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the permeability and heat exchange area increases 
are achieved. We then discuss the mechanisms of 
fluid injection-induced seismicity during and after a 
hydraulic stimulation operation. After that, alternative 
hydraulic stimulation strategies, namely conventional 
hydraulic stimulation, multi-stage fracturing, and 
cyclic soft stimulation, are reviewed based on current 
research in theoretical studies as well as, laboratory, 
and in-situ field experiments. Finally, some represent-
ative EGS projects are reviewed, focusing on fluid 
injection strategies, seismic responses, and reservoir 
permeability enhancement performance. The review 
shows the importance and need of (a) a comprehen-
sive geological characterization of the natural fracture 
system including the nearby fault zones as well as the 
in-situ stress conditions, prior to the development of 
the site, (b) a proper design of the well arrangement, 
such as the positioning of the injection and produc-
tion wells, and (c) the selection of an appropriate 
fluid injection strategy for the system at hand.

Article highlights 

• A comprehensive geological characterization of 
the natural fracture system and nearby fault zones 
is critical before the development of an EGS pro-
ject.

• Proper design of the arrangement of the injection 
and production wells as well as the fluid injection 

Abstract In enhanced geothermal systems (EGS), 
the natural permeability of deep rocks is normally not 
high enough and needs to be increased. Permeability 
increase can be achieved through various stimula-
tion methods, such as hydraulic, chemical, and ther-
mal stimulation. Among these, hydraulic stimulation 
is the most commonly used technique to increase 
both reservoir permeability and the specific area for 
heat exchange. A comprehensive understanding of 
the underlying processes towards an optimization of 
hydraulic stimulation performance while minimiz-
ing the potential of unwanted induced seismicity is a 
critical prerequisite for a successful development of 
any EGS site. In this paper, we review the hydrau-
lic stimulation strategies that have been developed 
and implemented for EGS. We begin with a descrip-
tion of the underlying mechanisms through which 
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strategy are essential elements for successfully 
developing an EGS project.

• Further research in coupled thermo-hydro-
mechanical-chemical processes during and after a 
fluid injection operation in EGS is needed, in par-
ticular for better understanding of the processes 
related to induced seismicity.

Keywords Hydraulic stimulation strategies · 
Reservoir permeability · Heat extraction · Seismic 
risks · Enhance geothermal systems (EGS)

1 Introduction

Geothermal energy is the thermal energy stored in the 
deep sub-surface of the earth. It is a potentially very 
important energy source because of its vast reserves 
and wide availability (Gong et  al. 2020; Pan et  al. 
2019). One of the main obstacles that has been lim-
iting the development of EGS is the low permeabil-
ity of the deep rocks at the depths where most of the 
geothermal energy is stored. Thus, stimulation opera-
tions are commonly needed to enhance the reservoir 
permeability and to increase the specific area for heat 
exchange (Lu 2018; Olasolo et al. 2016). A system of 
developing geothermal energy through such stimula-
tion operations is called an enhanced geothermal sys-
tem (EGS).

Basic reservoir stimulation methods include 
hydraulic stimulation, chemical stimulation, and ther-
mal stimulation. Of these, hydraulic stimulation is the 
most commonly used one in both conventional oil and 
gas industry and in unconventional gas or shale gas 
development. In this approach, a large amount of fluid 
is injected into the target reservoir from a packered-
off section of a borehole, and the resulting high pres-
sure cracks the rock creating new tensile fractures 
and, if a number of natural fractures are present, it 
may also cause opening and/or shear of these natu-
ral fractures (Ghassemi 2012; McClure and Horne 
2014a, b; Elsworth et  al. 2016; Lei et  al. 2021). 
Increased permeability is a result from this tensile 
fracture aperture opening and the shear dilation of 
the existing fractures. Furthermore, fracture opening 
and shearing can also create fractures that connect to 
natural fractures further away, thereby significantly 
increasing the overall connectivity and permeability 

of the reservoir. At the same time, fracture surface 
areas are also increased, which is important for the 
heat exchange area and heat extraction from the sur-
rounding rock. Chemical stimulation involves the 
injection of an acidic fluid into the formation while 
using a fluid pressure lower than the reservoir break-
down pressure. Permeability increase is then be real-
ized through mineral dissolution, transport, and pre-
cipitation processes. This method has been commonly 
used in the oil and gas industry to enhance oil recov-
ery (Economides and Nolte 1989; Portier et al. 2009; 
Smith and Hendrickson 1965), it can also be used in 
EGS, such as in Groß Schönebeck (Henninges et al. 
2012), Desert Peak (Davatzes et al. 2012), and Soultz 
(Portier et  al. 2009). For thermal stimulation, cold 
water is normally injected into the reservoir for a spe-
cific time, typically several weeks. Due to the large 
temperature difference between the injected low-
temperature water and the high-temperature reservoir 
rock, the induced thermal stress causes deformation 
of in situ natural fractures and initiates new fractures 
(Liu et al. 2020). Among these three basic stimulation 
methods, hydraulic stimulation is the most commonly 
used in EGS to increase reservoir permeability and 
heat exchange extraction volume. Therefore, hydrau-
lic stimulation is the focus of the present work.

In hydraulic stimulation, an optimal generation of 
a well-connected, high permeability fracture network 
with large heat exchange area towards the surround-
ing rock is critical for an optimal performance. For 
the design of such a system, a comprehensive under-
standing of the underlying mechanisms and the role 
of various factors, such as the existing natural fracture 
network, is essential. Extensive work has been carried 
out in this respect, on the related processes and effects 
(Bowker 2007; Brown 1989; Evans et al. 2005; Fisher 
et al. 2004; Gale et al. 2007; Ito 2003; Ito and Hayashi 
2003; King 2010; Ledésert et  al. 2010; Murphy and 
Fehler 1986; McClure and Horne 2014a, b; Pine and 
Batchelor 1984; Yin et al. 2019). However, work still 
remains to be done, especially concerning the role of 
the natural fracture network and fault zones with var-
ying characteristics.

A specific challenge in hydraulic stimulation is the 
risk of injection-induced seismicity, both during and 
after the water injection (Ellsworth 2013; Elsworth 
et al. 2016). Even though the vast majority of the seis-
mic events observed during the EGS developments 
have been of magnitudes less than 3.0, some cases 
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of damaging earthquakes have also been reported 
(Kim et al. 2018a; Knoblauch and Trutnevyte 2018). 
For instance, a series of earthquakes occurred at the 
Basel geothermal site in Switzerland from December 
2006 and March 2007, with the maximum magnitude 
of Mw 3.4 (Evans et al. 2012), which led to the sus-
pension of the Basel EGS project. More recently, an 
earthquake in the Pohang geothermal field in South 
Korea in November 2017, with a magnitude of Mw 
5.5, also directly resulted in the suspension of the 
Pohang geothermal project (Grigoli et  al. 2018). To 
mitigate seismic risks associated with EGS devel-
opment, significant research effort has lately been 
invested into understanding the mechanisms related 
to fluid injection-induced seismicity (Atkinson et  al. 
2020; Schultz et  al. 2020; Lei et  al. 2021; Lei and 
Tsang 2022).

None of these reviews aims, however, to give a 
complete overview of all aspects of a hydraulic stim-
ulation operation. In the present paper, we will pre-
sent a review of hydraulic stimulation strategies for 
permeability and heat exchange area enhancement 
while limiting induced seismicity, with an emphasis 
on insight gained and lessons learned from previous 
projects. We will first briefly present the mechanisms 
behind permeability enhancement, heat exchange 
area increase, and fluid injection-induced seismicity 
during and after hydraulic stimulation. Next, some 
typical hydraulic stimulation methods are described, 
namely conventional hydraulic stimulation, multi-
stage fracturing, and cyclic soft stimulations (CSS), 
based on findings from both theoretical studies and 
from laboratory and in-situ experiments. This is fol-
lowed by summaries of some representative in-situ 
hydraulic stimulation in EGS projects with a focus 
on their fluid injection procedures, observed seis-
mic response, and reservoir permeability enhance-
ment performance. Lessons learned in each case are 
discussed, and some overall conclusions are then 
presented.

2  The mechanism of hydraulic stimulation 
and fluid injection‑induced seismicity

In this section, we first present an overview of the 
basic mechanism of permeability enhancement during 
a hydraulic fracturing operation. Next, we discuss the 
mechanism of the heat exchange area enhancement. 

Finally, we review some recent studies on the mecha-
nisms of fluid injection-induced seismicity.

2.1  The mechanism of permeability enhancement in 
EGS

The target reservoirs for EGS are most likely located 
at depths of several kilometers, where the subsur-
face is hot enough for heat extraction. Due to the 
great depths and the associated high in-situ stresses, 
the formations usually have very low permeability, 
which would need to be increased. Hydraulic stimu-
lation is one of the most important methods used to 
increase the reservoir permeability as well as the heat 
exchange area of the reservoir (Tester et  al. 2006; 
Kennedy et  al. 2010; Meyer and Bazan 2011; Pan 
et al. 2019; Yin et al. 2020, 2021a).

Hydraulic stimulation is a relatively complicated 
coupled process involving fluid flow, new fracture 
creation, tensile and shear deformation of newly cre-
ated and pre-existing natural fractures, and fluid leak-
off from fractures to rock matrix at multiple space and 
time scales.The initial concept of hydraulic stimula-
tion assumed that a single, planar tensile fracture was 
formed in the direction of the maximum stress, which 
appears to be what happens in oil and gas reservoirs 
(Brown et  al. 2012), and this was named hydraulic 
fracturing. However, Willis-Richards et  al. (1996) 
found that shearing slip of pre-existing natural frac-
tures with shear dilation effect was actually the domi-
nant stimulation mechanism, which was then named 
shear stimulation, hydraulic shearing, or hydroshear-
ing (Cladouhos et al. 2011). Various numerical mod-
els have been developed to simulate the shear slip of 
pre-existing natural fractures (Bruel 2007; Demp-
sey et al. 2015; Kohl and Mégel 2007; McClure and 
Horne 2011, 2013a; Rachez and Gentier 2010; Riahi 
and Damjanac 2013; Tao 2010; Zhou and Ghassemi 
2011). As for the dominant mechanism of hydraulic 
stimulation in EGS, early in-situ experiments at Fen-
ton Hill, USA, found that some natural fractures were 
both opened and sheared during the hydraulic stimu-
lation through an analysis of micro-seismicity data 
(Barton et al. 1988; Brown 1989; Brown et al. 2012; 
Brown and Duchane 1999; Fehler 1989; Moore and 
Pearson 1989; Norbeck et  al. 2018; Pearson 1981; 
Pine and Batchelor 1984). The experience from 
the Soultz EGS project also indicated that both the 
newly created hydraulic fractures and the shear slip 
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of pre-existing natural fractures played a vital role in 
the permeability enhancement (Grecksch et al. 2003; 
Jung and Weidler 2000; McClure 2012; McClure and 
Horne 2013b, 2013c; Norbeck et  al. 2018; Rinaldi 
and Rutqvist 2019). Thus, hydraulic stimulation in 
EGS combines hydraulic fracturing and hydroshear-
ing, and this viewpoint is now commonly accepted in 
the EGS community.

Based on previous in-situ experiments and obser-
vations, McClure and Horne (2014a, b) summarized 
four potential mechanisms that may dominate dur-
ing a hydraulic stimulation operation in EGS, as 
shown in Fig.  1. The first mechanism is the pure 
opening mode which is based on the conventional 
hydraulic fracturing concept, assuming no natural 
fractures within the reservoir. During stimulation, 
the injected fluid cracks the reservoir and creates 
newly opened propagating fractures, thus creating 
fluid channels and increasing permeability (Adachi 
et al. 2007; Economides and Nolte 1989; Geertsma 
and De Klerk 1969; Nordgren 1972; Perkins and 

Kern 1961). The second stimulation mechanism is 
the pure shear mode (hydroshearing), which means 
that permeability enhancement comes from the 
shear slip of pre-existing natural fractures. In this 
process, the injected fluid increases the pore pres-
sure within the natural fractures, decreases the 
normal effective stress on fracture surfaces, and 
triggers shear slip under appropriate local stress 
conditions (effective normal and shear stresses). The 
third mode, defined as the primary fracturing with 
shear stimulation leak-off, represents a combina-
tion of new fracture opening (hydraulic fracturing) 
and induced shear slip of in-situ natural fractures 
(hydroshearing). This concept applies to low perme-
ability rocks with a low density of natural fractures, 
and several numerical models have been developed 
to study this idea (Nagel et  al. 2011; Palmer et  al. 
2007; Rogers et  al. 2010; Warpinski et  al. 2001). 
The fourth stimulation mechanism is called mixed-
mechanism stimulation and is also a combination 
of hydraulic fracturing and hydroshearing. Under 

Fig. 1  The schematic 
presentation of the four 
potential mechanisms for 
hydraulic stimulation in 
EGS, including a) pure 
opening mode, pure shear 
mode, primary fractur-
ing with shear stimula-
tion leakoff (PFSSL), and 
mixed-mechanism stimula-
tion (MMS) (modified 
from McClure and Horne 
2014a, b)
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this mechanism, high-pressure fluid first cracks 
the reservoir around the injection point, creates 
tensile fractures, and drives fracture propagation. 
When encountering natural fractures, the hydraulic 
fractures may terminate and then propagate along 
the direction of natural fractures or cross the natu-
ral fractures, depending on the angle between the 
natural fractures and the hydraulically propagating 
fractures, the fluid pressure, in-situ stress state, and 
other geological parameters.

Based on the above four potential mechanisms, 
research has been carried out to identify the critical 
parameters that determine which mechanisms may 
dominates during hydraulic stimulation in an EGS 
site. These parameters include:

 (i)  Reservoir’s initial transmissivity and trans-
missivity heterogeneity. Numerical simula-
tions indicate that if the initial transmissivity 
is very low near the borehole because of the 
sparse presence of natural fractures or their 
very small fracture hydraulic apertures, tensile 
fracture may be opened near the injection bore-
hole when the injection pressure exceeds rock 
breakdown pressure. On the other hand, if the 
transmissivity is high, representing the pres-
ence of connected hydraulically conducting 
fractures, a lower injection pressure would be 
required to cause shear displacement and dila-
tion on these natural fractures.

 (ii)  The storativity of the pre-existing natural frac-
ture systems. Numerical simulation results indi-
cate that if the natural fractures are closed and 
have low storativity, fluid injection will induce 
very rapid natural fractures propagations. In 
this case, the closed natural fractures cannot 
contain much fluid, and pressure buildup is 
relatively fast. Moreover, the experience from 
Soultz geothermal site indicated that if there is 
a large fault zone near the injection borehole, 
the high storativity of the fault zone can accom-
modate a large injection fluid volume (Cuenot 
et al. 2008, 2010; Dezayes and Genter 2008). In 
that case only shearing fractures were observed, 
but no tensile fracture opening. Hence, we may 
conclude that fracture tensile opening tends to 
take place in regions of low fracture storativity 
and shear displacement in regions of high frac-
ture storativity.

 (iii)  The development degree of the fault zone. The 
development degree indicates the fracture den-
sity in the target reservoir. A well-developed or 
mature natural fracture system with high frac-
ture density and/or a fault zone with reasonable 
thickness increases the tendency for the shear 
slip of natural fractures. Moreover, optimally 
oriented critical fractures intersecting the bore-
hole have large possibility for shearing. Simi-
larly fault zones with large transmissivity and 
storativity have a higher potential for shear 
slip initiation, assuming a sufficiently large 
injection pressure is imposed. However, after 
the initiation of the shear slip of natural frac-
tures, the resulting increase in the permeability 
quickly lowers the pressure and hence the prob-
ability of large tensile fracture formation within 
the reservoir (Lei et  al. 2021; McClure and 
Horne 2011, 2014a, b).

 (iv)  Fluid injection rate and borehole bottom-hole 
pressure. Evidence from the GPK2 well at 
Soultz, France, indicated that if the bottom-hole 
fluid pressure remained substantially below the 
minimum principal stress due to the low fluid 
injection rate, the shear slip of pre-existing 
fractures would be the dominant mechanism 
and many seismic events with the magnitude 
less than 2.0 were observed (Valley and Evans 
2006). A similar phenomenon was observed at 
Cooper Basin EGS sites in Australia, where the 
shear slip was the dominant stimulation mecha-
nism (Baisch et al. 2006, 2009). Conversely, if 
the fluid was injected into the reservoir with a 
high injection rate and high bottom-hole pres-
sure, a main hydraulic fracture would be cre-
ated, which was found to be the case behind 
the permeability increase of GPK1 and GPK4 
wells in Soultz, France (Tischner et al. 2007).

2.2  The mechanism of heat extraction volume 
increase in EGS

Another objective of hydraulic stimulation is to 
increase the heat extraction volume and heat exchange 
surface area, as the effectiveness of heat exchange 
between the working fluid and the rock is critical in 
determining whether the EGS site is successful or 
not.
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Research indicates that water circulation in EGS 
is primarily dominated by flow in the fractures (a sin-
gle fracture or fracture network), rather than the rock 
matrix (Baisch et al. 2006; Brown 1997, 2009; Brown 
and Duchane 1999; Genter et  al. 2012; Koh et  al. 
2011). Therefore, the flow characteristics through the 
fractures and the heat exchange efficiency between cir-
culating fluid and the surrounding rocks will determine 
the heat production efficiency (Guo et al. 2016). Thus, 
it is highly desirable that fluid flow is in contact with 
a large area of fracture surfaces and that fractures with 
such flow cover a large rock volume. Spatial heteroge-
neity in flow will be created during a hydraulic stimula-
tion operation due to the target reservoir’s complicated 
geological setting (Kosakowski et  al. 2001; Méheust 
and Schmittbuhl 2000; Neretnieks 1987). When fluid 
flow takes place through a fracture network with frac-
tures of variable permeability values and if, further, 
individual fractures have a heterogeneous aperture 
distribution, channelized preferential flow paths would 
likely be formed (Moreno and Tsang 1994; Tsang and 
Neretnieks 1998; Tsang and Tsang 1989). Channelized 
flow is not optimal for heat extraction as the interface 
between the rock and the circulating flow is reduced. In 
addition, the phenomenon may be self-enhancing. Rock 
matrix near the preferential flow paths cools faster than 
those farther from the flow paths and the cooled rock 
body could then induce thermal stress and decrease the 
effective compressive stress near the preferential flow 
paths, with the possibility of increased local hydrau-
lic permeability, which will make the fluid flow even 
more channelized along those preferential paths. This 
phenomenon is not desirable as these preferential paths 
would carry an increasing portion of the fluid flow, thus 
leading to early production temperature decline.

The above discussion is illustrated in Fig.  2. Chen 
and Jiang (2016) presented the following equations to 
describe the heat conduction in the rock matrix and 
heat convection and advection for the fluid within the 
fractures, respectively:

(1)

�[�(�Cp)f Tf ]

�t
+ u ⋅ ∇[(�Cp)f Tf ] = ∇ ⋅ (k

eff

f
∇Tf ) + ha(Ts − Tf )

(2)
�[(1 − �)(�Cp)sTs]

�t
= ∇ ⋅ (keff

s
∇Ts) − ha(Ts − Tf )

In these equations, ρ [kg/m3] is the density; ε 
[dimensionless] is the porosity; Cp [J/kg/K] is the 
heat capacity; the subscript f denotes the property of 
the working fluid and s denotes the property of the 
solid (rock matrix); u [m/s] is the superficial veloc-
ity vector; T [K] is the temperature; a [1/m] is the 
specific surface area of the fractures; h [W/m2/K] 
is the convective heat transfer coefficient. The term 
ha(Ts-Tf) appears in both equations. It describes 
the heat exchange between the rock matrix and the 
working fluid in the fractures. The specific surface 
area represents the rock-fluid heat exchange area per 
unit reservoir volume. This parameter is a purely 
geometrical parameter with its value associated 
with the fracture morphology (Jiang et  al. 2014). 
The heat transfer rate is directly proportional to the 
specific surface area based on the effective medium 
theory. It is a direct reflection of the fact that with a 
larger specific surface area of the fractures, the heat 
exchange will be more efficient.

Finally, it is useful to highlight the difference 
between permeability enhancement and specific 
surface area improvement for heat extraction due to 
hydraulic stimulation. After a successful hydraulic 
stimulation, the permeability is enhanced. This per-
meability enhancement may be due to the creation 
of one main fracture between the injection well and 
the production well (Case I in Fig. 2b), or due to the 
creation of N fractures between the two wells (Case 
II in Fig.  2b). For the same permeability enhance-
ment, with the flow rate Q between the injection 
and production wells in the two cases being kept 
equal, then based on the cubic law, the apertures of 
the fractures in the two cases can be related through 
e1

3/12 = Ne2
3/12, so that e2 = e1/N1/3. Now, for Case 

I, the porosity is e1/L, and the specific surface area 
for heat exchange as defined by Chen and Jiang 
(2016) is 1/L, where L is the length of the reservoir 
along the well. As for case II, with N fractures the 
porosity is Ne2/L = N2/3e1/L, much larger than that 
of Case I and thus resulting in a slower flow veloc-
ity as compared with Case I. Further, in Case II, 
the specific surface area for heat exchange is N/L, 
which is N times larger than the specific surface 
area in case I. Hence, even though the flow in Case I 
and in Case II are the same (meaning a similar per-
meability enhancement due to hydraulic fracturing 
stimulation), Case II provides a significantly better 
condition for heat transfer in EGS.
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As discussed above, it is easy to conclude that 
the aim of hydraulic stimulation in EGS is not the 
same as in oil and gas reservoirs. In EGS reservoirs, 
apart from solely increasing the permeability/trans-
missivity, it is also important to increase the heat 
exchange area. That is to say, more fluid channels 
for heat exchange will benefit the heat production. 
Thus, in EGS, creating more fractures with smaller 
hydraulic apertures may be better than fewer frac-
tures with larger hydraulic apertures.

2.3  The mechanism of fluid injection-induced 
seismicity

A number of recent review papers have summarized 
the activation mechanisms of fluid injection-induced 
seismic events (Atkinson et  al. 2020; Kang et  al. 
2019; Rathnaweera et al. 2020; Schultz et al. 2020). 
McGarr et al. (2015) listed five main industrial opera-
tions that may cause fluid injection-induced seis-
micity, namely (a) wastewater disposal; (b) massive 

Fig. 2  a A schematic simplification of a fracture network for 
heat extraction between fluid and rock in EGS. b Two extreme 
cases illustrate the difference in permeability enhancement and 

heat exchange surface area increase: with the same total per-
meability, Case I has a smaller heat exchange surface area and 
heat extraction volume than Case II
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fluid injection to enhance oil recovery; (c) hydrau-
lic fracturing operations; (d) deep injection of  CO2; 
and (e) EGS development. Bommer et  al. (2006), 
Bruhn et al. (2011), Suckale (2009), and Davies et al. 
(2013) reviewed the fluid injection-induced seis-
micity in the different applications. Warpinski et  al. 
(2012) examined the induced seismicity specifically 
related to hydraulic fracturing in shale gas develop-
ment. Evans et  al. (2012) summarized 41 European 
cases of fluid injection-induced seismicity in the EGS 
and  CO2 storage projects. The review by Ellsworth 
(2013) focused on earthquakes caused by wastewa-
ter injection, especially in the USA. Rubinstein and 
Mahani (2015) summarized fluid injection-induced 
seismicity cases associated with wastewater injec-
tion, hydraulic stimulation, and enhanced oil recov-
ery. Schultz et al. (2020) reviewed the reported cases 

of hydraulic fracturing induced seismicity in Canada, 
USA, UK, and China, during oil and gas exploration, 
with analysis of earthquake swarms and their proxim-
ity to the injection locations. Atkinson et  al. (2020) 
summarized six key issues associated with hydraulic 
fracturing induced seismicity, including the triggering 
mechanisms, the effect of the tectonic environment, 
commonalities and differences between induced and 
natural earthquakes, damage potential, prediction, 
and relative hazards evaluation.

Table  1 gives a summary of reported fluid injec-
tion-induced earthquakes in geothermal systems. 
Majer et  al. (2007) proposed four possible mecha-
nisms to understand the injection-induced seismic-
ity during EGS development, namely (a) pore pres-
sure increase; (b) fluid temperature decrease; (c) 
fluid injection/withdrawal-induced fluid volume 

Table 1  A summary of fluid injection-induced earthquakes in geothermal systems

Project Location Time Maximum 
magnitude

Remarks Reference

The Southeast Geysers USA 1982 4.6 Breede et al. (2013)
Rosemanowes UK 1987 2.0 Breede et al. (2013), Evans et al. 

(2012)
Fjällbacka Sweden 1989 − 0.2 Felt event during fluid circulation Breede et al. (2013), Evans et al. 

(2012)
Soultz-sous-Forêts France 1993 1.9 During the fluid injection stage Charléty et al. (2007), Cuenot et al. 

(2008), Dorbath et al. (2009)2003 2.9 Post-injection stage, about 300 
events were above Mw 2.0

KTB Germany 1994 1.2 Evans et al. (2012)
Krafla Iceland 2002  < 2.0 Evans et al. (2012)
Bad Urach Germany 2002 1.8 The injection rate dropped from 50 

to 10 L/s in several hours
Zang et al. (2014)

Genesys Horstberg Germany 2003  < 0 Evans et al. (2012)
Cooper Basin Australia 2003 3.7 More than 50,000 events occurred Breede et al. 2013
Hellisheidi Iceland 2003 2.4 Breede et al. (2013), Evans et al. 

(2012)
Basel Switzerland 2006 3.4 Breede et al. (2013), Evans et al. 

(2012)
Berlin EI Salvador 2003 4.4 Breede et al. (2013), Evans et al. 

(2012)
Landau Germany 2007 2.7 During fluid circulation, due to the 

wells intersected with faults
Zang et al. (2014)

Unterhaching Germany 2007 2.4 During fluid circulation; both wells 
intersect faults

Zang et al. (2014)

Groß Schönebeck Germany 2007 − 1.1 Data from stimulation of the 
second well

Rathnaweera et al. (2020)

Pohang South Korea 2017 5.5 Largest known induced earthquake 
in EGS

Rathnaweera et al. (2020)
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alternation, and (d) chemical changes in fractures. 
Ghassemi (2012) in turn summarized the rock 
mechanics-related issues in fluid injection-induced 
seismicity, including how coupled thermo-hydro-
mechanical-chemical (T-H-M-C) processes affect 
seismic events during EGS development as well as 
the role of strain localization, fluid flow and diffusion, 
and heat exchange during earthquake nucleation. 
Zang et al. (2014) discussed the relationship between 
fluid injectivity, fluid volume, in-situ stress condi-
tions, and the occurrence of large seismic events in 
time and space during hydraulic stimulation in a spe-
cific EGS site. Their results indicated that long-term 
injection had a higher potential to induce earthquakes 
with large magnitudes than short-time injection.

As shown in Fig. 3, Eyre et al. (2019) summarized 
three commonly accepted, potential mechanisms 
that induce seismic events during hydraulic stimula-
tion, including (1) direct effect from increased pore 
pressure on fault; (2) change of fault-loading condi-
tions, and (3) fault loading by aseismic slip. However, 
underlying these mechanisms are some critical factors 
that will determine if and how a seismic event will 
be initiated, such as the total fluid injection volume, 
fluid injection rate, fluid temperature, reservoir origi-
nal pore pressure, reservoir permeability, reservoir 
temperature, and the orientations of pre-existing 
faults (Dinske and Shapiro 2013; Shapiro and Dinske 
2009; Zoback 2010, 2012). Moreover, whether a seis-
mic event with a large magnitude can occur after the 
activation of the natural fractures/faults depends also 
on the frictional strength evolution of the faults. Seis-
mologists use rate- and state-friction law to describe 
the frictional strength evolution as a function of slip 
velocity and slip history (Dieterich 1978; Marone 
et al. 1990; Ruina 1983). It has been shown that the 
so-called frictional stability parameter will determine 
whether a fracture/fault has velocity strengthening or 
velocity weakening behavior. The factors that affect 
the frictional stability of faults include the mineral-
ogical compositions of fault gouges, fluid pressure, 
and temperature (Kang et al. 2019). Experimental and 
in-situ results indicate that faults with high content of 
brittle and hard mineral particles, such as quartz and 
feldspar, can be expected to have higher frictional 
strength but lower frictional stability, with a higher 
tendency for potential seismic slip events (Boulton 
et al. 2012; Byerlee and Brace 1968; Carpenter et al. 
2009; Fang et al. 2017; Ikari et al. 2007, 2011; Moore 

and Lockner 2004; Morrow et al. 2000; Niemeijer and 
Collettini 2013; Shimamoto and Logan 1981; Sum-
mers and Byerlee 1977; Tembe et al. 2010). Moreo-
ver, these results indicate that fluid pressure may 
enhance or hinder the potential for seismic events for 
different rocks (De Barros et al. 2016; Jia et al. 2020; 
Guglielmi et  al. 2015; Scuderi and Collettini 2016). 
Finally, temperature also affects the frictional stabil-
ity evolution, especially during EGS development 
where the target reservoir is commonly under a high 
temperature gradient due to the significant difference 
in temperature between injected fluid and in-situ fluid 
(Den Hartog et al. 2012a, 2012b; McClure and Horne 
2014a, b; Niemeijer and Collettini 2013; Rutqvist 
et  al. 2008; Verberne et  al. 2010, 2015). With a 
decrease of temperature, the faults’ frictional strength 
increases dramatically, and the rock may evolve from 
plastic to semi-brittle deformation behavior, which 
increases the tendency for seismic events (Blanpied 
et  al. 1995; He et  al. 2006). Thus generally, during 
the EGS development, cold water injection could 
decrease the temperature of fault gouges, induce more 
brittle failure, and increase the seismic risks.

Although it is impossible to predict natural earth-
quakes accurately at this stage, researchers have 
attempted to estimate the maximum seismic magni-
tude of fluid injection-induced seismicity (Foulger 
et al. 2018). Representative methods include statis-
tical, physical, and hybrid approaches (Cloetingh 
et  al. 2010; Luginbuhl et  al. 2019; Gaucher et  al. 
2015; Schoenball et al. 2012). Some representative 
models and empirical relationships have been sum-
marised by Shapiro et  al. (2011), McGarr (2014), 
Van der Elst et  al. (2016), and Galis et  al. (2017). 
Current results indicate the injected fluid volume to 
be the main control on the magnitude of the fluid 
injection-induced seismicity. In Fig.  4, a summary 
of observed magnitudes of fluid injection-induced 
seismicity as a function of injected fluid volume 
in various EGS projects is shown, along with the 
model predictions by McGarr (2014) and Galis 
et  al. (2017). However, the results also show that 
some seismic events may significantly deviate from 
the general model predictions, including a number 
with much larger magnitudes. This may especially 
happen if the rupture is a runaway/unarrested rup-
ture (Grigoli et  al. 2018). An important example 
is the Pohang earthquake, where the earthquake 
sequences cannot be predicted based on the net 
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fluid injection volume (Lee et al. 2019). In general, 
without the consideration of specific in-situ tectonic 
stresses and local fault rupture physics, the estima-
tion of the particular extent of seismic events will 
be difficult.

Another important phenomenon that has been 
under intense study is post-stimulation seismic 
events. Parotidis et  al. (2004) indicated that the 
pore pressure diffusion was the dominant triggering 
mechanism for the post-fracturing induced seismic-
ity. Baisch et al. (2010) found that pore pressure at a 
nearby fault can dramatically increase after shut-in, 
bringing the fault to the critically stressed state. Later, 
Segall and Lu (2015) suggested that the poro-elastic 
effect is the main reason for the seismic events after 
shut-in. De Simone et  al. (2017) emphasized that 
during the analysis of the effect of fluid on the post-
fracturing induced seismicity, various time scales and 
distances to the injection borehole should be consid-
ered. Mukuhira et al. (2017) further analyzed the dis-
tribution of pore pressures after the hydraulic stimu-
lation, concluding that the pore pressure distribution 
after the shut-in indeed could destabilize a larger 
portion of a fault, resulting in localized shear slip 
with the potential of triggering a seismic event with 
large magnitudes. In addition to these considerations, 
some other processes may also be important for the 
post-fracturing induced seismicity; for example, ther-
mal stress associated with the temperature difference 
between injected fluid and in-situ fluid may also facil-
itate the triggering of fault slips (Gan and Lei 2020).

As we summarised above, the mechanisms causing 
post-injection seismicity are under extensive studies 
and are still very much an open research topic. One 
possible mechanism could be pore pressure diffusion, 
in which fluid injection pressure will still diffuse out-
wards even after the shut-in and subsequently reaches 
an area under pre-existing critical stress condition. 
Another possible mechanism is the normal closure of 
an initially injection-induced opening of fractures in 
a fault zone near the injection well after shut-in. The 
opening and closure of the fractures in a fault zone 
under particular local stress conditions may induce 
changes in stress, deformation and water pressure in 
a fault zone that create new critical stress conditions 
and their disruptions. The post-injection induced 
seismicity is a coupled hydromechanical process in a 
fault zone with complex network of fractures which 
need to be further investigated.

3  Typical hydraulic stimulation techniques

This section reviews the most common hydraulic 
stimulation techniques used to enhance reservoir 
permeability. These methods include conventional 
hydraulic stimulation, multi-stage fracturing, and the 
so-called cyclic soft stimulations (CCS), which com-
bines cyclic injection protocols and a traffic light sys-
tem. While the emphasis of this section is on EGS, 
information and references on hydraulic stimulation 
methods from related fields are also included, since 
they form part of the knowledge base for stimula-
tion design for EGS projects and may help to con-
vey a broader view of stimulation approaches and 
techniques.

3.1  Conventional hydraulic stimulation

Conventional hydraulic stimulation technique is 
commonly used in the oil and gas industry (Agar-
wal et  al. 1979; Veatch 1983). It generally refers to 
hydraulic stimulation operation involving a large 
amount of water and proppant injected into the res-
ervoir. This technique was first used in the oil and gas 
industry to enhance the permeability of tight sand-
stone formations, including the Denver Basin and 
Piceance Basin (Chancellor, 1977; Fast et  al. 1977). 
Due to the high fluid injection rate, fluid pressure will 
increase quickly at the injection borehole. When the 
fluid pressure reaches a certain value, rock break-
down occurs, and tensile fractures are created near 
the injection borehole interval. The fluid pressure at 
which rock breakdown occurs is defined as the res-
ervoir breakdown pressure, which can be calculated 
based on the in-situ stress state and tensile strength 
of reservoir rock (Detournay 2016). After the reser-
voir rock breakdown, injection fluid pressure also 
acts as the driving force to further open the generated 
tensile fracture and to propagate it further. However, 
after the injection stops, the hydraulic fractures may 
close again due to in-situ compressive stress. Thus, 
a combination of slickwater fracturing and proppant 
injection is commonly used to keep the fracture open 
(Barati and Liang 2014). After creating long and 
narrow fractures by slickwater, proppants are then 
injected into the reservoir as the second step, aiming 
to keep the hydraulic fractures open. The common 
materials used as proppants include silica sand as 
well as resin-coated and ceramic proppants.
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3.2  Multi-stage fracturing

Multi-stage fracturing is a more complex hydraulic 
stimulation technique developed with the advance 
of horizontal drilling technology. In this approach, 
horizontal wells (with lengths of hundreds to a few 
thousand meters) are firstly drilled. Then, packers are 
used to isolate sections along the borehole, and fluid 
is injected into those sections simultaneously or in a 
certain time sequence. Through this process, multi-
ple fractures can be created along the borehole, and 
a larger rock volume is stimulated with increased per-
meability (Tang et al. 2016; Yao et al. 2012).

In recent years, the possibility of replacing conven-
tional hydraulic stimulation with multi-stage fractur-
ing has become of interest to the EGS community. 
In multi-stage fracturing, the stress shadow effect is 
a critical phenomenon that needs to be addressed. 
The stress shadow effect refers to the effect of stress 
redistribution in the region near a generated hydrau-
lic fracture. Then, if a second hydraulic fracture is to 
be created at the next time stage in its vicinity or in 
its shadow, a higher fluid pressure may be required. 
Moreover, the second fracture may have a more lim-
ited length, narrower width, and its propagation direc-
tion may also deviate from the maximum stress direc-
tion, because of the directional change of the local 
stress field (Taghichian et  al. 2014; Zangeneh et  al. 
2015).

Sneddon and Elliot (1946) presented an analyti-
cal solution for stress distribution around a 2D ver-
tical fracture extended from a horizontal borehole. 
In their derivation, the rock material was assumed 
to be homogeneous and isotropic, the fracture was 
open, i.e., unfilled, and the presence of the borehole 
was neglected. The equations below can be used to 
describe the stress changes around a created hydraulic 
fracture (Geertsma and De Klerk 1969; Perkins and 
Kern 1961):

(3)
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where Δσx [MPa], Δσy [MPa] and Δσz [MPa] are 
stress changes caused by the hydraulic fracture in X, 
Y and Z direction, respectively. Pn [MPa] is the fluid 
pressure within the fracture, x [m] is the distance to 
the fracture center, hf [m] is the vertical extent of the 
fracture, and ν is the Poisson’ ratio. Studies have also 
been conducted for the case where several fractures 
are initiated simultaneously from several isolated 
sections in the horizontal well. The propagating frac-
tures are found to interfere with each other, result-
ing in complicated fracturing geometries and uneven 
fracture distribution (Di and Tang 2018; Tang et  al. 
2016).

Laboratory experiments have been conducted to 
investigate the role of the stress shadow effect on 
multi-stage hydraulic fracturing. Geyer and Nemat-
Nasser (1982) observed the uneven propagation of 
fractures and the apparent compression of two long 
simultaneously propagating fractures. Zhou et  al. 
(2018) found that the stress shadow effect restrained 
the fracture propagation of adjacent fractures and 
caused a divergence of adjacent fractures in shale. 
Gai et  al. (2020) found that multiple hydraulic frac-
tures with small spacing would coalesce even under 
high horizontal stress differences. Moreover, the 
needed initiation pressure of later hydraulic fracture 
increases with increased fluid pressure within the 
earlier fractures. A later fracture would also deviate 
from the ideal direction perpendicular to the horizon-
tal wellbore and deflect towards the earlier hydraulic 
fracture.

Due to the limited sample size that can be inves-
tigated in the laboratory, numerical simulations were 
also used to investigate the stress shadow effect. 
Wong et  al. (2013) observed that the stress shadow 
effect could make fractures diverge outwards from 
the created group of fractures, and the inside fractures 
may be closed due to the compression effect of outer 
factures. Analyses confirmed that an increase in frac-
ture spacing would result in a reduced stress shadow 
effect and prevent the directional deviation of later 
fractures (Morrill and Miskimins 2012; Roussel and 
Sharma 2011; Singh and Miskimins 2010).

Moreover, perhaps the most significant multi-stage 
hydraulic stimulation tests were performed in the 
Bedretto Underground Laboratory for Geosciences 
and Geoenergies (BULGG) to evaluate its capability 
to improve the quality of the granite rocks reservoir. 
In this experiment the borehole ST1 was divided into 
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14 injection intervals by means of a multi-packer sys-
tem. Results and details can be found in Bröker et al. 
(2022) and Castilla et al. (2022).

In summary, the stress shadow effect may cause 
the following drawbacks: (a) the alteration of local 
in-situ stress states due to the pressurization of ear-
lier fractures (Cheng 2009; Nagel and Sanchez-Nagel 
2011; Olson 2008; Roussel and Sharma 2011); (b) a 
subsequent fracture may propagate towards the pre-
vious fracture regime or terminate due to fracture 
intersection (Olson 2008; Roussel and Sharma 2011); 
and (c) the compression effect of outer fractures may 
decrease the width of inner fractures (Olson 2008). 
Thus, approaches have been developed to limit the 
negative effects of stress shadow, and these techniques 
can be divided into two categories: (a) multi-stage 
fracturing in space, which means the optimization on 
fracturing spacing, and (b) multi-stage fracturing in 
time, which means that fracturing operations are per-
formed sequentially rather than simultaneously.

3.2.1  Multi-stage fracturing in space

One practical idea to eliminate the stress shadow 
effect is the optimal design of spacings of fracturing 
intervals based on in-situ stress states and geome-
chanical properties of the target reservoir. The main 
point of fracturing stage optimization is to under-
stand how the adjacent parallel fractures interfere 
with each other as a function of spacing. Yamamoto 
et  al. (2004) developed a three-dimensional simula-
tor, which could effectively describe the paralleled 
fracture propagation with mechanical interactions 
between fractures. Olson (2008) used a pseudo-3D 
model to simulate paralleled fracture propagation, 
which dramatically decreased the calculation time 
for obtaining the optimal fracture spacing. Meyer and 
Bazan (2011) also developed a DFN model to investi-
gate paralleled fracture propagation, which could pre-
dict the mechanical interaction impact on the fracture 
aperture growth for evenly spaced fractures. These 
techniques can be applied to design optimal spacing 
based on rock mechanical properties, fluid properties, 
and geological conditions.

3.2.2  Multi-stage fracturing in time

Another practice to minimize the stress shadow effect 
is to perform hydraulic fracturing in well-spaced 

borehole sections according to a certain time 
sequence. Waters et al. (2009) considered two parallel 
horizontal wells, where the sections in the two wells 
opposite each other are stimulated simultaneously in 
successive time stages when moving towards to the 
ends of the wells, Fig.  5a. The next modification in 
the stimulation procedure was to differentiate the tim-
ing of the stimulation stages in the two wells, so that 
the hydraulic fracturing in the two wells follows a par-
ticular time sequence, Fig. 5b. This method is referred 
to as zipper fracturing. Later, a modified zipper frac-
turing was further introduced by placing the stimu-
lation sections of the two wells not directly opposite 
to each other, Fig. 5c. In this case, the stress shadow 
effect was further reduced. Rafiee et al. (2012) found 
that the modified zipper fracturing technique creates 
a more complex fracture network in shale in a case 
where the two parallel wellbores have a distance 
between 150 and 300 m. A limitation of the method is 
that the generated fracture network was concentrated 
in between the two wells, and thus the stimulated vol-
ume may be limited. Vermylen and Zoback (2011) 
investigated the stress shadow effect in multiple lat-
eral wells in Barnett shale, and their results indicated 
that the zipper fracturing was more effective than the 
simultaneous fracturing in generating hydraulic frac-
tures with a longer length. Nagel et al. (2013) found 
that by drilling multiple lateral wells and perform-
ing hydraulic fracturing in sequence, the reservoir 
permeability could be significantly enhanced. Izadi 
et  al. (2015) modeled the hydraulic fracture propa-
gation and found the largest stimulated volume was 
achieved by the modified zipper fracturing method 
compared with simultaneous hydraulic fracturing. 
While most of the work on this stimulation approach 
is for shale formation, Kumar and Ghassemi (2016, 
2019) also conducted three-dimensional numeri-
cal simulations to explore the multi-stage fractur-
ing in horizontal wells for EGS design. The results 
indicated that the modified zipper fracturing could 
be used for more closely spaced horizontal wells to 
generate more complicated fracture networks than by 
the use of simultaneous hydraulic fracturing method. 
Zangeneh et  al. (2015) compared the fracturing per-
formance between conventional hydraulic fracturing, 
simultaneous fracturing, and zipper fracturing. They 
found both the maximum hydraulic fracture aperture 
and length to increase when the stimulation method 
moves from conventional fracturing to simultaneous 
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fracturing and to zipper fracturing, the latter being the 
most effective.

It should be remarked here that many factors, such 
as local stress state, pre-existing natural fracture sys-
tems (length, density, and hydraulic properties), will 
strongly influence the performance of a hydraulic 
fracturing stimulation. Hence, for any given site, site-
specific data should be used in numerical modeling to 
obtain a comprehensive understanding and prediction 
of the hydraulic fracture propagation prior to a stimu-
lation operation.

3.3  Cyclic soft stimulation (CSS)

The cyclic soft stimulation (CSS) is a hydraulic stim-
ulation strategy that combines (a) cyclic fluid injec-
tion and (b) a so-called traffic light system (TLS). 
CSS’s two major objectives are to enhance the reser-
voir permeability and to mitigate the fluid injection-
induced seismicity caused by hydraulic stimulation 
(Zang et al. 2013, 2017).

3.3.1  Cyclic fluid injection fracturing

Kiel (1977) first proposed the cyclic injection fractur-
ing concept for increasing the hydraulic conductiv-
ity of reservoir rocks. Over the past few years, labo-
ratory-scale as well as in-situ field experiments have 
been conducted to investigate the breakdown process 
of the reservoir under cyclic fluid injection (includ-
ing breakdown pressure, fracture propagation, and 
distribution), the associated seismic behaviors, and 
induced fracture permeability, with the goal of under-
standing the basic mechanism underlying these pro-
cesses (Hofmann et al. 2018; Zang et al. 2019). More 
recently, the cyclic injection protocol has been pro-
posed for various applications, including EGS (Zim-
mermann et  al. 2010), shale gas hydraulic fractur-
ing (Jia et al. 2021), and coalbed methane (Xu et al. 
2017).

To relate this approach to other methods, Zhuang 
et al. (2020) and Li et al (2022) presented a summary 
of several fluid injection schemes, both injection-rate 
controlled and pressurization controlled, as shown in 
Fig.  6. Continuous injection with a constant rate is 
commonly used in massive hydraulic fracturing, as 
shown in Fig. 6a. Figure 6b shows the stepwise rate 
injection with increasing injection rates. Figure  6c 
shows cyclic progressive injection, where high and 

low injection rates alternate in each cycle, with the 
high injection rates increasing in successive cycles. 
Figure 6d shows the stepwise pressurization scheme, 
in which the fluid injection pressure increases to suc-
cessively higher pressure in several steps. Figure 6e is 
a modification of stepwise pressurization with each 
step maintained through pulsed pressurization. Fig-
ure 6f is the cyclic pulsed pressurization, in which the 
injection pressure is decreased after the pulse pres-
surization step after each cycle and before the next 
pressurization cycle.

The injection schemes in Fig.  6b–f could be 
regarded as the cyclic injection, which is also known 
as the fatigue hydraulic fracturing method (Zang et al. 
2017). Fatigue failure occurs after a series of succes-
sive loadings at a load smaller than the load required 
to fail a material by static loading. It may result in 
a violent failure without early warning. The micro-
mechanisms of fatigue failure have been well stud-
ied in metal materials but are less investigated for 
rock materials. The Paris-Erdogan law is commonly 
used to describe the fatigue-based failure in fracture 
mechanics and expressed as (Zang et al. 2019):

where dc/dN is the fracture growth per cycle; Δk is the 
stress intensity factor; N is the loading cycles; A and 
m are two constants. This equation defines the power-
law relationship between fracture growth rate and 
stress intensity factor. Based on this concept, experi-
ments in the laboratory with rock samples have been 
performed with cyclic loading (Haimson and Kim 
1991; Erarslan and Williams 2012; Yin et al. 2021b). 
More details on mechanical fatigue failure can be 
found in a review paper by Cerfontaine and Collin 
(2017). It is worth mentioning that there are two sig-
nificant differences between cyclic mechanical load-
ing and cyclic hydraulic fracturing in rocks, namely: 
(a) fluid pressure may affect the rock strength, and (b) 
potential chemical reactions may occur between fluid 
and silicate minerals in rocks (Atkinson 1984).

Generally, during cyclic fluid injection into the 
reservoir, a high-frequency water pulse could disman-
tle and remove weak minerals from fracture surfaces 
while decreasing the rock strength locally (Fig.  7a). 
Through these processes, the fatigue hydraulic frac-
turing could achieve three goals: (a) lowering the 
breakdown pressure of the reservoir; (b) generating a 

(4)
dc

dN
= A ⋅ (Δk)m
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more complicated fracture network with higher per-
meability and heat-transfer surface area of the reser-
voir and (c) minimizing the potential for large earth-
quakes by inducing smaller seismic events with the 
cyclic injection of a smaller amount of fluid.

A number of laboratory experiments have been 
performed to validate whether CSS is an effective 
technique to increase reservoir permeability while 
mitigating seismic risks. Zang et  al. (2000, 2002) 
conducted laboratory experiments with granites 
and sandstones, and the results indicated that cyclic 
mechanical loadings could form a damaged zone 
with different widths. Later experiments with tuff 
and monzonite gave similar findings indicating that 
cyclic mechanical loading produced a smaller but 
more intense fracture zone than static failure load-
ing (Ghamgosar and Erarslan 2016). Experiments on 
Pocheon granites with X-ray CT technology indicated 
that cyclic hydraulic fracturing reduced the break-
down pressure by about 20% compared to conven-
tional hydraulic stimulation with a constant injection 
rate. Moreover, cyclic hydraulic fracturing was found 
to produce complex and branched fractures, whereas 
the conventional hydraulic fracturing tended to create 
a single main fracture. However, the induced fracture 
aperture was smaller for cyclic injection, resulting 
in a limited permeability enhancement, as shown in 
CT images (Zhuang et al. 2016). Similar experiments 
with sandstone samples indicated that the breakdown 
pressure is lowered by about 16% compared with con-
ventional hydraulic fracturing. Moreover, BSE-SEM 
images showed that cyclic injection could create a 
damaged zone around the induced fractures that is 
twice as wide as the fracture zone created by continu-
ous fluid injection (Patel et al. 2017).

3.3.2  Traffic light systems (TLS)

Another component of cyclic soft stimulation (CSS) 
is the traffic light system (TLS) (Hofmann et  al. 
2018). The TLS involves careful monitoring of seis-
mic events over the duration of the stimulation pro-
cedure and adjusting operation accordingly, such as 
decreasing injection flow rate, reducing fluid pres-
sure, shutting-in, or flowing-back, when the seismic 
magnitude or the peak ground velocity reaches a 
specific threshold, or when other unexpected obser-
vations occur. The oil and gas industry has adopted 

the TLS as part of a hydraulic stimulation operation 
(Bommer et al. 2015).

A typical TLS proposed by Hofmann et al. (2018) 
for hydraulic fracturing stimulation in EGS is shown 
in Fig. 7b. The threshold of each stage is calculated 
based on the maximum tolerable seismic moment 
magnitude (Mwmax) and magnitude increase (ΔMw). 
Details could be found in Hofmann et  al. (2018). A 
challenge is that seismic events with increased mag-
nitudes have been observed in a period of time after 
injection shut-in (Majer et al. 2007), and the question 
exists whether the TLS can effectively mitigate such 
post-injection seismic risks.

In-situ experiments have been carried out to inves-
tigate the potential of using fatigue hydraulic fractur-
ing for EGS, by combing CSS and TLS. An exam-
ple is the experiments conducted at Äspö Hard Rock 
Laboratory, Sweden (Lopez-Comino et  al. 2017; 
Zang et al. 2017; Zimmermann et al. 2019). In these 
experiments, three different injection procedures 
were investigated: (a) conventional hydraulic frac-
turing with a constant injection rate, (b) an approach 
where injection flow rate was gradually increased in 
a cycle of alternating high and low pressures, and (c) 
an additional pressure pulsation imposed on each step 
of the cyclic injection. The results indicated that a 
lower breakdown pressure was observed for the cyclic 
pulse injection protocols (c). Moreover, both the 
number and magnitudes of the seismic events were 
lower in this case. However, the authors pointed out 
that further investigations are needed to understand 
the parameters influencing the number and magni-
tude of seismic events during and after fluid injec-
tion (Zang et  al. 2017). The fluid injection strategy 
was instructed to follow a cyclic protocol to dissipate 
hydraulic energy at Espoo near Helsinki, Finland, in 
2018 and 2020 (Hillers et  al. 2020; Kwiatek et  al. 
2019; Leonhardt et al. 2021). Five hydraulic stimula-
tions were conducted in 2018 in well OTN-3 at this 
site, and the CSS method was deployed with a total of 
18,160  m3 freshwater injected into the target reservoir 
over 49 days (Ader et al. 2020; Kwiatek et al. 2019). 
The results indicated that the reservoir conductiv-
ity increased, and no seismic events were recorded 
with magnitudes higher than 2.0 (Kwiatek et  al. 
2019; Kukkonen and Pentti 2021). Hydraulic stimu-
lations were also performed in another well, OTN-2, 
with ~ 7000  m3 fluid injection through a 1.3 km open 
hole section. Even though details of those hydraulic 
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stimulations have not yet been published, the experi-
ence at this site illustrates the possibility of CSS to 
increase the reservoir permeability while mitigating 
seismic risks in EGS. Another hydraulic stimulation 
project has also been proposed, combining cyclic 
injection, TLS, and risk analysis system in a well 
RV-43 near Reykjavik, Iceland, at a depth from 1001 
to 1750 m (Broccardo et al. 2020). Furthermore, CSS 
hydraulic stimulation was also applied to an EGS pro-
ject in Pohang, South Korea (Park et al. 2020), which 
will be discussed in more detail in Sect. 4.3.2.

4  Examples of EGS hydraulic stimulation projects 
and some lessons learned

In this section, we present some representative EGS 
projects around the world during the last few decades. 
Many ways of grouping these projects can be used, 

but in this study, we group them into three catego-
ries: (a) experimental EGS projects intended basically 
for scientific research; (b) commercial EGS projects 
that have been led by industrial companies, aiming at 
electricity generation or heat production; and (c) EGS 
projects which have been suspended or terminated 
due to certain reasons such as borehole damage or 
seismic risks. These three categories of projects are 
summarized in Tables 2, 3 and 4, with information on 
their locations, years of activity, reservoir rock types, 
well depths, stimulation methods, and some remarks. 
We then select two representative sites from each 
category (indicated by ** in the tables) for a more 
detailed review in the following subsections with a 
focus on the implemented hydraulic stimulation strat-
egy, the resulting permeability enhancement perfor-
mance, and induced seismicity. Some lessons learned 
and insights gained from each case are summarized.

Fig. 3  Three potential mechanisms for fluid injection-induced seismicity. (1) Direct effect from increased pore pressure on fault; (2) 
Change of fault-loading conditions; and (3) Fault loading by aseismic slip (Eyre et al. 2019)
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Fig. 4  Seismic moment 
and maximum moment 
magnitude as a function 
of injected fluid volume 
as estimated by McGarr 
(2014) and Galis et al. 
(2017) (modified from 
Rathnaweera et al. 2020)

Fig. 5  a Simultaneous 
hydraulic fracturing, b 
Sequential hydraulic frac-
turing (Zipper fracturing), 
and c Modified Zipper 
fracturing. (modified from 
Cuss et al. 2015). In these 
figures, two-headed arrows 
(found only in a) indicate 
simultaneous fracturing, 
while single-headed arrows 
indicate a step delay in time
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Fig. 6  Six different injection schemes of hydraulic fractur-
ing. a Constant rate continuous injection (CCI), b stepwise 
rate continuous injection (SCI), c cyclic progressive injec-

tion (CPI), d stepwise pressurization (SP), e stepwise pulse 
pressurization (SPP) and f cyclic pulse pressurization (CPP).  
(Modified from Zhuang et al. 2020)
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Fig. 7  a In fatigue 
hydraulic fracturing, rock 
particles are removed from 
fracture faces through 
high-frequency vibrations 
and reached the fracture 
tip. A fracture process zone 
is created during fatigue 
hydraulic fracturing. (modi-
fied from Zang et al. 2019). 
b The traffic light system 
for cyclic fluid injection 
schemes (modified from 
Hofmann et al. 2018)
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Table 2  EGS projects for in-situ experiments (research purposes)

Project Location Year Rock type Well depth Reservoir 
temperature 
(°C)

Stimulation 
method

Remarks Reference

Fenton Hill** USA 1974–1993 Crystalline 
rock

2932–
4390 m

235  Hydraulic 
fracturing

First EGS in 
the world

Brown (2009), 
Tester et al. 
(2006), Ten-
zer (2001)

Rosemanowes UK 1977–1992 Granite 2000–
2600 m

79–100  Hydraulic 
fracturing;

Viscous gel 
stimulation

Parker (1999)

Falkenberg Germany 1977–1986 Granite 500 m 13.5  Hydraulic 
fracturing

Shallow 
depth

Schaefer 
and Heinig 
(2011)

Le Mayeta France 1978 Granite 200–800 m 22  Hydraulic 
fracturing 
with and 
without 
proppant

Portier et al. 
(2007)

Northwest 
Geysers

USA 1980s Metasedi-
mentary 
rocks

3396 m 400  Thermal 
fracturing

Romero et al. 
(1995)

Fjällbacka Sweden 1984–1995 Granite 70–500 m 16  Hydraulic 
fractur-
ing; Acid 
fracturing

The first 
EGS 
experi-
ments in 
Sweden

Jupe et al. 
(1992)

Ogachi Japan 1989–2002 Granodiorite 400–1100 m 160  Multiple 
wells with 
multiple 
fracture 
zones

Kaieda et al. 
(2005, 2010)

Hunter valley Australia 1999 Granite 1946 m 
(PPHR1)

 ~ 61  Hydraulic 
stimulation

Burns et al. 
(2000)

Groß 
Schönebeck**

Germany 2000 volcanic 
rocks

4309 m 145  Hydraulic 
fracturing; 
Thermal 
and chemi-
cal stimu-
lations

In situ 
geothermal 
laboratory 
for EGS 
research

Breede et al. 
(2013)

Lund Sweden 2001 Gneiss, gran-
ite

3701.8 m 85  The tem-
perature 
(85℃) was 
low

Rosberg and 
Erlström 
(2019)

Genesys
Horstberg

Germany 2003–2007 Sedimentary 3800 m 115 Hydraulic 
fracturing

Using an 
existing 
abandoned 
gas well

Schaefer 
and Heinig 
(2011)

Genesys
Hannover

Germany 2009 sandstone 3900 m 160  Hydraulic 
fracturing

Single-well 
concepts

Schaefer 
and Heinig 
(2011)
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4.1  Experimental EGS sites

4.1.1  Fenton Hill, USA

The first extensive in-situ experiments aimed to study 
the extraction of heat from “hot dry rock” (HDR) 
started in 1975 at Fenton Hill, on the western flank 
of Valles Caldera, USA (Fig.  8a). The whole pro-
ject could be divided into three stages: (a) The early 
stage (1970–1973) aimed to develop the basic con-
cept and to conduct some preliminary tests; (b) Phase 
I (1974–1980), which involved borehole drilling, 
hydraulic stimulation and flow experiments; (c) Phase 
II (1981–1995) which involved a further development 
in drilling and testing operations (Brown 1997, 2009).

Figure 8b shows the well distribution of the Fen-
ton Hill geothermal project. More information about 
the drilling history can be found in Tester et al. (1986, 
1989). In Phase I, the first injection borehole (GT2) 
was drilled to the final depth of 2932 m in host rock 
consisting of jointed granodiorite. After that, a sec-
ond borehole (EE-1) was directionally drilled below 
the bottom of the GT-2 borehole (Duchane and 
Brown 2002). In Phase II, wells EE-2 and EE-3 were 
drilled to depths of approximately 3500 m. Conven-
tional hydraulic fracturing was performed in the EE-2 
well aiming at creating a penny-shaped fracture prop-
agating upwards to intersect the EE-3 borehole above. 
During a 2.5-day period, about 21,000  m3 water was 
injected into well EE-2 with an average fluid pres-
sure of about 48.0 MPa at the surface (Kennedy et al. 
2010). Figure 8c shows the flow rate and fluid pres-
sure evolution with time. It could be observed that 
the fluid pressure curve followed a similar shape 
with injection rate evolution, and no pressure drop 
was observed. This means that no fluid flow channels 
had been created to connect EE-2 and EE-3 wells. 

In Fig.  8d, the microseismic activity map also sup-
ports this interpretation since the seismic clouds were 
located near the EE-2 borehole, and not penetrated by 
borehole EE-3. The conventional hydraulic fracturing 
test ended with a high-pressure flange failure, so that 
the wellhead pressure could not be controlled, and 
the EE-2 borehole experienced sustained severe dam-
age. Subsequently, an additional larger stimulation 
test was performed in the EE-3 borehole (May 1984), 
but the results were still unsatisfactory (Tester et  al. 
2006). As shown in Fig. 8e, the microseismic events 
caused by EE-3 stimulation are concentrated near and 
above the injection well EE-3, and do not overlap 
with EE-2 seismic clouds. It was concluded that the 
hydraulic fractures created by these experiments did 
not grow in the direction predicted, probably due to 
an unanticipated shift in the stress field in the deeper 
part of the formation (Brown 1997). To provide an 
adequate connection between the two wells (EE-2 
and EE-3), a branch borehole EE-3A was drilled, in 
September 1985, off from the EE-3 well at 2830  m 
to a depth of 4018 m. The relative position of EE-3A 
and EE-3 is shown in Fig. 8f. EE-3A intersected sev-
eral of the fractures created by the previous hydraulic 
stimulations (Dash et al. 1989), and in January 1986, 
another hydraulic stimulation was conducted in well 
EE-3A to further enhance the reservoir permeability, 
and a good connection between EE-2 and EE-3A was 
finally established. More details could be found in 
Dash et al. (1989).

The Fenton Hill geothermal project reached the 
granite reservoir with a temperature of 300  °C at 
4.4  km depth and provided heat energy to a 60-kW 
binary cycle power generator. Even though the project 
was terminated in 1995 due to its inability to reach the 
expected capacity, it provided critical lessons for later 
deep geothermal development. The most important 

Projects with ** will be summarized in more details in Sect. 4.1

Table 2  (continued)

Project Location Year Rock type Well depth Reservoir 
temperature 
(°C)

Stimulation 
method

Remarks Reference

Newberry USA 2010 Volcanic 
rocks

3066 m 315  Hydros-
hearing, 
multi-zone 
isolated 
stimulation 
techniques

Cladouhos 
et al. (2011)
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Table 3  EGS projects for commercial purpose

Project Location Year Reservoir 
rock ty pe

Well depth Reservoir 
temperature 
(°C)

Stimulation 
method

Remarks Reference

Bouillante France 1963 Volcanic lavas 
and tuffs

1000–2500 m 250–260  Thermal 
cracking

Portier et al. 
(2007)

Lardarello Italy 1970 Metamorphic 
rocks

2500–4000 m 300–350  Hydraulic 
and thermal 
stimulation

Portier et al. 
(2007)

Bruchsal Germany 1983 Bunter Sand-
stone

1874–2542 m 123  N/A Schaefer 
and Heinig 
(2011)

Neustadt-
Glewe

Germany 1984 Sandstone 2320 m 99  N/A Pilot power 
plant for 
utilizing low 
enthalpy 
geothermal

Hijiori Japan 1985 Granodiorite 1805–1910 m 190  Hydraulic 
fracturing

Kaieda et al. 
(2005, 2010)

Soultz-sous-
Forêts**

France 1987 Granite 5093 m 165  Hydraulic 
fracturing 
and acidiz-
ing

Portier et al. 
(2007)

Altheim Austria 1989 Limestone 2165–2306 m 106  Acidizing 
hydraulic 
stimulation

Tester et al. 
(2006)

Berlín El Salvador 2001 Volcanic 
rocks

2000–2380 m 183  Hydraulic 
fracturing 
and chemi-
cal

Portier et al. 
(2007)

Coso USA 2002 Diorite,
granodiorite, 

granite

2430–2956 m  ≥ 300  Hydraulic, 
thermal and 
chemical

Breede et al. 
(2013)

Desert Peak USA 2002 Volcanic and 
metamor-
phic rocks

1067 m 179–196  Shear, 
chemical, 
hydraulic

Chabora et al. 
(2012)

Raft River USA 2002 Quartz 
monzonite, 
schist, 
quartzite, 
and siltstone

1750 m 135–146  Hydraulic 
stimulation

Bradford et al. 
(2017)

Landau Germany 2003 Granite 3170 to 
3300 m

159  Hydraulic 
stimulation

Portier et al. 
(2007)

Cooper 
Basin**

Australia 2003 Granite 4421 m 242–278  Hydraulic 
stimulation

Largest dem-
onstration 
project

Tester et al. 
(2006)

Unterhaching Germany 2004 Limestone 3350–3580 m 123  Acid fractur-
ing

First Kalina 
cycle power 
plant in 
Germany

Schaefer 
and Heinig 
(2011)

Paralana Australia 2005 Meta-
sediments, 
granite

4003 m 171  Hydraulic 
stimulation

Tester et al. 
(2006)
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lesson learned is that due to the in-situ stress com-
plexity, hydraulic fractures may not propagate as pre-
dicted. In particular, a vertical penny-shaped fracture 
was not observed; rather, fractures occurred around 
the stimulated borehole as indicated by the observed 
microseismic clouds. The experiments suggested that 
the most direct way for EGS development may be one 
in which one well is drilled first to conduct hydrau-
lic stimulation, and then a second well is drilled and 
specifically directed to the created fracture zone, as 
indicated by data on the location of the microseismic 
event clouds. This would then result in a hydraulic 
conductivity (permeability) between the two wells 
high enough to enable a significant flow rate between 
them (Brown 2009). Results from this case also sug-
gest the following points: (a) for the development 
of an EGS site, comprehensive seismic surveys and 

downhole logging and testing should be performed to 
acquire data about the in-situ stress states and exist-
ing natural fracture network (density, orientation, 
permeability, and spatial distribution); (b) during the 
hydraulic stimulation, microseismic activities should 
be monitored and comprehensively recorded, and (c) 
tracer and hydraulic tests could also be used at detect-
ing the reservoir connectivity, and these test data may 
be important for evaluation of permeability enhance-
ment and heat extraction performance.

4.1.2  Groß Schönebeck, Germany

The research EGS site at Groß Schönebeck, Germany, 
was established in 2001 to investigate various tech-
niques for extracting geothermal energy (Huenges 
et al. 2002). The site was located in the North German 

Projects with ** will be summarized in more details in Sect. 4.2
References: Breede et al. (2013); Schaefer and Heinig (2011); Tenzer (2001); Tester et al. (2006)

Table 3  (continued)

Project Location Year Reservoir 
rock ty pe

Well depth Reservoir 
temperature 
(°C)

Stimulation 
method

Remarks Reference

Insheim Germany 2007 Sandstone and 
Granite

3600–3800 m 165  Hydraulic 
stimulation

Drilling side-
leg for injec-
tion well

Portier et al. 
(2007)

Bradys USA 2008 Rhyolite, tuff 1320 m 180–193  Hydraulic 
stimulation

Lutz et al. 
(2011)

Otaniemi 
project

Finland 2015 Granite Two wells: 
one is 
6.4 km 
and the 
other one is 
3.3 km

130  
(expected)

Hydraulic 
stimulation 
phase just 
finished; 
results not 
published 
yet

The first deep 
geothermal 
project in 
Nordics

Hillers et al. 
(2020)

Rittershoffen France 2005 Granite GTR-1: 
2500 m

GTR-2: 
2700 m

177  Hydraulic 
stimulation

First Euro-
pean EGS 
providing 
industrial 
heat

Baujard et al. 
(2017)

South Hun-
garian EGS

Hungary 2012 Igneous 
granite

3500–4000 m 
(planned)

225  
(expected)

Hydraulic 
stimulation 
(planned)

Planned four 
production 
and two 
injection 
wells

Horváth et al. 
(2015)

United Downs 
Project

UK 2018 Granite 2393 m for 
injection 
well and 
5275 m for 
production 
well

190  
(expected)

N/A First geother-
mal power 
plant in the 
UK

Ledingham 
et al. (2019)
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Basin, and two wells were drilled into the Lower Per-
mian sedimentary and volcanic layers. The first well 
“E GrSk 3/90” served as an injection well, and it was 
a previously abandoned gas exploration well (Zim-
mermann et al. 2011). The second well Gt GrSk 4/05, 
was drilled in 2006 to a depth of 4404.4 m. The well 
path was designed with a deviation between 37° to 
49° inclination and reached 48° at the well bottom. 
This well was designed as a production well, and 
the bottom distance to the injection well (E GrSk 
3/90) was 475 m. The geological conditions of Groß 
Schönebeck EGS site are shown in Fig. 9a. After the 
well completion, three consecutive hydraulic stimula-
tions were performed in various depth intervals (Zim-
mermann and Reinicke 2010; Zimmermann et  al. 
2010), resulting in a productivity index increase from 
4.25 to 10.10  m3/h/MPa in the injection well.

In 2007, the Fatigue Hydraulic Fracturing (FHF) 
method was applied by cyclic injection in the second 
well Gt GrSk 4/05 to test its feasibility (Zimmermann 
et  al. 2010). The target reservoir was volcanic rock, 
and its permeability was mainly fracture-dominated. 
The proposed plan was to form a hydraulic fracture 
with a half-length of 150–200  m, fracture height of 
80–100  m, and average effective hydraulic aperture 
of 5–10  mm. The detailed wellhead pressure and 
flow rate curves are shown in Fig.  9b. During the 

cyclic injection, the fracture propagation and final 
distribution were influenced by the flow rate, well-
head pressure, and cycle duration. Horizontal frac-
ture propagation was found to be dominant during 
high flow rate injections, while low injection rate 
periods led to an increased fracture aperture. Dur-
ing high flow rate injections, low concentrations of 
quartz sand were also injected to support the frac-
ture aperture, and a friction-reducing agent was used 
to avoid high wellhead pressure. In total, 13,170  m3 
of water was injected into the reservoir, and results 
indicated a maximum wellhead pressure of 58.6 MPa 
when the injection rate reached its maximum value. 
Figure 9c shows the seismic monitoring result, indi-
cating extremely low seismicity during and after the 
stimulation. Only 80 events were observed during the 
six-day fluid injection, with magnitudes ranging from 
-1.8 to -1.0. Moreover, an estimated fracture distribu-
tion after the hydraulic stimulation was calculated by 
numerical modeling, as shown in Fig.  9d. The sim-
ulation results indicated that the final mean fracture 
aperture was 19.5 mm, and the length and width were 
190 m and 90 m, respectively. More details about the 
numerical simulation can also be found in Zimmer-
mann and Reinicke (2010). The cyclic injection test 
in well Gt GrSk 4/05 at Groß Schönebeck is a suc-
cessful attempt to use this advanced injection protocol 

Table 4  Representative suspended or terminated EGS projects due to technical reasons

Projects with ** will be summarized in more details in Sect. 4.3

Project Location Year Reservoir 
rock type

Well depth 
(m)

Reservoir 
temperature 
(°C)

Stimulation 
method

Reasons for 
termination

Reference

Bad Urach Germany 1977–1981 Gneiss 3334–4445 172  Hydraulic 
fracturing

Torn off bore 
rods in the 
borehole

Rathnaweera 
et al. (2020)

Basel** Switzerland 1996–2009 Granite 5000   ~ 200  Hydraulic 
fracturing

Induced 
seismicity 
exceeding 
acceptable 
levels

Ladner and 
Häring 
(2009), 
Giardini 
(2009)

The 
Southeast 
Geysers

USA 2008–2009 Greywacke 1341  240  Multiple 
fracture 
zones in 
wells

Wellbore 
collapsing 
and seismic 
risks

Romero et al. 
(1995)

Pohang** South Korea 2010–2017 Crystalline 
rocks

4340   > 140  Hydraulic 
fracturing

Induced a 
Mw 5.5 
earthquake

Rathnaweera 
et al. (2020)
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to increase the reservoir permeability while mitigat-
ing the seismic risks. Through a series of in-situ test, 
cyclic injection may decrease the reservoir breakdown 
pressure compared to conventional hydraulic fractur-
ing. The total number of seismic events is smaller and 
the magnitudes of those events are also lower. Moreo-
ver, based on production tests after several hydraulic 
stimulations with gel/proppant, the productivity of Gt 
GrSk4/05 was found to be lower than expected. It was 
suggested that this could be the result of a filter cake 
near the open-hole section caused by drilling fluid, 
and hence acid stimulation was recommended in the 
near-wellbore region to improve the performance 
of well productivity. Finally, the hydraulic stimula-
tion methods and fluid injection protocols should be 
designed based on site-specific conditions, including 
the reservoir properties and geological conditions. 
Moreover, if the natural fractures are not well-devel-
oped before the hydraulic fracturing stimulation and 
the created fracture networks are dominated by tensile 
fractures, then proppant sand should be added to keep 
the fracture open in order to maintain a good flow rate 
in the reservoir.

4.2  Commercial sites

4.2.1  Soultz-sous-Forêts, France

Soultz-sous-Forêts EGS could be regarded as the 
most successful commercial EGS projects to date. By 
2019, the annual electricity production is about 11 
GWh/year (Ravier et al. 2019). The site is located in 
the upper Rhine Graben, as shown in Fig. 10a.

In 1987, the first well GPK1 was drilled to the 
depth of 2002  m, with a number of challenging 
issues, including direction control, circulation loss, 
pipe stuck, and an overrun budget. The temperature 
at 2000 m was only about 140 °C, which was lower 
than expected (Baria et  al. 2005). In 1990, an exist-
ing oil well EPS1 was deepened from 930 to 2227 m, 
where the temperature was measured to be near 
150  °C (Genter and Traineau 1996). This well was 
used to characterize the natural fracture systems in 
the area. Figure  10b shows the cross-sectional map 
of the Soultz geothermal system (Dezayes and Genter 
2008; Hébert et al. 2011; Ledésert and Hébert 2012). 

Details of the drilling work and the development his-
tory of the Soultz EGS project can be found in Baria 
et  al. (1999, 2005), Gérard et  al. (1997), and Jung 
et al. (1996). Since the present review has a focus on 
hydraulic stimulation strategies, we shall summarize 
the three stimulation operations that were conducted 
at Soultz:

(a) After the re-drilling of the GPK2 well in 2000, 
a hydraulic stimulation operation was performed. A 
total of 23,400  m3 fluid was injected into the reservoir 
with the flow rate ranged from 30 to 50 kg/s, and the 
maximum wellhead pressure reached 14.5 MPa. The 
detailed injection rate, wellhead pressure, and seis-
mic event rates were shown in Fig. 10c (Baria et al. 
2005; Gérard et al. 1997). Results of acoustic events 
mapping indicated that hydraulic fracturing was well 
developed over a region 500 m in width and 1000 m 
in length. Additionally, geophysical logging results 
indicated a major fracture set, oriented towards 
N160E, and two secondary fracture sets oriented in 
N140E and N20E, which contributed to a significant 
permeability enhancement (Moriya et al. 2003).

(b) From 2001, the GPK3 well was drilled to the 
depth of 5093  m to reach the fractured zone, which 
had been previously created by stimulation of well 
GPK2 in 2000. The distance between the GPK2 and 
the GPK3 well bottoms was 600 m. An injection test 
was performed with the GPK3 as the injection well 
and GPK2 as the production well. The results indi-
cated a productivity index of 3.5 kg/s/MPa, implying 
an excellent connection between the two wells. Thus, 
in 2003, hydraulic stimulation was conducted in 
GPK3 with the injection of ~ 37,000  m3 water into the 
reservoir. The wellhead pressure, injection rate, and 
seismic event evolution are shown in Fig. 10c.

(c) An inclined well GPK4 was drilled from 2003 
to 2004, reaching 5105 m depth, at a bottom-hole dis-
tance of 650 m from the GPK3 well. After the well 
completion, the GPK4 well was stimulated by injec-
tion of heavy brine as the working fluid. However, the 
results of the stimulation operation were not as good 
as expected, explainable by the possible presence of 
a linear aseismic zone separating GPK4 from the two 
wells, GPK2 and GPK3. Even though acid fracturing 
was further used, the connection was still limited. The 
total fluid volume injected into the GPK4 was 22,000 
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 m3. The hydraulic stimulation results of the GPK4 
well are shown in Fig. 10c.

Based on the fluid injection history, we can see 
that conventional hydraulic fracturing was generally 
used at the Soultz site. For some stimulation opera-
tions in GPK2 and GPK3 wells, hydraulic stimula-
tions were successful in creating new fractures con-
necting the wells as shown by results from acoustic 
mapping monitoring. However, in some cases, such as 
the two consecutive hydraulic fracturing stimulation 
in GPK4, the permeability enhancement was limited. 
Nevertheless, the Soultz EGS project can perhaps be 
regarded as one of the most successful EGS system 
commercially, and furthermore the project provided 
data from more than 30  years of scientific/technical 
research, covering petrogeology investigation, well-
drilling design, hydraulic fracturing optimization, and 
seismic monitoring. One important lesson learned is 
that proper site selection and characterization should 
be an essential element for the development of an 
EGS site. The natural fracture system was found to be 
well-developed in one area (GPK2 and GPK3), where 
significant permeability enhancement and well con-
nections were accomplished through hydraulic stimu-
lation, while the absence of large critically stressed 
faults near the site decreased the potential of large 
earthquakes. However, in some other areas (e.g., near 
GPK4), the natural fractures are not well-connected, 
in which case hydraulic stimulation was found to be 
not so effective and some other stimulation methods 
would need to be applied to enhance the reservoir 
permeability.

4.2.2  Cooper Basin, Australia

Inspired by oil and gas drilling results that the tem-
perature at a depth of 4  km reached 250  °C in the 
Cooper Basin area in Australia (Fig. 11a), the Cooper 
Basin EGS project was initiated in 2002 (Mills and 
Humphreys, 2013). The target reservoir was identified 
as composed of radiogenic granites and uranium-rich 
rocks (Meixner et al. 2000). The objective of the pro-
ject was to investigate the EGS feasibility in this area.

The well distribution is shown in Fig.  11b. Well 
Habanero-1 was finished at a depth of 4421 m, with 
the bottom-hole temperature of 250 °C. It intersected 
the granite at a depth of 3668 m and was located near 
the McLeod-1 well, an oil-exploration well that had 
previously penetrated the granitic basement. Data 

indicated that the granite was critically stressed for 
shear failure, and some of these fractures intersected 
Habanero-1 with a fluid pressure of 35 MPa. During 
well drilling, heavy-weight fluids were used to avoid 
potential mud loss. However, fracture permeability 
was higher than expected and some fractures slipped, 
which resulted in massive mud loss during well drill-
ing. Details of the drilling history can be found in 
Humphreys et al. (2014).

After completing Habanero-1, hydraulic stimula-
tions were performed in the well from November to 
December 2003 (Garcia-Aristizabal, 2018). The well-
head pressure, flow rate, and injectivity are shown in 
Fig. 11c. Conventional hydraulic fracturing technique 
with step injection pulses was used to enhance the 
reservoir permeability. A total of 20,000  m3 of water 
was injected into the reservoir at a depth of 4250 m, 
with the flow rate first increasing from 8.0 L/s to 
24.0 L/s, and then, in the third and fourth steps, the 
wellhead pressure was maintained between 31.0 MPa 
and 35.0  MPa. The wellhead pressure was found to 
increase quicker than the injection rate, which indi-
cated that the injectivity decreased, and the perme-
ability enhancement was poor. A total of 10,436 seis-
mic events larger than the magnitude of − 0.8 were 
recorded during this hydraulic stimulation, and they 
formed a large planar cloud dipping at 10° to the west 
direction, with an area of 1000 m times 2000 m and 
a thickness over 150 m (Kumano et  al. 2005; Soma 
et  al. 2004). It was suggested that all these events 
occurred in a single large fault, which was later 
confirmed and the fault was named Habanero Fault 
(Baisch et al. 2006; Bendall et al. 2014).

Besides this hydraulic stimulation in Habanero-1, 
some other stimulations were performed in other 
wells in the Cooper Basin (Hogarth et  al. 2013a, 
2013b; Holl and Barton 2015). Moreover, some injec-
tion tests and close-loop flow tests were performed 
before production operation and more details and 
results about close-loop and injection tests can be 
found in the references (Hogarth et al. 2013a, 2013b; 
Holl and Barton 2015; Hogarth and Bour 2015).

After almost 20 years of planning, drilling, testing, 
and scientific research concerning the Cooper Basin 
EGS project, some lessons were summarized by Hog-
arth and Holl (2017). They pointed out that the natu-
ral fracture systems in these granite rocks were likely 
to be closed, which means that the natural fractures 
are isolated from the general fluid flow in the domain. 
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Fig. 8  a The location of the Fenton Hill geothermal project. 
b The well location and basic geological condition. c The 
injection rate, pressure at the surface during the conventional 
hydraulic fracturing test in EE-2 wellbore. d The section-view 
of microseismic activities cloud map of EE-2 and EE-3 bore-
hole. a to d are extracted from Kennedy et  al. (2010). e The 
microseismic map after the hydraulic fracturing in well EE-3 
(Dash et al. 1985). f The position of well EE-3A after re-drill-
ing (Tester et al. 2006)

◂

However, upon hydraulic stimulation, they were 
hydraulically connected and thus the reservoir per-
meability was enhanced. Moreover, the pre-existing 
natural fractures/faults that experienced high slip dur-
ing the stimulation stage may serve as the main fluid 
channels and paths. It is suggested that, for a potential 
EGS site, the in-situ stress state should be carefully 
investigated since it plays a dominant role in hydrau-
lic fracture propagation. Also, a comprehensive 
identification of critically stressed fractures/faults 
is important for efforts to mitigate induced seismic 
risks. Finally, it is suggested that induced seismicity 
cannot be totally avoided during long-term hydraulic 
stimulation and fluid circulation in a successful EGS 
project. Thus, a proper design of fluid injection strat-
egy is crucial in reducing seismic potential and low-
ering the maximum magnitude of seismic events.

4.3  Suspended (or terminated) EGS sites

4.3.1  Basel, Switzerland

The Basel EGS project is located at the south-eastern 
end of the Rhine Graben, Switzerland, as shown in 
Fig. 12a. Geological investigation indicated a north-
northwest trending compression and a west-northwest 
extension making this area a seismically active envi-
ronment (Dèzes et  al. 2004; Laubscher 2001). The 
first exploration well, Otterbach2, was drilled to the 
depth of 2755  m to be used for recording regional 
seismic events (Hölker and Graf 2005). Then, Basel 
1 well was drilled from May to October 2006 to the 
depth of 5000 m, and it crossed the sedimentary rocks 
at a depth of 2400 m and the granitic basement at a 
depth of 2600 m. The bottom of the wellbore reached 
a temperature of about 200  °C (Wyss and Rybach, 
2010). An acoustic borehole imager was used to iden-
tify natural fractures from 2557 to 5000  m depth, 
and a total of 984 natural fractures were found near 
the borehole (Vidal and Genter 2018; Ziegler et  al. 

2015). Before hydraulic stimulation of Basel 1 well, 
an injection test was performed to characterize the 
hydraulic properties of pre-existing natural fractures. 
The results yielded a value of effective permeability 
of 1 ×  10–17  m2 (Bourdet 2002), and the reservoir per-
meability was found to be dominated by a few major 
fractures in the open hole section.

The first hydraulic stimulation was performed in 
Basel 1 over the open hole section below 4629  m, 
as shown in Fig.  12b (Häring et  al. 2008;  Ladner 
and Häring 2009). The detailed injection rate, well-
head pressure, triggered event rate, and magnitudes 
of the seismic events are shown in Fig. 12c  (Ladner 
and Häring 2009). The fluid was injected into the 
formation with a stepwise increasing flow rate. Dur-
ing the first 16 h of fluid injection, the flow rate was 
increased from 0 to 100 L/min, and the wellhead pres-
sure reached about 11.0 MPa. During the subsequent 
fluid injection, the injection rate was increased step-
wise to 3300 L/min, and the maximum wellhead pres-
sure reached 29.6 MPa (296 bars). The seismic event 
rate increased with the rise of wellhead pressure and 
fluid injection rate. Later, due to the large number of 
seismic events observed, with some events having a 
magnitude near 3.0, the flow rate was decreased in the 
early morning of 8 December 2006. In total, the injec-
tion lasted for almost six days. However, the decrease 
in flow rate did not directly result in a decrease in the 
number and magnitude of the seismic events, and it 
was decided to bleed off the well. However, an earth-
quake with a magnitude of 3.4 occurred just before 
the bleed-off operation. With the bleed-off operation, 
the wellhead pressure dropped to the hydrostatic fluid 
pressure after four days. After that, the well remained 
open, and 3400  m3 water flowed back over a period of 
14 months.

During the injection operation, when the injec-
tion pressure was below 8.0 MPa (80 bars), the well-
head pressure showed a large increase with increas-
ing injection flow rate, indicating that the reservoir’s 
injectivity was relatively low. However, when the 
fluid pressure was higher than 8.0  MPa, the reser-
voir’s injectivity increased, i.e., a smaller pressure 
rise was observed with an increase in injection rate 
(Krietsch et al. 2020; Pandey et al. 2018). Moreover, 
with further stepwise increase of injection rate, some 
wellhead pressure drops were observed, which indi-
cated the occurrence of sudden permeability increases 
due to shear slip of optimally oriented pre-existing 
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natural fractures (Rutqvist and Stephansson 2003). 
When the wellhead pressure reached 23.5 MPa (235 
bars), the pressure response with injection flow rate 
became more erratic. This could be regarded as a sign 
of shear-induced permeability enhancement together 
with elastic response of fractures caused by local 
changes in normal effective stress, which contribute 
to the reservoir permeability enhancement (Häring 
et al. 2008). Analysis showed that the reservoir trans-
missibility was increased almost 400 times, and this 
enhancement may have been irreversible during the 
bleed-off process (Jung and Ortiz 2007).

The Basel earthquake magnitude numbers were 
provided by the Swiss Seismological Service, as 
shown in Fig. 12c (Hölker and Graf 2005), which was 
complemented by seismic modeling with optimized 
network resolution (Dyer et  al. 2008). The results 
indicated the occurrence of a large event (ML 3.4) on 
8 December 2006, followed by three aftershocks with 
a magnitude larger than 3. These aftershocks occurred 
29 (Mw 3.1), 39 (Mw 3.2), and 56 (Mw 3.2) days after 
injection termination. The focal mechanism for these 
events was investigated, and more details could be 
found in the references (Deichmann et  al. 2014; 
Deichmann and Giardini 2009; Kraft and Deichmann, 
2014; Mukuhira et al. 2013). These results indicated 
that the induced seismic events did not originate 
from a single rupture and strain release among pre-
existing faults. The root cause of seismic events in the 
Basel EGS project appears to be multiple shearing of 
obliquely oriented fractures in the fractured zone.

In summary, even though the project was termi-
nated because of the large seismic events, the Basel 
EGS project is influential in history because it was the 
first attempt to extract deep geothermal energy under 
a modern urban environment. Based on data analysis, 
the seismic events induced by hydraulic stimulation at 
the site appear to have resulted from multiple hydrau-
lic shearing of obliquely oriented fractures in the 
fractured zone, which suggests that, before hydraulic 
fracturing stimulation, the natural fracture systems 
should be comprehensively mapped for an assessment 
of potential seismic risks.

4.3.2  Pohang, South Korea

The Pohang EGS site is located in the Heunghae 
Basin, shown in Fig. 13a (Park et al. 2020). The tar-
get reservoir is a granodiorite at about 4.2 km depth, 
overburdened by tertiary sedimentary rocks and 
quaternary alluvium. Based on geological investiga-
tion, the Pohang area is a high heat-flow area, with a 
temperature higher than 140 °C at a depth of 4200 m 
(Lee et al. 2010).

Prior to the Pohang EGS project, four wells named 
BH-1 to BH-4 were drilled down to a maximum 
depth of 2300 m between 2003 and 2008. They were 
used for a low-temperature geothermal application 
in this area (Lee and Song 2008). Also, a 1000-m 
borehole nearby (EXP-1) was used for in-situ stress 
measurements (Kim et al. 2017). Two deep boreholes 
were then drilled for the main Pohang EGS project, 
named PX-1 and PX-2 wells. The arrangements of 
the two wells are shown in Fig. 13b. The vertical well 
PX-2 was drilled to a depth of 4340 m, with a 140-m 
open hole section at the borehole bottom. The bore-
hole PX-1 was drilled vertically to a depth of 2419 m 
before the drilling of PX-2, and then after PX-2 was 
drilled, PX-1 was extended directionally inclined 
approximately 20° from the vertical direction, in the 
304° mean azimuth, to the depth of 4215 m, with a 
313 m open-hole section at the bottom. The distance 
between the two boreholes PX-1 and PX-2, was 6 m 
on the surface and 600 m at the well bottom, form-
ing a geothermal fluid circulation system (Park et al. 
2020).

The timeline for the Pohang EGS project could be 
found in Park et  al. (2020).A total of five hydraulic 
stimulation operations (P1–P5) were performed and 
general information on seismic events and accumula-
tive injection volume is shown in Fig. 14c.

The first hydraulic stimulation P1 was performed 
in the PX-2 well, aiming to enhance the reservoir 
permeability and to characterize reservoir hydrome-
chanical properties at the same time. During a total 
of 23 days of fluid injection from 29 January 2016 to 
20 February 2016, several injections were performed 
without a packer (Fig. 14-a1). A cyclic injection pro-
tocol, combined with a traffic light system (TLS), was 
designed and implemented to mitigate the seismic 
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Fig. 9  a The sche-
matic map of the Groß 
Schönebeck site (modified 
from Zimmermann et al. 
2008); b The wellhead 
pressure and flow rate 
evolution with time for 
cyclic injection in Gt GrSk 
4/05 well. (modified from 
Zimmermann et al. 2008); 
c The monitoring seismic 
events associated with the 
hydraulic stimulation in 
Groß Schönebeck geother-
mal site. (modified from 
Kwiatek et al. 2010). The 
MP0 represents the loca-
tion of the deep borehole 
seismometer. The color 
reflects the hypocentral 
depth of events. The black 
arrow shows the migra-
tion of seismic events with 
time. d The calculated 
fracture distribution after 
the hydraulic stimulation 
is based on numerical 
simulation results. Each 
curve represented one hour 
of fracture propagation, and 
the stress profile was the 
minimum principal stress. 
(modified from Zimmer-
mann et al. 2010)
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Fig. 10  a The location of Soultz geothermal site (modified 
from Dèzes et al. 2004); b The cross-section map of the Soultz 
geothermal system (modified from Dezayes and Genter 2008; 
Hébert et al. 2011; Ledésert and Hébert 2012); c The wellhead 
pressure (dotted line), the fluid injection rate (solid line), and 
the rate of induced seismic events (vertical bars) evolution with 
time for four main hydraulic fracturing stimulation operations 
in the Soultz EGS project (modified from Baisch et al. 2010)

◂

risks (Kim et al. 2018b). A total of 1970  m3 of water 
was injected in pulses with a maximum flow rate of 
46.8 L/s. Correspondingly, the wellhead pressure 
displayed peaks at times of injection pulses with a 
maximum peak at 89.2 MPa (Fig. 14-a1), which was 
equivalent to 131.7 MPa bottom-hole pressure. More 
detailed data from the first day (29 January 2016) of 
fluid injection are shown in Fig.  14-a3 as an exam-
ple of the reservoir response to the cyclic injection. 
The wellhead pressure increased quickly under the 
first injection pulse and then stabilized at around 
60–70  MPa over the following 11 injection pulses. 
The pressure decreased after each of the later pulses 
and also after the last pulse, indicating the opening 
of a flow channel for water leakage at about 50 MPa 
(Fig. 14-a3). Figure 14-a2 shows a weak positive rela-
tionship between injection volume and seismic mag-
nitude up to the injection volume of 1500  m3, beyond 
which the maximum magnitude of the seismic events 
of each day seemed to stay below 1.8. It can be seen 
that more seismic events were observed during the 
shut-in periods (red rectangles) than during the injec-
tion periods (blue triangles), and the occurrence of 
seismic events seemed to persist even when pumping 
was stopped for a long time (one week). It is interest-
ing to note that similar magnitudes and numbers of 
seismic events during the shut-in period were also 
observed in the hydraulic stimulations at Basel, Swit-
zerland, and at Soultz-sous-Forets, France (Charléty 
et al. 2007; Schill et al. 2017). The mechanism of this 
phenomenon has been discussed in terms of the pore 
pressure diffusion, poroelastic effects, and hydrome-
chanical response (Baisch et  al. 2010; De Simone 
et  al. 2017; McClure 2015; Mukuhira et  al. 2017). 
An important lesson from these observations is that 
the injection-induced seismic events after injection, 
during shut-in stages, must be given enough atten-
tion and carefully investigated in planning hydraulic 
stimulation in EGS since a number of them have large 
magnitudes.

The second hydraulic stimulation P2 was per-
formed in the directionally extended well PX-1. This 
hydraulic fracturing stimulation was divided into 
two stages: (a) test stimulation and (b) main stimu-
lation, which lasted from 15 to 28 December 2016 
(Fig.  14b). The test stimulation aimed to evaluate 
the reservoir’s initial transmissivity and monitor the 
seismic responses to design the traffic light system 
(TLS). A total of 3907  m3 of water was injected into 
the reservoir, and a total of 2164  m3 of water was 
bled off during and after the conclusion of the injec-
tion operation on 28 of December, see Fig.  14-b2. 
The timeline of the second hydraulic stimulation is 
shown in Fig. 14-b1, including information on injec-
tion rate (red line) and wellhead pressure (blue line). 
It is interesting to observe that the wellhead pressure 
(27.7  MPa) during the second hydraulic stimula-
tion in PX-1 was much lower than the peak wellhead 
pressure during the first hydraulic stimulation (P1) 
in PX-2 (64.0–89.0  MPa), and different stimulation 
mechanisms may have dominated the two stimula-
tions (Park et al. 2020). The seismic events during the 
second hydraulic stimulation are shown in Fig. 14-b2, 
categorized into injection phase (blue triangles), shut-
in phase (red rectangles), and bleed-off phase (green 
circles). The black line represents the injection vol-
ume, and the dashed line represents the net volume 
(injection minus bleed-off). A earthquake occurred 
on 23 December, with a local magnitude of 2.2. After 
that, the bleed-off decreased the occurrences of seis-
mic events in the short term (green circles). However, 
once the fluid injection re-started on 26 December, 
seismic events occurred again, and two large events 
with magnitudes more than 2.0 occurred during the 
shut-in on 29 December. After that, more bleed off 
was conducted, and the seismic activities decreased.

The later three hydraulic fracturing operations, 
P3, P4, and P5 were performed in the PX-1 and PX-2 
wells in 2017. Details on the injection rate, injec-
tion volume, and wellhead pressure of these stimula-
tion operations could be found in Yeo et  al. (2020). 
The third hydraulic stimulation P3 was conducted in 
the PX-2 well, with cyclic injection protocol from 
16 March to 14 April 2017. It is worth mentioning 
that a Mw 3.2 earthquake occurred on 15 April dur-
ing the shut-in period (Korean Government Com-
mission 2019). The fourth hydraulic stimulation, P4, 
was performed from 7 to 14 August 2017, with a total 
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Fig. 11  a Location of the Cooper Basin EGS site. (modified 
from Ayling et  al. 2016); b The schematic map of the cross-
section of the Habanero wells (modified from Holl and Barton 
2015); c The wellhead pressure, injection rate, and injectivity 
evolution with time for the hydraulic fracturing stimulation in 
Habanero-1 well. (modified from Riffault et al. 2018). The blue 
line is injection rate and red line is wellhead pressure

◂

of 1756  m3 water injected into the PX-1 well. This 
hydraulic stimulation was a validation study of the 
soft cyclic injection with the flow rates periodically 
alternating between 1.0 and 10.0 L/s. There were only 
52 seismic events recorded, and the largest magni-
tude was Mw 1.9. However, no significant permanent 
reservoir permeability enhancement was observed in 
the fourth hydraulic stimulation (Farkas et  al. 2021; 
Hofmann et al. 2019). The final hydraulic simulation 
P5 was performed again in PX-2 well from 30 August 
to 14 September, also with cyclic injection protocol. 
This hydraulic stimulation only produced a modest 
seismic response, similar to the first stimulation P1 at 
PX-2 well, with a maximum magnitude event of Mw 
2.0 (Korean Government Commission 2019). In total, 
5663  m3 and 7135  m3 of water was injected into PX-1 
and PX-2 wells, respectively, 3968  m3 and 2989  m2 
water flowed back from PX-1 and PX-2 wells, and a 
net volume of 5841  m3 remained in the reservoir after 
the five hydraulic stimulations at Pohang geothermal 
site. Over the period of the five hydraulic stimula-
tions, only one damaging earthquake occurred. This 
was during the shut-in stages of the third hydraulic 
stimulation P3 and had a magnitude of 3.2. All other 
seismic events were modest and with magnitudes less 
than 2.0, and thus it was believed that the cyclic injec-
tion protocol could be an effective technique to miti-
gate seismic risk on the site (Hofmann et  al. 2019). 
However, 58 days after the last hydraulic stimulation 
P5, a Mw 5.5 earthquake hit this area on 15 Novem-
ber 2017, and shook Pohang city, injuring over 100 
people, causing $300 million worth of damage, and 
requiring more than 1700 residents to move to emer-
gency housing (Grigoli et al. 2018; Lim et al. 2020). 
Therefore, the government suspended the Pohang 
EGS project and invited domestic and international 
researchers to investigate the origin of this earth-
quake. The committee concluded that the main shock 
was triggered by fluid injection-induced fracturing in 
a previously unmapped fault zone that grew quickly 
and released the local tectonic strain. The activated 

unmapped fault plane is shown in Fig. 14c. It extends 
from 2.5 to 6.0  km and intersects the PX-2 well at 
3.8  km (Korean Government Commission 2019). 
More researches to explore the reasons for Pohang 
earthquake could be found in Hong et al. (2022), Kim 
et al. (2022), McGarr et  al. (2018, 2019), Westaway 
and Burnside (2019), and Woo et al. (2019).

Two major lessons may be learned from the 
Pohang EGS project.: Firstly, the CSS, which com-
bines cyclic fluid injection and seismic monitoring 
with the traffic light system (TLS) (see Sect.  3.3.2), 
was shown to have effectively increased the reservoir 
permeability and mitigated seismic risks in the crys-
talline rock reservoir. However, its possible connec-
tion with the 5.5 magnitude earthquake that occurred 
58 days afterwards needs to be investigated in depth. 
Secondly, the hydraulic stimulation of the PX-1 well 
in December 2016 produced a fracture network as 
planned, while injection in the PX-2 well in Febru-
ary and September 2017 appears to have activated 
an unmapped fault, resulting in an earthquake in 
November 2017. During the drilling of the PX-2 well, 
a large-scale mud loss occurred, but it did not attract 
enough attention to the possible existence of a large-
scale fault. If this critically stressed fault could have 
been mapped before the hydraulic fracturing stimula-
tion and appropriate actions taken, there would have 
been a possibility that the earthquake could have been 
avoided (Ellsworth et  al. 2019). Thus, before fluid 
injection, the local natural fracture systems and large 
faults should be comprehensively mapped. Moreover, 
all the drilling and seismic data should be timely ana-
lyzed and interpreted during well drilling and hydrau-
lic stimulation operations. These data will form an 
important or even critical part of the effort in assess-
ing potential seismic risks of the EGS during the pro-
cess of development.

In this part, we summarised representative EGS 
sites globally and selected six of them for a detailed 
review of the hydraulic stimulation strategy, per-
meability enhancement performance, and induced 
seismicity. However, there are some other recent 
important field projects, such as the Espoo project 
in Finland (Hillers et  al. 2020; Kwiatek et  al. 2019; 
Leonhardt et  al. 2021), Eden project in the UK 
(Abesser et  al. 2020; Baumgärtner 2022; Fink et  al. 
2022) and projects under the Frontier Observatory 
for Research in Geothermal Energy (FORGE) in the 
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Fig. 12  a The location of Basel EGS site and topographic 
map of Switzerland and surrounding regional seismic stations. 
(modified from Deichmann and Giardini 2009); b Lithologi-
cal sequence along the Basel-1 borehole modified after c The 
evolution of injection rates, wellhead pressure, triggered event 
rates, and earthquake magnitude during hydraulic stimulation. 
(modified from Ladner and Häring 2009; Häring et al. 2008).

◂ USA (Moore et  al. 2018, 2019; Xing et  al. 2022). 
More details concerning these projects can be found 
in the references, and we expect that many interesting 
results and lessons learned will emerge from these 
projects.

Fig. 13  a Geologic maps of the Pohang region, includ-
ing the locations of the EGS site and the five nearby wells; b 
The simplified well dimension at the Pohang EGS site (Park 
et  al. 2020); c The hydraulic fracturing operations at Pohang 
EGS sites (injection rate (blue line), flow back rate (orange 

line), and net injection volume (dark gray line). Five stages of 
hydraulic fracturing operations were named P1 to P5, and P1, 
P3, and P5 were performed in the PX-2 well, while P2 and P4 
were performed in the PX-1 well. The seismic events were rep-
resented by purple circles (modified from Yeo et al. 2020)
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Fig. 14  a The hydraulic 
fracturing stimulation 
history for first stimulation 
in the PX-2 well  (Modi-
fied from Park et al. 2020): 
a1 The wellhead pressure 
and injection flow rate 
evolution for the whole 
period; a2 the correspond-
ing seismic response 
and cumulative injection 
volume; a3 the injection 
rate, wellhead pressure, and 
the one seismic event on 
29 January 2016. b Second 
stimulation in PX-1 well 
(Modified from Park et al. 
2020) with b1 injection 
rate and wellhead pressure 
evolution and b2 corre-
sponding seismic events 
and cumulative volume. c 
Schematic illustration of 
the relationship between the 
seismicity and the Pohang 
earthquake’s rupture plane. 
The blue dots were the 
seismic events related to 
stimulation of the PX-1 
well, and the red dots were 
the seismic events induced 
by PX-2 well stimulation. 
The mainshock fault plane 
extended from 2.5 km to 
6 km and intersected the 
PX-2 well at 3.8 km (Lee 
et al. 2019)
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5  Concluding remarks

In this review, we first discuss the hydraulic stimula-
tion mechanisms underlying the enhancement of res-
ervoir permeability and increase of the heat extraction 
area, and to understand the potential for fluid injec-
tion-induced seismicity during an EGS development. 
Then, some representative hydraulic stimulation 
designs and fluid injection strategies are reviewed, 
including conventional hydraulic fracturing, multi-
stage fracturing, and cyclic soft stimulation. Finally, 
some typical EGS sites are reviewed by addressing 
two representative cases from the following three cat-
egories of sites: experimental field sites, successfully 
operating commercial sites, and currently suspended/
terminated projects. Based on the review, we identify 
a number of critical components that should be con-
sidered for an optimal design of a hydraulic stimula-
tion as well as highlight some areas that should be 
further researched:

(a) Comprehensive geological survey and evaluation 
of the natural fracture system and nearby fault 
zones prior to the site development

The natural fracture system and nearby faults are 
important for two critical aspects of an EGS site, 
namely (i) the hydraulic fracture propagation, 
shear dilation and new fracture network forma-
tion and (ii) the fluid injection-induced seismic-
ity. Thus, the characterization of the natural frac-
ture system and the major nearby faults as well as 
an understanding of thermo-hydro-mechanical-
chemical processes that may be operating in them 
is critical in determining whether an EGS site 
will be successful. The role of the natural fracture 
system in hydraulic fracture propagation has been 
reviewed in Sect.  2.2. The interaction between 
natural fractures and hydraulically induced frac-
tures determines the final topography of the gen-
erated fracture networks and thus the resulting 
hydraulic conductivity and heat exchange area. 
For instance, if the natural fracture system is not 
well developed within the reservoir, conventional 
hydraulic fracturing with a high injection rate 
needs to be performed to create open tensile frac-
tures. In contrast, if the natural fracture networks 
are relatively well developed before the hydraulic 
stimulation, low-rate cyclic injection may be pre-
ferred to drive the shear slip of natural fractures 

for increasing reservoir permeability. Thus, a suf-
ficiently comprehensive understanding of natural 
fracture distribution (size, orientation, density) 
within the target reservoir near the injection well 
is needed for a successful hydraulic stimulation 
design and optimization.

Large critically-stressed active faults should be 
avoided in the selection of EGS sites. As 
reviewed in Sect.  4.3, the Basel site’s seismic 
events mainly came from multiple hydraulic 
shearing of obliquely oriented fractures in the 
fractured zone, while the Pohang earthquake 
appears to be a result of triggering a large crit-
ically-stressed fault by hydraulic stimulation. 
Thus, before the fluid injection, the natural frac-
ture systems and large faults should be compre-
hensively mapped and evaluated to assess poten-
tial seismic risks.

(b) Proper design of the well arrangement and fluid 
injection strategy

The conventional concept of an EGS site includes 
one vertical injection well and one vertical pro-
duction well, connected through one or a few 
major fractures created by massive fluid injec-
tion. However, as discussed in Sect.  3.2, this 
usually results in limited stimulated volume and 
early cold injection water breakthrough with sig-
nificant heat production decay. Hence, the com-
bination of horizontal drilling and multi-stage 
fracturing is proposed and may allow the EGS 
to reach a larger stimulation rock volume. The 
spacing of stimulation stages or intervals plays 
a vital role in determining the heat production 
efficiency and life expectancy of the operation. 
If the spacing is too small, the cost will be high, 
and the stress shadow effect may adversely affect 
the fracture propagation. On the other hand, if the 
stage spacing is too large, the reservoir may be 
under-stimulated, resulting in poor hydraulic con-
ductivity between injection and production wells. 
Another point that should be highlighted is that 
the positioning of the active sections in the injec-
tion and production boreholes need to be opti-
mized. This may be accomplished by drilling the 
two wells sequentially; that is, drilling the sec-
ond well after the drilling and stimulation of the 
first well is completed, to ensure that the second 
well is drilled into the microseismic clouds pro-
duced by the stimulation of the first well. This is 
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an important lesson drawn from the Fenton Hill 
project in which, after some initial unsuccessful 
attempts, the production well was drilled directly 
into a hydraulically induced fracture region 
(microseismic cluster area) around the injection 
well. Only in this circumstance, the hydraulic 
conductivity between injection and production 
wells became high enough to allow the desired 
flow rate. Moreover, in recent years, besides the 
traditional doublet well layout, some new well 
layouts have been proposed, including the triplet 
well layout or quintuplet well layout (Chen and 
Jiang 2015). Hence, the well layout and arrange-
ment of EGS are another area of consideration in 
an EGS project.

(c) Evaluating the fluid injection-induced seismicity, 
including post-stimulation seismicity

As discussed in Sect. 2.3, it is a challenging task to 
estimate the fluid injection-induced seismicity 
during an EGS site development, both during and 
after a hydraulic stimulation operation. The fluid 
injection-induced seismicity is a complicated 
thermo-hydro-mechanical-chemical (T-H-M-C) 
coupled process rather than a purely mechani-
cal process. During fluid injection, some criti-
cal processes may affect the earthquake nuclea-
tion process, including the fluid diffusion within 
the reservoir and within faults, in-situ effective 
stress changes due to fluid pressure, thermome-
chanical changes due to cold water injection, 
and water–rock chemical interactions. Thus, a 
deeper understanding of the coupled T-H-M-C 
process of hydraulic stimulation is needed in the 
evaluation of the underlying mechanisms of fluid 
injection-induced seismicity, where geothermal 
heat, injected fluid, geologic structures and local 
in-situ stress conditions concurrently control fault 
instability behaviors.

One important observation is that seismic events 
with high magnitudes have been found to occur 
sometime after the termination of fluid injec-
tion. Examples have been reviewed in Sect.  4.3 
for the Basel and Pohang EGS sites. Some pos-
sible mechanisms for post-stimulation seismicity 
have been pointed out in Sect.  2.3. We believe 
that profound research is essential on the under-
standing and modeling of post-stimulation seis-
mic activities and on the development of control 
methods to mitigate such seismic risks.
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