cases

After creating tests and compiling them, the next step is exploring what out-
comes are reachable by the resulting executables. The two methods often em-
ployed for this are:

� Running the test through a model checker or similar (e.g. HERD [AMT14])
that can exhaustively enumerate the reachable outcomes.

� “Stress testing” by running the test repeatedly on real (or simulated)
hardware and recording which outcomes occur.

I prefer the model-checking approach, since it is exhaustive. This is the
method I rely on the most, using the HERD memory model simulator, which
enumerates all allowed outcomes for a test under a given memory model. The
TriCheck tool mentioned earlier also uses a model checking approach. However,
rather than verifying tests against the ISA memory model, TriCheck verifies
them against a description of some microarchitectural implementation of that
memory model, with the goal of verifying that a compiler and microarchitecture
collectively uphold the C11 memory model. This opens the possibility for mi-
croarchitectural models that are stricter than the ISA memory model to conceal
errors introduced by the compiler. Since I only aim to test the compiler, I use
the more appropriate (and simpler) HERD tool, to check the tests directly against
the ISA memory model.

The stress testing approach is less reliable than model-checking, since it can
only prove that any given execution is allowed, not that it is forbidden. However,
stress testing has some practical advantages over model checking:

� It can easily be applied to almost any platform, without requiring a model
checker or a (sound) formalization of the ISA’s memory model. HERD, for
example, only supports five architectures.

� It supports the full instruction set, and so can run virtually any test, such
as those involving interrupts. For RISC-V processors that do not support
the atomics portion of the ISA, the IAR compiler deals with interrupts;
such implementations cannot be tested with HERD.

� It scales better with the size of the tests. This becomes relevant when
running tests for Arm that contain several RMW operations, as we will see
later. Moreover, if one wanted to also run larger, more realistic programs,
model checkers would be altogether too slow to use.

When given enough time, stress testing has been shown to be effective at find-
ing even rare executions [AMSS11,AMT14,AMSS12,HVM+04]. Some amount
of research has been done on how to maximize the number of outcomes found by
stress testing, specifically on how to schedule and synchronize threads [MMSM20],

13

and how to cleverly stress the hardware (although only on GPUs) [ABD+15].
Besides this, I could try experimenting with different CPUs (number of cores,
clock speed), or running tests while artificially flooding the coherence protocol.

I implement both stress testing and model-based testing, and compare the
two methods to find out if stress testing can reach a satisfactory degree of
confidence.

5.3 Evaluation plan for the testing process

I evaluate the testing process in three ways:

� Whether the process is able to identify compilers with known bugs in their
compilation of C11 atomics, as faulty. I am not aware of any such bugs in
popular compilers, so instead I artificially create bugs by modifying com-
pilers to use known incorrect compiler mappings. This serves as a crude
metric of the coverage of the test suite, and demonstrates the viability of
the process as a whole.

For Arm, I use the leading-sync and trailing-sync mappings, first described
by Batty et al. [BMO+12] and supposedly proven correct for Arm and
Power (the two architectures are similar enough that the proof applies
to both). However, a mistake was later found in the proof [MTL+16].
At the same time, the trailing-sync mapping was later proven incorrect
for both architectures [MTL+16] using counter-examples found with the
TriCheck tool mentioned earlier [TML+17]. Counter-examples were also
found for the leading-sync mapping by other researchers [LVK+17], but
they only confirmed that these invalidated the mapping to Power, and did
not investigate whether the counter-examples also applied to Arm.

For RISC-V I use a made-up bug, since I have not found any in the liter-
ature. Trippel et al. have published two compiler mappings with similarly
subtle bugs as the Arm ones mentioned above (in fact, they concluded that
there are no valid C11-atomics compiler mappings for RISC-V) [TML+17];
however, their findings have been addressed with recent changes to the
RISC-V specification [WAR19], and so their mappings are no longer buggy.

� To what degree and with what frequency stress testing is able to produce
the different reachable outcomes for each test case. If it is not able to
reliably find rare outcomes, it will not be effective at finding bugs. On the
other hand, if it is effective at finding all outcomes, that could justify using
stress testing instead of an exhaustive verification tool. I use the HERD

tool [AMT14] mentioned earlier as the source-of-truth on what outcomes
are possible for each compiled test, and compare that to the outcomes
reachable with stress testing.

� Whether the test generator is able to find classic litmus tests from the lit-
erature. Alglave et al. define several families of litmus tests [Lit], classified
according to what memory operations they contain, and how the opera-
tions interact. Many of there litmus tests frequently occur in real-world

14

code [AMT14]. I evaluate whether the test generator finds tests in these
families, excluding a few families that are only interesting for Arm and
POWER.

6 Synthesizing test cases

As mentioned in Section 5, I use the Alloy-based litmustestgen tool published
by Lustig et al. [LWPG17] to generate test cases. The tool uses a model of a
basic C11 program containing only memory operations, and applies an axiomatic
C11 model by Batty et al. [BDW16] to the program model. Running this model
generates all valid programs and executions in this subset of C11 (up to some
bound on the number of memory operations).

In order to generate only those test cases that are most likely to expose errors
in a memory model implementation, the authors apply a “minimality criterion”
to the model. This criterion is defined around two instruction relaxations: one
removes a memory operation, and the other demotes its memory order (reduces
it to a weaker order). An execution is defined to be minimal if and only if the
following constraints both hold:

� The execution is forbidden by the C11 memory model.

� No instruction relaxation can be applied to any of the memory operations
without allowing the execution.

The minimality criterion ensures that each generated test contains a forbidden
execution, and that it contains just enough memory operations and synchro-
nization to forbid that execution. Lustig et al. mention a third instruction
relaxation, which decomposes a RMW operation into an atomic read and an
atomic write. However, they do not implement this relaxation for C11, most
likely because the C11 model they use makes it too difficult.

I make a few restrictions to the search space of the test generation model
in order to remove tests that I consider uninteresting. This saves a significant
amount of time when executing the generated test suites (and probably also
when generating them). First, I do not generate tests that have only a single
thread. The compilation of single-threaded programs is probably best tested us-
ing other methods, such as the one described in Section 10.3. Second, I choose
not to generate test cases that contain nonatomic variables or operations. Be-
cause I do not generate tests that contain locks, or any other form of conditional
execution, every operation in a test is concurrent with all other operations in
any other threads. Recall that C11 forbids data races; if two operations con-
currently access the same variable, they must either both be reads or both be
atomic. For these tests, there are then three scenarios in which a variable does
not have a data race:

� All accesses to it are from the same thread.

� All accesses to it are reads.

15

� All accesses to it are atomic.

The first two cases are not interesting, since the value of the variable will not
vary between executions, and thus cannot be used to detect faulty executions.
If we leave those out, we are left generating test cases with only atomic variables
and operations.

I also change how the model handles variable initialization. C11 forbids in-
determinate reads (reads from uninitialized variables). When running litmus
tests, all variables are typically initialized before the test is run. However,
litmustestgen does not model variable initialization; it treats any read from a
variable’s initial value as an indeterminate read, and thus disallows executions
containing such reads. As a result, it fails to generate the classic store-buffer and
message-passing tests seen earlier, among others. To improve this, I allow inde-
terminate reads and take any such read to instead be a read from the variable’s
initial value. By modifying the fr relation to include indeterminate reads, there
is an implicit initialization event that appears first in the modification order for
each variable. I have verified that for a bound of 5 events, the tests generated
with this modification is a strict superset of those generated without it.

Finally, in order to save time both when generating tests and when running
them, I exclude any test that contains two or more RMW operations. I men-
tion above that the model does not implement the third instruction relaxation
(decomposition of RMWs). This means that generated tests containing RMWs
are not necessarily minimal, and that it is slightly more safe to remove them,
compared to tests without RMWs. However, my main reason for excluding tests
with several RMWs is that running such tests for Arm with HERD is extremely
slow; both compilers tested implement RMWs on Arm using loops, and HERD

does not handle loops well. While a test without RMWs takes at most a few
seconds to run, a test with two RMWs can take several minutes, one with three
RMWs around 15 minutes and one with four RMWs several hours. For more
complete results one could — and probably should — use the complete test set,
especially for architectures that do not suffer from slow HERD execution times.

6.1 Instantiating tests

The Alloy model described above generates a set of abstract test cases, each
consisting of several threads of memory events. Each memory event specifies
a type (read, write or RMW), a variable and a memory order. An example is
shown in Figure 2.

16

Figure 2: An example abstract test case generated by litmustestgen, consist-
ing of two threads with two memory operations each.

Note that these events do not specify the values to use for write or RMW
operations; in order to produce a runnable test from an abstract test case, I
first need to assign values to the operations that need it. The assignment has
to be done in such a way that each distinct execution is mapped to a unique
outcome, so that it is possible to differentiate between allowed and forbidden
executions. litmustestgen uses a model by Batty et al. [BDW16], in which
the reads-from and modification order relations uniquely identify an execution:
all other relations are either derived from these two, or are the same for every
execution. Thus, we need to ensure that we can identify these two relations
from the test outcome.

As long as all writes store unique values, the reads-from relation is easily
identifiable from the outcome, since the source of a read can be inferred from its
value. The same is true of the modification order as long as there is a maximum
of two writes per variable, since the final value of each variable is then enough
to infer the modification order. For variables with more than three writes, one
can add extra reads to the test, as documented by the diy tool [Gen]. However,
since merely 18 of the 3025 tests generated would need it, I opt not to amend
those tests. Note that RMWs do not count: all C11 RMWs return the value
they read, and thus their place in the modification order is always unambiguous.

Ensuring the uniqueness of every regular write is simple (all it takes is as-
signing each write a unique value). Ensuring the uniqueness of RMWs is more
difficult, and requires choosing the values of both writes and RMWs such that
each RMW, no matter what value it reads, produces a new unique value. Ta-
ble 1 specifies the how the values are determined for each RMW type. Note
that the table includes values for tests with more than one RMW operation,
but as discussed earlier I do not use any such test in this thesis.

Note also that the abstract test case in Figure 2 does not indicate a spe-
cific RMW function to use, since all RMW functions are treated the same by
the memory model (with the exception of atomic_compare_exchange, which I

17

RMW function Initial value Write values RMW values

atomic exchange I = 0
W0 = 1
Wn = Wn−1 + 1

X0 = |W |+ 1
Xn = Xn−1 + 1

atomic fetch add I = 0
W0 = 1
Wn = Wn−1 + 1

X0 = |W |+ 1
Xn = 2 ·Xn−1 + 1

atomic fetch sub I = 0
W0 = 1
Wn = Wn−1 + 1

X0 = |W |+ 1
Xn = 2 ·Xn−1 + 1

atomic fetch or I = 0
W0 = 1
Wn = Wn−1 + 1

X0 = |W | << 1
Xn = Xn−1 << 1

atomic fetch xor I = 0
W0 = 1
Wn = Wn−1 + 1

X0 = |W | << 1
Xn = Xn−1 << 1

atomic fetch and I = 2|X| − 1 Wn = 2|X|+n+1 − 1 Xn = (2|W |+|X| − 1)⊕ 2n

Table 1: A specification of the set of values used for writes (W) and RMW
operations (X). The order in which the values are used does not matter.

choose not to handle in this thesis). In order to cover all RMW functions, I
create six concrete tests for each abstract test case with a RMW operation, one
for each of the different RMW functions. This also poses an interesting question
for tests with more than one RMW operation, which I happen to avoid by ex-
cluding such (for other reasons, as described above). For such tests, one might
think to create one concrete test for every combination of RMW functions, but
this would give an absurd number of tests. A better alternative might be to
create one test per RMW functions, where all RMW operations use the same
function; it seems reasonable that a RMW function with insufficient synchro-
nization would be as or more likely to display a forbidden outcome interacting
with itself, as it would interacting with another RMW function.

6.2 Finalizing tests

Once the values are determined, I generate equivalent C11 code for each thread
of memory events, and store it to a file so that it can be compiled later. Listing 5
shows the code generated for the abstract test case shown earlier and for one of
the RMW functions.

18

_Atomic int var0 = 0, var1 = 0;

int n0, n1;

void thread0() {

atomic_store_explicit(&var0, 1, memory_order_relaxed);

atomic_store_explicit(&var1, 1, memory_order_release);

}

void thread1() {

int n0 = atomic_fetch_add(&var1, 2, memory_order_acquire);

int n1 = atomic_load_explicit(&var0, memory_order_relaxed);

}

Listing 5: A finalized test case for the events in Figure 2, using the
atomic fetch add RMW function.

Note that for the read and RMW operations, I write the return value to a
unique nonatomic variable so that it can be retrieved after the test has been run.
These extra write operations do not change the allowed outcomes. All axioms
of the C11 memory model are either irreflexivity axioms on some composition of
relations, or acyclicity axioms. The extra writes I introduce affect only the sb

relation, and because sb is transitive, any cycle containing the extra write could
be formed without it, and any composition of sb would not have its reflexivity
affected by the extra write.

Besides the code, for each test I also store the name and initial values of all
variables it uses. Finally, for each test I identify and store the set of allowed
outcomes under C11; this is the set that I then compare against the set of
reachable outcomes after compilation. To identify the allowed outcomes I run
the C11 code through HERD, a memory model simulator which is described in
more detail in Section 7.1. I use one of the default C11 models provided with
HERD, which is based on the original C11 formalization by Batty et al. [BDW16,
Ove].

7 Running test cases

As mentioned earlier, I run each generated test case by creating a C program
containing its code, compiling the program, and then identifying the reachable
outcomes of the compiled program. In order to determine the reachable out-
comes of the compiled program I use both a simulator (HERD) and real hardware.

7.1 HERD

The HERD tool is a memory model simulator published by Alglave et al. [AMT14].
As input, HERD takes a test file containing variable (or memory) initializations
and some code to run in different threads, as well as a an axiomatic memory
model specification. Then, it uses a SAT solver to find all executions of the

19

test file (and thus all outcomes) that are valid under the memory model. An
example test input file can be seen in Listing 6. HERD supports C11, Arm
assembly, RISC-V assembly and a few other languages. I use the default Arm
and RISC-V memory models that come with HERD.

ARM mp_relacq

{

% initialize stack & frame pointers

0:SP=0;0:R11=0;1:SP=1000;1:R11=1000;

% initialize variables

100628=0;100624=0;100632=0;100636=0;

}

P0 | P1;

movw R3, #35088 | movw R3, #35088;

movt R3, #1 | movt R3, #1;

mov R2, #1 | ldr R2, [R3, #4];

str R2, [R3] | dmb sy;

dmb sy | str R2, [R3, #8];

str R2, [R3, #4] | mov R1, #2;

| str R1, [R3, #12];

| cmp R2, #1;

| movweq R3, #35088;

| movteq R3, #1;

| ldreq R2, [R3];

| streq R2, [R3, #12];

% addresses of variables

locations [100636;100632;100624;100628;]

Listing 6: A HERD input file for the message passing test described earlier,
compiled for Arm using gcc.

7.1.1 From compiler to HERD

Converting a C11 test into an assembly equivalent that is runnable with HERD
is somewhat complicated. Since HERD runs assembly code, not binary files, I
first need to compile the code for each thread and extract the assembly code. I
create a file containing an empty main function, and a function for each thread
containing its code. I then compile and link this file with the compiler to test,
disassemble the output, and extract the assembly corresponding to each thread.

Next, I create the memory initializations at the top of the .litmus file. For
each variable, I look up its address in the symbol table of the executable, and
initialize the memory location at the top of the test file. I also add each address
to the locations at the bottom of the file, so that HERD knows to output the
values at these addresses for each outcome.

The runtime of HERD scales superlinearly with the number of memory oper-
ations a test contains, and in some cases compilers output unnecessary memory

20

operations that make tests unfeasible to run. First, gcc compilers make heavy
use of the stack when optimizations are turned off. While I generally avoid op-
timizations to make it easier to map between assembly and the original C code,
for gcc I turn on debug-friendly optimizations (-Og) and turn off whole-program
optimizations (-fno-whole-program), which resolves this issue. Second, the Iar
Arm compiler loads variable addresses from a static section of the executable,
rather than loading them as immediates. I convert those loads into immediate
loads before passing the assembly to HERD.

HERD has a somewhat limited instruction support, and compilers sometimes
output instructions that HERD does not support. For some instructions, I re-
place them with equivalent supported instructions. For instructions without a
supported equivalent, I have extended HERD to support them.

7.1.2 Running HERD tests

After generating a .litmus file, I run it with HERD. HERD then generates all
possible outcomes, that is, a list of all possible final values at the memory
addresses specified at the end of the file. The addresses are converted back to
variable names using the symbol table of the compiled executable.

7.2 Stress testing on hardware

As discussed in Section 5, running tests on hardware is sometimes more practical
and allows testing parts of the ISA that model checking tools do not implement.

Each test case is compiled with a test harness that runs the test multiple
times while tallying the outcomes. The code for each thread is placed in a
loop running as many iterations as desired, and each loop is run in a separate
thread. Every iteration, these threads synchronize so that all threads run the
same iteration at roughly the same time. For each variable in the test, the
harness allocates an array of size equal to the number of test runs. Then, for
all memory accesses, the iteration number is used to index into these arrays, so
that each test iteration accesses a unique set of memory locations. When all
test iterations have been run, the arrays are scanned to determine the outcome
of each run (by determining the final value of all memory locations). The test
harness is run bare-metal on a Cortex-A9 processor, with each thread running
on its own dedicated physical core. The final tally of outcomes is transmitted
from the chip using a debug probe and semihosted I/O.

7.2.1 Optimizing for variability of outcomes

Running tests on hardware has no guarantee of finding all reachable outcomes,
and certain outcomes that depend on rare hardware behavior may be very rarely
produced. To increase the number of outcomes found, the most obvious solution
is to increase the number of test runs. However, there are a number of other
factors that affect the outcomes found.

21

Possibly the most important factor is the type of barrier used to synchronize
the threads. The barrier is responsible for the majority of test runtime [MMSM20].
A good barrier is fast so as to save runtime, and not too exact so as to allow
some variation in executions. Melissaris et al. [MMSM20] compare various bar-
rier types methods used by Alglave et al. [AMSS11, Run], and find that the
timebase and userfence barriers perform the best in almost all tests and by al-
most all metrics. Thus, these are the two I implement and evaluate. Melissaris
et al. also present a method of running litmus tests without barriers, which
significantly improves performance. However, their method does not seem to
be able to observe the modification order of test runs; the authors only explain
how to observe the reads-from relation, and the method is only applied to tests
where the modification order is insignificant. Since it would only be applicable
to a subset of all tests, I do not implement the test method of Mellisaris et al.

Another important factor is the array access pattern between test instances.
As described, each test iteration is allotted a set of unique locations in the arrays
representing the test variables. The most obvious allotment is sequential, so
iteration i of a test that accesses some variable x, accesses the i -th element of
the x array. However, experiments have shown a much greater variability of
outcomes when the allotment is randomized, so that the same iteration i would
instead access some random (but unique) element of the x array [AMSS11].
Thus I use a randomized allotment.

There are a few more factors that affect the outcome variability. These
include the scheduling and affinity of the test threads (not applicable to bare-
metal programs), explicit prefetching between test iterations, and external stress
put upon the coherence protocol. These factors are not very well studied, and it
is either not clear how to best apply them, or how large of an effect they would
have. For this reason, I choose not to implement these methods, and instead
leave them as future work.

8 Results & discussion

In this section, the results are described and discussed according to the evalu-
ation criteria laid out in Section 5.3. First, I evaluate the generated test suite.
Then, I examine the accuracy of the tool when applied to both gcc and IAR
compilers, including some deliberately buggy compilers. Last, I compare the
two test-running methods, stress testing and model checking.

To run tests in this section, I use a tool I built in ruby implementing the
methods I describe in the thesis. Thus, this tool is capable of both generating
test suites and running them with either of the methods described earlier. In
this section, I refer to this tool simply as “the tool”.

8.1 Tests generated

Generating tests is very slow, and generating tests with a bound larger than
six memory events seems unfeasible. This is an acceptable limit; of the litmus

22

tests families defined by Alglave et al. [Lit], only one is larger than six events.
Moreover, Mador-Haim et al. [MAM10] have shown that litmus tests of at most
size six is sufficient to prove equivalence between TSO-like models, and while
this is not directly applicable to the C11 model it at least shows six events is
not too bad of a bound.

Table 2 shows the number of tests generated for each test size. Unsurpris-
ingly, the number of tests increases exponentially with the test size.

Test family Tests found

4 90
5 472
6 2463

Total 3025

Table 2: A tally of the number of tests found in each of the families defined by
Alglave et al.

Section 5.3 mentions the litmus test families defined by Aglave et al. [Lit],
which commonly occur in other litmus test suites and some of which correspond
to commonly used programming patterns. Table 3 shows the number of tests
belonging to each family in the suite of tests generated for this thesis. All
families have at least one test belonging to them; some have several, typically
in the form of variants of the same test but with various fences inserted. These
numbers differ from other litmus test suites, such as those generated by Alglave
et al. for Arm [SSA+] and the Linux kernel [AMM+18], which have tens of tests
— or more — for each family. However, the vast majority of those tests are
nonminimal, and some do not even have any forbidden outcomes. These suites
may be designed to study some model or model implementation in depth, rather
than to simply test its correctness or compliance with some specification. Then,
it would be interesting to include tests that are expected to pass. Also, since
most other suites do not include RMWs, they would be very small if they only
included minimal tests (for C11, there are only 121 minimal tests below seven
operations that do not contain RMWs). Considering it is fairly cheap to run
a litmus test, it’s possible that some nonminimal tests are included simply for
good measure.

8.2 Finding compiler bugs

As described earlier, I test both the IAR and gcc compilers for Arm and RISC-
V, using the HERD-based testing method. The results are shown in Table 4. As
is shown in the second third colum, no bugs were found in any of the unmodified
compilers.

Section 5.3 described how the leading-sync and trailing-sync compiler map-
pings from C11 atomics to Arm were thought to have been proven correct, but
were later shown to be incorrect in some cases [MTL+16, LVK+17]. As far as
I am aware, no popular compiler has ever used this compiler mapping; most

23

Test family Tests found

MP 8
S 4
SB 3
R 3
2+2W 3
LB 4
WRC 6
WWC 3
RWC 4
WRW+WR 3
WRR+2W 8
WRW+2W 4
IRIW 2
IRWIW 2
IRRWIW 2
ISA2 1
W+RWC 1
3.SB 1
3.LB 1
3.2W 2
Z6.0 1
Z6.1 2
Z6.2 1
Z6.3 1
Z6.4 2
Z6.5 2

Table 3: A tally of the number of tests found in each of the families defined by
Alglave et al.

compilers use a variant of the trailing-sync mapping, with a stronger mapping
for acquire-loads. I use two modified versions of the IAR Arm compiler, us-
ing the exact leading-sync and trailing-sync mappings respectively, and test the
compilers with the tool developed for this thesis. The trailing-sync compiler
fails 6 tests, two of which are the IRIW and WRC counter-examples already
found by Manerkar et al. [MTL+16]. The leading-sync compiler fails 6 tests, of
which neither are the two counter-examples found by Lahav et al. [LVK+17].

I also run tests against a modified version of the IAR RISC-V compiler, again
with a weakened compiler mapping. Normally, the compiler maps a SC-load to
a load (lw) followed by a fence rw,r instruction. My version changes the fence
to fence w,r, thus weakening it. With this change, 48 tests fail.

It is impossible to know for certain whether the reason the tool does not find
any bugs in the unmodified compilers is that there are no bugs in them, or that
the tool is not good enough to find them. However, the fact that all modified

24

Architecture Compiler Failed tests Unobservable outcomes

Arm IAR 0 6.7%
Arm gcc 0 6.7%
Arm IAR (leading-sync) 6 2%
Arm IAR (trailing-sync) 97 2%
RISC-V IAR 0 6.7%
RISC-V gcc 0 6.7%
RISC-V IAR (modified) 48 4.4%

Table 4: The results from applying the testing tool to various compilers.

compilers are correctly identified as faulty should lend some credibility to the
tool. The two Arm bugs, especially, are very subtle, and demonstrate that the
tool is able to find even bugs that only present themselves very rarely. Recall
that, as mentioned in Section 5.3, TriCheck [TML+17] only found test failures
for the trailing-sync mapping and not the leading-sync mapping. According to
the authors, this was because their test case generator did not support fences.

Interestingly, the tool does not find either of the two leading-sync counter-
examples published by Lahav et al [LVK+17]. One of those counter-examples
contains eight atomic operations, and is thus too large for the tool to find
when using a test size limit of six operations. The other counter-example only
contains six operations, but is non-minimal; the tool does not find the exact
same example, but instead finds a smaller equivalent test. Recall that Lahav
et al. only show that this test fails on Power, but do not evaluate it on Arm
(see Section 5.3); I am able to show that it does not fail on Arm. Lahav et al.
discuss that a lightweight barrier used when compiling the test to Power is what
causes the test to fail. However, Arm uses a full barrier instead and thus does
not fail the test.

All tests that fail for the leading-sync scheme are tests that contain an
atomic exchange RMW operation. It appears that this operation is slightly
weaker than the other RMW operations, possibly because it has no dependency
between the loaded value and the stored value. A slight change to the imple-
mentation of the atomic exchange operation might thus be enough to make
the leading-sync mapping valid for Arm.

The second column of Table 4 shows the portion of allowed C11 outcomes
that are not observable after compilation. A low number indicates that the
compiler and hardware implement much of the relaxed behavior allowed by the
C11 model, which in turn is a sign of good performance of the compiled pro-
grams. We can note that the modified (buggy) compilers have significantly
fewer unobservable outcomes compared to the regular ones. If the C11 model
is changed so that the leading- and trailing-sync mappings become valid, as has
been proposed [LVK+17], they might be able provide better performance than
the mappings used today. Note, however, that the tests used in this thesis are
not very well suited to this type of analysis. The advantage of generating min-
imal tests is that they only require a little less synchronization for a forbidden

25

outcome to become visible, but they may (and probably do) require a lot of
extra synchronization before an allowed outcome becomes unobservable. If one
wanted to study the unobservable outcomes of some compiler, one would be bet-
ter off generating a suite of non-minimal tests. One could invert the minimality
criterion to generate “maximal” tests, for which no memory ordering could be
promoted without hiding some allowed outcome. An improvement to my pro-
cess would be to generate both a minimal and a maximal test suite, to detect
both forbidden outcomes (for conformance testing) and unobservable outcomes
(as a performance metric). Then, compiler developers could dial in a perfor-
mant mapping by trying to reduce the proportion of unobservable outcomes
while making sure none of the tests fail.

8.3 Comparing model checker to stress testing

In this section, I compare the HERD simulator described in Section 7.1 to the
stress testing hardware-based test running method described in Section 7.2. All
tests are run using gcc, for Arm only (as stated in Section 3.1, I have not had
access to suitable RISC-V hardware).

Table 5 compares the results of the two methods, broken down per test
size. It is apparent from these results that my stress testing method is not very
accurate; only about a third of all outcomes are visible with it. This inaccuracy
translates to a poor ability to find bugs. For the tests run in Section 8.2,
the stress testing method did not give a single test failure for either of the
two buggy Arm compilers, and thus incorrectly classified them as bug-free. The
advantages mentioned earlier are clearly not enough to justify using this method
where model-checking is possible.

One should be careful to take these results to mean that stress testing is
never effective. As mentioned in Section 2.4.1, and as demonstrated in practice
by Alglave et al. [AMT14], some behavior that is allowed by the ISA may not
be visible on all processors. It is possible that the processor I use implements a
significantly stronger version of the Arm memory model, and that this is part
of why the outcome statistics are poor. The problem could be diminished by
running tests on several different processors; a larger set of processors would
give a wider range of visible behaviors that more accurately represents the ISA
model. Recall also that in Section 7.2.1 I mention a few stress testing methods
that I do not implement, because i am unsure of their effectiveness. By experi-
menting with these methods and by using multiple processors, it is possible that
stress testing could reach a tolerable level of accuracy, but more research would
obviously have to be done.

9 Conclusion

The testing process presented in this thesis is aimed at testing C compilers’
implementations of the C11 atomics library and memory model. The process is
based on a suite of C11 litmus tests that are compiled to some target platform;

26

Memory operations C11 outcomes HERD outcomes Stress testing outcomes
(Number of tests) Average1 Average visible2 % visible Average visible2 % visible

4 (90) 2.7 2.7 100 1.0 33

5 (472) 5.1 5.0 97 2.1 40

6 (2463) 11.2 10.4 93 2.6 33

3–6 (3025) 10.0 9.3 93 2.5 34

1The average number, per test, of outcomes allowed by C11.
2The average number, per test, of outcomes visible with HERD and stress testing, respectively.

Table 5: A comparison of the outcomes visible via HERD and via stress testing.

the compiled programs are then evaluated to find their possible outcomes. For
a compiler to be considered correct, no compiled test program must have an
outcome that is disallowed by the C11 standard.

I show that the process is able to detect three out of the three known bugs
tested. One of them is a bug that TriCheck (a similar testing tool) failed to
find. I find that the published counter-example to the leading-sync mapping
for Power does not apply to Arm, and my results indicate that the only invalid
part of the leading-sync Arm mapping is the atomic exchange RMW operation.
If so, the mapping could be fixed simply by changing the atomic exchange

implementation, rather than changing the C11 model as has been proposed by
Lahav et al. [LVK+17]. I find no bugs in any of the compilers I tested.

The C11 litmus test suite I use is generated using a model-based approach
which, unlike other common test generation methods, does not require any
guidance from the user. Unlike the suite used by Trippel et al. [TML+17], my
suite encompasses both fences and RMW operations. The suite includes several
instances of tests from common litmus test families, although not as many as
most other test suites. The tests generated this way are well-suited to testing
conformance of some memory model implementation to a specification, but are
likely less useful for other applications of litmus testing.

I evaluate two methods for exploring the behavior of compiled tests: one
using model checking, and one using hardware. The model checking method is
deterministic and in most cases fast enough to be viable, but is very slow at
handling RMW operations for Arm and sometimes suffers from poor instruction
support. On the other hand, I find the hardware-based method to be mostly
unsuccessful; even though it is more portable than model checking, it is too
inaccurate to justify its use. However, there are some possible avenues for im-
provement (such as using multiple processor models) which could be explored
in the future. Given its ability to find compiler bugs (as demonstrated with the
modified compilers), this testing process could be useful for automated confor-
mance testing of compilers. Even though I focus on Arm and RISC-V in this
thesis, nothing about these methods are specific to those architectures. Power
would be an easy next target considering it is well supported by HERD, but

27

it would be interesting to apply these methods to an architecture that is less
well-studied.

Before too much faith is placed in this method of testing, however, fur-
ther evaluation would have to be done to determine exactly how accurate it
is. Moreover, since this process is not able to exhaustively test the correctness
of compiler optimizations, it would need to be combined with other tools or
methods in order to completely test a compiler.

10 Related work

This section describes other work that is related to this thesis, or may be inter-
esting to the reader. Related work that has already been discussed in the thesis
is not mentioned here.

10.1 Full-stack memory model verification

The TriCheck tool published by Trippel et al. [TML+17] tests a compilation
scheme and hardware implementation together, to verify that a compilation
scheme, an ISA memory model and an implementation of the ISA together
adhere to the C11 memory model.

The process involves translating automatically generated C11 litmus tests
into an assembly language, and verifying their behavior against a model of some
hardware. This process is unable to distinguish between test errors introduced
by the compiler and by the hardware model; my HERD method verifies tests
directly against the ISA memory model, and is thus more appropriate when
only testing a compiler.

Trippel et al. use a fairly simple method for test generation; common litmus
tests are used as templates, and C11 variants of them are brute-forced by enu-
merating all possible memory orderings for the atomic operations. This almost
certainly creates lots of redundancy — tests that are too similar to others be
interesting, or that behave exactly the same as other tests. Moreover, Trippel
et al. do not generate tests with RMWs or fences.

Trippel et al. do not use a compiler to compile the tests, but rely on a pre-
defined mapping between C11 atomics and hardware instructions. This makes
their methods less suited for continuous automated testing with a real compiler,
since one would have to update this mapping with every change to the compiler.

10.2 Litmus test generation

Pseudo-random concurrent programs have been used for a long time to help with
the design and testing of multicore processors [OMK+95,AS02]. Whether or not
these can be considered litmus tests is probably a matter of opinion. One of
the first generators using the term “litmus test” was published by Mador-Haim
et al. [MAM10], capable of generating minimal litmus tests that demonstrate
differences between two memory models.

28

Another method was later developed by Alglave et al. for the diy tool [AMSS12].
diy has been used to generate useful suites of litmus tests for various weak mem-
ory models [AMT14,AMSS12,ABD+15]. There is no published research using
diy for C11, but Alglave et al. has used it to generate a litmus test suite for the
linux kernel memory model, which is a model fairly similar to the C11 model.
Unlike the litmustestgen tool by Lustig et al. (the tool I use in this thesis),
diy is not fully automated, and requires careful user guidance to produce test
suites with good coverage. diy produces tests containing cycles of relations that
are forbidden by the memory model, and the user is responsible for specifying
what relations to construct the cycles from. This works well for memory models
that can be specified in terms of just a few acyclicity axioms, but all formalized
C11 models have too many axioms — of which too few are acyclicity axioms —
to be able to easily apply to diy. Moreover, diy does not support C11 RMW
operations.

Several more methods for test generation have been published. Many meth-
ods focus specifically on chip design, and verifying memory model implemen-
tations at the hardware level. Qin and Mishra [QM12], Elver and Nagara-
jan [EN16] and Andrade et al. [AGdS20] all generate tests with the aim of
maximizing coverage of a cache coherence protocol.

Some of these methods seem promising but are not easily applicable to C11,
since they have no strategy for generating C11-style memory orderings, and
(except in the case of diy) are too specific to hardware testing.

10.3 Sequential compiler testing

Naturally, compilers need to be tested also on their ability to correctly compile
sequential code. One effective method for this, that is particularly related to
this thesis, is differential testing on randomly generated programs, as done by
Yang et al. using csmith [YCER11]. Random (but valid) C programs are gen-
erated and then compiled by a set of compilers under a range of optimization
levels. If every program does not have the same outcome for every compiler
and optimization level, there is a bug in at least one of the compilers. This
method is difficult to apply to concurrent programs, the outcomes of which are
typically non-deterministic. Moreover, generating valid concurrent programs
beyond small litmus tests is a much greater challenge than generating compa-
rable sequential programs.

10.4 Validating optimizations under C11

Some compiler optimizations that are common for sequential programs can not
easily be shown to be correct under C11 (since concurrency is allowed). The
correctness of these optimizations is an active area of research, see for example
Morisset et al. [MPZN13] and Vafeiadis et al. [VBC+15]. Research in this area
focuses on larger programs involving more language constructs than just atomic
operations (i.e. more “natural” programs), and — where compilers are involved

29

— starts from the assumption that a compiler is able to generate correct unop-
timized concurrent code.

10.5 Adjustments to the C11 memory model

Batty et al. were the first to publish a formalized version of the C11 memory
model [BOS+11]. At the same time, they pointed out some problems with the
C11 model and proposed some fixes that were later integrated into the standard.
Later, Batty et al. proposed a number of simplifications to the behavior of SC
atomics [BDW16]. Lahav et al. also proposed changes to SC atomics [LVK+17]
that restore the correctness of the trailing-sync and leading-sync compiler map-
pings discussed earlier, without the need to patch compilers or hardware.

10.6 Noise-based testing

Noise-based testing is a technique sometimes used to test concurrent software,
where semi-random delays are inserted into the different threads of a pro-
gram [FHK+15] in order to force different executions. Generally, this is based
on a sequentially consistent view of the software, and the delays are inserted so
as to generate a variety of interleavings. When testing non-SC memory models,
we are more often than not interested in behavior stemming from operations
being performed at the same time, and inserting delays directly counteracts this.
However, a very small amount of delays may be useful even for running litmus
test, but to my knowledge this has not been researched.

30

References

[ABD+15] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan,
J. Ketema, D. Poetzl, T. Sorensen, and J. Wickerson, “GPU Con-
currency: Weak Behaviours and Programming Assumptions,” ACM
SIGARCH Computer Architecture News, vol. 43, no. 1, pp. 577–591,
Mar. 2015.

[AdBO10] K. Apt, F. S. de Boer, and E.-R. Olderog, Verification of Sequential
and Concurrent Programs. Springer Science & Business Media,
Oct. 2010.

[ADK03] A. Andoni, D. Daniliuc, and S. Khurshid, “Evaluating the ”Small
Scope Hypothesis,” Tech. Rep., 2003.

[AG96] S. V. Adve and K. Gharachorloo, “Shared memory consistency
models: A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, Dec.
1996.

[AGdS20] G. A. G. Andrade, M. Graf, and L. C. V. dos Santos, “Chaining and
Biasing: Test Generation Techniques for Shared-Memory Verifica-
tion,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 3, pp. 728–741, Mar. 2020.

[AMM+18] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern,
“Frightening Small Children and Disconcerting Grown-ups: Con-
currency in the Linux Kernel,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: Association for Computing Machinery, Mar. 2018, pp.
405–418.

[AMSS] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “ARM Litmus
Tests,” https://www.cl.cam.ac.uk/˜pes20/arm-supplemental/.

[AMSS11] ——, “Litmus: Running Tests against Hardware,” in Tools and Al-
gorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, P. A. Abdulla and K. R. M. Leino, Eds.
Berlin, Heidelberg: Springer, 2011, pp. 41–44.

[AMSS12] ——, “Fences in weak memory models (extended version),” Formal
Methods in System Design, vol. 40, no. 2, pp. 170–205, Apr. 2012.

[AMT14] J. Alglave, L. Maranget, and M. Tautschnig, “Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Mem-
ory,” ACM Transactions on Programming Languages and Systems,
vol. 36, no. 2, pp. 7:1–7:74, Jul. 2014.

[ARMa] “ARM Barrier Litmus Tests and Cookbook.”

31

[Armb] Arm, “Big.LITTLE – Arm,” https://www.arm.com/why-
arm/technologies/big-little.

[Armc] ——, “Cortex-A9,” https://developer.arm.com/ip-
products/processors/cortex-a/cortex-a9.

[AS02] A. Adir and G. Shurek, “Generating concurrent test-programs with
collisions for multi-processor verification,” in Seventh IEEE Inter-
national High-Level Design Validation and Test Workshop, 2002.,
Oct. 2002, pp. 77–82.

[BA08] H.-J. Boehm and S. V. Adve, “Foundations of the C++ concurrency
memory model,” ACM SIGPLAN Notices, vol. 43, no. 6, pp. 68–78,
Jun. 2008.

[BDW16] M. Batty, A. F. Donaldson, and J. Wickerson, “Overhauling SC
atomics in C11 and OpenCL,” ACM SIGPLAN Notices, vol. 51,
no. 1, pp. 634–648, Jan. 2016.

[BMO+12] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell,
“Clarifying and compiling C/C++ concurrency: From C++11 to
POWER,” ACM SIGPLAN Notices, vol. 47, no. 1, pp. 509–520,
Jan. 2012.

[BOS+11] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Math-
ematizing C++ concurrency,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ser. POPL ’11. New York, NY, USA: Association
for Computing Machinery, Jan. 2011, pp. 55–66.

[EBA+11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in 2011
38th Annual International Symposium on Computer Architecture
(ISCA), Jun. 2011, pp. 365–376.

[EN16] M. Elver and V. Nagarajan, “McVerSi: A test generation frame-
work for fast memory consistency verification in simulation,” in
2016 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), Mar. 2016, pp. 618–630.

[FGP+16] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget,
W. Deacon, and P. Sewell, “Modelling the ARMv8 architecture,
operationally: Concurrency and ISA,” in Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, ser. POPL ’16. New York, NY, USA: Asso-
ciation for Computing Machinery, Jan. 2016, pp. 608–621.

[FHK+15] J. Fiedor, V. Hrubá, B. Křena, Z. Letko, S. Ur, and T. Vojnar,
“Advances in noise-based testing of concurrent software,” Software

32

Testing, Verification and Reliability, vol. 25, no. 3, pp. 272–309,
2015.

[Gen] “Generating tests,” http://diy.inria.fr/doc/gen.html.

[Han77] P. B. Hansen, The Architecture of Concurrent Programs. Prentice-
Hall, Inc., 1977.

[HVM+04] S. Hangal, D. Vahia, C. Manovit, J.-J. Lu, and S. Narayanan,
“TSOtool: A program for verifying memory systems using the mem-
ory consistency model,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004., Jun. 2004, pp. 114–
123.

[HWS11] M. D. Hill, D. A. Wood, and D. J. Sorin, Synthesis Lectures on
Computer Architecture: Primer on Memory Consistency and Cache
Coherence. Morgan & Claypool Publishers., Nov. 2011.

[Imp15] “Towards Implementation and Use of memory order consume,”
Tech. Rep. WG21/P0098R0, Sep. 2015.

[ISO10] ISO/IEC, “Programming languages — C. Committee Draft,” Tech.
Rep. 9899:201x N1570, Dec. 2010.

[ISO12] ——, “Working Draft, Standard for Programming Language C++,”
Tech. Rep. N3337, Jan. 2012.

[ISO17] ——, “Working Draft, Standard for Programming Language C++,”
Tech. Rep. N4713, Nov. 2017.

[Lam79] L. Lamport, “How to Make a Multiprocessor Computer That Cor-
rectly Executes Multiprocess Programs,” IEEE Transactions on
Computers, vol. 28, no. 9, pp. 690–691, Sep. 1979.

[Lea] “Learn the architecture: AArch64 memory model,”
https://developer.arm.com/documentation/102376/0100/Normal-
memory.

[Lit] “Litmus test family names,” https://www.cl.cam.ac.uk/˜pes20/ppc-
supplemental/test6.pdf.

[LVK+17] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer, “Re-
pairing sequential consistency in C/C++11,” in Proceedings of the
38th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, ser. PLDI 2017. New York, NY, USA:
Association for Computing Machinery, Jun. 2017, pp. 618–632.

[LWPG17] D. Lustig, A. Wright, A. Papakonstantinou, and O. Giroux, “Au-
tomated Synthesis of Comprehensive Memory Model Litmus Test
Suites,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 661–675, Apr.
2017.

33

[MAM10] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Generating Lit-
mus Tests for Contrasting Memory Consistency Models,” in Com-
puter Aided Verification, ser. Lecture Notes in Computer Science,
T. Touili, B. Cook, and P. Jackson, Eds. Berlin, Heidelberg:
Springer, 2010, pp. 273–287.

[MMSM20] T. Melissaris, M. Markakis, K. Shaw, and M. Martonosi, “PerpLE:
Improving the Speed and Effectiveness of Memory Consistency
Testing,” in 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), Oct. 2020, pp. 329–341.

[MPZN13] R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler testing
via a theory of sound optimisations in the C11/C++11 memory
model,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 187–196, Jun.
2013.

[MSS12] L. Maranget, S. Sarkar, and P. Sewell, “A Tutorial Introduction to
the ARM and POWER Relaxed Memory Models,” p. 50, 2012.

[MTL+16] Y. A. Manerkar, C. Trippel, D. Lustig, M. Pellauer, and
M. Martonosi, “Counterexamples and Proof Loophole for the
C/C++ to POWER and ARMv7 Trailing-Sync Compiler Map-
pings,” arXiv:1611.01507 [cs], Nov. 2016.

[ND16] B. Norris and B. Demsky, “A Practical Approach for Model Check-
ing C/C++11 Code,” ACM Transactions on Programming Lan-
guages and Systems, vol. 38, no. 3, pp. 10:1–10:51, May 2016.

[OMK+95] B. O’Krafka, S. Mandyam, J. Kreulen, R. Raghavan, A. Saha, and
N. Malik, “MPTG: A portable test generator for cache-coherent
multiprocessors,” in Proceedings International Phoenix Conference
on Computers and Communications, Mar. 1995, pp. 38–44.

[OPP+12] J. Oetsch, M. Prischink, J. Pührer, M. Schwengerer, and H. Tom-
pits, “On the small-scope hypothesis for testing answer-set pro-
grams,” in Proceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Reasoning, ser.
KR’12. Rome, Italy: AAAI Press, Jun. 2012, pp. 43–53.

[Ove] “Overhauling SC atomics in C11 and OpenCL (Additional compan-
ion material),” http://multicore.doc.ic.ac.uk/overhauling/.

[QM12] X. Qin and P. Mishra, “Automated generation of directed tests for
transition coverage in cache coherence protocols,” in Proceedings
of the Conference on Design, Automation and Test in Europe, ser.
DATE ’12. San Jose, CA, USA: EDA Consortium, Mar. 2012, pp.
3–8.

[Run] “Running tests with litmus7,” http://diy.inria.fr/doc/litmus.html.

34

[SCGC19] Y. Sun, S. Cheung, S. Guo, and M. Cheng, “Disclosing and Locat-
ing Concurrency Bugs of Interrupt-Driven IoT Programs,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8945–8957, Oct. 2019.

[SMO+12] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell,
L. Maranget, J. Alglave, and D. Williams, “Synchronising C/C++
and POWER,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 311–322,
Jun. 2012.

[SSA+] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and
D. Williams, “Understanding POWER Multiprocesors,”
https://www.cl.cam.ac.uk/˜pes20/ppc-supplemental/.

[TML+17] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and
M. Martonosi, “TriCheck: Memory Model Verification at the Tri-
section of Software, Hardware, and ISA,” ACM SIGPLAN Notices,
vol. 52, no. 4, pp. 119–133, Apr. 2017.

[VBC+15] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli, “Common Compiler Optimisations are Invalid
in the C11 Memory Model and what we can do about it,” in Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’15. New
York, NY, USA: Association for Computing Machinery, Jan. 2015,
pp. 209–220.

[WAR19] A. Waterman, K. Asanovic, and RISC-V Foundation, “The RISC-
V Instruction Set Manual, Volume I: User-Level ISA,” Tech. Rep.
20191213, Dec. 2019.

[WCM+16] X. Wu, L. Chen, A. Miné, W. Dong, and J. Wang, “Static Analy-
sis of Run-Time Errors in Interrupt-Driven Programs via Sequen-
tialization,” ACM Transactions on Embedded Computing Systems,
vol. 15, Dec. 2016.

[YCER11] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and under-
standing bugs in C compilers,” ACM SIGPLAN Notices, vol. 46,
no. 6, pp. 283–294, Jun. 2011.

35

	Introduction
	Background
	Glossary
	IAR Systems
	Concurrent programs
	Parallelism
	Interrupts

	Memory consistency models
	Hardware and software memory models

	The C11 memory model

	Objective and motivation
	Delimitations

	Theory
	The C11 memory model
	Binary relations
	Axiomatic formal models

	Methods
	Generating test cases
	Running compiled test cases
	Evaluation plan for the testing process

	Synthesizing test cases
	Instantiating tests
	Finalizing tests

	Running test cases
	HERD
	From compiler to HERD
	Running HERD tests

	Stress testing on hardware
	Optimizing for variability of outcomes

	Results & discussion
	Tests generated
	Finding compiler bugs
	Comparing model checker to stress testing

	Conclusion
	Related work
	Full-stack memory model verification
	Litmus test generation
	Sequential compiler testing
	Validating optimizations under C11
	Adjustments to the C11 memory model
	Noise-based testing

