
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2008

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Pharmacy 77

Anabolic androgenic steroids and
central monoaminergic systems

Supratherapeutic doses of nandrolone decanoate
affect dopamine and serotonin

CAROLINA BIRGNER

ISSN 1651-6192
ISBN 978-91-554-7259-7
urn:nbn:se:uu:diva-9208





List of papers 

This doctoral thesis is based on the following original papers, in the text 
referred to by their Roman numerals (I-V). Papers II and III are reprinted 
with permission from Elsevier Ltd. 
 
I Birgner, C., Kindlundh-Högberg, A.M.S., Ploj, K., Lindblom, J., 

Nyberg, F., Bergström, L. Effects on rat brain dopamine and 
DOPAC levels after sub-chronic nandrolone administration followed 
by an amphetamine challenge.  
Pharmacologyonline 3, 99-108 (2006) 

II Birgner, C., Kindlundh-Högberg, A.M.S., Nyberg, F., Bergström, L. 
Altered extracellular levels of DOPAC and HVA in the rat nucleus 
accumbens shell in response to sub-chronic nandrolone administra-
tion and a subsequent amphetamine challenge.  
Neuroscience Letters 412, 168-172 (2007) 

III Birgner, C, Kindlundh-Högberg, A.M.S., Oreland, L., Alsiö, J., 
Lindblom, J., Schiöth, H., Bergström, L. Reduced activity of mono-
amine oxidase in the rat brain following repeated nandrolone de-
canoate administration.  
Brain Research 1219, 103-110 (2008) 

IV Birgner, C, Kindlundh-Högberg, A.M.S., Alsiö, J., Lindblom, J., 
Schiöth, H., Bergström, L. The anabolic androgenic steroid nandro-
lone decanoate affects mRNA expression of dopaminergic but not 
serotonergic receptors.  
In progress 

V Birgner, C, Kindlundh-Högberg, A.M.S., Bergström, L. Nandrolone 
decanoate increases serotonin transporter density in rat brain.  
In manuscript 
 

Carolina Birgner’s contribution to the papers: 
Participated in the planning of the experiments together with the last au-

thor (Papers I, II, III and V), and fourth and last authors (Paper IV). Per-
formed all the laboratory work and analyses in Paper II and the major part of 
the laboratory work and analyses in Papers I, III and IV. Performed image 
analysis in Paper V. The evaluation of results and writing the manuscripts 
was mainly performed by the first, second and last authors (Papers I and II), 
first, second and third authors (Paper III), and first author (Papers IV and V). 



  

 



Contents 

Introduction ..................................................................................................... 9 
Anabolic androgenic steroids (AASs) ........................................................ 9 

History ................................................................................................... 9 
Abuse of AASs .................................................................................... 10 
Behavioural effects of supratherapeutic doses of AASs ...................... 11 
Neurochemical effects of supratherapeutic doses of AASs ................. 13 

Dopamine ................................................................................................. 15 
The dopamine system .......................................................................... 15 
Dopamine and development of dependence ........................................ 16 

Serotonin .................................................................................................. 17 
The serotonin system ........................................................................... 17 
Serotonin and aggression ..................................................................... 18 

Aims .............................................................................................................. 20 

Methods ........................................................................................................ 22 
The dose ................................................................................................... 22 
Animals .................................................................................................... 23 

Paper I .................................................................................................. 23 
Paper II ................................................................................................ 23 
Papers III and IV .................................................................................. 24 
Paper V ................................................................................................ 24 

Extraction of monoamines from wet tissue (Paper I) ............................... 24 
HPLC with electrochemical detection (Papers I and II) ........................... 24 
Microdialysis (Paper II) ........................................................................... 25 
Radiometric assay determining the enzymatic activity of MAO (Paper III)
 .................................................................................................................. 25 
Quantitative real-time polymerase chain reaction (qPCR) (Papers III and 
IV) ............................................................................................................ 26 

Primers ................................................................................................. 26 
RNA isolation ...................................................................................... 26 
cDNA synthesis ................................................................................... 26 
Quantitative real-time polymerase chain reaction (qPCR) .................. 27 

In vitro-autoradiography (Paper V) .......................................................... 27 

Results and discussion .................................................................................. 29 

 



Effects on dopamine ................................................................................. 29 
Dopamine levels (Papers I and II) ....................................................... 29 
Dopamine synthesis and metabolism (Papers III and IV) ................... 32 
Dopamine transport (Paper IV) ........................................................... 34 
Dopamine receptors (Paper IV) ........................................................... 34 

Effects on serotonin .................................................................................. 36 
Serotonin reuptake (Paper V) .............................................................. 36 
Serotonin metabolism (Paper III) ........................................................ 37 
Serotonin receptors (Paper IV) ............................................................ 38 

Conclusions ................................................................................................... 40 

Future perspectives ....................................................................................... 41 

Populärvetenskaplig sammanfattning ........................................................... 44 

Acknowledgements ....................................................................................... 46 

References ..................................................................................................... 48 

 

 



Abbreviations 

5-HIAA 5-hydroxyindole acetic acid 
5HTx Serotonin receptor, subtype x 
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AAS Anabolic androgenic steroid 
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Dx Dopamine receptor, subtype x 
DAT Dopamine transporter 
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DSM-IV Diagnostic and Statistical Manual of 
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disodium salt dihydrate 
GAPDH Glyceraldehyde-3-phosphate dehy-

drogenase 
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H3b Histone H3b 
HCG Human chorionic gonadotropin 
HKG Housekeeping gene 
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ICD-10 International Statistical Classification

of Diseases and Related Health Prob-
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LTD Long-term depression 
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MAO-B Monoamine oxidase B 
MDMA Methylenedioxymethamphetamine 
PET Positron emission tomography 
RPL19 Ribosomal protein L19 
s.c. Subcutaneous 
SDCA Succinate dehydrogenase complex A

subunit 
SERT Serotonin transporter 
TH Tyrosine hydroxylase 
TPH Tryptophan hydroxylase 
TUB β-tubulin beta 5 
VAS Visual analogue scale 
VMAT2 Vesicular monoamine transporter 2 
 



Introduction 

Anabolic androgenic steroids (AASs) 
Anabolic androgenic steroids (AASs) are defined as synthetic derivatives of 
the endogenous sex hormone testosterone. Testosterone is the primary male 
sex hormone, mainly synthesized in the testicles of men and to some extent 
in the ovaries of females. Testosterone is responsible for sexual differentia-
tion in utero and the development of secondary sexual characteristics during 
male adolescence. In the adult male body, testosterone is required for main-
tenance of sexual function and fertility [97, 183, 228, 266]. Androgens exert 
many of their effects through binding of androgen receptors (ARs). The re-
ceptor-androgen complex is classically translocated to the cell nucleus func-
tioning as a transcription factor [183, 210]. Recently, evidence of non-
genomic ARs functioning outside the nucleus, have emerged. These recep-
tors most likely mediate some of the rapid effects of androgens [221]. AASs 
were originally developed to have maximal anabolic and minimal andro-
genic effects. However, so far no anabolic steroid is entirely devoid of an-
drogenic properties. The AAS used in the studies included in this thesis is 
nandrolone decanoate, which is dissolved in sterile arachis oil and intramus-
cularly (i.m.) injected as a depot.  

History 
In 1889, Charles E. Brown-Séquard subcutaneously (s.c.) injected an extract 
from dog and guinea pig testicles, and described it as a “rejuvenating elixir” 
which could e.g. increase his strength and intellectual energy [28]. Today, 
his experiences are considered the result of placebo effect. However, 20 mg 
of testosterone was indeed isolated in 1927 by F. C. Koch and L. McGee 
from 40 pounds of bovine testicles. They could also show that this substance 
could restore masculine characteristics in several species after castration 
[132]. In 1935, testosterone had been isolated from human testicle and 
chemically characterized, work contributed by E. Laqueur and A. Butenandt, 
among others. The same year, testosterone was first synthesized by two 
groups independently, and this earned the group leaders A. Butenandt and L. 
Ruzicka the joint Nobel Prize in Chemistry in 1939 [104]. 

In the late 1930s, C. Kochakian and other researchers demonstrated both 
the anabolic and androgenic effects of testosterone. This hormone and syn-
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thetic derivatives have been used clinically to treat e.g. hypogonadism, 
anaemia and patients suffering from protein deficiency due to severe burns 
or extensive surgery [10, 228]. The use of AAS in clinical medicine has de-
clined during the years and been replaced by other therapies for the disorders 
formerly treated with testosterone and its derivatives. However, the anabolic 
effects of AASs made these substances attractive outside the clinic and the 
first reports of athletes using AASs for non-medical reasons appeared in the 
literature during the 1950s [104]. Sports organizations have banned these 
substances and perform tests regularly but the Olympic Games and other 
large sports tournaments still meet with doping scandals. After the fall of the 
“Iron Curtain”, it was even revealed that the Deutsche Demokratische Re-
publik (DDR) treated thousands of athletes with androgens and other doping 
agents to increase athletic performance, a program supported and financed 
by the DDR government during the 1960s, 70s and 80s [77]. 

Abuse of AASs 
Apart from elite athletes aiming at increasing performance during competi-
tion, both professional and amateur bodybuilders administer AASs to gain 
maximal muscle volume. It has also become apparent through survey studies 
that AASs are used as recreational drugs, primarily by adolescents, to be-
come bold, boost self-esteem, or just to become intoxicated [123, 124, 188]. 
Abuse of AAS among adolescents is also associated with heavy alcohol con-
sumption and use of other illicit drugs [4, 83, 117, 124, 187, 188, 201, 248]. 
There are also numerous reports of AAS abusers involved in criminal activ-
ity and violent acts [130, 131, 201, 248]. 

The amounts of AASs administered by abusers have been reported to 
widely exceed those used in clinical medicine. Reports range from 10 to 100 
times more [269], and in a case study of seven AAS abusers who where fol-
lowed during a year, nandrolone decanoate doses ranged from 5 mg/kg/day 
in the beginner to 19 mg/kg/day in the experienced heavy user, in cycles of 
typically 8 weeks [83]. In a survey of 500 AAS abusers, 60% of participants 
administered more than 1000 mg of testosterone, or its equivalent, per week 
[197]. To optimize effect and avoid side-effects due to cessation of endoge-
nous testosterone production, different dose regimens are applied, e.g. 
“stacking” (mixing and alternating between different steroid compounds and 
routs of administration), “pyramiding” (gradually increasing steroid dose in 
early phase of the cycle and gradually decreasing it in the end) and admini-
stration of additional substances (growth hormone, insulin, ephedrine, clen-
buterol etc.) [65, 66, 197]. AAS abusers are at risk of several physical side 
effects, such as cardiovascular disease [252], alterations of lipoprotein lev-
els, testicular atrophy and gynecomastia [203]. Additionally, women might 
experience deepening of the voice, hirsutism, amenorrhea and clitoral hyper-
trophy [210, 228]. However, the scope of this thesis is neurochemical altera-
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tions possibly underlying some of the psychiatric/behavioural side effects 
reported in AAS abusers. 

Behavioural effects of supratherapeutic doses of AASs 
AASs and aggression 
Abusers of AASs experience increased aggression and irritability [7] and are 
reported to engage in criminal activity, violent acts [201, 248], and even 
homicide [48]. There have been several attempts to demonstrate a correlation 
between AAS administration and human aggression through controlled stud-
ies on male volunteers. After 40 mg of methyltestosterone daily for 3 days 
followed by 240 mg/day for 3 days, test objects showed increased energy, 
libido and aggressiveness whereas cognitive symptoms were impaired, as-
sessed by the visual analogue scale (VAS) [51, 52]. Pope and co-workers 
conducted a test of aggressive responding in a controlled laboratory setting 
on male volunteers. Male subjects received increasing doses of testosterone 
cypionate (150 mg/week for 2 weeks, 300 mg/week for 2 weeks and finally 
600 mg/week for 2 weeks), or placebo in a double-blind crossover design. 
Aggressive and non-aggressive responses were assessed as the test persons 
played a computer game with a fictive opponent under the impression that 
motor response would be investigated. One could either gain 100 points, 
exchangeable for money, by pressing button A or subtract 10 points from the 
opponent by pressing button B, but then without personal gain. Testosterone 
administration significantly increased the number of aggressive responses 
(∼130%) whereas non-aggressive remained unchanged [136, 204]. On the 
other hand, in two studies were 200 mg of testosterone enanthate was admin-
istered weekly for 8 and 20 weeks, respectively, no mood changes were 
found. Behaviour was recorded in diaries and with self-rating scales [1, 6]. 
200 mg of testosterone weekly corresponds to the dose used in clinical trials 
for male contraception and does not come close to the doses abused. Due to 
ethical considerations, AASs in doses abused cannot be allowed for admini-
stration to human volunteers. Therefore, the controlled studies presented 
above can never be entirely representative.  

However, in animal studies AAS doses corresponding to those abused 
have been evaluated with regard to aggressive behaviour. Several studies 
performed on male Long-Evans rats have demonstrated increased intermale 
aggression after 12 weeks of testosterone propionate administration [49, 72, 
73]. However, nandrolone decanoate had no effect on aggression and stano-
zolol even reduced such behaviour [24, 169, 263]. The same results were 
obtained after AAS withdrawal [170] and with castrated animals [43]. On 
the other hand, nandrolone decanoate caused heightened aggressive response 
in male Sprague-Dawley rats after both 2 mg/day and 20 mg/week for 4 
weeks. Except for rat strain, the test conditions differed from the before 
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mentioned in the sense that the animals were experienced with the resident-
intruder paradigm before AAS administration [156].  

With mice, test results have been diverse, once again likely to depend on 
strain and test conditions. A recent study by Pinna et al. have demonstrated 
isolation-induced aggression in male mice to be dependent on brain testos-
terone and allopregnanolone content [202]. However, in studies by Martinez-
Sanchis et al. and Bonson et al., female mice have been more prone to react 
with aggression after AAS administration than male mice, and only after 
prolonged exposure (10 weeks) have males displayed isolation-induced ag-
gression [25, 26, 165, 166]. 

The only species tested for AAS induced aggression showing unambigu-
ous results are adolescent Syrian hamsters. Adolescent hamsters receiving a 
cocktail of AAS (2 mg/kg/day of testosterone cypionate, 2 mg/kg/day of 
nandrolone decanoate and 1 mg/kg/day of boldenone undecylenate) in-
creased number of attacks and decreased latency to attack in the resident-
intruder paradigm after both 14 [57, 92, 220], 28 [92] and 30 days of admini-
stration [76, 90, 91, 93, 94, 175, 212, 213]. Additionally, this persists after 4 
and 11 days of withdrawal, but is no longer present after 18 or 25 days after 
cessation of the 30-day administration period [94]. In the one study reporting 
effects of AAS administration on adult hamsters, no effects were observed 
[220]. 

AASs and reward 
It has been suggested that AAS abuse can lead to dependence in humans 
[159], and even function as a gateway to abuse of other substances [4, 117]. 
Approximately 25% of examined AAS abusers fulfil the DSM-IV criteria for 
steroid dependence [47, 203]. Hypomania is a common symptom in early 
phases of AAS abuse and depression often occurs during withdrawal, lead-
ing to resumed AAS intake [203]. 

Androgen induced reward has been studied in experimental animal mod-
els, where conditioned place preference (CPP) and self-administration are 
the most important methodologies. CPP has been produced by 0.25 and 0.5 
μg of testosterone injected directly into the nucleus accumbens [195], and 
0.8 mg/kg of testosterone administered intraperitoneally (i.p.) to male Long-
Evans rats [196, 224]. In the two latter studies, CPP could be blocked by the 
mixed dopamine D1/D2 receptor antagonist flupenthixol, administered both 
systemically [224] and directly into the nucleus accumbens [196]. I.p. injec-
tions of the specific dopamine D1 antagonist SCH23390 or D2 antagonist 
sulpiride could also block testosterone induced CPP, indicating involvement 
of both dopamine D1 and D2 receptors [224]. However, unilateral injections 
of testosterone into the medial preoptic area of Long-Evans rats, produced 
CPP at the dose 0.1 μg, but conditioned place aversion at 0.2 μg [129]. 
When administered s.c. to male Long-Evans rats, 1 mg/kg of testosterone 
failed to produce CPP, whereas its metabolites dihydrotestosterone (DHT) 
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and 3α-androstanediol did [81]. However, when implanted bilaterally into 
the nucleus accumbens shell, all three substances produced CPP [82]. Based 
on these results, the temporal onset of CPP for the individual substances, and 
brain as well as plasma levels, the authors conclude that the testosterone 
metabolite and neurosteroid 3α-androstanediol is responsible for the CPP 
[80-82, 216]. Testosterone administerd s.c. to mice have also been shown to 
produce CPP at doses ranging from 0.8-2 mg/kg [2, 3]. 

In self-administration paradigms, male adult Syrian hamsters have been 
shown to prefer up to 800 μg/ml of testosterone in an oral solution, over 
vehicle, in 2-bottle choice tests [80, 116]. Both Sprague-Dawley rats and 
Syrian hamsters self-administer testosterone (50 μg/nose poke) intrave-
nously (i.v.) [265]. Adult Syrian hamsters have also been tested for in-
tracerebroventricular (i.c.v.) self-administration. Number of nose pokes for 
testosterone [60, 265], drostanolone and nandrolone (0.1-2 μg/nose poke) 
significantly increased [8], as well as for DHT and estradiol, an estrogen 
metabolite of testosterone [61]. The oral steroid compounds oxymetholone 
and stanozolol were, however, not self-administered i.c.v. by hamsters [8]. 
In a study by Peters and Wood, hamsters were allowed to self-administer 
testosterone i.c.v. for up to 56 days. 24% of the animals infused testosterone 
to the point of death, which correlated with peak daily intake (>60 μg/day) 
[200]. To summarize, AASs are self-administered by rodents, although the 
effect is modest. Still, it is comparable with other mild reinforcers such as 
benzodiazepines [185] and nicotine [164].  

Pre-exposure to AASs has been demonstrated to affect the response to 
other substances of abuse in experimental animals. Nandrolone decanoate 
administered at a dose of 15 mg/kg (i.m.) to CD-1 mice daily for 14 days, 
blocked food-, tetrahydrocannabinol (THC)- and morphine-induced CPP. 
Nandrolone decanoate also heightened THC- and morphine-withdrawal [36, 
37]. Male adult Wistar rats receiving the same dose of nandrolone decanoate 
s.c., increased their voluntary intake of alcohol the second and third week 
after cessation of AAS administration, exceeding 0.5 mg/kg/day [114]. It 
was also demonstrated that pre-exposure to nandrolone decanaote prevented 
alcohol-induced decrease in locomotion when ethanol was injected i.p. at the 
sedentary dose 0.5 mg/kg [152].  

Neurochemical effects of supratherapeutic doses of AASs 
Neurochemical alterations after AAS administration has been examined in 
several species, covering many transmitter systems, such as excitatory [143, 
144, 217] and inhibitory [17, 93, 171, 199, 267, 268] amino acids, various 
peptides [99, 100, 102, 113-115, 160, 161], and the focus of this thesis; 
monoamines. 
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AASs and dopamine 
The impact of AASs on the dopaminergic systems has been studied to some 
extent in the rodent brain. 14 days of i.m. nandrolone decanoate administra-
tion at 15 mg/kg gave rise to decreased density of dopamine D1-like receptor 
protein in the caudate putamen and nucleus accumbens core and shell [126]. 
Similar results were later obtained for mRNA levels [127]. Dopamine D2-
like receptor densities, on the other hand, were upregulated in the caudate 
putamen, ventral tegmental area and nucleus accumbens core, while down-
regulated in the shell [126]. Alterations in mRNA levels for the dopamine 
D2 receptor was heading the same direction as the protein in the caudate 
putamen, however at lower doses only (1 and 5 mg/kg). 1 and 5 mg/kg also 
increased the mRNA tissue content in the nucleus accumbens shell [127]. 
The increased transcription of the D2 receptor might be a compensation for 
the decreased protein expression. Alternatively, the discrepancies between 
mRNA and protein levels are due to posttranslational processing. No 
changes in gene expression for the dopamine synthesizing enzymes tyrosine 
hydroxylase (TH) or aromatic amino acid decarboxylase (AAAD) were de-
tected [127]. All three doses 1, 5 and 15 mg/kg of nandrolone decanoate 
daily for 14 days significantly increased the protein density of the dopamine 
transporter (DAT) in the caudate putamen [128], later confirmed for the 
higher dose by positron emission tomography (PET) in live animals [122]. 

The tissue content of dopamine and its metabolites has been examined in 
the striatum of male rats receiving 5 mg/kg either of testosterone, nandro-
lone, methandrostenolone or oxymetholone, s.c. once weekly for 6 weeks. 
Dopamine increased in the oxymetholone group, 3,4-dihydroxyphenylacetic 
acid (DOPAC) and homovanillic acid (HVA) increased in all treatment 
groups, as did the (DOPAC+HVA)/dopamine ratio apart from the group 
receiving oxymetholone. The latter was however the only substance which 
affected monoamine oxidase (MAO) activity, causing an increase of MAO-
A activity in the hypothalamus [247]. Nandrolone decanoate at the doses 5 
and 20 mg/kg, 5 days a week for 2 weeks, increased DOPAC in the cerebral 
cortex and the lower dose increased the DOPAC/dopamine ratio in the hypo-
thalamus of Wistar rats [139], whereas Lindquist et al. reported no dopa-
minergic changes after 15 mg/kg of nandrolone decanoate daily for 14 days 
[152].  

AASs and serotonin 
Studies on serotonin and 5-hydroxyindole acetic acid (5-HIAA) tissue con-
tent have reported diverse results, likely due to differences in dosing regi-
mens and choice of animal model. 5 mg/kg/week for 6 weeks of oxy-
metholone increased serotonin, 5-HIAA and the 5-HIAA/serotonin ratio in 
the hippocampus. The ratio was also elevated by testosterone, nandrolone 
and methandrosteneolone in the hippocampus. Additionally, modest but 
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significant effects were observed in the frontal cortex and hypothalamus. As 
mentioned above, this dose regimen increased hypothalamic MAO-A activ-
ity in the oxymetholone group [247]. With the doses 5 and 20 mg/kg of nan-
drolone decanoate (s.c.) administered for 14 days to male Wistar rats, 
Kurling et al. also observed an increased 5-HIAA level in the frontal cortex 
by 5 mg/kg. Additionally, serotonin tissue content in the cerebral cortex and 
hypothalamus was elevated in the group receiving 20 mg/kg, however de-
creased it in the hippocampus [139]. In a similar study, Lindquist et al. dem-
onstrated decreased levels of serotonin in the forebrain and dorsal striatum, 
and 5-HIAA in the striatum by 15 mg/kg of nandrolone decanoate, but no 
alterations in the hippocampus [152]. A single dose of nandrolone decanoate 
(3.75 mg/kg) increased 5-HIAA and the 5-HIAA/serotonin ratio in the hypo-
thalamus, whereas 0.375 and 37.5 mg/kg did not [246]. 

The impact of chronic AAS exposure on serotonin receptors has been in-
vestigated in both rats and hamsters. 30 days of daily administration with a 
steroid cocktail consisting of 2 mg/kg testosterone cypionate, 2 mg/kg nan-
drolone and 1 mg/kg boldenone undecylate (s.c.), decreased the density of 
both serotonin 5HT1A [213] and 5HT1B receptors in the anterior hypo-
thalamus [91]. 5HT1B was also reduced in the ventrolateral hypothalamus, 
and central and medial amygdala [91]. The same dosing regimen also de-
creased the density of serotonin fibres in the medial and central amygdala, as 
well as in the ventrolateral and anterior hypothalamus of male adolescent 
hamsters [90]. In the anterior hypothalamus, this reduction could be detected 
already after 7 days of AAS administration [92]. In rats receiving 1, 5 or 15 
mg/kg of nandrolone decanoate daily for 14 days, a reduced density of 
5HT1B was observed in the medial globus pallidus and field CA1 of the 
hippocampus, as well as a downregulation of 5HT2 in the frontal association 
cortex and amygdala. 5HT2 was however increased in the nucleus accum-
bens shell and ventromedial hypothalamus [125]. 

Dopamine 
The dopamine system 
Dopaminergic cellbodies originate in the ventral tegmental area, substantia 
nigra and hypothalamus. The ventral tegmental area largely innervates the 
nucleus accumbens, lateral septum and prefrontal cortex, and other cortical 
areas such as the cingulate and piriform cortices. The amygdala, bed nucleus 
stria terminalis, hippocampus and olfactory tubercle are also targeted by the 
ventral tegmental area. The cortical projections are termed the mesocortical 
dopamine system and the projections targeting other limbic areas the 
mesolimbic dopamine system. The substantia nigra projects to the striatum 
and is thus called the nigrostriatal dopamine system, and finally, there are 
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short projections from the hypothalamus to the pituitary gland (tuberohy-
pophyseal dopamine system) [18], where dopamine modulates prolactin 
release [78]. 

Dopamine is synthesized from tyrosine by the rate-limiting enzyme TH, 
forming the intermediate dihydroxyphenylalanine (DOPA), which is subse-
quently converted to dopamine by the enzyme AAAD [45]. Newly synthe-
sized dopamine is transported into synaptic vesicles by the vesicular mono-
amine transporter 2 (VMAT2), and stored in these vesicles awaiting release 
[45, 105]. When released into the synaptic cleft, dopamine homeostasis is 
maintained through several mechanisms, one being uptake by the plasma-
membrane bound DAT [186]. MAO metabolizes cytosolic dopamine into 
DOPAC, which is the main metabolite in rat. MAO-A is the main dopamine-
degrading enzyme in rat, whereas MAO-B dominates in man [45, 193]. In 
the extracellular space, dopamine is metabolized by catechol-O-
methyltransferase (COMT) into HVA, which is the major metabolite in hu-
mans [45].  

Dopamine exerts its actions via two classes of G-protein coupled recep-
tors: D1-like and D2-like. The former consists of the dopamine D1 [56, 181, 
244, 272] and D5 [88, 243, 250, 262] receptors that are situated postsynapti-
cally to dopamine neurons. D1 and D5 are Gs-coupled and increase cAMP 
formation and DARPP-32 phosphorylation upon stimulation. The affinity for 
dopamine is in the micromolar range [45]. The dopamine D1-like receptors 
are distributed throughout the mesocorticolimbic and nigrostriatal terminal 
areas, subtype D1 being the dominating one [23, 56, 62, 79, 174, 223, 250, 
261]. The D2-like receptors mainly function as autoreceptors, slowing firing 
rate and inhibiting further dopamine synthesis and release, depending on 
receptor subtype and location [45]. Three distinct receptor subtypes have 
been cloned, namely the dopamine D2 [29, 42, 50, 86, 87, 182, 211, 241], 
D3 [239] and D4 [255] receptors. As opposed to the dopamine D1-like re-
ceptors, D2-like are Gi-coupled, and thereby decrease cAMP formation. 
These receptors also have higher affinity for dopamine than D1 and D5, and 
can be found on the soma, dendrites and terminals of dopamine neurons 
[45]. Dopamine D2-like receptors are also heteroreceptors, i.e. localized at 
axon terminals of non-dopaminergic neurons, postsynaptic to the dopamine 
neuron. The D2 subtype is widely distributed throughout the dopamine sys-
tem, present in both origin and terminal areas [20, 23, 39, 145, 163, 173, 
261]. D3 [21, 239] and D4 [255] have more restricted distributions.  

Dopamine and development of dependence 
The American Psychiatric Association and the World Health Organization 
have outlined diagnostic criteria for substance dependence, entitled Diagnos-
tic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) and 
International Statistical Classification of Diseases and Related Health Prob-
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lems (ICD-10), respectively. According to these protocols, substance de-
pendence is characterized by at least three of the following criteria being 
fulfilled in the last 12 months: tolerance, withdrawal symptoms, inability to 
cease drug consumption even for short periods of time, neglect of social and 
occupational activities, substantial time spent on obtaining, using and recov-
ering from the drug, and compulsive drug intake despite harmful effects 
[135].  

The role of dopamine in the development of dependence is heavily de-
bated in the literature, and several hypotheses have been presented. Dopa-
mine has received much attention since many drugs of abuse have the ability 
to directly or indirectly increase the release of dopamine in, primarily, the 
nucleus accumbens. Examples of such substances are amphetamine, cocaine 
and ethanol [11, 30, 31, 34, 59, 209, 229]. Initially dopamine was hypothe-
sized to solely mediate the hedonia (pleasure) when consuming the drug, or 
alternatively, that dopamine had the ability to relieve withdrawal symptoms 
(negative reinforcement) [264]. It soon came apparent that the simplicity of 
these explanations would not last. Based on both behavioural and pharma-
cological studies, other theories of dopamine’s role in the development of 
dependence have been presented since [14, 120]. These include associative 
reward-learning [58, 109], incentive salience, postulating that dopamine is 
necessary for “wanting”, but not “liking” the drug [214], and reward predic-
tion [225]. 

However, the neurobiological basis for the development and behavioural 
manifestation of drug dependence is complex, and involves several neurocir-
cuitries and transmitters [119, 120, 134]. These neurocircuitries are modu-
lated by monoamines, opioid peptides, amino acids and corticotropin-
releasing factor [135]. The extended amygdala is involved in positive and 
negative reinforcement [133]. The prefrontal cortex and basolateral amyg-
dala is important for craving [133, 134] and the striatal-pallidal-thalamic 
loop for the compulsive component of substance dependence [112]. Memory 
processing and associative learning involves the hippocampus [119]. The 
hypothalamic-pituitary-adrenal axis is important for stress-induced drug 
intake and relapse [138].  

Serotonin 
The serotonin system 
Serotonin is widely distributed throughout the central nervous system. Sero-
tonergic cell bodies can be found in the spinal cord, brain stem and raphe 
nuclei. From the raphe, neurons project to limbic areas, the neostriatum, 
cerebral cortex and cerebellum [46, 110, 149, 184, 240].  
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Serotonin is derived from dietary tryptophan, which is converted into 5-
hydroxytryptophan by tryptophan hydroxylase (TPH) [260, 271] and sequen-
tially converted to serotonin by AAAD [46]. Like dopamine, newly synthe-
sized serotonin is transported into synaptic vesicles by VMAT2 and is stored 
in, and released from these vesicles [46, 105]. When released, serotonin ho-
meostasis is maintained by reuptake into the terminal by the plasma mem-
brane bound carrier SERT (serotonin transporter) [46, 186]. Cytosolic sero-
tonin is metabolized by MAO-A to 5-HIAA [46, 259]. 

Seven families of serotonin receptors have been identified (5HT1-7) and 
several of these are further subdivided [9]. In general, 5HT1 receptors are 
negatively coupled to adenylate cyclase and are considered autoreceptors. 
5HT1A is found on somas and dentrites in the raphe nuclei, regulating firing 
rate, whereas the release modifing 5HT1B receptor is situated presynapti-
cally in e.g. the substantia nigra. 5HT1 receptors are also heteroreceptors, i.e. 
localized on axon terminals of non-serotonergic neurons, postsynaptic to the 
serotonin releasing neuron [9, 273]. 5HT2-7 receptors, on the other hand, are 
postsynaptic receptors. 5HT2A can be found in high quantity in cortical and 
limbic areas, as can the 5HT2C receptor, which is also abundant in the basal 
ganglia [9]. The 5HT3 receptor differs from the others by being the only 
ligand gated ion-channel, as opposed to the other families that are G-protein 
coupled. It is highly expressed in the brain stem but can also be detected in 
e.g. the hippocampus and amygdala [9]. 5HT4 can be found in the nigrostri-
atal and limbic systems [9, 95]. 5HT5 receptors are the least characterized, 
but seem to be widespread within the central nervous system [9, 67, 167]. 
The 5HT6 receptor has been detected in the limbic system [9, 218] and 
5HT7 expression is restricted to thalamic, hypothalamic and hippocampal 
areas [9, 231]. 5HT4-7 have only recently been cloned and characterized. 
Their functional significance remains to be evaluated in detail; however, it is 
presumed that they are Gs-coupled, postsynaptic receptors [9, 46]. 

Serotonin and aggression 
It is well known that serotonin is a potent modulator of mammalian aggres-
sive behaviours and serotonin deficiency has so far been hypothesized to 
underlie aggressive and impulsive behaviours [27, 85, 153, 162, 191]. This 
hypothesis was originally based on the findings that serotonin depletion by 
means of neurotoxins increase aggressive responses [257, 258] and that CSF 
levels of 5-HIAA were reduced in aggressive and violent humans [27, 85, 
153, 162]. Serotonin reuptake inhibitors suppress aggression in several spe-
cies (including humans) [41, 233] and SERT knockout mice display reduced 
aggression in behavioural paradigms [106, 108], together with markedly 
elevated brain tissue levels of serotonin [107, 121].  
The serotonin deficiency hypothesis has recently been challenged, though. 
Based on new pharmacological and molecular evidence this hypothesis has 
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to be partly revised. It is instead proposed that there is a positive correlation 
between normal offensive aggression and serotonin, whereas there is an in-
verse correlation between pathological violent aggression and serotonin ac-
tivity [55, 192]. MAO-A knockout mice, for instance, display enhanced ag-
gression together with increased brain levels of serotonin and marked de-
creases of monoamine metabolite levels [35, 69, 205, 232]. These effects are 
accompanied by a lower density of 5HT2A receptors [35], a dysfunction 
suggested to underlie impulsive behaviour in humans [189]. 5HT1A agonists 
attenuate aggressive responses in several species [54, 176, 178, 179], and 
animals bred for aggressive behaviour have reduced levels of the 5HT1A 
receptor in the central nervous system [206]. 5HT1B knockout mice are 
more aggressive than wildtype mice [22, 222] and 5HT1B agonists have 
been shown to reduce aggression and impulsivity in rodents [191, 192]. 
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Aims 

It has been hypothesized that abuse of supratherapeutic doses of AAS can 
lead to dependence and function as a gateway to abuse of other illicit drugs. 
This is supported by behavioural studies on animal models and psychiatric 
evaluations of human subjects. Alteration of dopamine function is indicated 
as a possible neurochemical basis for these behavioural effects. Additionally, 
AAS abusers are often reported to display increased irritability and aggres-
sion, and links between serotonin, androgens and aggression have been pre-
sented in the literature. However, the effects of supratherapeutic doses of 
AAS on the dopamine and serotonin systems are not yet fully evaluated. The 
specific aims of this thesis are to investigate: 

 
• Dopamine and DOPAC tissue levels in brain areas primarily in-

volved in drug dependence, after subchronic administration of nan-
drolone decanoate (15 mg/kg) to adult male Sprague-Dawley rats 
(Paper I). 

• The basal extracellular levels of dopamine, DOPAC and HVA in 
the nucleus accumbens, after subchronic administration of nandro-
lone decanoate (15 mg/kg) to adult male Sprague-Dawley rats (Pa-
per II). 

• The influence of nandrolone decanoate pre-exposure (15 mg/kg) on 
amphetamine-induced dopamine tissue levels and dopamine release 
in the nucleus accumbens of adult male Sprague-Dawley rats (Pa-
pers I and II). 

• The enzymatic activities of MAO-A and MAO-B in brain areas 
primarily involved in drug dependence and aggressive behaviour, 
after subchronic administration of nandrolone decanoate (3 or 15 
mg/kg) to adult male Sprague-Dawley rats (Paper III). 

• mRNA levels corresponding to dopamine synthesizing and metabo-
lizing enzymes, and dopamine transporter proteins (plasma mem-
brane bound and vesicular) in brain areas primarily involved in 
drug dependence, after subchronic administration of nandrolone 
decanoate (3 or 15 mg/kg) to adult male Sprague-Dawley rats (Pa-
pers III and IV) 

• mRNA levels corresponding to dopaminergic and serotonergic re-
ceptors in brain areas primarily involved in drug dependence and 
aggressive behaviour, after subchronic administration of nandro-
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lone decanoate (3 or 15 mg/kg) to adult male Sprague-Dawley rats 
(Paper IV). 

• The protein density of SERT in brain areas primarily involved in 
aggressive behaviour, after subchronic administration of nandro-
lone decanoate (3 or 15 mg/kg) to adult male Sprague-Dawley rats 
(Paper V). 
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Methods 

Below, general descriptions of the methods used in this thesis are given. For 
details on equipment, manufacturers and retailers, the author refers to the 
original papers. The same applies for statistical considerations and methods. 

The dose 
The differences, regarding experimental design, between existing studies of 
neurochemical changes after supratherapeutic AAS exposure, constitute type 
of steroid, dose (1-40 mg/kg), dose interval (1-7 days), duration of admini-
stration (1 day-6 weeks), route of administration (i.m. or s.c.) and time from 
last injection to euthanasia (24-72 h). We chose the doses 3 and 15 mg/kg 
nandrolone decanaote administered i.m. once daily for 14 days, correspond-
ing to one cycle of use during early and experienced AAS abuse respec-
tively, based on a one year follow-up study and a survey study of 500 AAS 
abusers [83, 197]. Nandrolone decanoate has a half-life of 5.4 days in rat and 
6 days in human when administered as an i.m. depot [253]. A single injec-
tion of 20 mg/kg of nandrolone decanoate to rats, gave rise to a plasma level 
of 2.6 μg/l after 4 days and nandrolone was still detectable in plasma 16 days 
after administration (1.3 μg/l) [141]. In humans, plasma levels peaked after 
24 hours following a single i.m. injection of 100 mg nandrolone decanoate, 
and remained on that level for 10 days [180]. 24 hours after the last injection 
of nandrolone decanoate administered in the papers presented in this thesis, 
the depot is calculated to containe 6 mg of nandrolone decanaote in the 3 
mg/kg group and 30 mg in the 15 mg/kg group, and thus still release nandro-
lone into the circulation [253].  

We consider the doses 3 and 15 mg/kg administered i.m. once daily for 14 
days to rats, to be equivalent of one cycle of human use during early and 
experienced AAS abuse respectively. These doses correspond to approxi-
mately 10 and 50 times the highest clinically recommended dose of nandro-
lone decanoate of 100-200 mg/week for anaemia, if presumed a 70 kg pa-
tient. 
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Animals 
All studies were performed on male Sprague-Dawley rats, ten weeks of age. 
The animals were housed three or four in each cage at an average tempera-
ture of 22°C and 60% humidity. The twelve-hour light/dark circle started at 
6 a.m. and food and water were provided ad libitum.  After being allowed to 
adapt to the new environment for 7-14 days, the rats were randomly divided 
into treatment groups. Nandrolone decanoate was administered as i.m. injec-
tions once daily for 14 days, whereas control groups were administered i.m. 
injections of vehicle (arachidis oleum) once daily for 14 days. In Papers I 
and II nandrolone decanoate was administered at a dose of 15 mg/kg and in 
Papers III, IV and V an additional treatment group receiving 3 mg/kg was 
added. Injections were given in the hind leg, alternating between left and 
right (injection volume 0.1 ml). The Animal Care and Ethical Committee in 
Uppsala, Sweden approved the experimental procedure. 

Paper I 
Of the four treatment groups in this study, two were administered nandro-
lone decanoate (15 mg/kg) and two received vehicle. On day 15, one vehicle 
treated and one nandrolone treated group received a single i.p. injection of 
amphetamine (5 mg/kg). The two remaining groups received saline as vehi-
cle. The animals were sacrificed by decapitation one hour after the am-
phetamine injection. The brains were rapidly removed for dissection. The 
frontal cortex, medial prefrontal cortex, nucleus accumbens, amygdala, cau-
date putamen, hypothalamus, hippocampus, and the periaqeductal grey were 
collected, put on dry ice and kept in Eppendorf tubes at –80°C, until pre-
pared for analysis.  

Paper II 
Two treatment groups were included in this study; one was administered 
nandrolone decanoate (15 mg/kg) and one vehicle. On day 15, animals were 
anaesthetized with isoflurane (4.5% mixed with air at ca 550 ml/min) and 
mounted in a stereotaxic frame. During surgery the amount of isoflurane was 
decreased to 3.5%. An incision was made over the scull midline, uncovering 
the bone. A hole was drilled in the scull and the dura was carefully punctu-
ated using a syringe. After insertion of the microdialysis probe, the mainte-
nance dose of isoflurane was kept between 2.2 and 2.4% depending on the 
individual animal’s reaction to pinching between the toes with a pair of 
tweezers. The isoflurane dose was kept to the lowest level were no reaction 
could be detected by the pinch test.  
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Papers III and IV 
24 hours after the last injection of nandrolone decanoate, animals were sacri-
ficed by decapitation and the brains were rapidly removed and dissected 
using a rat brain matrix. The prefrontal cortex, caudate putamen, nucleus 
accumbens, hippocampus, hypothalamus, amygdala, ventral tegmental area 
and the substantia nigra were collected. The parts from one hemisphere were 
put on dry ice, and transferred to Eppendorf tubes when frozen. The parts 
from the other hemisphere were immersed in RNAlater allowing the solution 
to infiltrate the tissue for 1 hour in room temperature. The ventral tegmental 
area and substantia nigra were too small to be divided and were stored in 
RNAlater only. All samples were stored in –80°C until prepared for analysis. 

Paper V 
On day 15, animals were sacrificed by decapitation and the brains were rap-
idly removed, frozen in 2-methyl butane (average temperature –25°C) and 
stored in –80°C until further prepared.  

The whole brains were mounted and sliced in a cryostat at –19°C into 14 
μm coronal sections and thaw mounted on polysine slides. Sections were 
collected at +4.2, +1.2, –0.92, –2.8 and –5.8 mm from bregma [198]. The 
slides were stored in –80°C until used for in vitro-autoradiography. 

Extraction of monoamines from wet tissue (Paper I) 
The brain tissues were homogenized by sonication in 500 μl of a chilled 
mixture of 0.1 M perchloric acid with 2 mg/ml ethylenedinitrilotetraacetic 
acid disodium salt dihydrate (EDTA). The tissues and homogenates were 
kept on ice. The homogenates were then centrifuged for 15 minutes at 12 
000 x g in 4°C. The supernatants were collected in new Eppendorf tubes and 
stored at –80°C until analyzed.  

HPLC with electrochemical detection (Papers I and II) 
The levels of dopamine, DOPAC and HVA were measured using a reversed-
phase high performance liquid chromatography (HPLC) system and electro-
chemical detection (EC). The system consisted of a ReproSil-Pur C18-AQ, 
150x3 mm, 5 μm column, an injector with a 150 μl loop, an analytical cell 
set at an oxidation potential of 350 mV and a guard cell set to 400 mV. Iso-
cratic eluation was applied at a flow rate of 0.8 ml/min and the chroma-
tograms were obtained and analysed with a chromatographic software. 

The following mobile phase was used in Paper I: 55 mM sodium acetate 
trihydrate, 180 μM 1-octansulphonic acid sodium salt, 10 μM EDTA and 
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10% methanol dissolved in purified water. pH was set to 4 by addition of 
70% acetic acid and the buffer was then filtered (0.22 μm) and degassed 
with helium [151]. In Paper II the concentration of 1-octansulphonic acid 
sodium salt was increased to 520 μM and the methanol content to 12%. 

The sample volume injected ranged from 20 to 40 μl and the amounts of 
the monoamines were determined using the external standard method. Cali-
bration curves were created with pure dopamine, DOPAC and HVA dis-
solved and diluted in 0.1 M perchloric acid containing 2 mg/ml EDTA (Pa-
per I) or in 0.1 M perchloric acid containing 0.5 mg/ml glutathione (Paper 
II). The chemicals were all of analytical grade.  

Microdialysis (Paper II) 
A microdialysis probe with an outer diameter of 0.6 mm, a membrane length 
of 2 mm and a 15 kDa cut off was inserted into the nucleus accumbens shell 
(coordinates: anterior +2.2 mm, lateral +1.4 mm with bregma as reference 
and –7.5 mm ventral to the brain surface) [198]. A sterile solution of sodium 
chloride (147 mM Na+), calcium chloride (1.2 mM Ca2+), magnesium chlo-
ride (0.9 mM Mg2+) and potassium chloride (2.7 mM K+) was perfusing the 
probe at 2 μl/min. Samples were collected with 15-minute intervals in tubes 
kept cool (4°C). Samples collected during the first 105 minutes after surgery 
were discarded before beginning baseline monitoring for one hour. An i.p. 
injection of 5 mg/kg amphetamine was administered to every other animal 
and saline to the once remaining. Dialysate was collected for an additional 
three hours. Body temperature was maintained at 38°C during the procedure. 
All fractions contained 10 μl of 0.1 M perchloric acid with glutathione (0.5 
mg/ml) and were stored at –80°C until further analyzed.  

Radiometric assay determining the enzymatic activity of 
MAO (Paper III) 
The enzyme activity was determined with a radiometric assay described in 
detail elsewhere, with slight modifications [101]. In short, the brain tissues 
were homogenized by sonication in 0.01 M sodium phosphate buffer (pH 
7.4) and diluted to 2.5% of the wet weight. The homogenates were first pre-
incubated for 20 minutes with an enzyme inhibitor in glass tubes. 100 nM 
deprenyl, also known as selegiline, was added to inhibit MAO-B, and 100 
nM clorgyline to inhibit MAO-A. After the pre-incubation, the reaction was 
terminated by addition of 3 M HCl in the samples for blank activity, while 
substrates were added to the samples for total activity. 0.1 nM 14C-serotonin 
(1.0 μCi/ml) was used as a substrate for MAO-A, and 0.05 nM 14C-2-
phenylethylamine (0.5 μCi/ml) as a substrate for MAO-B. The samples for 
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MAO-A activity were incubated for 20 minutes and the samples for MAO-B 
activity for 5 minutes, in a water bath (37°C). The reaction was terminated 
by acidification. The radioactive compound was extracted with a water satu-
rated mixture of toluene:ethylacetate (1:1 vol/vol), and the organic phase 
was transferred to scintillation vials and mixed with scintillation fluid. Stan-
dard samples were prepared and all samples were then measured for 5 min-
utes in a liquid scintillation apparatus. The remaining homogenates were 
used for protein determination [157]. Enzyme activities were then calculated 
as nmol/minute/mg protein. All samples were made in triplicates.  

Quantitative real-time polymerase chain reaction 
(qPCR) (Papers III and IV) 
Primers 
Forward and reverse primers, together with accession numbers, for both 
housekeeping genes (HKGs) and genes of interest (GOIs) are presented in 
Papers III and IV. The Basic Local Alignment Search Tool (BLAST) from 
the National Center for Biotechnology Information (NCBI) was used to ver-
ify that no homologies were shared between amplified sequences and other 
cDNA in the database. Primer efficiencies ranged between 80 and 100%. 

RNA isolation 
Total RNA was isolated from individual brain tissue samples by phenol-
chloroform extraction. Tissue samples were homogenized in 500 μl TRIzol® 
by ultrasonication. 100 μl chloroform was added and the homogenate was 
centrifuged at 12 000 x g for 15 minutes (4°C). The supernatant was trans-
ferred to a new tube and RNA was precipitated in isopropanol. The pellet 
was washed twice with 75% ethanol, thereafter air-dried and dissolved in 
DNAase buffer. DNAase treatment was performed at 37°C for 2 hours in 
order to remove DNA contamination, followed by inactivation of the 
DNAase at 75°C for 15 minutes. RNA purity was validated by PCR and gel-
electrophoreses using primers for a 300 bp cDNA of GAPDH (se below 
under headline “cDNA synthesis”). RNA concentration was determined 
using a NanoDrop ND-1000 Spectrophotometer.  

cDNA synthesis 
cDNA synthesis was performed with M-MLV reverse transcriptase accord-
ing to the manufacturer’s protocol, using random hexamer primers. The 
cDNA synthesis was validated by PCR and gel-electrophoresis. PCR was 
performed in a final reaction volume of 10 μl containing 20 mM Tris-HCl 
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(pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 0.025% Tween, 0.2 mM dNTP, 1 
pmol/μl of forward and reverse primers for a 300 bp cDNA of GAPDH and 
3.4 U/μl Taq DNA polymerase. Annealing temperature was 58°C and 35 
cycles were performed. Genomic DNA was used as positive control and 
water as negative. Product formation was visualized with gel-
electrophoresis. Subsequent to PCR, samples were mixed with 6x DNA 
loading dye and applied to a 2% agarose gel made with TAE buffer and with 
addition of ethidium bromide (0.5 μg/ml). A 100 bp DNA ladder was ap-
plied to the first and last well of each row. Separation was run on 130 V for 
20 minutes. Finally, the gel was photographed on a UV light table. 

Quantitative real-time polymerase chain reaction (qPCR) 
qPCR was performed in a final reaction volume of 25 μl containing 20 mM 
Tris-HCl (pH 8.4), 50 mM KCl, 4 mM MgCl2, 0.2 mM dNTP, SYBR Green 
1:50 000, 10 nM fluoroscein, 0.8 pmol/μl each of reverse and forward 
primer, 0.02 U/μl Taq DNA polymerase. 50 cycles were performed. Anneal-
ing temperatures were 62°C for all GOIs except MAO-A for which both 
62°C and 55°C were tried. The annealing temperature used for the HKGs 
was 60°C. Melting point curves were included to confirm that only one 
product was formed. Each assay included individual samples in duplicate 
and a negative control in triplicate.  

qPCR data where analysed accordingly: the starting quantity means were 
normalized to the maximum sample value of each plate, resulting in values 
falling between 0 and 1. For the nucleus accumbens, caudate putamen, ven-
tral tegmental area, hippocampus and prefrontal cortex a standard curve of 
four dilution points in triplicates was included, and for the hypothalamus, 
amygdala and substantia nigra the sample values were corrected for primer 
efficiency using the LinRegPCR protocol [208]. Sample values were then 
divided by the normalization factors created according to the 2 -ΔΔCt method 
[155]. The most stable set of HKGs out of seven tested in each tissue was 
selected using the GeNorm protocol [256], discussed in [150]. The HKGs 
included in the normalization factors were, for the prefrontal cortex: ACT, 
H3b, TUB; nucleus accumbens: CYCLO, GAPDH, SDCA; caudate puta-
men: H3b, RPL19, TUB; hippocampus: ACT, H3b, RPL19; hypothalamus: 
ACT, CYCLO, TUB; amygdala: ACT, GAPDH, RPL19; ventral tegmental 
area: CYCLO, H3b, RPL19; and substantia nigra: GAPDH, H3b, RPL19. 
See page 7 for abbreviations. 

In vitro-autoradiography (Paper V) 
The tissue sections were labelled with [3H]-citalopram as described previ-
ously [40, 64], with slight modifications. In short, the pre-incubation of 

 27



slide-mounted sections was performed in 50 mM Tris buffer (pH 7.4), con-
taining 120 mM NaCl and 5 mM KCl for 15 minutes in room temperature. 
Sections were then incubated with 1 nM [3H]-citalopram (83 Ci/mmol) for 
120 minutes in room temperature in buffer with the same composition as for 
pre-incubation. 10 μM fluoxetine was used to determine unspecific binding. 
Washing was performed 4 x 2 minutes in ice-cold Tris buffer and the slides 
were then quickly rinsed in ice-cold water. After the washing procedure, 
sections were dried with a stream of cool air from a table fan for one hour 
and then left in room temperature overnight. When dry, the slides and Hy-
perfilms were placed in X-ray cassettes and co-exposed with plastic stan-
dards (3-110 nCi/mg) at 4 °C for 35 days. The films were manually devel-
oped and the autoradiograms were digitized using a photo scanner. The opti-
cal densities were converted to fmol/mg wet weight based on the co-exposed 
standards using NIH Image software. Brain regions were identified with a rat 
brain atlas [198]. 
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Results and discussion 

Effects on dopamine  
Dopamine levels (Papers I and II) 

Of the eight brain regions analysed for dopamine and DOPAC tissue con-
tent after 14 days of nandrolone decanoate pre-treatment (15 mg/kg/day) and 
a subsequent amphetamine challenge (5 mg/kg), the hypothalamus and hip-
pocampus were significantly affected. The effect of amphetamine on the 
DOPAC/dopamine ratios in the hippocampus and hypothalamus was abol-
ished by the nandrolone pre-exposure (Figure 1). The hypothalamic DOPAC 
level was likewise affected. Nandrolone decanoate alone also had the ability 
to decrease the DOPAC tissue content in the hypothalamus compared to 
vehicle, as well as the DOPAC/dopamine ratio (Figure 1). No significant 
changes were observed in the amygdala, frontal cortex, nucleus accumbens 
or periaqeductal grey (Paper I). In the following study, animals were sub-
jected to the same treatment as in Paper I. Dopamine release in the nucleus 
accumbens was evaluated before and during the amphetamine challenge. 
Nandrolone decanoate pre-exposure caused a decrease in baseline levels of 
extracellular DOPAC and HVA, however left the baseline level of dopamine 
unchanged, in comparison to controls (Figure 2). The differences in metabo-
lite levels lasted one hour after the amphetamine administration (Paper II). 

The ability of nandrolone pre-exposure to prevent or attenuate the effect 
of amphetamine is in congruence with several animal behavioural studies. 
Self-administration of ethanol increased [114] and the ethanol-induced seda-
tion was prevented [152] in rats pre-treated with nandrolone decanoate (15 
mg/kg/day for 14 days). Attenuated anxiolytic and rewarding effects of THC 
have been shown in mice after receiving the same dose of nandrolone de-
canoate as in the before mentioned studies on rats, whereas withdrawal 
symptoms increased. Development of tolerance was unaffected [36]. Attenu-
ated morphine-induced CPP was also observed in mice, together with en-
hanced withdrawal reaction. Tolerance and sensitization remained unaf-
fected [37]. Furthermore, a combined behavioural and microdialysis study 
has been published recently, where the behavioural and locomotor responses 
to both amphetamine and MDMA were attenuated or prevented following 
nandrolone pre-exposure (5 or 20 mg/kg 5 times every 48 hours). These 
effects were accompanied by attenuated dopamine release in the nucleus 
accumbens, and in the case of the MDMA, the extracellular metabolite levels 
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were increased. However, no intrinsic effect of nandrolone decanoate itself 
could be detected [140]. Also, the acute effect of testosterone on dopamine 
release has recently been tested in male hamsters. As expected, s.c admini-
stration of neither 7.5 nor 37.5 mg/kg of testosterone affected dopamine 
release in the nucleus accumbens within 4 hours from administration. How-
ever, acute administration of testosterone i.c.v. (2 μg every 6 minutes for 4 
hours) decreased dopamine release in the nucleus accumbens. Following 14 
days of this dosing regimen the effect on dopamine was however no longer 
present [251]. Although the microdialysis results published so far points 
towards decreased dopamine release in the nucleus accumbens after nandro-
lone exposure, there are still issues that have to be addressed in future stud-
ies. Discrepancies can most likely be attributed to differences in experimen-
tal designs, such as dose, route of administration, duration of the experiment 
and choice of animal model. 

 

 
Figure 1. Tissue content of dopamine and DOPAC, and the ratio between them, in 
the hypothalamus (A) and hippocampus (B) after 14 days of nandrolone decanoate 
administration (15 mg/kg) to male rats, followed by an amphetamine challenge (5 
mg/kg). The data is presented as mean ± SEM and was statistically analysed with 
one-way ANOVA and Fisher’s PLSD. *p<0.05 **p<0.01 ***p<0.001. Abbrevia-
tions: AMPH amphetamine; DA dopamine; DOPAC dihydroxyphenyl acetic acid; 
ND nandrolone decanoate; VEH vehicle. 
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Figure 2. Microdialysate content of dopamine (A), DOPAC (B) and HVA (C) after 
administration of nandrolone decanoate (15 mg/kg/day for 14 days) and a subse-
quent amphetamine challenge (5 mg/kg). Dialysate contents are given as mean ± 
SEM in the left panel (dopamine baseline values ranged between 0.06 and 0.10 nM). 
AUC values and significance levels are given in the right panel. AUC values were 
statistically evaluated using Student’s t-test. *p<0.05 **p<0.01. Abbreviations: 
AMPH amphetamine; AUC area under the curve; DOPAC dihydroxyphenyl acetic 
acid; HVA homovanillic acid; ND nandrolone decanoate; VEH vehicle. 

The tissue content of dopamine and metabolites is rather a blunt tool in 
evaluating dopamine activity compared to microdialysis, however fully ade-
quate as a screening method. Total tissue content of dopamine, DOPAC and 
HVA after AAS administration have been presented in a scarce number of 
studies, were Paper I is the only study investigating the impact of an AAS on 
the effect of a second drug. In accordance with our study, Lindqvist et al. 
found no effects on the dopaminergic system in the regions investigated 
(hypothalamus not included), by nandrolone decanoate alone administered as 
in Paper I [152]. Kurling et al. reported an increased DOPAC/dopamine 
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ratio in the hypothalamus, after the slightly different dosing regimen 5 
mg/kg of nandrolone decanoate 5 days per week for 2 weeks, together with 
elevated levels of DOPAC in the cerebral cortex (5 and 20 mg/kg) [139]. In 
a study by Thiblin et al. different AASs were administered once weekly for 
6 weeks at a dose of 5 mg/kg. Dopamine parameters were then investigated 
in the striatum only, where testosterone, nandrolone, methandrostenolone 
and oxymetholone increased the tissue content of DOPAC and HVA. The 
former three steroids also increased metabolite/dopamine ratio and the latter 
increased dopamine [247]. 

In early studies of dopamine tissue content after AAS administration, ef-
fects have been modest and inconclusive. The reasons are most likely due to 
diverse dosing regimens and methodological limitations. The microdialysis 
studies published recently point towards AASs reducing dopamine release in 
the nucleus accumbens. In Paper II, a dysfunctional dopamine activity is 
reflected by a compensatory decrease of dopamine metabolite levels, and 
attenuated psychostimulant-induced dopamine release after subchronic AAS 
administration. 

Dopamine synthesis and metabolism (Papers III and IV) 
The decreased DOPAC and HVA levels (Paper II), and metabolite/dopamine 
ratios (Paper I) observed after subchronic administration of supratherapeutic 
doses of AASs, might be due to altered dopamine synthesis, metabolism, 
reuptake, release rate, or any combination of these events. So far, there are 
no evidence for nandrolone decanoate having the ability to affect dopamine 
synthesis. The mRNA contents of TH and AAAD in the substantia nigra and 
ventral tegmental area, have been shown not to change in the rat brain after 
repeated nandrolone decanoate administration, neither using in situ-
hybridization [127] nor qPCR (Paper IV). Additionally, the accumulation of 
L-DOPA in the striatum was found to be unaffected in the study by Thiblin 
et al., although not fully comparable since dosing regimens differed signifi-
cantly [247]. However, studies of TH and AAAD activities, and protein lev-
els, as well as TH phosphorylation needs to be performed before definite 
conclusions can be drawn in this matter. 

The decreased extracellular baseline levels of DOPAC and HVA in Paper 
II, indicates reduced metabolism of dopamine by MAO and/or COMT. 
Therefore, MAO-A and -B activities, together with MAO-A, -B and COMT 
mRNA expression levels were investigated (Paper III). Nandrolone de-
canoate at a daily dose of 3 mg/kg for 14 days, significantly reduced the 
MAO-A and the MAO-B activities in the caudate putamen, compared to 
controls (Figure 3). The enzyme activities, in the group receiving 15 mg/kg, 
were not different from the control group. Biphasic dose-response relation-
ships have been described earlier in the literature for several transmitters and 
hormones, including androgens [32] and estrogens [33]. The gene expression 
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level of MAO-B was also significantly increased in the substantia nigra at 
the dose 3 mg/kg. No significant changes were found in the prefrontal cor-
tex, nucleus accumbens, hippocampus, hypothalamus, or the ventral tegmen-
tal area. COMT mRNA was not affected by the nandrolone decanoate ad-
ministration (Paper III). There are no previous studies of COMT and only 
one on MAO activities in connection to supratherapeutic doses of AAS. 
MAO-A activity was increased by oxymetholone, but again, the dosing 
regimen differed greatly from that in Paper II, and only the hypothalamus 
was investigated [247]. 
 

 
Figure 3. Enzymatic activity of MAO-A and -B in male rat brain after 14 days of 
daily nandrolone decanoate administration. Values are expressed as mean ± SEM 
and were statistically analysed with one-way ANOVA and Newman-Keuls post-hoc 
test. *p<0.05 **p<0.01 (only comparisons against the vehicle treated group are 
displayed). Abbreviations: Amy amygdala; CPu caudate putamen; HC hippocam-
pus; Nacc nucleus accumbens; ND3 nandrolone decanoate 3 mg/kg; ND15 nandro-
lone decanoate 15 mg/kg; MAO monoamine oxidase; PFC prefrontal cortex; VEH 
vehicle. 

Given the reduced extracellular levels of DOPAC and HVA shown in Pa-
per II, reduced MAO activities were expected in the nucleus accumbens. 
There is a tendency towards a reduction in the nucleus accumbens, however 
not statistically significant. The decrease of both MAO activities in the cau-
date putamen of the group receiving 3 mg/kg of nandrolone decanoate, are 
interesting since this region, like the nucleus accumbens, plays an important 
role in the development and behavioural manifestations of drug dependence 
[68]. Ex vivo experiments, using MAO-A inhibitors, have showen that rat 
striatal HVA decrease almost linearly even at a MAO-A inhibition of less 
than 20%. Interestingly, consistent with the data in Paper II the dopamine 
level was not affected, possibly due to compensatory mechanisms [259]. The 
increased gene transcript level of MAO-B in the substantia nigra, indicated 
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in this study, might be a compensatory response to the reduced MAO-B ac-
tivity observed in the caudate putamen, since the cellbodies originating in 
the substantia nigra extensively innervate the caudate putamen. The lack of 
linearity between mRNA level and protein level has been shown earlier in 
studies of rat brain MAO-B [96, 237]. 

Taken together, the decreased extracellular levels of DOPAC and HVA 
observed in the nucleus accumbens after nandrolone decanoate administra-
tion are most likely due to reduced metabolism of dopamine by MAO. 

Dopamine transport (Paper IV) 
One of the most important ways of regulating monoamine action and main-
taining homeostasis in the extracellular space, is through reuptake mecha-
nisms. Previously, the density of the DAT has been shown to increase in the 
caudate putamen, by 1, 5 and 15 mg/kg of nandrolone decanoate adminis-
tered daily for 14 days [128]. The same results were obtained in a PET study 
on live animals receiving the highest dose [122]. If this reflects an increase 
of dopamine release in the initial administration period, or an upregulation 
directly induced by the steroid, independent of dopamine function, remains 
to be evaluated. As mentioned above, acute i.c.v. administration of testoster-
one to hamsters decreased dopamine release in the nucleus accumbens, indi-
cating that initially increased dopamine release by nandrolone is a less likely 
explanation to the upregulated DAT density after subchronic nandrolone 
decanoate administration [251]. The mRNA contents of DAT and VMAT2 
were found unaffected in the regions investigated in Paper IV. Thus, the 
increased protein density might be independent of transcriptional activity, or 
the temporal onset of mRNA regulation differs from that of translation. The 
effect of supratherapeutic doses of AAS on VMAT2 has not been previously 
examined. However, testosterone replacement in castrated mice has been 
shown to inhibit VMAT2 function in striatal tissue slices compared to un-
treated castrated animals [230].  

Dopamine receptors (Paper IV) 
It has previously been reported that supratherapeutic doses of nandrolone 
decanoate affect dopamine receptors on a translational level in several brain 
areas. However, on transcriptional level the reports are scarce. Two weeks of 
AAS administration caused alterations regarding both dopamine D1 and D2 
receptors [126, 127]. The levels of dopamine D2 receptor transcript and D2-
like protein increased, together with decreased levels of the dopamine D1 
receptor transcript and D1-like protein, in the striatum, shown by in situ-
hybridisation and autoradiography [126, 127]. These alterations resemble 
those observed following lesions of the nigrostriatal dopamine pathway [84] 
and might thus reflect reduced dopamine activity as a result of subchronic 
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AAS administration. Reduced dopamine modulation of striatopallidal out-
puts results in diminished behavioural activity [84, 234, 245] and could con-
tribute to explain the attenuated effects of amphetamine after nandrolone 
pre-exposure, as shown in Papers I, II and [139]. In Paper IV, the gene tran-
script content of the dopamine receptor family was investigated in rat brain 
with qPCR. This method offers the advantages of highly specific primers, 
low limit of detection and the ability to analyze a large number of transcripts 
in the same individuals. This is the first time the dopamine D3, D4 and D5 
receptors are analyzed in connection to AAS abuse. 

Two weeks of daily nandrolone decanoate administration significantly 
elevated the dopamine D1 receptor mRNA expression in the amygdala at a 
dose of 15 mg/kg, but decreased it in the hippocampus at both doses of 3 and 
15 mg/kg, respectively. The dopamine D4 receptor mRNA expression was 
significantly increased in the nucleus accumbens by nandrolone decanoate at 
a dose of 3 mg/kg/day for 14 days, both compared to controls and the group 
of rats administered the highest dose of 15 mg/kg/day. No statistically sig-
nificant changes were detected in the prefrontal cortex, ventral tegmental 
area or substantia nigra. The hypothalamus and caudate putamen were also 
analyzed but in the end excluded from Paper IV since results from too few 
individuals were obtained to create proper basic data for a statistical evalua-
tion. No significant alterations were found in those two regions. 

This is the first time the dopamine D4 receptor is investigated in connec-
tion to AAS abuse. The dopamine D4 receptor has been implicated in the 
pathophysiology of ADHD [71], and behaviours associated with schizophre-
nia and substance abuse, such as novelty seeking [63] and impaired impulse 
control [5]. Dopamine D4 receptor antagonists display antipsychotic effects 
[19] and several atypical neuroleptics have high affinity for the dopamine D4 
receptor [227]. D4 receptor knockout mice display decreased basal levels of 
dopamine, DOPAC and HVA in the striatum, as measured by microdialysis 
[249], and unaltered or even increased sensitivity to ethanol, cocaine and 
methamphetamine, compared to wild type mice [219]. This is consistent 
with the results of increased dopamine D4 transcription in the present study 
and decreased sensitivity to other drugs, shown repeatedly after AAS treat-
ment [15, 16, 36, 37, 140, 152]. However, chronic AAS administration also 
decreases extracellular levels of dopamine, DOPAC and HVA [15, 140], not 
in concordance with the dopamine D4 knockout phenotype. If the dopamine 
D4 receptor is involved in the mechanisms behind AAS-induced behaviours 
remain to be evaluated. 

The transcription level of the dopamine D1 receptor was increased in the 
amygdala after administration of 15 mg/kg of nandrolone decanoate. The 
amygdala is innervated by the ventral tegmental area, and is together with 
the nucleus accumbens involved in stimulus-reward learning, as part of the 
extended amygdala [58, 133]. In the basolateral amygdala, dopamine D1 
receptor activation contributes to acquisition of cocaine-cue association [12] 
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and drug seeking behaviour [226]. Thus, the increased transcription of the 
dopamine D1 receptor in the amygdala might contribute to explain the poly-
drug use often seen among AAS abusers [4, 83, 117, 124, 187, 188, 201, 
248]. In the hippocampus, on the other hand, the transcription level of the 
dopamine D1 receptor was decreased by both doses of nandrolone de-
canoate. In addition to glutamate, dopamine has the ability to modulate hip-
pocampal plasticity, in the form of long-term potentiation (LTP) and long-
term depression (LTD), particularly during novelty detection [154]. D1/D5 
antagonists impair late-phase LTP [146] and long-term memory [190] 
whereas D1/D5 agonists facilitate late-phase LTP [148]. There are indica-
tions of cognitive impairment due to testosterone administration in humans 
[51, 52]. A dose of 15 mg/kg/day of nandrolone decanoate for 6 weeks im-
paired memory function in rats [137]. However, spatial memory and hippo-
campal plasticity have been found unaffected in rodent studies using 5 
mg/kg/day of a steroid cocktail consisting of testosterone, nandrolone and 
boldenone, for either 4 or 12 weeks [44, 238]. The possible effects of AAS 
on learning and memory need to be further evaluated. 

Why these two limbic areas display opposing effects on dopamine D1 re-
ceptor transcription after nandrolone decanoate administration, would be 
interesting to explore further. It has been suggested though, that D1 receptor 
activation differentially affect the excitatory responses of hippocampal and 
amygdaloid afferents in the nucleus accumbens. D1 agonists attenuate 
amygdala-evoked responses, whereas hippocampal evoked responses show a 
bimodal form of modulation by D1 stimulation. The authors suggest that this 
property of the hippocampal afferents have a functional importance in gating 
inputs during exploration, and might thus in the end affect memory process-
ing [38]. The qPCR did not detect changes in mRNA levels shown earlier in 
the nucleus accumbens and ventral tegmetal area by in situ-hybridisation. 
These discrepancies are most likely due to methodological differences such 
as higher anatomical resolution in in situ-hybridisation and the use of differ-
ent standard methods.  

Taken together, an increasing body of evidence points towards AAS in-
duced dopamine dysregulation in limbic areas of the rat brain, possibly ex-
plaining many of the behaviours reported in human AAS abusers. These 
include development of drug dependence, both to AAS and other drugs, and 
impulsivity. 

Effects on serotonin  
Serotonin reuptake (Paper V) 
Both 3 and 15 mg/kg/day of nandrolone decanoate administration for 14 
days could dose-dependently increase the SERT protein in the prefrontal and 
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orbital cortices, caudate putamen, lateral preoptic area and medial division of 
bed nucleus of the stria terminalis. The density of the serotonin transporter 
was elevated by 15 mg/kg/day of nandrolone decanoate only, in the follow-
ing regions: prelimbic and secondary motor cortices, lateral septal nucleus, 
olfactory tubercle, lateral globus pallidus, CA1 field of the hippocampus 
(radiatum and oriens layers), zona incerta, dorsomedial hypothalamic nu-
cleus, lateral amygdaloid nucleus, paraventricular and laterodorsal thalamic 
nuclei, substantia nigra pars reticulata, periaqueductal grey and the superior 
colliculus (Paper V).  

Electrical stimulation of the hypothalamus elicits attack behaviour in both 
rats and cats, whereas lesions suppress it [89, 233]. More precisely, the rat 
“hypothalamus aggression area” consists of the ventrolateral part of the ven-
tromedial hypothalamus and adjacent areas [142]. Interestingly, this part of 
the hypothalamus projects to several of the areas in the rat brain, in which 
we have demonstrated increased SERT protein density after subchronic nan-
drolone decanoate administration, e.g. the lateral septum, lateral preoptic 
area, bed nucleus stria terminalis, zona incerta, dorsomedial hypothalamus, 
lateral amygdala, paraventricular thalamic nucleus and periaqueductal grey 
[215].  

Increased density of the SERT is most likely resulting in increased sero-
tonin reuptake and thereby a reduction of extracellular serotonin levels and 
serotonin function. It has repeatedly been shown that SERT knockout mice 
and rats have elevated brain levels of serotonin [107, 121] and display at-
tenuated aggression in resident-intruder tests [106, 108]. This is consistent 
with the serotonin deficiency hypothesis of aggression, which is primarily 
based on the decreased levels of the serotonin metabolite 5-HIAA in CSF of 
impulsive and violent individuals [103, 153], and that serotonin depletion 
facilitates these behaviours in several mammalian species [191, 233, 257, 
258]. In pharmacological studies, suppression of aggressive behaviours has 
been observed after administration of serotonin agonists or reuptake block-
ers. There are also polymorphisms in the SERT gene that have been associ-
ated with affective disorders [98, 147]. 

The increased protein density of the SERT might lead to decreased sero-
tonin function. This result might contribute to explain the impulsive and 
aggressive behaviours reported in connection to AAS abuse. 

Serotonin metabolism (Paper III) 
As shown in Paper III, nandrolone decanoate at a dose of 15 mg/kg de-
creased the enzyme activity of MAO-A and -B in the amygdala (Figure 3). 
MAO-A knockout mice deviate from the serotonin deficiency hypothesis of 
aggression by displaying increased aggressive behaviour accompanied by 
elevated brain serotonin levels [35, 205, 207]. Some have tried to explain 
this discrepancy by suggesting a negative correlation between serotonin and 
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pathological violent aggression and a positive correlation with “normal” 
aggression [147, 191]. There is also evidence of differential roles for sero-
tonin in the different phases of aggressive behaviour (anticipation, perform-
ance and termination) [74, 254].  

The increased serotonin levels during foetal life observed in MAO-A 
knockout mice causes a reduction in density of serotonergic fibres [35]. In-
terestingly, adolescent hamsters treated with AASs displayed increased of-
fensive aggression together with a reduced number of serotonin fibres in the 
amygdala and the hypothalamus, detectable already after 7 days of AAS 
exposure [90, 92]. The MAO-A promoter contains glucocorticoid/androgen 
response elements with an enhancing effect on enzyme expression. Gluco-
corticoids have a stronger effect on enzyme expression and activity com-
pared to androgens [194]. Thus, the net result of increased androgen levels 
competing for the promoter, might be a reduced expression of the enzyme 
when androgens dominate over glucocorticoids [236]. The finding of re-
duced MAO-A activity in the amygdala (Paper III) might thus also contrib-
ute to explain AAS-induced aggressive behaviour.  

Serotonin receptors (Paper IV) 
There are several reports supporting AAS induced aggression due to sero-
tonin receptor alterations in the hypothalamus and amygdala. In steroid 
treated hamsters, aggressive behaviours have been elicited by AASs, accom-
panied by decreased density of 5HT1A receptors in the anterior hypothala-
mus [213], and 5HT1B receptors in the anterior and ventrolateral hypo-
thalamus, and the central and medial amygdaloid nuclei [91]. Either a 
5HT1A or a 5HT1B receptor agonist could reverse the AAS induced aggres-
sion [91, 213], consistent with earlier behavioural studies of aggression and 
impulsivity [54, 176, 178, 179, 235]. The 5HT1B receptor density has also 
been shown to decrease in the hippocampus of male rats subjected to 14 days 
of nandrolone decanoate administration [125].  

The 5HT2A receptor in the nucleus accumbens showed a trend towards 
an increase, however not reaching statistical significance (Paper IV). Previ-
ously, two weeks of nandrolone decanoate administration to male Sprague-
Dawley rats has been shown to increase 5HT2 receptor densities in the nu-
cleus accumbens shell (at 1, 5 and 15 mg/kg) and the ventromedial hypo-
thalamus (at 1 and 5 mg/kg) using in vitro-autoradiography [125]. Testoster-
one replacement in castrated male rats has also been shown to increase the 
5HT2A receptor mRNA content in the ventromedial hypothalamus [270] and 
dorsal raphe nucleus [75]. The 5HT2 receptor density was decreased in the 
frontal cortex, hippocampus and amygdala [125]. No corresponding altera-
tions in mRNA levels of 5HT2 receptors could be detected with qPCR in this 
study. Differences between mRNA and protein data can sometimes be ex-
plained by posttranslational processing, independent of gene transcription. 
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The lack of linearity between mRNA level and protein level in the serotonin 
system has been reported earlier, e.g. for the SERT in the macaque brain 
following ovarian steroid treatment [158, 237]. Also, the temporal onset of 
mRNA regulation might be different from protein regulation. 

It has been difficult to establish a uniform pattern of AASs’ effects on rat 
brain serotonin, possibly due to differences in study designs [139, 152, 247]. 
However, androgens have been shown to both increase aggression and to 
modulate serotonin induced suppression of aggressive behaviour. For exam-
ple, testosterone induced aggression is facilitated if serotonin lesions have 
been performed prior to the testosterone administration [118]. It has also 
been suggested that aggressive behaviour is dependent upon the conversion 
of testosterone to estradiol by aromatase, present in the brain. For instance, 
5HT1A and 5HT1B agonists reduce intermale aggression in mice pre-treated 
with the non-aromatizable androgen DHT and to a lesser extent when pre-
exposed to testosterone. In the presence of estradiol, 5HT1A and 1B agonists 
fail to prevent aggressive behaviour. Additionally, estradiol is equally, or 
even more in some strains, efficient as testosterone in restoring male aggres-
sive behaviour in castrated male mice [235]. 5HT2A and SERT mRNA con-
tents as well as protein densities have been shown to decrease upon castra-
tion of rats. The levels are restored by testosterone and estradiol, but not by 
DHT [172, 242]. 
In conclusion, the results of increased SERT density and decreased MAO-A 
activity in areas of the rat brain involved in the expression of impulsive and 
aggressive behaviours might support the hypothesis of AAS induced aggres-
sion due to serotonin dysregulation. 
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Conclusions 

This thesis reports alterations in the male rat brain dopaminergic and sero-
tonergic systems, induced by subchronic nandrolone decanoate administra-
tion at the supratherapeutic doses often abused. The main outcomes from the 
studies included in this thesis are: 

 
• Nandrolone decanoate reduced the extracellular levels of DOPAC 

and HVA in the nucleus accumbens 
 
• Nandrolone decanoate reduced MAO activities in the caudate pu-

tamen and amygdala 
 

• Nandrolone decanoate reduced the gene transcript level of the do-
pamine D1 receptor in the hippocampus and increased D1 in the 
amygdala as well as D4 in the nucleus accumbens 

 
• Nandrolone decanoate prevented or attenuated the amphetamine 

induced effects on dopamine metabolism and turnover in the hypo-
thalamus, hippocampus and nucleus accumbens 

 
• Nandrolone decanoate increased the density of the SERT protein in 

a vast number of aggression related brain areas 
 

This thesis concludes that subchronic administration of the AAS nandrolone 
decanoate in supratherapeutic doses, induced dopaminergic dysregulations in 
limbic areas of the male rat brain. These alterations might be underlying 
some of the behavioural changes observed during the different phases of 
AAS abuse in humans, such as development of drug dependence and poly-
drug use. The widespread increase of SERT protein density might contribute 
to explain the androgen-induced impulsivity and aggression observed among 
human AAS abusers and in animal models of AAS abuse. 
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Future perspectives 

This thesis provides evidence for reduced dopamine activity and increased 
SERT density in the male rat brain induced by the supratherapeutic doses of 
AAS abused in society. Here follows a few suggestions on how to evaluate 
the behavioural consequences and the underlying mechanisms of the mono-
aminergic alterations induced by AASs.  

The correlation between reduced dopamine function in the striatum and 
behavioural changes needs to be evaluated. 

As mentioned before, several authors have suggested that prolonged AAS 
abuse function as a gateway to other drug abuse [4, 117]. There is now evi-
dence of AAS exposure causing attenuated behavioural responses to several 
drugs of abuse [36, 37, 114, 152], dopaminergic dysregulation [e.g. 15, 140, 
251], and correlations between them [140]. Experiments combining microdi-
alysis and behavioural evaluations in freely moving animals should prove 
helpful in expanding our knowledge of AAS-induced neurochemical altera-
tions and the behavioural consequences. To test the hypothesis that AASs 
function as a gateway to abuse of e.g. psychostimulants and opioids, self-
administration tests of these drugs should be conducted after AAS pre-
exposure. 

The link between androgens, serotonin and aggression deserves further at-
tention.  

It is shown in this thesis that subchronic administration of nandrolone de-
canoate in supratherapeutic doses increases the density of the SERT and 
decreases MAO-A activity in aggression related brain areas. Once again, a 
combination between microdialysis and behavioural tests in freely moving 
animals could reveal if this results in reduced extracellular serotonin levels 
and increased aggression.  

How to evaluate aggressive behaviours in appropriate paradigms and how 
to distinguish between “normal” aggression and pathological aggression in 
animal models is still debated in the literature [13, 53, 147, 168, 191]. How-
ever, while these issues are resolved, the link between androgens, serotonin 
and aggressive behaviour should be further evaluated. One issue to explore 
further is the role of estradiol in these behaviours and the impact that might 
have on AAS abusers. Different AASs have different effects on aggression. 
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Some facilitate aggression, whereas some do not, or even reduce aggressive 
response [24, 170]. This might be dependent upon the degree of aromatiza-
tion of the specific steroid compounds, or through non-classical steroid 
mechanisms.  

The mechanism behind the monoaminergic alterations needs to be evalu-
ated. 

Androgens, like other steroid hormones, exert their effects through nu-
clear receptors present inside the cell. The complex between the hormone 
and receptor function as a transcription factor, thus effecting gene expression 
[97, 210]. However, rapid effects through allosteric modulation of mem-
brane bound receptors also occur [70, 177] and possibly also via non-
genomic androgen receptor mechanisms [221]. Moreover, both androgenic 
and estrogenic metabolites are active in many tissues [183]. Therefore, add-
ing treatment groups receiving androgen or estrogen receptor blockers, and 
inhibitors of 5α-reductase or aromatase, could give important information 
about possible mechanisms behind the central alterations reported, and 
maybe even give clues about the non-linear effects sometimes observed. 

Additionally, stacking (i.e. mixing different kinds of steroids and routes 
of administration) is a common dosing regimen among body builders. Ad-
ministration of steroid cocktails to mimic stacking in a controlled laboratory 
setting makes for an animal model more realistic to the true situation. How-
ever, a major drawback is that possible effects cannot be attributed to a sin-
gle steroid and hence makes the underlying mechanism uncertain. Different 
androgens have, for instance, been shown to have different, or even oppos-
ing, effects on certain behaviours [24, 170, 263]. If this applies for neuro-
chemical parameters as well remains to be evaluated. 

The number of doses in dose-response studies needs to be expanded. 
The purpose of the nandrolone decanoate dosing regimen used in this the-

sis was to mimic heavy AAS abuse. The doses of nandolone decanoate ad-
ministered in this thesis represent early and experienced AAS abuse (3 and 
15 mg/kg respectively), based on case [83] and survey [197] studies of body 
builders. The dose, types of steroids, duration of administration and washout 
periods might differ when abused by other categories for intoxication, as 
behaviour modifying drugs, or by athletes with varying demands on per-
formance enhancement depending on kind of sports. There might also be a 
risk of overestimating the amount of steroid intake by those purchasing AAS 
on the black market, since counterfeits are not uncommon. 

The non-linear effects demonstrated in several reports might be an indica-
tion of “spill-over” on receptor systems only affected by androgens in su-
pratherapeutic doses, or other compensatory mechanisms [111]. It would 
therefore be necessary to cover a larger dose range, and to follow the gradual 
effects of AAS over time to make a clearer picture of the biological effects 

 42 



in the acute, subchronic and chronic phases of administration. There is also a 
need for proper pharmacokinetic evaluations of repeated administration of 
supratherapeutic doses of steroid esters in oil depot, e.g. to clarify to what 
extent and rate the steroids pass the blood brain barrier.  

To summarize, the research on AASs at supratherapeutic doses has unveiled 
certain neurochemical and behavioural changes in animal studies, which can 
be linked to side effects observed in human AAS abusers. Future AAS re-
search would benefit from studies correlating neurochemical and behav-
ioural data, mechanistic evaluation of AAS receptor interactions and me-
tabolite activity, as well as pharmacokinetic evaluations of the dosing regi-
mens used in these studies. 
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Populärvetenskaplig sammanfattning 

Anabola androgena steroider (AAS) är en grupp substanser som liknar det 
manliga könshormonet testosteron. Dessa framställdes med målsättningen att 
göra läkemedel med bättre vävnadsuppbyggande men mindre förmanligande 
effekter än testosteron. AAS används bland annat för att behandla människor 
som förlorat mycket vävnad i samband med stora operationer eller på grund 
av brännskador. Unga män med defekt testosteronfrisättning i kroppen kan 
få hormonbehandlingar och detta möjliggör en normal utveckling under pu-
berteten. 

Den vävnadsuppbyggande egenskapen hos AAS har gjort dessa substan-
ser attraktiva även utanför kliniken. Missbrukare av AAS tar doser som vida 
överstiger de kliniska och upplever initialt positiva effekter såsom ökad 
muskelmassa och ökat välbefinnande. I en senare fas av missbruket kan en 
rad biverkningar uppträda, bl.a. aggressivitet. Många blir deprimerade efter 
avbrutet intag och återupptar därmed missbruket. Det är också vanligt att de 
biverkningar som AAS ger upphov till leder till missbruk av andra läkeme-
delssubstanser och illegala droger. I beteendestudier på djur har det visat sig 
att gnagare självadministrerar hormonet. Det aggressiva beteendet har påvi-
sats både hos djur och människa.  

Ungefär som vi människor kommunicerar på olika sätt, använder sig våra 
celler av olika system för att överföra information till varandra. Nervcellerna 
i hjärnan använder olika signalämnen för att kommunicera med varandra och 
därmed förmedla sina budskap som rör allt från basala funktioner som and-
ning, till högre funktioner som minne och medvetande. Nervcellerna signale-
rar till varandra i speciella kontaktpunkter, så kallade synapser. I synapsen 
släpper den sändande cellen ut sitt signalämne, som fastnar i mottagare, så 
kallade receptorer, på närliggande celler. Aktiveringen av dessa receptorer 
ger upphov till en förändring i mottagarcellens beteende och en biologisk 
effekt. Det finns en mängd olika signalämnen i nervsystemet, till exempel 
dopamin och serotonin.  

Syftet med studierna i denna avhandling har varit att undersöka hur upp-
repad administrering av steroiden nandrolondekanoat påverkar delar av hjär-
nan som är involverade i drogberoende och aggressivt beteende. Dessa 
hjärnregioner använder sig av just dopamin och serotonin som signalämnen. 
Dopamin är förknippat med utvecklandet av drogberoende, och serotonin 
med impulsivitet och aggression. Försöken är utförda på vuxna hanråttor. 
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Upprepad administrering av nandrolondekanoat sänkte halten av 
dopamins två nedbrytningsprodukter, dihydroxyfenylätticksyra (DOPAC) 
och homovallinsyra (HVA), i nucleus accumbens. Många missbrukardroger, 
t.ex. amfetamin, höjer halten dopamin i nucleus accumbens men nandrolon-
dekanoat lämnade dopamin opåverkat. När nandrolondekanoat kombinera-
des med amfetamin tenderade dopaminfrisättningen att vara lägre än hos 
gruppen som bara fick amfetamin. Nandrolondekanoat förtog med andra ord 
delar av amfetamins effekter. Även i regionerna hypotalamus och hippo-
campus upphävdes amfetamins effekt på ett liknande sätt. Detta resultat får 
stöd av beteendestudier som visat att effekten av olika droger minskar efter 
förbehandling med AAS.  

Kan de minskade halterna av DOPAC och HVA förklaras av minskad ak-
tivitet hos det dopaminnedbrytande enzymet monoaminoxidas (MAO)? Ak-
tiviteten av MAO var som förväntat nedreglerad efter behandling med nand-
rolondekanoat. Denna nedreglering kunde ses i caudatus putamen, som har 
nära kontakt med nucleus accumbens, och i amygdala. Vidare påverkades 
genavläsningen av MAO och flera dopaminreceptorer i bl.a. nucleus accum-
bens och amygdala.  

Den sänkta MAO-aktiviteten i amygdala är särskilt intressant eftersom 
denna region är involverad i både drogberoende och aggressivitet. MAO 
bryter ner serotonin också. Låg MAO-aktivitet i blodet har t.ex. observerats 
hos interner dömda för våldsbrott och hos impulsiva personlighetstyper. 
Dessutom ökade mängden serotonintransportörer i en rad aggressionsrelate-
rade hjärnregioner så som hypotalamus, amygdala och PAG efter nandrolon-
administrering. Serotonintransportören pumpar tillbaka serotonin till cellen 
när signaleringen är klar. Om dessa pumpar blir fler kan signaleringen av-
brytas tidigare och bli svagare än i vanliga fall. Eftersom serotonin bromsar 
aggressivt beteende så kan minskad serotoninsignalering få konsekvensen att 
impulskontrollen försämras och benägenheten att få aggressiva utbrott ökar.  

Sammanfattningsvis så verkar upprepad administrering av höga doser 
nandrolondekanoat till hanråttor nedreglera den dopaminerga aktiviteten i 
hjärnregioner som är involverade i drogberoende. Effekten av andra droger 
förändras om AAS har funnits i kroppen en tid. Ökningen av mängden sero-
tonintransportörer i aggressionsrelaterade delar av hjärnan leder sannolikt till 
minskade halter serotonin i synapsklyftan, vilket kan vara en bakomliggande 
orsak till det aggressiva beteendet som ofta rapporteras hos AAS-
missbrukare. 
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