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ABSTRACT
Infant engagement during guided play is a reliable indicator of
early learning outcomes, psychiatric issues and familial wellbeing.
An obstacle to using such information in real-world scenarios is
the need for a domain expert to assess the data. We show that an
end-to-end Deep Learning approach can perform well in automatic
infant engagement detection from a single video source, without
requiring a clear view of the face or the whole body. To tackle the
problem of explainability in learning methods, we evaluate how
four common attention mapping techniques can be used to perform
subjective evaluation of the network’s decision process and identify
multimodal cues used by the network to discriminate engagement
levels. We further propose a quantitative comparison approach, by
collecting a human attention baseline and evaluating its similarity
to each technique.
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1 INTRODUCTION
Infant engagement during play has been shown to be a reliable
indicator of learning outcomes in early childhood, as well as a po-
tential tool to detect psychiatric and familial issues. A few examples:
gaze following at 12 months correlates with improved language
outcomes at 24 months [30]; increased mutual gaze at 5 months
correlates with improved visual attention control at 11 months [31];
reduced engagement with social stimuli at 6 months is associated
with autism spectrum disorder diagnosis at 24 months [22]; dyadic
measures of engagement around 24 months can be used to identify
cases of child neglect [27].

A major issue stopping us from applying these results in real-
world scenarios is the data collection bottleneck: obtaining en-
gagement information is a laborious process that requires manual
annotation by one or more domain experts. The same problem
affects the widely used Facial Action Coding System (FACS) [13]
for emotion analysis, which typically requires a certified coder to
carefully consider video capture of an individual’s face to record
the activation of Facial Action Units (FAU). In recent years, we
have seen the rise of publicly available Deep Learning tools that
can reliably estimate FAU activations, given clear video capture
of adults [29]. Free access to such tools has allowed researchers
to build real-time automatic affect analysis solutions where pre-
viously only manual annotation used to be possible (e.g., student
engagement detection [38, 42, 44]). This begs the question: can we
automate infant engagement analysis in the same way? To answer
it, we collected a dataset on infant engagement during guided play,
and trained an end-to-end video classifier to separate positive and
negative samples.

While recent reviews indicate that Deep Learning based meth-
ods are becoming increasingly popular in the wider field of auto-
matic affect recognition [33], and end-to-end learning methods have
attained promising results [40], the number of studies using end-
to-end Deep Learning is still small. To the best of our knowledge,
the only previous study on end-to-end Deep Learning for infant
engagement is our earlier pilot experiment [15]. In the pilot, we
successfully trained task engagement classifiers on video data with
coarse annotations, and used attention mapping techniques for
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subjective network analysis, but did not analyse social engagement
nor compare attention maps quantitatively.

Using an end-to-end Deep Learning approach has clear advan-
tages: we can obtain good performance without explicit modelling
of the interaction, and we are not limited by feature extractionmeth-
ods. As an example, the mentioned FAU extraction tools require a
clear view of the face, while our method only requires a general
side view of the scene. However, a major drawback is explainabil-
ity: it is typically hard to explain the decision-making process of a
Deep Learning model, even if we have full access to its internals.
This makes it possible for the system to inadvertently depend on
unexpected or unwanted correlations. Lapuschkin et al. [26] give a
striking example: An image classifier for the PASCAL VOC 2007
dataset classifies horse images correctly if they have a copyright
notice – disproportionately common in this category – and fails if
the notice is removed. If the same copyright notice is then added to
a car picture, the model confuses it with a horse.

To improve model explainability, a host of techniques has been
developed. They are collectively known as Explainable Artificial
Intelligence (XAI), and have been the focus of much research in
recent years [1]. In this study, we focused on local explanations:
given an input sample and an output decision, these methods pro-
duce a simplified explanation of the network’s decision process.
In the context of computer vision, an important family of local
explanation methods are attention maps. Given the model’s predic-
tion, they assign an importance score to each pixel in the input.
Many methods have been proposed, with varying computational
costs and theoretical justifications. Some well-known examples are
Guided Backpropagation [37], Grad-CAM [35], and LRP [3].

Even though these tools have been successfully used for manual
exploration of the network on a sample-per-sample basis, there is
no consensus on which attention maps are most useful to a human
observer, or how to aggregate them over a whole dataset. We ad-
dressed these issues by comparing four common techniques, both
subjectively – by analysing the known advantages and shortcom-
ings of each method, and discussing examples of network insights
revealed by specific attentionmaps –, and objectively – by collecting
hand-authored human attention maps, and computing a similarity
measure proposed in the visual saliency prediction literature [6].

The following is a summary of our contributions:

(1) We show that an end-to-end Deep Learning model can suc-
cessfully predict task engagement and social engagement
of an infant participating in guided play. We do this from a
single video feed showing a lateral view of the whole scene,
without dedicated facial or postural capture.

(2) We use four machine attention mapping techniques on a
selected subset of the samples, and showcase their use in
subjective analysis of the network’s decision process, high-
lighting head, body and contextual cues identified by the
network as important to discriminate engagement levels.

(3) We collect human attention maps as a ground-truth, and use
established similarity metrics to evaluate machine attention
mapping methods quantitatively.

2 RELATEDWORK
2.1 Automatic Infant Engagement Recognition
In the wider context of automatic affect recognition, it is common
to estimate facial and postural features, and use those as inputs for
a classification algorithm. In particular, two open-source feature
extractors have been widely used: OpenFace [4] takes clear facial
images, and estimates several facial features (most notably FAU);
OpenPose [8] takes unobstructed body images, and estimates an
individual’s posture. Both tools are Deep Learning models trained
on video capture of adults, so caution should be taken when break-
ing any of their assumptions – that the subject is an adult, or that
we have a clear view of the subject.

Narrowing the scope, automatic engagement recognition has re-
ceived a lot of interest in the educational context, due to the body
of research suggesting ties to academic performance [16]. Recent
editions of the EmotiW challenge [12] have contained a category for
engagement recognition in Massive Online Open Course (MOOC)
education. The dataset contains clear facial video capture of adult
students. All the published participants in the latest (2020) engage-
ment sub-challenge [38, 42, 44] use OpenFace, OpenPose, and pre-
trained video networks as feature extractors, and train their own
classification algorithm on the obtained features. Automatic engage-
ment detection in school-age children has also been investigated in
connection to Autism Spectrum Disorder (ASD). Javed et al. [21]
use OpenPose to extract postural and facial data, compute custom
features from it, and train a 5-layer convolutional network.

This reliance on a small set of open-source tools comes with
limitations. OpenFace has been shown to perform well with facial
capture of children as young as 5 [2], but requires a clear frontal
view, and does not generalize to infants [18]. Similarly, OpenPose
needs retraining for infants [9], and requires a clear view of the
body (in our experience, it fails on hard-side views). In contrast,
an end-to-end model can be trained on any form of video capture,
as long as it contains enough information. We show that a gen-
eral overview of the interaction from the side is enough to train
an engagement classifier. We do so by fine-tuning a pre-trained
convolutional network on a small amount of data.

2.2 Machine Attention
Consider an input color image 𝐼𝑖 𝑗𝑐 , where (𝑖, 𝑗) are the pixel coordi-
nates (row and column), and 𝑐 is the color channel1. In the context
of explainability for Computer Vision classifier models, an attention
map is a real-valued grid that assigns a relevance score ℎ𝑘

𝑖 𝑗
to each

pixel location (𝑖, 𝑗), given a target class 𝑘 . Let 𝑆𝑘 be the model’s
score for 𝑘 , and P(𝑘) = [softmax(S)]𝑘 its estimated probability.
Relevance can be interpreted in many ways. For example, Zeiler et
al. [43] place a square occluder at each pixel location and record
how P(𝑘) decreases to determine how important an image patch is
for the final decision: ℎ𝑘

𝑖 𝑗
= 1 − P [𝑘 | occluder at (𝑖, 𝑗)] . A related

concept are learned attention mechanisms, in which a similar score
is calculated internally by the network and is used to filter out
information during inference. The methods we study here have

1The descriptions in this section are given in terms of image inputs. The same defini-
tions apply to video by adding a frame index 𝑡 : 𝐼𝑡𝑖 𝑗𝑐 , etc.
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been classified as post-hoc attention maps [24] to distinguish them
from learned attention.

To our surprise, we found very few examples of post-hoc atten-
tion maps in the affect recognition literature. Gera et al. [17] train
an image classifier to take facial capture as input, and predict one
of 8 emotions as output. They use Grad-CAM to perform subjective
evaluation of the network’s decision process. Prajod et al. [32] train
two image classifiers to take facial capture as input, and predict if
the subject is in pain as output. They use LRP to perform subjective
comparison of the two networks. Based on this, they hypothesise
that one network focuses on closed eyes, while the other focuses
on visible teeth. They then verify this hypothesis by annotating
the dataset and training a linear classifier on the output of each
network’s last pooling layer, showing that each network’s embed-
ding is significantly better for predicting the corresponding facial
expression. To the best of our knowledge, the only earlier paper in
affect recognition comparing various attention mapping methods
is our pilot study [15]. We trained a task engagement classifier on
coarse labels, and used several attention mapping techniques to
perform subjective evaluation, albeit with a focus on the differences
between mapping techniques.

In this paper, we focus on the same four post-hoc techniques
covered in the pilot: gradient saliency, guided backpropagation,Grad-
CAM, and guided Grad-CAM. These were chosen because they are
popular, computationally efficient, and relatively easy to implement.
Similar to [17, 32], we first perform subjective evaluation, with a
focus on comparing the unique characteristics of each method. We
further collect a ground truth, and use it to perform quantitative
comparison. What follows is a brief description of the four chosen
methods.

Gradient saliency was introduced by Simonyan et al. [36] as a
seeding tool for object segmentation, and is the simplest method. To
compute it, (1) calculate the gradient of the target class score with
respect to the input pixels 𝑔𝑘

𝑖 𝑗𝑐
= 𝜕𝑆𝑘/𝜕𝐼𝑖 𝑗𝑐 (the input gradient);

(2) take the absolute value, and take the maximum in the color
channel dimension ℎ𝑘

𝑖 𝑗
= max𝑐 |𝑔𝑘𝑖 𝑗𝑐 | (the gradient saliency). This is

very simple to calculate with modern machine learning libraries,
and has proved useful in its original context. However, it suffers
from two issues: (i) it is not class discriminative, i.e., it does not
change meaningfully based on which class 𝑘 is targeted; and (ii) it
is susceptible to high-frequency noise.

Guided backpropagation [37] is an early attempt to address these
issues in networks that use ReLU activation units. It uses a modified
backpropagation algorithm: augment ReLU layers when calculat-
ing their gradient, discarding negative gradients to focus on posi-
tive evidence only. The algorithm returns a modified gradient 𝑔𝑘

𝑖 𝑗𝑐
,

and the attention map is again calculated by taking the saliency:
ℎ𝑘
𝑖 𝑗

= max𝑐 |𝑔𝑘𝑖 𝑗𝑐 |. This results in sparse attention maps that focus
meaningfully on regions of interest, but still suffer from a lack of
class discrimination.

Grad-CAM [35] is a low-resolution activation mapping method
for convolutional networks, specifically designed to be class dis-
criminative. An intermediate representation is selected (typically
the last convolutional layer with spatial dimensions), and both
its activations 𝐴𝑖 𝑗𝑐 and gradients 𝑔𝑘

𝑖 𝑗𝑐
= 𝜕𝑆𝑘/𝜕𝐴𝑖 𝑗𝑐 are calculated.

A weight is calculated per channel by taking the gradient mean:

𝑤𝑘
𝑐 = 1

𝑁

∑
𝑖, 𝑗 𝑔

𝑘
𝑖 𝑗𝑐

(where 𝑁 is the number of pixels in the tar-
geted layer). The channels are then averaged using the weights:
𝐴𝑘
𝑖 𝑗

=
∑
𝑐 𝑤

𝑘
𝑐 𝐴𝑖 𝑗𝑐 . Finally, only the positive evidence is kept: ℎ𝑘

𝑖 𝑗
=

𝑅𝑒𝐿𝑈 (𝐴𝑘
𝑖 𝑗
). This method gives meaningfully different results when

queried about different target classes 𝑘 , but can be very coarse: in
our networks, the last convolutional layer is only 10 × 10 px.

Guided Grad-CAM [35] was proposed in the same paper as Grad-
CAM, and attempts to solve its low-resolution issue by a simple
procedure: (1) upscale the Grad-CAM map to the same dimensions
as the input, and (2) multiply the Grad-CAM map with the guided
backpropagation map. This marries the benefits of clean locality
(guided backpropagation) and class sensitivity (Grad-CAM), but
since we are multiplying the maps, it runs the risk of being very
sparse.

2.3 Comparison with Human Attention
Given the wide array of post-hoc attention mapping techniques
available, we would like to have a quantitative measure of fitness
available, so we can confidently choose the most adequate method
to evaluate the network’s decision process. Some attempts have
been made in the context of image classification. Fong et al. [14]
propose an object segmentation approach: they check if the brightest
pixel in an attention map is contained within the object of interest,
as judged by a ground-truth image mask. This, however, does not
translate well to our target domain: we are interested in detect-
ing a social construct, rather than an on-screen object. We propose
evaluating the network’s human-likeness instead, by capturing a hu-
man attention ground-truth and measuring the similarity between
human and machine maps.

Human and machine attention maps have been compared in a
different context: visual saliency prediction. That is, the model’s
explicit goal is to estimate the amount of time a human observer
will spend looking at each part of the image. In this case, annota-
tions are typically captured using eye-tracking technology, which
produces a time-series of focus points. Models generate a continu-
ous map that aims to separate areas of low and high interest [5].
Evaluation metrics either compare the focus points directly to the
output distribution, or generate a distribution based on the focus
points and use measure-theoretic comparison tools [6]. While older
reviews report classical models and smaller datasets, newer reviews
show an increase in dataset size and a move towards convolutional
networks for greater performance [7].

Since eye tracking is costly to capture and requires participants
to visit the research facilities in person, some authors have focused
on mouse-capture based methods to study human attention. This
allows for crowd-sourcing the data collection, thus obtaining much
larger datasets. Das et al. [11] used Amazon Mechanical Turk to
annotate 60 thousand images from the Visual Question-Answering
dataset, using a custom annotation tool. Users were presentedwith a
blurred image and a question they had to answer, and could use their
mouse to remove the blur from parts of the image. The resulting
blur removal mask was used as a human attention distribution. The
human attention maps were then compared to a learned attention
map by downsampling to a low resolution (14 × 14px), and using
Spearman’s rank correlation as a similarity measure.
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In this study, we follow the more practical mouse-data approach.
We develop an in-house tool to view and label video snippets, and
paint over them using the mouse. We rely on a distribution simi-
larity measure to rank attention maps, according to their human-
likeness.

3 METHOD
3.1 Data Collection
We recruited 23 infants aged 14 months (11 girls; mean age 14
months and 6 days) from a local list of families who were interested
in participating in research with their child. Before the study, the
parents were informed about the procedure and signed a consent
form. The experiment was approved by the university’s ethical com-
mittee. Each child participated in three guided play tasks with an
adult experimenter, recorded in a single session. During the session,
the infant was seated in a high chair at a table, facing the experi-
menter. One parent was seated behind the child. A Sony Handycam
HDR-CX260 video camera (1440 × 1080px, 25fps) recorded the in-
teraction, providing a profile view of the participants.

In the first task (dolls), four round boxes were attached to the
table. The boxes directly in front of the infant and the experimenter
(yellow) contained 10 wooden dolls each. The boxes to the sides of
the child (one red, one blue) were empty. The experimenter began
by placing a doll in one of the empty boxes. She then invited the
infant to join and removed the cover from the infant’s doll box. The
experimenter placed half of her dolls into one of the boxes one at
a time, and then switched to placing them in the other box. The
task ended when all the dolls were placed, or at the experimenter’s
discretion if the child was not participating.

In the second task (shaker), the experimenter showed the infant
an egg-shaped shaker (musical instrument) and began to shake
it at a predetermined tempo (150bpm or 170bpm) for 10 seconds.
She then gave the infant an identical shaker, and encouraged joint
play for 30 seconds. The experimenter then pretended to drop her
instrument on the ground, and changed to the other tempo (170bmp
or 150bpm). The task ended after another 30s of joint play.

In the third task (drum), the experimenter showed the infant a
toy drum and used a drumstick to play at one of the predetermined
tempos, as in the previous task. She then gave the infant their own
drumstick and encouraged them to join in drumming. After 30
seconds of play, she flipped the drum over and switched to the
other tempo. The task ended after another 30s of play.

The collection process resulted in 23 videos (one per child), with
a duration of 10min 49s ± 1min 58s, and a total length of 4h 9min.
This includes time before, between and after the tasks, as well
as a fourth free-play segment not used in this study. Hence, the
total time used for this experiment was a fraction of the numbers
reported here.

3.2 Engagement Annotation
The annotation process was realised using the ELAN annotation
software [41]. ELAN allowed the coders to create separate tracks
for each variable, and delineate labeled time spans in each track.
Three variables were annotated. The first variable was used to
determine the time span corresponding to each of the three guided
play tasks. As such, it contained three time-spans, respectively dolls,

shaker and drum. The other two variables were binary (positive
condition along the duration of the designated time-spans, negative
condition outside the time-spans) and coded the infant’s behavior:
task engagement and social engagement. For the context of this
study, task engagement was defined as playfully interacting with
the object of interest, and social engagement was defined as visibly
paying attention to the experimenter and the intended game. A
coding guide was created ahead-of-time to guide the annotation
process, and was refined based on annotator feedback.

All 23 collected sessions were annotated. Three coders partici-
pated in the process, each one annotating a subset of the data. Five
sessions were first used as a pilot study to refine the coding rules,
and discuss differences in methodology. For these sessions, data
from all three annotators is available. The remaining 18 sessions
were randomly divided into three session blocks of 6 sessions each.
Each coder was assigned a primary block to annotate, and upon
completion, rotated to the next block. Thus, each block was an-
notated by two coders, and for each coder there was one hold-out
block they had not seen.

Table 1 summarizes the duration statistics for each task, sampled
over all sessions and annotators. Task annotations had a mean
duration of 2min 6s, with standard deviation 29s. Statistics requiring
common start and end times were computed over the minimal
interval: the intersection of all available annotations for that task
and session. To verify the reliability of this reference interval, Table
1 shows the Intersection Over Union (IOU): the duration of the
minimal interval, divided by the duration of the maximal interval
(union over all available annotations). With an average of 94%,
we can conclude there was high overlap among annotators. The
minimal interval allows us to estimate the available duration of
recorded material for training and analysis: an average of 45min
58s per task, with a total of 2h 17min.

Inter-rater agreement was measured for each annotator pair. Fig-
ure 1 shows the agreement scores (empirical probability of agree-
ment) (1a) and Cohen’s Kappa [10] scores (1b). To calculate this, all
the sessions annotated by both raters were considered, and both
engagement variables were used. For each task, the minimal in-
terval was sampled every 0.1s, resulting in a time series per rater.
These time series were then compared using the Python library
statsmodels [34]. The average Cohen’s Kappa over all rater pairs
is 0.63, a "substantial" agreement [25]. Note that this is effectively
averaged over social engagement and task engagement. While 0.63
agreement would be considered low in some easier settings, Lemaig-
nan et al. [28] point out that annotating engagement in children is a
particularly difficult task, and consider their scores of 0.52 (task en-
gagement) and 0.46 (social engagement) satisfactory in this context.
They further point out that ML models can reflect this uncertainty
in their output probability distribution, if trained with all the avail-
able data. Similarly, Henderson et al. [20] consider a kappa above
0.6 to be satisfactory when annotating engagement in students.

Consistent with Lemaignan’s observation, no aggregated ground-
truth was created for any of the provided variables. Instead, we
decided to capitalize on the plurality of opinions between annota-
tors by devising a random sampling strategy, described in Section
3.3.
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Dolls Shaker Drum Total
Individual Durations 2min 15s ± 46s 1min 58s ± 12s 2min 4s ± 8s 2min 6s ± 29s
Mean Intersection Over Union 93% 94% 95% 94%
Total Duration (Intersection) 47min 40s 43min 46s 46min 27s 2h 17min 53s

Table 1: Duration statistics for each guided play task, over all available annotations. Each coder indicated their own task
time-spans. Individual Durations shows the mean and standard deviation over all durations, considering each annotation
separately. Mean Intersection Over Union is calculated per-task as (intersection of available annotations) / (union of available
annotations), and averaged. Total Duration (Intersection) shows the sum of intersection lengths, computed over all sessions.

(a) Agreement Score (b) Cohen’s Kappa

Figure 1: Dyadic inter-rater agreement measures calculated on the full annotation set. Coders A, B and C are compared to each
other. Each rater’s interval annotations were sampled every 0.1s, and the resulting slices compared. 1a shows the agreement
score (empirical probability of agreement); 1b shows Cohen’s Kappa.

3.3 Classification Algorithm
We trained a separate classifier for each combination of task (dolls,
shaker, drum) and variable (task engagement, social engagement).
All classifiers shared the same architecture: the Mixed Convolutions
network mc3_18 from the torchvision package [39]. This was
chosen as a compromise between computational cost and reported
performance, and because it comes pre-trained on the Kinetics-400
dataset [23].

The Kinetics-400 dataset is a collection of YouTube videos, with
400 classes and at least 400 videos per class. It is a common baseline
for pre-training and for reporting performance of video classifier
networks [45]. It contains 306,245 clips, each approximately 10
seconds long, for a total of∼ 850 hours. Different clips have different
resolutions.

The network mc3_18 (11.7M parameters) is a variant of the 5-
block, 18-layer ResNet architecture [19] with 3D convolutions in
blocks 1 and 2, and 2D convolutions in blocks 3 to 5. It can be
viewed as a convolutional network that produces a 512-dimensional
embedding (the encoder), followed by a logistic classifier (the head).
It expects an input spatial resolution of 112 × 112 px (or higher).

To ensure proper stratification, we partitioned the data ahead-
of-time into five disjoint subsets (folds). Since we expected the data
in each session (i.e., data corresponding to the same child) to be
highly correlated, we split per session, ensuring that each session
video was only used in one of the folds. We used rejection sampling
to ensure that all empirical probabilities (per task and variable) in
each fold were as close to the whole-dataset values as possible. The
last fold was reserved as a test set. The other 4 folds were either
used for 4-fold cross-validation (in hyper-parameter searches) or
as last-out validation (for the final training). All session recordings

were downsampled ahead-of-time to 208 × 160 px and 3.125fps
(1/8th the original framerate).

When considering what is a sample in our dataset, we identified
two problems to overcome. First, the available data was very small
when compared to typical computer vision datasets (e.g., the total
time is over 1,000 times shorter than Kinetics-400). Second, for
many sessions we had two (possibly disagreeing) annotations as our
"ground truth". A standard approach would have involved dividing
the relevant parts of each session into non-overlapping samples, and
somehow synthesizing a reference label. However, we identified an
option to allow the network to learn from the continuous annotation
format, and from the individual opinion of each annotator. Each
time a snippet was sampled from a session, an available coder
was selected at random. We used that coder’s annotations for the
relevant task to choose a random offset into the video, and extract
a 5-second snippet (15 frames). For each epoch, we sampled each
available session 10 times, adjusting the offset range to minimize
overlap between consecutive samples.

Upon loading, pixel values were normalized using each fold’s
mean and standard deviation. At training time, the data augmenta-
tion pipeline optionally rotated the image (±8°, 𝑝 = 0.35), chose a
random 112 × 112 px crop with scaling and stretching, optionally
flipped the image horizontally (𝑝 = 0.5), optionally adjusted the
contrast (𝑝 = 0.35) and color balance (𝑝 = 0.35), optionally used
a Gaussian blur (𝜎 = 5px, 𝑝 = 0.35), and optionally added Gauss-
ian white noise (𝜎 ∈ (0.01, 0.03), 𝑝 = 0.35). At testing time, the
data augmentation pipeline took a 160 × 160 px center crop and
optionally flipped the image horizontally (𝑝 = 0.5).

To adapt the pre-trained network to our task, the original multi-
class logistic classifier was substituted with a randomly-initialized
binary logistic classifier. Reflecting this, the training process was
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split in two parts: a head training phase to train only the new
classifier head, and a fine-tuning phase to train the whole network
at a lower learning rate. To accelerate the head training phase,
we encoded samples and saved them to disk ahead-of-time, by
collecting augmented samples for 100 epochs and feeding them to
the encoder.

A hyper-parameter search was conducted for each training phase
(head training and fine-tuning). The following parameters were ex-
plored: learning rate, learning rate decay, L2 penalty, class weights
(flat weights vs. linear weights). Each parameter combination was
chosen by random sampling, and tested using 4-fold validation with
repeated runs, to account for randomness in the initialization proce-
dure. The parameters which produced the best F1 validation score
(averaged over folds and repetitions) were then used to train the
networks. These values were adjusted by hand if a re-run was con-
sidered necessary, based on the observed behavior of the network
on the train and validation sets.

3.4 Human Attention Annotation
When running the stratification process, we verified that the test
fold contained at least one video for each one of the three ses-
sion blocks described in Section 3.2. Thus, for each coder there
was at least one test video they had not seen before. We chose
one such video per coder, and used rejection sampling to find non-
overlapping samples, such that the two available annotations agreed
on that sample (that is, there was a consensus label). If possible,
we retrieved 12 such samples: one for each combination of task,
variable, and label value. Due to some children showing very consis-
tent behaviors, this was not always possible, so the final number of
samples ranged from 9 to 12 per annotator, for a total of 31 samples.
We call this collection of samples the comparison set.

A custom tool was used to visualize the comparison set, and
collect human attention maps. The annotator could view the low-
resolution, low-framerate snippet that would have been presented
to the network, and could press buttons to decide if the child was
engaged or not. They could then navigate frame by frame, and use
the mouse to paint over the video. They were instructed to highlight
the parts of the video that supported their final decision, focusing on
positive evidence for their label choice (i.e., the annotations should
be class discriminative). Figure 2 shows a screenshot of the tool in
use.

3.5 Machine Attention Computation
We implemented each of the four studied post-hoc attention map-
ping techniques (Gradient Saliency, Guided Backpropagation, Grad-
CAM, Guided Grad-CAM), and applied them to each sample in
the comparison set. Note that, while the explanation in Section 2.2
is done in terms of still images with 2D pixel coordinates (𝑖, 𝑗) –
consistent with the original sources –, all these techniques apply
naturally to video data with 3D frame-and-pixel coordinates (𝑡, 𝑖, 𝑗),
using all the available information. In particular, the relevance of
motion should be captured by the attention maps.

Since samples in the comparison set correspond to different tasks
and variables, these maps were computed using all 6 classification
networks obtained during the training process (Section 3.3): for
each sample, the corresponding network (same task and variable)

Figure 2: Custom annotation tool used to capture human
attention maps. The user can view the video in the same
format provided to the network, and can choose an appropri-
ate label. They can then move frame by frame and use the
mouse to paint or erase regions of high interest. The black
circle is located at the mouse cursor location and indicates
the current painting size. The faces of the participants have
been anonymized for this illustration.

was used. When defining attention maps, we explained they can
target any class in the output. To study class sensitivity accross
mapping methods, we targeted both positive and negative labels in
each case, resulting in 8 attention maps per sample. Both targets
were used for subjective analysis of the network’s decision process.

3.6 Attention Comparison
Due to the differences in high-frequency detail between different at-
tention maps, a pixel-for-pixel comparison was discarded, focusing
instead on the low-frequency content of the distributions. To that
effect, we chose to resize all attention maps to one common spatial
size: 32 × 32px (1/5th of the input resolution). For full-resolution
maps, which typically contained more fine-grained detail, down-
sampling was performed by first applying Gaussian blur (𝜎 = 5px)
and then sampling with stride 5px. For Grad-CAM (original size
10 × 10px), bicubic upsampling was performed.

Once the size was standardized, the average Earth Mover’s Dis-
tance per frame (EMD) [6] was used to evaluate the similarity
between the human annotation and each machine attention map.
The Earth Mover’s Distance, also known as the 1st Wasserstein
Distance, is a metric on the space of probability distributions. In-
formally, it can be described as the minimum amount of work that
it would take to reshape one distribution into another, if they were
piles of earth. We chose to calculate the metric per frame for two
reasons: (1) some attention maps have very unequal values between
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frames, while the human annotation is near-constant in maximum
value and total mass per frame; (2) EMD’s computational cost scales
very poorly with the size of the map, making it infeasible to run on
the whole video.

We calculated the EMD scores in every full-agreement sample
in the comparison set, that is, every sample that was identically
classified by all annotators, and by the network. We did so while
targeting the matching category (i.e., the true label). This was done
to ensure that the hand-painted maps were focusing on the same
information as the machine attention maps.

4 RESULTS AND ANALYSIS
4.1 Network Performance
Table 2 summarizes the performance statistics for the top network
in each category, as judged by validation F1 score.We have listed the
empirical probability 𝑞 for comparison (calculated for the positive
class, over the continuous-time annotations for the whole dataset).
As a baseline, the best accuracy achievable by a random classifier is
max(𝑞, 1 − 𝑞) (achieved by always predicting the most likely class),
and the best F1 achievable by a random classifier is 2𝑞/(1 + 𝑞)
(achieved by always predicting the positive class). All values above
the baseline are marked in black. We can see the dolls networks
struggle in the test set (despite performing well in the validation
set), while all other networks perform successfully. It is worth
mentioning that agreement scores between annotators are in the
0.81-0.83 range (see Fig. 1a), so one should not expect accuracies
above those values.

4.2 Agreement with the Network
Figure 3 shows aggregate agreement scores (3a) and Cohen’s Kappa
(3b) between each human annotator and the best performing net-
works. Unlike Figure 1, which considered all available annotations,
and used their original time-interval form, this table uses the test set
exclusively, and is calculated by taking video snippets (the samples
as they are fed to the network for training and inference). Each
session in the test set is sampled for every combination of task
and variable, taking as many non-overlapping samples as possible.
Labels are calculated for the available annotators with the same
approach used for training. The human-human pairs show simi-
lar Kappa scores to Figure 1, albeit with a wider range: 0.55-0.71
(Moderate to Substantial agreement). The human-machine pairs
are clearly lower: 0.29-0.31 (Fair agreement). Overall, the networks
performed clearly better than random choice, but not well enough
to substitute a human annotator.

Table 3 shows Cohen’s Kappa for each network, averaged over
all human-human pairs (column "Human"), and averaged over all
human-machine pairs (column "Machine"). We can see (dolls, social
engagement) and (drums, social enagement) failed to obtain better-
than-random scores, while other networks performed better (in
some cases, close to human levels of agreement).

4.3 Subjective Analysis of Machine Attention
Figure 4 shows all four attention mapping techniques acting on the
same frame. The sample under consideration belongs to the task
shaker and the target variable is social engagement. All annotators

agreed that this is a negative sample: the child is not engaged (neg-
ative). The relevant network also classified the sample as negative.
In this figure, the attention methods are targeting the matching
class: negative or not engaged. We can observe the properties we
discussed in Section 2.2: Gradient Saliency is noisy but somewhat
informative, focusing on the infant’s head; Guided Backpropagation
is sparse and focuses on the two participants, with special attention
to the shaker (and possibly similar oval shapes, like the infant’s ear);
Grad-CAM is low-resolution but focuses more clearly on the child;
Guided Grad-CAM is the sparsest and potentially most informative
– in this case, focusing on the infant’s head alone.

Figure 5 shows the same frame and the same methods yet again.
However, in this case the target is the opposite class: positive or
engaged. As discussed in Section 2.2, Gradient Saliency and Guided
Backpropagation are not class sensitive: there is no discernible dif-
ference between the matching and opposite targets. However, Grad-
CAM and Guided Grad-CAM shift the attention from the infant
to the experimenter. Assuming we can trust the explanation, and
considering that the prediction target is the infant’s emotional state,
focusing on the experimenter could be considered contextual in-
formation. Depending on our goals, this could be seen as a failure
of the network. However, we will see that human annotators simi-
larly rely on contextual cues when annotating – in their case, the
cross-relation between social and task engagement.

4.4 Subjective Analysis of Human Attention
Figure 6 shows four consecutive frames from a manually annotated
attention map for the task dolls and the target variable social engage-
ment. Using the custom tool described in Section 3.4, annotator A
classified the sample as positive, and painted areas of interest in ev-
ery frame to support their decision. We can see that they considered
the child’s gaze and arm movement to be important factors. Unlike
the network example in Section 4.3, the annotator did not highlight
the experimenter as relevant contextual information. However, the
focus on the arms was added because they indicate task engagement.
Given that this was not the target variable, the arm annotation con-
stitutes contextual information: the child is seen to engage with the
experimenter even if they temporarily break eye contact, because
they are still actively participating in the activity. In this case, the
judgement of one variable affects the judgment of the other.

Compared to the machine attention maps displayed in Figures 4
and 5, themouse-paintedmaps have a distinctive lack of detail, with-
out reaching the coarseness of Grad-CAM. The observed disparity
between different attention maps motivates our choice to blur and
down-sample before performing a quantitative comparison.

4.5 Quantitative Comparison of Attention Maps
Figure 7 shows the original frame, two machine attention maps, and
human attention, before and after being resampled to a common
resolution (see Section 3.6). Visual inspection suggests that we have
successfully mapped heterogeneous methods to a similar detail
scale, while preserving each method’s identity.

Table 4 shows the EMD mean and standard deviation for each
machine attention method, ranked by mean EMD (lower is better).
Matching human expectations, we see that both locality and class
sensitivity are graded positively, with Guided Grad-CAM selected
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Task Variable Empirical Prob. Val. Acc. Val. F1 Test Acc. Test F1
Dolls Task Engagement 0.60 0.93 0.94 0.64 0.64

Social Engagement 0.72 0.85 0.92 0.68 0.81
Shaker Task Engagement 0.41 0.68 0.72 0.72 0.61

Social Engagement 0.56 0.93 0.94 0.74 0.80
Drum Task Engagement 0.53 0.80 0.82 0.88 0.90

Social Engagement 0.70 0.85 0.92 0.76 0.86
Table 2: Statistics for the best network in each category (as judged by validation F1 score): empirical probability of the positive
class (calculated over the whole dataset), validation accuracy, validation F1 score, test accuracy, and test F1 score. Bold numbers
indicate scores above the theoretical maximal score of a random classifier. Since there is no unified ground truth, these numbers
cannot be expected to reach 100%.

(a) Agreement Score (b) Cohen’s Kappa

Figure 3: Dyadic inter-rater agreement measures calculated on the test set, and including the network as one of the raters.
Human annotators A, B and C are compared to each other and to the network. 3a shows the agreement score (empirical
probability of agreement); 3b shows Cohen’s Kappa.

Task Variable Human Machine
Dolls Task Engagement 0.497 0.395

Social Engagement 0.790 0.000
Shaker Task Engagement 0.734 0.176

Social Engagement 0.524 0.219
Drum Task Engagement 0.529 0.422

Social Engagement 0.382 0.000
Table 3: Average Cohen’s Kappa over all human-human pairs (column "Human") and over all human-machine pairs (column
"Machine"), separated by (task, variable) pair (i.e., per network). Some networks failed, while others performed at almost-human
level.

(a) Gradient Saliency (b) Guided Backpropagation (c) Grad-CAM (d) Guided Grad-CAM

Figure 4: All four attention mapping methods, displayed at the same frame. Task shaker, target variable social engagement. All
annotators marked this sample as not engaged. The network correctly classified the sample as negative. The target class for
these maps is the matching class (negative). Faces anonymized for the illustration.
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(a) Gradient Saliency (b) Guided Backpropagation (c) Grad-CAM (d) Guided Grad-CAM

Figure 5: Same frame and same mapping methods as in Figure 4. In this case, the target class is the opposite class (positive).
Faces anonymized for the illustration. There is no discernible difference in Gradient Saliency nor Guided Backpropagation, but
we can see that the focus changes to the experimenter in the class-sensitive methods Grad-CAM and Guided Grad-CAM.

Figure 6: Four consecutive frames from a manually annotated attention map (task: dolls, variable: social engagement). All
annotators labeled the sample as positive. Faces anonymized for the illustration.

Figure 7: Left to right: original frame, Guided Backpropagation, Grad-CAM, and human attention. Top row: original resolution
(160 × 160px except for Grad-CAM, 10 × 10px). Bottom row: homogeneous resolution (32 × 32px). Faces anonymized for the
illustration.
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Method Guided Grad-CAM Guided Backpropagation Grad-CAM Gradient Saliency
Mean 7.19 8.35 9.60 10.27
Standard Deviation 3.66 1.93 2.30 1.35

Table 4: Attention mapping methods ranked by increasing mean EMD (lower is better), calculated over all full-agreement
samples in the comparison set. The EMD mean and standard deviation for every method are listed under the method’s name.

as the best method and Gradient Saliency as the worst. Notice,
however, that the standard deviation has a similar magnitude as
the difference between means.

5 CONCLUSIONS
In this paper, we have shown that end-to-end Deep Learningmodels
can learn to classify the affective states of an infant during guided
play, specifically their task engagement with the toy at hand, and
social engagement with the experimenter and the intended activity.
We achieved this with very little data for Deep Learning standards:
23 videos, totalling 4 hours, of which only around 50 minutes were
used in each training session – several orders of magnitude smaller
than standard video datasets. Furthermore, we achieved this with a
single video feed showing a general view of the interaction from a
side angle, which would be unusable by standard feature extraction
tools. The networks we trained showed varying degrees of agree-
ment with human annotators – from bad as chance, to human-like
performance. It appears the dominating factor is the task: some
interaction scenarios are easier than others. We expected the classi-
fication of social engagement to be intrinsically more difficult than
that of task engagement, but this was not supported by the results.

We have also shown how careful consideration of the available
data can help mitigate the lack of training examples. Part of our
pipeline uses standard solutions for this problem: pre-training on
bigger datasets, strong data augmentation, good data stratification.
But another part is tailored to the video domain: using interval an-
notations to obtain a continuum of snippets we can sample. Keeping
in mind that samples from the same video are likely to show strong
correlation, this technique greatly increases the effective number
of samples at our disposal. The considerations about data extend
to the targeted ground truth: when faced with disagreeing coders,
we can avoid synthesizing a joint annotation, and let the network
learn from every individual’s perspective.

We have analysed four common post-hoc attention mapping
methods: Gradient Saliency, Guided Backpropagation, Grad-CAM
and Guided Grad-CAM. We have calculated attention maps for a
comparison set, and discussed their differences when performing
example-based subjective analysis – in our experience, the domi-
nant use case in the literature. Through this approach, we observed
head, body and contextual cues identified by the network as im-
portant to discriminate engagement levels. We also observed the
(shaker, social engagement) network using contextual information:
in negative samples, it correctly focuses on the infant to determine
not engaged. But, when asked about evidence for engaged, it focuses
on the researcher.

Finally, we have provided a numerical comparison of the differ-
ent post-hoc mapping methods. For this, we collected a human-
annotated attention map baseline for the comparison set, and used
the Earth Mover’s Distance to evaluate the human-likeness of each

technique. Our results indicate that Guided Grad-CAM is closest to
human attention, while Gradient Saliency is furthest. Previous lit-
erature has shown that both gaze tracking data and explicit mouse-
painting can be successfully used to create the ground truth. In
this paper we preferred the mouse-painting technique, which can
capture class sensitivity.

6 OPEN ACCESS
The code for this project can be accessed at https://github.com/
MarcFraile/infant-engagement
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