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This doctoral thesis is comprised of four papers that all relate to the subject of Time Series
Analysis.

The first paper of the thesis considers point estimation in a nonnegative, hence
non-Gaussian, AR(1) model. The parameter estimation is carried out using a type of extreme
value estimators (EVEs). A novel estimation method based on the EVEs is presented. The
theoretical analysis is complemented with Monte Carlo simulation results and the paper is
concluded by an empirical example.

The second paper extends the model of the first paper of the thesis and considers
semiparametric, robust point estimation in a nonlinear nonnegative autoregression. The
nonnegative AR(1) model of the first paper is extended in three important ways: First, we
allow the errors to be serially correlated. Second, we allow for heteroskedasticity of unknown
form. Third, we allow for a multi-variable mapping of previous observations. Once more, the
EVEs used for parameter estimation are shown to be strongly consistent under very general
conditions. The theoretical analysis is complemented with extensive Monte Carlo simulation
studies that illustrate the asymptotic theory and indicate reasonable small sample properties of
the proposed estimators.

In the third paper we construct a simple nonnegative time series model for realized
volatility, use the results of the second paper to estimate the proposed model on S&P 500
monthly realized volatilities, and then use the estimated model to make one-month-ahead
forecasts. The out-of-sample performance of the proposed model is evaluated against a
number of standard models. Various tests and accuracy measures are utilized to evaluate the
forecast performances. It is found that forecasts from the nonnegative model perform
exceptionally well under the mean absolute error and the mean absolute percentage error
forecast accuracy measures.

In the fourth and last paper of the thesis we construct a multivariate extension of the
popular Diebold-Mariano test. Under the null hypothesis of equal predictive accuracy of three
or more forecasting models, the proposed test statistic has an asymptotic Chi-squared
distribution. To explore whether the behavior of the test in moderate-sized samples can be
improved, we also provide a finite-sample correction. A small-scale Monte Carlo study
indicates that the proposed test has reasonable size properties in large samples and that it
benefits noticeably from the finite-sample correction, even in quite large samples. The paper
is concluded by an empirical example that illustrates the practical use of the two tests.
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1. Introduction

This doctoral thesis is comprised of four papers that all relate to the subject of
Time Series Analysis.

A time series is a set of observations ordered by time. In the very simplest
case, a time series is a sequence of recorded values of one variable taken at
equally spaced time points. For example, the (time ordered) sequence of daily
closing prices of the Apple Inc. stock is a time series. Time series can be found
in the fields of engineering, science, sociology and economics.

Time series analysis is a branch of statistics which deals with techniques
developed for drawing inferences from time series. The first step in the anal-
ysis of a time series is the selection of a suitable model (or class of models)
for the data. To allow for the unpredictable nature of future observations it is
assumed that each observation is a realized value of a random variable. Given
a particular time series, the primary goals of time series analysis are: (1) to
set up a hypothetical statistical model to represent the series in order to obtain
insights into the mechanism that generates the data' and (2), once a satisfac-
tory model has been formulated, to extrapolate from the model in order to
anticipate (forecast) the future values of the time series.

For example, a time series econometrician faces the task to construct mod-
els capable of forecasting, interpreting, and testing hypothesis concerning eco-
nomic data.?

Having selected a time series model the parameters of the model need to be
estimated and its goodness of fit to the data has to be checked. The first two
papers of this thesis concerns parameter estimation in a class of nonnegative
time series models. If the model is satisfactory it may be used for forecasting.
In the third paper of this thesis we construct a simple nonnegative model for
certain financial time series data, use the results of the second paper to esti-
mate the proposed model on empirical data, and then use the estimated model
to make forecasts. Once a time series has been analyzed and its future values
have been forecasted, it is reasonable to question how good the forecasts are.
Typically, there will be several plausible models to extrapolate from in order
to forecast the series. The fourth and last paper of this thesis constructs a test
for multiple forecast comparison.

"However, whether the real life process generating the data can be reliably and completely
represented in terms of a statistical model is a different matter altogether. It has been argued
that there never is an attainable true data generating process and that the best that can be hoped
for is that a very restricted class of models can be successfully used.

ZDepending on the particular field of application, other applications include separation of noise
from signals and the control of future values of a series.






2. Summary of Papers

2.1 PaperI
Setting

A time series model is a natural model for describing real life processes and
their time series. One particular class of time series models plays a central
part in this thesis: autoregressive models. Let X; denote the value of a data
point at period 7. The simplest example of an autoregression is the first-order
autoregressive, abbreviated AR(1), model given by the relation

Xi = 0X; 1+ 7, 2.1

for t = 2,3,4 and so on. In this model, ¢ (the autoregressive parameter) con-
trols the persistence in the model and the Z; (the ‘errors’) are random variables
assumed to be mutually independent, identically distributed and independent
of X; (the initial value). Traditionally Z;,Z3, ... are assumed to be Gaussian
distributed with mean zero.

For example, (2.1) has been proposed as a model for daily stock prices. The
autoregressive parameter ¢ is then usually assumed to be 1 reflecting that, in
an efficient market, the best forecast of tomorrows stock price is the current
price (day-to-day changes in the price of a stock should have an expected
value of zero). This model is known as the Random Walk model.

The AR(1) model is often further adjusted to accommodate for trend(s) in
the data by the addition of a dynamic trend component ;, which allows for a
long-term change in the mean level of the process. The model then becomes

Xi =W+ 0X; 1 +7.

The addition of a trend component needs to be further motivated. Typically,
a time series is considered to be composed of four types of components: the
trend, the cycle, the seasonal variation (for sub annual data) and an irregular
component.! The trend is generally thought of as a smooth and slow move-
ment over a long term (for instance, there is empirical evidence that even
though stock prices move up and down randomly there is over time, however,
an upward trend). The addition of a trend component can improve the fit and
forecast accuracy of the model (because any predictable component can be
extrapolated into the future).

'In our model the irregular component is ¢§X;_ + Z; and the seasonal and cyclical components
are zero.



Due to the recursive nature of X;, an alternative representation is given in
terms of the initial value X; by

t—2
X =0""X1+ Y 0 (i +2Z).
k=0

If X is fixed (or Gaussian distributed), the trend component is deterministic,
and the errors are Gaussian, then X; too is Gaussian. However, a Gaussian
model may assume negative values, which is not a very desirable property of
a price, duration or a volatility.

If it is known that the values X1, X5, ... must be nonnegative (hence non-
Gaussian), then the following, restricted, AR(1) specification can be used

(

X =W+ 0Xi—1 + 7,

u; >0 for all ¢,

¢ >0,

X7 > 0 with probability 1,

Z»,73,... are nonnegative.

Well-known examples of nonnegative random variables include exponential,
lognormal and inverse Gaussian random variables.

Contribution

Autoregressive moving average (ARMA) model building is usually carried
out under the assumption that the time series observations are Gaussian dis-
tributed, even though the use of a Gaussian error distribution does not adjust
the distribution of the ARMA model to account for non-Gaussianity in the
data generating process. Consequently, nonnegative time series data is usually
transformed in order to make it appear Gaussian distributed. See, for exam-
ple, [2] and [3]. This approach would typically involve the estimation of one or
more transformation parameters, resulting in a nonlinear model specification.
Because any inference based on a transformation from (0,e0) to (—oo,00) po-
tentially ignores the nonnegative nature of the original observations, it could
be argued that this approach does not always take all available information
into account (cf. Figures 2.2 and 2.3). In contrast, nonnegative ARMA mod-
els have the potential to model nonnegative observations directly and more
parsimoniously.

Given the sample Xi,...,X7 we are interested in the selection and estima-
tion of a suitable model (or class of models) for the data. The first paper of
this thesis considers point estimation in the nonnegative AR(1) model. It is
shown that the extreme value estimator (EVE) min{X; /X,,I}IT:2 of the au-
toregressive coefficient, suggested in [6] and [8] among others, is robust in
the presence of an unknown time-varying trend component. Two natural ex-
tensions of the EVE are also proposed, for the exceptional situation when
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the nonnegative support of the error is known and different from [0, o), and
sufficient conditions for the EVEs to coincide with the Maximum Likelihood
(ML) counterpart are given. It is noted that the derivation of ML estimators for
the nonnegative AR(1) model generally is analytically infeasible. In recogni-
tion of this inconvenience a novel estimation method, the Perturbed Maximum
Likelihood (PML) method, is presented. The theoretical analysis of the paper
is complemented with Monte Carlo simulation results. Simulation studies il-
lustrate the asymptotic theory and indicate reasonable small sample properties
of the proposed estimators. The paper is concluded by an empirical example
that illustrates a PML based inference procedure.

We remark that, in view of the robustness result of the paper, it follows that
the strong consistency? of the EVE holds also when an unknown nonnegative
deterministic seasonal (or cyclical) component is added to the model specifi-
cation.

2.2 Paperll
Setting

In the last two decades, nonlinear and also nonstationary times series models
have gained much attention. This interest is mainly motivated by the fact that
there is empirical evidence that many real life time series are non-Gaussian
and have a structure that change over time.> For example, many economic
time series are known to show a large number of nonlinear features such as
cycles, asymmetries, jumps, thresholds, heteroskedasticity* and combinations
thereof, that additionally need to be taken into account.

Contribution

The second paper of this thesis extends the model in Paper I and considers
semiparametric, robust estimation in a nonlinear nonnegative autoregression,
that may be a useful tool in describing the behavior of a broad class of nonneg-
ative time series. In some applications, robust estimation of the autoregressive
coefficient ¢ is of interest in its own right. One example is point forecasting,
as described in Paper III of this thesis. In recognition of this fact, Paper 11
focuses explicitly on the consistent and robust estimation of ¢. In this paper,
we extend the nonnegative AR(1) model of Paper I in three important ways:
First, we allow the errors to be m-dependent of unknown order m (successive
errors no longer have to be stochastically independent). The property of m-
dependence generalizes that of independence in a natural way. Observations of

2The estimator ér of the parameter  is said to be strongly consistent if Pr(limr_.c ér =0)=1.
3Since, for example, an economy changes due to unforeseen interventions, it is difficult to
justify using the same model over a longer period of time.

4A sequence of random variables is heteroskedastic if the random variables have different vari-
ances (the complementary concept is called homoskedasticity).
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an m-dependent process are independent provided they are separated in time
by more than m time units.” This is important as the actual dynamics of a time
series is often more complex than the dynamics of an AR(1), and the original
model can be seriously misspecified. Second, we allow for heteroskedasticity
of unknown form. This is important since time-varying second moments is a
characteristic shared by many different types of time series. Third, we allow
for a multi-variable mapping of previous observations. This makes various
lagged/seasonal nonlinear model specifications possible.

It is interesting to note that the main result of Paper II can be extended
to more general situations. First, in view of the robustness result of Paper I, it
should come as no surprise that the modified EVE of Paper Il remains strongly
consistent if a suitable trend, seasonal or cyclical component (or combinations
thereof) is added to the model. Second, it can be shown that the modified EVE
is consistent in the presence of certain types of m,-dependent errors (here the
order of the dependence is time-varying). This can be important since it is
often difficult to justify using the same model over a longer period of time.

2.3 Paper 1l
Setting

One task facing the modern time series econometrician is to construct rea-
sonably simple models capable of describing and forecasting economic data.
Since financial variables such as stock prices, price durations and volatilities
are all inherently nonnegative it is interesting to investigate how well nonneg-
ative time series models are capable of describing financial time series data.

Figure 2.1 plots the monthly realized volatilities® (RV) of Standard & Poor’s
500 index’ for the period January 1946 to December 2004. Figures 2.2 and 2.3
shows histograms of the RV and of the logarithmic RV (log-RV). For RV, the
departure from Gaussianity is apparent. By contrast, the distribution of log-RV
appears to be closer to a Gaussian distribution.

3 A sequence U, ..., Ur of random variables is said to be m-dependent if and only if U; and U, ¢
are pairwise independent for all k > m. In the special case when m = 0, m-dependence reduces
to independence.

®Realized volatility is a measure of the latent historical volatility of a financial instrument, such
as a stock or an index. For example, one could calculate the realized volatility for the Apple
Inc. stock in Jan of 2008 by taking the standard deviation of its daily returns within that month.
7Standard & Poor’s 500 index (S&P 500) is an index of 500 stocks chosen for market size,
liquidity and industry grouping, among other factors. The S&P 500 is designed to be a leading
indicator of U.S. market equities and it is one of the most commonly used benchmarks for the
overall U.S. stock market.

12
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Figure 2.3: Normalized histogram of S&P 500 monthly log-RV with superimposed,
estimated Gaussian density curve.

Contribution

In the third paper of this thesis we construct a simple nonnegative model for
realized volatility, use the results of Paper II to estimate the proposed model
on S&P 500 monthly realized volatilities, and then use the estimated model to
make one-month-ahead forecasts.® The out-of-sample performance of the pro-
posed model is evaluated against a number of standard models. Various tests
and accuracy measures are utilized to evaluate the forecast performances. It is
found that forecasts from the new model perform exceptionally well under the
mean absolute error and the mean absolute percentage error forecast accuracy
measures.
The proposed nonnegative model is of the form

RV} = 9RVA +V;,
A#0,

¢ >0,

RV > 0 with probability 1,
V3, Vs, ... are nonnegative.

\

Vs, ..., Vr is assumed to be a sequence of m-dependent, identically distributed,
continuous random variables with nonnegative support [y, o), for some un-
known 7y > 0 (an intercept in the model is superfluous because 7y can be strictly
positive). It is assumed that m is finite and potentially unknown. In general,

8Returns of stocks are generally thought of as difficult, if not impossible, to predict. In contrast,
there is evidence that the volatilities of the returns are relatively easier to forecast.

14
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Figure 2.4: Power transform curves for four different values of A. By the identity
X =M for x >0, it is readily seen that x* s strictly decreasing if A < 0 and
strictly increasing if A > 0. Hence, the power transformation is one-to-one and onto

for x > 0and A #0O.

neither the dependency structure nor the distributional form is assumed to be
known for the error V;. Hence, the model combines a parametric component
for the persistence with a nonparametric component for the error. On the one
hand, the proposed model is highly parsimonious. In particular, there are only
two parameters that have to be estimated for the purpose of volatility fore-
casting, namely ¢ and A. On the other hand, the specification is sufficiently
flexible for modeling the error. For example, the error is not required to have
finite higher order moments and can easily incorporate jumps.

Typically, an MA(m) structure may be assumed for V;. The presence of a
moving average structure of unknown order in the model can be motivated in
various ways. For example, [4] showed that volatility can have both persistent
and non-persistent components. For another example, effects of various mar-
ket microstructure noises may not be negligible for estimating RV ([9] and
[1D).

One role that the transformation parameter, A, plays in the proposed model
is to stabilize the variance, i.e. to induce homoskedasticity. Figure 2.4 illus-
trates the power transform function x* for four different values of A. For A < 1
the transformation tends to suppress larger fluctuations that occur over por-
tions of the time series where the underlying values are larger and may be
useful to ‘equalize’ the variability over the length of a single time series and
to improve linearity in the data. However, in contrast to the Box-Cox transfor-
mation (for which the logarithmic transformation is a special case) the power
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transformation maps (0,o0) to (0, ), thus ensuring that the transformed data
remains nonnegative.

The transformation parameter controls the nonlinear dependency structure
of the model, and allows the conditional variance of RV; to be time-varying.
To see this, suppose that A is rational.” For ease of exposition, suppose that
A = 1/n for some natural number n, then

VRV: = 9/RVi—1 +V,,

or equivalently

RV = (0/RV— -+ =Y (7)o RV v,

k=0

where it appears that the conditional variance of the model depends on the
previous realization.

2.4 Paper IV
Setting

Once a time series has been analyzed and its future values have been fore-
casted, it is reasonable to question how good the forecasts are. Typically, there
will be several plausible models to extrapolate from in order to forecast the se-
ries. With forecasts from several models it is inevitable that the sample will
show differences in forecast accuracy between the different models. Because
of this it is important to investigate how likely this outcome is due to pure
chance, that is, whether the observed difference is statistically significant or
not. If there are just two plausible models, one way to do this is to put the alter-
native models to a head-to-head test. Since the future values of the time series
are unknown, it is reasonable to hold back a portion of the observations from
the estimation process and estimate the alternative models over the shortened
span of data. These estimates can then be used to forecast the observations
of the holdback period, and the properties of the forecast errors of the two
models can then be compared.

For example, suppose that an analyst is unsure whether his two alternative
models forecast the time series Xi, ..., X199 equally well or not. One way for
the analyst to proceed is to use the first 50 observations to estimate both mod-
els and then use the estimates to forecast the value of Xs;. Since the actual
value of X51 is known, he can then calculate the forecast error of each model.
Next, he can re-estimate the two models using the first 51 observations (this
will generally change the parameter estimates obtained in the previous step
somewhat) in order to forecast the value of Xs,. Since the value of X5, also
is known, he can then calculate two more forecast errors. This scheme can

9Recall that any real number can be approximated arbitrarily well by a rational number.
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then be continued in order to obtain two distinct time series of one-step-ahead
forecast errors, each composed of 50 observations.!” The analyst can then, for
instance, calculate and compare the mean square prediction errors (MSPE) of
the two series.

Several tests have been proposed to determine whether the MSPE of one
model is statistically different from some other model. In an important con-
tribution, [5] used standard results to derive a test statistic in a more general
setting that allows for other measures of forecast accuracy than the MSPE.'!
In their approach, they consider two time series of forecast errors (e;q, ..., e;r
and ejy, ...,e;r say) and propose a simple test to assess the expected loss asso-
ciated with each of the forecast series. The quality of each forecast is evaluated
by some loss function g of the forecast error. In this setting, the null hypothe-
sis of equal predictive accuracy is E d; = 0 where d; = g(e;) — g(ej;). Under
fairly weak conditions, they conclude that the test statistic

d

V/OJT’

is asymptotically standard Gaussian distributed under the null hypothesis,
where d is the sample mean of the series_dl ,...,dr and @ is a consistent esti-
mator of the asymptotic variance of v/7d.

Contribution

In the fourth and last paper of this thesis we construct a multivariate exten-
sion of the Diebold-Mariano test. Under the null hypothesis of equal predic-
tive accuracy of three or more forecasting models, the proposed test statistic
has an asymptotic Chi-squared distribution. To explore whether the behav-
ior of the test in moderate-sized samples can be improved, we also provide a
finite-sample correction which simplifies to the finite-sample correction of the
Diebold-Mariano test by [7] in the bivariate case. It is pointed out that the cor-
rection of Harvey et al. can be further improved. A small-scale Monte Carlo
study indicates that the proposed test has reasonable size properties in large
samples and that it benefits noticeably from the finite-sample correction, even
in quite large samples. The paper is concluded by an empirical example that
illustrates the practical use of the two tests.

10The scheme described in the text is known as the recursive scheme. In the forecasting litera-
ture, three schemes for how to generate the sequence of model estimates stand out. The other
two are the rolling scheme and the fixed scheme.

"1 An applied econometrician might be interested in measures of forecast accuracy other than
the sum of squared forecast errors. For example, if the loss from making an incorrect forecast
depends on the size of the forecast error, it is more natural to consider the absolute values of
the forecast errors (using the squared errors makes sense only if the loss is quadratic).
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