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Abstract 

The immune system is a complex infrastructure where many cells interact with each other 

and perform duties depending on their type and function. When using traditional 

immunological methods in studying non-traditional model organisms, such as birds, 

challenges arise. These are often associated with a lack of knowledge surrounding the 

organism in question—particularly, the expected types of leukocytes, their cell-specific 

marker genes, and associated reagents. Single-cell transcriptomics allows us to study the 

immune system at the level of each singular cell and create a profile of each cell present in a 

sample without as much prior knowledge of the organism. This project aimed to investigate 

the possibility of using single-cell transcriptomics as an alternative to traditional laboratory 

methods in avian immunology and using this as a basis for further research into avian 

medicine. The study was performed by sequencing the mRNA in approximately twenty 

thousand individual chicken blood cells from 4 healthy adult birds, performing unsupervised 

clustering of the cells, and attempting to annotate clusters based on expression profiles. 

Most of this study has been performed using the R-based package Seurat and 10 x 

genomics software Cell Ranger. 

Putative cell types discovered include expected populations such as several different T-cells, 

B-cells, monocytes, thrombocytes, red blood cells, and cells in various stages of the cell life 

cycle. After computational analysis, the number of cells per cell type corresponds to 

laboratory analysis of the cell types performed prior to sequencing by fluorescence-activated 

cell sorting. This indicates that the in-silico annotation of putative cell types is consistent with 

the known cell types in the samples. 

This study of chicken leukocytes highlights the possibility of the usage of single-cell 

transcriptomics within non-traditional model organism immunology. It shows that using 

modern single-cell sequencing and existing software, sequencing-based characterisation of 

immune cells is possible and could prove a robust option in immunology study cases where 

traditional methods are limited.  
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Unveiling the hidden functions of the immune system 

Popular Science Summary 

Matilda Maxwell 

The immune system is the collection of cells that protect our body from infection and disease 

in various ways. The immune system is a complex interplay between lots of different types of 

cells that perform a range of different functions in the body (Sompayrac 2015). In humans, 

much research has been performed, and more is underway to find useful information about 

the immune system and its mechanisms (Varadé et al. 2021). Unfortunately, the same is not 

true for all other animals.  

Chickens are one of the world’s most important and widely used livestock animals (Conway 

2020), yet little medical research has been conducted on them. The welfare of chickens is of 

great interest from an economic point of view for farmers but also from a sustainability point 

of view. Healthy animals provide both better yields and live longer (Glisson et al. 2013). 

Therefore, the national veterinary institute (SVA) is working on developing new techniques in 

chicken medicine. Unfortunately, when working with less studied animals, such as chickens, 

methods traditionally used in the lab are limited because they rely on existing knowledge 

about the cells (Adan et al. 2017). In such cases, it may be useful to approach the problem 

from a different angle. Instead of studying cells based on what we know about them, we want 

to learn as much as possible about all cells without preconceptions. One can think of it as 

instead of deciding in advance what you want to look at in a set of cells; you look first at what 

cells are available.  

We do this using a technique called “single-cell RNA sequencing” (scRNA-seq). This means 

that all the genes that a cell is using are found. This gives us information about what each 

individual cell in the immune system is doing (Eberwine et al. 2014). Using this information, 

we can map every cell in a blood sample and determine which cells are there. Cells are 

mapped by grouping the most similar cells. This gives us a map of all the cells. The map 

comprises many small islands (or clusters as they are called) of cells, with all cells doing the 

same thing forming one island. By then looking at what the different islands have in common 

and what distinguishes them from the other islands, you can determine what kind of cells they 

consist of. In this way, we have been able to identify several types of immune cells found in 

chickens and investigate what their functions might be.  
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1 Background 

Chickens are both globally and locally in Sweden important animals in agriculture, yet the 

research surrounding their health and immune system is underdeveloped. To ensure a 

sustainable and efficient poultry industry it is crucial to safeguard the health of poultry. The 

national veterinary institute (SVA) has recently developed a method for analysing leukocytes 

in blood samples from chickens (Wattrang et al. 2020). Still, necessary reagents and 

antibodies for the types of white blood cells in chickens are currently lacking (Ratcliffe 2006), 

hindering effective, laboratory-based research into chicken immunology.   

This project is part of a larger project at SVA intending to expand the knowledge of the 

immune system in chickens to enable better usability of blood cell analysis in poultry 

medicine.  

1.1 Aims of this project 

This project aims to investigate the possibility of using single-cell RNA-sequencing (scRNA-

seq) to 1. help identify leukocytes that are already known today and infer their functions; 2. 

identify unknown populations of leukocytes and infer their functions. This would enable 

further research into infectious diseases in hens and work as a prerequisite for the 

development of treatments against these.  

The project aim has been fulfilled by producing a map of chicken leukocytes, annotated with 

respect to their putative cell type and studied with respect to their marker gene expression. 

The mapping has been achieved by scRNA-seq of cells present in chicken blood samples. The 

cells are mapped to the extent possible with respect to their cell type, the fraction of cells 

belonging to each type, and their function. 

1.2 Importance of livestock medicine 

Poultry farming is an integral part of agriculture today, both on a global scale and locally in 

Sweden. The primary purpose of poultry farming is for food through the production of eggs 

and meat. Poultry is the most numerous farm animal in the world, and chickens made up 

almost 40% of meat production worldwide in 2020. As the global population continues to 

increase, so will poultry meat and egg consumption. The consumption of poultry is expected 

to increase, especially in lower-income countries, due to the cheap nature of poultry compared 

to other meats (Conway 2020). This means that it is crucial to ensure a sustainable and 

profitable poultry industry, and with that comes ensuring a good health status in poultry.  



12 

 

1.3 Immunology in non-traditional model organisms 

Studying immunology is vital for understanding an individual’s health, and the study of 

leukocytes has long been used in clinical diagnostics and research in human and animal 

medicine practices. The composition of leukocytes in the blood is affected by and can be 

indicative of disease (Wattrang et al. 2020) or physiological stress in an individual (Scanes 

2016). Among mammals, the current leading method of leukocyte study is flow cytometry ( 

fluorescence-activated cell sorting (FACS)) (Maecker et al. 2012). Where a cell is analysed 

using visible light scatter as it flows through a laser beam. Cells are also often labelled 

(usually with fluorophores) before flow cytometry, allowing for many parameters to be 

studied, such as a cell’s genetic content, protein content, or antibody affinity (Adan et al. 

2017).  

Within non-mammals however, studying differences in the composition of the immune 

system can cause difficulties when using traditional methods. Such is the case in chickens, 

where leukocytes that are not present in mammals and the presence both nucleated red blood 

cells (RBCs) and thrombocytes (platelets) complicates the usage of these techniques (Kaiser 

& Balic 2015). These differences in leukocyte identity lead to a need for different reagents 

used for studying chicken-specific markers, such as immune cell surface receptors, 

transcription factors, and cytokines. Currently, access to such reagents for chickens is limited, 

making traditional immunology methods expensive and time-consuming. 

1.3.1 Avian immune cells 

The avian immune system has many similarities to that of mammals but also some key 

differences (Kaiser & Balic 2015). When trying to identify different cell populations, marker 

genes are used. These are genes that are highly expressed in one population and allow for 

distinguishing populations from each other (Kiselev et al. 2019). Below are listed some 

common leukocytes in chickens and their potential marker genes.  

1.3.1.1 T-cells 

The T-cells are a type of immune cell developed in the thymus and defined by their carrying 

of the T-cell receptor (TCR). The T cell receptor is responsible for antigen recognition in the 

T-cells. The receptor is a complex consisting of subunits, some constant, and some variable. 

The constant subunits form the CD3 (cluster of differentiation 3) complex, consisting of the 

subunits CD3γ, CD3δ, and CD3ε. In chickens, these are encoded by two genes, CD3γ/δ and 

CD3ε (Smith & Göbel 2022). The variable subunits are either α/β  or γ/δ  subunits (Charles A 

Janeway et al. 2001). The two major lineages of T-cells are α/β  T-cells and γ/δ  T-cells. 

These are divided into sub-populations based on other surface molecules. These include 

among others the α/β  T-cells CD4 positive T-cells (also T helper cells) and  CD8 positive T-

cells (cytotoxic T-cells (CTL)). CD8 consists of 2 subunits called CD8α and CD8β. These are 

either expressed as a CD8αα or a CD8α/β heterodimer on the cell surface. In the chicken, 

there are populations of  both α/βTCR+ as well as γ/δTCR+ that express either of these CD8 

types (Smith & Göbel 2022). The regulatory T-cells (Tregs) are defined in mammals as CD4, 
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CD25, and FOXP3 positive (Shanmugasundaram & Selvaraj 2011). The transcription factor 

FOXP3 has only recently been discovered within the chicken genome and is expected to make 

the identification of Tregs in chickens easier due to its high Treg specificity (Burkhardt et al. 

2022). Natural killer (NK) cells in chickens are not well studied, and conclusive information 

regarding the NK cell receptors in chickens is unavailable (Straub et al. 2013). A marker gene 

for all NK cells for chickens is still missing, but it is known that NK cells are CD3 cell 

surface negative and have a higher expression of CD107 (LAMP1) (Meijerink et al. 2021).  

1.3.1.2 B-cells 

The B-cells in birds are developed in an organ not present in mammals, the bursa of Fabricius. 

Lymphoid precursors mature within the bursa before travelling to the blood. The purpose of 

the B-cells is to produce antibodies as a reaction to pathogens. B-cell specificity is mediated 

by their immunoglobulin genes. Immunoglobulin (Ig) is a protein complex consisting of light 

and heavy chains. Chickens have one immunoglobulin light chain gene and three heavy chain 

genes (the genes encode the μ, α, and υ Ig heavy chains of the IgM, IgA, and IgY 

immunoglobulins, respectively). Cytokines largely influence mature B-cells, and receptors for 

these can be used as B-cell identifiers. One such receptor is the BAFF- receptor (TNFSF13B). 

Other important B-cell markers include CD40, and cytokines IL7, IL10, and IL2  (Ratcliffe & 

Härtle 2022). The chicken B-cells also have a unique expression of Bu-1 (Gilmour et al. 

1976) and expression of BLIMP1 and PAX5, which are involved in maturing of plasma and 

B-cells, respectively (Nutt et al. 2007). SOX5 is also expressed in B-cells and is associated 

with late-stage B-cell differentiation and plasmablast differentiation (Rakhmanov et al. 2014). 

Plasma cells are ultimately differentiated B-cells capable of secreting vast amounts of 

immunoglobulin (Ratcliffe & Härtle 2022). Plasma cells can be identified by their strong 

expression of genes related to this activity, such as JCHAIN and BLIMP-1 (PRDM1). 

JCHAIN stands for “joining chain of multimeric IgA and IgM” and is a protein responsible 

for binding activity in dimers of Immunoglobulin M and Immunoglobulin A (Frutiger et al. 

1992). BLIMP-1 is a transcription factor involved in regulating the development of a variety 

of immune cells and is expressed within all antibody-secreting cells. Within B- cells, it is 

involved in plasma cell differentiation and is only upregulated in plasma and plasmablasts 

cells (Nutt et al. 2007).  

1.3.1.3 Monocytes and dendritic cells (DC) 

Monocytes and dendritic cells (DCs), like B-cells, are antigen-presenting (Sutton et al. 2022). 

Antigen presentation is the expression of antigens on the outer surface of a cell (Cruse et al. 

2004). The antigen is bound to the cell surface through interaction with either Major 

histocompatibility complex (MHC) class I or II molecules (Sutton et al. 2022). Several genes 

are used to separate DCs from monocytes. The cytokines FLT3 and XCR1 are involved in 

generating DCs but are not expressed in monocytes.   
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1.3.1.4 Granulocytes 

The primary granulocytes in chickens are the heterophils. These are considered analogues to 

neutrophils in mammals. Heterophils are responsible for initiating the acute inflammatory 

response and producing substances with antimicrobial properties (Kogut 2022). They do this 

by recognising pathogens using surface receptors (pattern recognition receptors such as toll-

like receptors and C-type lectin receptors) (Genovese et al. 2013). Their antimicrobial 

properties include phagocytosis, degranulation, antimicrobial peptides, and extracellular traps 

(Kogut 2022). Genes associated with these receptors and activities can be used as markers for 

heterophils. 

1.3.1.5 Thrombocytes 

Thrombocytes (platelets) are blood cells responsible for stopping bleeding. In mammals, these 

cells have no nuclei, but in birds, they are nucleated and carry genetic material. These are the 

most numerous white blood cell in chickens and have more immune functions than in 

mammals. These are defined by their expression of a homolog of mammalian integrin 

(CD41/CD61) (Astill et al. 2022 s. 8).  

1.4 Single-cell RNA sequencing 

Like all cells, immune cells achieve their differences in form and function by expressing 

genes at different levels to produce the proteins they need to do their jobs. Studying gene 

expression can tell us much about what is happening in a tissue at a given moment (NHGRI 

2022). The problem with looking at all the gene expression in tissue (bulk RNA) is that we 

cannot tell which cells in a sample are doing what. This is when scRNA-seq is useful. It 

allows for all expressed genes in only one cell to be studied and can give information about 

what that cell is doing at that time (Eberwine et al. 2014).  

The use of scRNA-seq for mapping cells is a relatively new method that contrasts with 

classical laboratory methods in that much of the work can be performed bioinformatically. 

Similar mappings of leukocytes have been performed on horses (Patel et al. 2021) and 

zebrafish (Chan et al. 2022), among others. These studies are similar to this project since the 

immune systems of these animals are also not previously well studied and mapped. ScRNA-

seq enables a new way to classify and define cell types in a sample, and scRNA-seq can 

circumvent problems that arise with laboratory methods for cell type determination. An 

example of such a problem is that flow cytometry, a common practice for determining cell 

populations (Maecker et al. 2012), relies on existing knowledge of cell-type specific markers 

on the cell and access to antibodies against these markers (Adan et al. 2017). Such 

information is often available in well-known organisms, but this knowledge can be lacking in 

less studied organisms. When this is the case, scRNA-seq is a good method to study cell type, 

as it is largely independent of previous knowledge of the organism (one still requires a good 

genome assembly and annotation for reference) (Patel et al. 2021).  
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1.4.1 Technology  

The data in this project was produced using 10x genomics chromium Single Cell 3’ v3.1 Dual 

Index Gene Expression solution (10X genomics 2022a). The 10 x chromium instruments use 

a gel bead-in-emulsion technology referred to as next GEM. Cell samples and barcoded gel 

beads are loaded onto a chromium microfluidic chip, with one gel bead, and one cell joined in 

each GEM. Inside each GEM, the cell is lysed, and the barcode is attached to the molecule of 

interest (in this case, mRNA). The barcode is used to capture the identity of the cell in each 

gem, and molecules are tagged with unique molecular identifiers (UMI). The gems are then 

collected, copy DNA (cDNA) is generated through reverse transcription, pooled, and 

sequence libraries are generated (10X genomics 2021a). The libraries are standard Illumina 

paired-end constructs and start and end with sequences for binding to an Illumina flow cell. 

(10X genomics 2020a.)

 

Figure 1 Composition of the Single Cell 3’ Dual Index sequencing libraries. The region with grey lines corresponds to 

the cDNA insert. This is a 90 bp long region. It is flanked by sequences required for sequencing. (10X genomics 

2020b).  

The sequencing is then performed using standard sequencing procedures. In this project, it 

was done using the Illumina NovaSeq 6000 system (Illumina 2022a). The sequencing was 

performed with read lengths 28+10+10+90bp. As seen in Figure 1, these correspond to Cell 

barcode & unique molecular identifier (UMI) (Read 1, 28 bp), Sample Index (i7 Index 10 bp), 

Sample Index (i5 Index, 10 bp), and Insert (Read 2, 90 bp), respectively. The insert 

corresponds to the biological mRNA sequence (10X genomics 2021b). The UMI is a short 

sequence used to tag each molecule (sequence) in a library. This allows for indexing of the 

molecules and makes it possible to keep track of the original molecule from which the PCR 

amplicons stem (Illumina 2022b). 

1.5 Bioinformatic tools 

The main bioinformatic tools used in this study are Cell Ranger (10X genomics 2020c) and 

Seurat (Hao et al. 2021). Seurat is implemented in R as a library and includes many functions 

specifically developed to enable the analysis of single-cell data. The theoretical background of 

some of the implemented functions is described below.  

1.5.1 Cell ranger  

Cell Ranger works by aligning reads to the reference genome and counting reads that align to 

loci annotated as transcriptomic (exonic and intronic reads) in the reference. Before aligning 

all the reads to the genome, they are trimmed to remove poly-A and template switch oligo 
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sequences (10X genomics 2018a) from the sequence’s 3’ and 5’ end, respectively, to avoid 

these causing confounding mappings.  

The reads are aligned to the reference genome using Spliced Transcripts Alignment to a 

Reference (STAR) software (Dobin et al. 2013). STAR works in two phases, seed searching 

and clustering/stitching/scoring. The software performs the seed searching by searching for 

the longest matching substring of the read in the genome. The minimum mappable length 

decides how short the substring can be. The algorithm starts the seed searching from the first 

base of the read. Whatever part of the read remains unmapped gets used again for searching. 

This is done until the whole read is mapped. This way, STAR quickly aligns reads in a splice-

aware manner, stopping the alignment when a splice junction is reached and continuing after. 

STAR also allows for alignments with indels and mismatches. It does so by extending the 

substring of the read. If that still does not give a sufficient match, the algorithm will drop the 

part of the read that has no match in the genome. The algorithm then moves into the second 

phase, where it stitches together the substrings that were successfully aligned. These are then 

clustered together by proximity to a set of anchors. All seeds that map within a window 

surrounding an anchor are stitched together. A scoring scheme is implemented, and the read 

combination with the highest score is assumed as the best alignment (Dobin et al. 2013).  

The reads that STAR has confidentially mapped to transcriptomic regions are kept (the 

version of Cell Ranger used in this study does by default keep exonic and intronic reads in 

order to map unsliced reads as well, (10X genomics 2022b)) and aligned to the transcriptome 

(the transcriptome is produced as a part of the Cell Ranger reference). After mapping, Cell 

Ranger uses the annotation file to sort reads into exonic, intronic, or intergenic based on the 

position in the genome. These reads are then used downstream in the UMI counting (10X 

genomics 2020d). During the UMI counting, Cell Ranger groups the reads mapped as 

transcriptomic together based on their barcode, UMI, and gene annotation. In groups with the 

same gene and barcode but slightly different UMIs, the UMIs with lower support are 

corrected to match the high-support UMI. This is because small errors are likely to be 

introduced by the sequencing and cause UMIs from the same origin to differ slightly. If 

several groups of reads have the same barcode and UMI but different gene annotations, they 

are assigned the annotation with the highest support. This correction is done since all reads 

with the same (or highly similar) UMIs should stem from the same original sequence (post 

cDNA amplification). Each observed combination of gene, UMI, and barcode is used as a 

UMI count (10X genomics 2020d). 

Cell Ranger count then gives filtered and unfiltered gene-barcode matrix files, among other 

outputs. The filtered matrices exclude barcodes representing non-cell-containing GEMs (10X 

genomics 2018b) and are used for this study.  

1.5.2 Integration of multiple datasets 

Seurat includes methods to integrate multiple datasets, this is done to match up shared cell 

populations between datasets to use as one reference. This is necessary since data from 
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different origins (data can be sourced from different individuals, technologies or modalities 

(Efremova & Teichmann 2020)) may include the same cell populations but represent them 

differently, causing them to not be classified as one population downstream (Stuart et al. 

2019). As detailed by Stuart and co-workers, the data integration procedure consists of feature 

selection, anchor identification, and dataset merging. 

Features in the datasets are used to identify anchors; since the anchors should be in a matched 

biological state, they would have a matched feature pattern. The anchor prediction does not 

require the full set of features; instead, a subset of heterogeneous features is used. The most 

variable features in each dataset are identified to use for downstream analyses since high 

variability across cells represents heterogeneous features. Heterogeneous features are used 

since they are likely to represent a strong biological signal unique to a cell type. These are 

found by identifying features that are outliers from the mean variability. The most variable 

features for each dataset are prioritised so that those that occur across multiple samples are 

prioritised (Stuart et al. 2019). These are then used for downstream analysis (anchor 

identification). 

An anchor represents two cells from two datasets predicted to be of the same biological 

origin. The anchors are identified by dimensionality reduction on two datasets, followed by 

finding the K-nearest neighbours (KNN) for each cell. Mutual nearest neighbours are 

identified, where two cells are contained within each other’s nearest neighbourhoods. These 

mutual nearest neighbours are used as anchors (Stuart et al. 2019).  

The anchors are then scored and weighted. A weight matrix is constructed that defines the 

association between the cells in the dataset and the anchors. They are based on the distance 

between the query cell and anchor and the anchor score. Including the score ensures that good 

anchors with high scores are weighted higher than poorer-scored anchors. This weight matrix 

is then used to correct the expression matrix, which is used downstream as a normalised 

scRNA-seq matrix. When integrating more than two datasets, the datasets are integrated 

pairwise. Anchor identification is done pairwise, and the distances between datasets are 

computed as the total nr of cells in the smaller datasets divided by the number of anchors in 

the two datasets. Hierarchical clustering on the pairwise distances between all datasets is done 

to determine in which order to merge the datasets (Stuart et al. 2019).  

1.5.3 Principle component analysis 

Principal component analysis (PCA) is a technique for increasing the interpretability of a 

dataset without losing biological information. It is done by linearly transforming 

multidimensional data to a 2-dimensional coordinate system in a way that preserves as much 

variance as possible in the dataset. The largest variance is found by constructing a matrix 

from the multidimensional data and finding the largest eigenvalue of the said matrix (Joliffe 

& Cadima 2016). 
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1.5.4 Nearest neighbour algorithms 

K-nearest neighbours (KNN) is a supervised learning algorithm used to classify data points. It 

is built on the assumption that data points found near each other are similar. The goal is to 

identify the k nearest neighbours for a query point and use the class of these to define the 

class of the query point. The algorithm computes the distance between the query point and all 

other data points in the set using the straight line between the two points (the Euclidian 

distance). It then labels the query point based on the value of the majority of its k nearest 

neighbours. If k is set to 5, it will look at the values of the 5 points closest, using the 

calculated distance metrics, to the query and assign the point the value that occurs most in 

these 5. (IBM 2022).  

In the case of large datasets, we want to avoid computationally heavy calculations. Therefore, 

instead of an algorithm that calculates and stores pairwise distances between all points, as 

KNN does, we opt to use a subset of the points and calculate the distances to those. This 

results in an approximation of the nearest neighbours rather than a perfect calculation (Apache 

Software Foundation 2022). The approximate nearest neighbour algorithm oh yeah (ANNOY) 

algorithm, does this by building a guide tree of random projections (Osika 2022). Each node 

in the tree represents a split of the dataset in half using a hyperplane, chosen by sampling two 

points and finding their equidistant (a plane that passes through their midpoint) using a 

Euclidian distance measure. Each tree includes n *k (n = nr of trees in the forest here 50, k = 

nr of nearest points to calculate, in this case, 20) nodes. The tree construction is done n times 

to build a forest. 

SNN algorithm clusters points based on their nearest neighbours; points are clustered if they 

have many overlapping nearest neighbours (Kumari et al. 2016). The similarity is calculated 

using the Jaccard index (Dodge 2008). The Jaccard index measures the similarity between 

finite datasets by calculating the intersection of the datasets divided by the union of the 

datasets. The cut-off for an acceptable Jaccard index is set to 1/15. Any edges in the SNN 

graph with a lower index than this are removed from the graph (Hoffman 2022b). 

1.5.5 The Louvain algorithm and modularity 

The Louvain algorithm and is used to define cluster boundaries in the dimensionality-reduced 

data (Hoffman 2022c). The Louvain algorithm is a modularity optimisation-based community 

detection algorithm (Blondel et al. 2008). It works by iteratively maximising a modularity 

score for each community and is a fast and memory-efficient algorithm (Lu et al. 2014). 

Modularity is a measure used to determine how well nodes (here cells) in a network divide 

into modules (clusters). A network with high modularity has a high degree of connections 

between nodes within a module and sparse connections between modules. Modularity 

optimisation is a commonly used method for determining community structure in networks. 

Biological networks tend to have high degrees of modularity, making modularity optimisation 

appropriate in biological research (Newman 2006). 
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Modularity has been shown to suffer a resolution limit and may be unable to detect modules 

smaller than a certain scale which depends on the total network size since the mathematically 

found optimal partition may not capture the actual community structure. (Fortunato & 

Barthélemy 2007). Because of this, modularity optimisation methods with tuneable 

resolutions have been developed. On the other hand, these methods tend to split subgraphs at 

high resolutions or merge subgraphs at low resolutions. This leads to the need for resolution 

evaluation by the user (Lancichinetti & Fortunato 2011). 

Clustree (Zappia & Oshlack 2018) can be used for evaluation of resolutions by gives plots 

consisting of clustering trees that show how the clusters change between iterations of a 

clustering parameter (here, resolutions). The plot consists of a tree with nodes where each 

node represents a cluster. The clusters are connected to show how the data points (here, cells) 

move between them. It can help the user tell which clusters are distinct and unstable and 

change depending on settings (Zappia 2020).  

1.5.6 Uniform Manifold Approximation and Projection    

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction 

technique that allows the visualisation of high-dimensionality data in a 2-dimensional plot. 

UMAP works by constructing a graph that works as a high-dimensional representation of the 

data. Points are connected based on a set radius, where other points whose radius overlaps 

with the radius of the first point connect to that point. Points are weighted based on how large 

the radius is, with bigger radii having a lower likelihood. The high-dimensional graph is then 

converted to a low-dimensional graph. This works by calculating similarity scores for points 

to preserve high-dimension clustering. The similarity scores are based on the distances 

between the points in each considered dimension. The similarity score is based on a negative 

exponential curve where the sum of the similarity scores for all points other than the 

considered point equal log2 (n.neighbours). The score for a neighbouring point is equal to the 

y-value of this curve given the x-value of a neighbouring point. The neighbouring points are 

placed on the x-axis based on their distance from the considered point. The similarity scores 

are used to initialise a low-dimensional graph with all points on one axis. The location of the 

points on the axis is adjusted to maximise distances between points that are not in the same 

high-dimensional cluster (McInnes et al. 2020).  

1.5.7 Wilcoxon rank sum test 

The Wilcoxon rank sum test (also the Mann-Whitney U test) is a non-parametric alternative to 

the two-sample t-test for non-normal data and allows us to test a null hypothesis. The test 

aims to see if two distributions are shifted from each other by differences in median 

expression. The null hypothesis is that the two populations have the same distribution with the 

same median (Ford 2017); in this case no differences in expression distributions between the 

groups (Whitley & Ball 2002). 
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2 Materials and methodology 

The project is part of a bigger project at the Swedish veterinary institute in which blood had 

been collected from healthy chickens, and scRNA-seq performed in collaboration with 

SciLifeLab. Comparative data from the same blood samples e.g. studies of chicken immune 

cells using immunofluorescence staining and flow cytometric analysis were also available. 

The methodology of this project was performed in two parts. One was the read counting 

performed through the Uppsala Multidisciplinary Center for Advanced Computational 

Science (UPPMAX) (Lundberg 2022) using 10x genomics software Cell Ranger (10X 

genomics 2020c) (Version: 7.0.0). Cell ranger count was used to generate filtered feature-

barcode matrices used in the project’s second part.  

The second part represented the bulk of the analyses. It was performed predominantly in the 

Seurat (Hao et al. 2021) (Version: 4.3.0) package in R (Version: 4.2.2). This part includes the 

data preparations, clustering, and visualisation steps. 

2.1 Sample preparation (performed at SVA) 

Blood samples were taken from four healthy adult female birds (24-week-old laying hen 

hybrids, Bovans Robust) kept in a clean but not sterile environment as blood donors at SVA. 

The blood was collected using regular blood sampling from the jugular vein into sample tubes 

with heparin as an anticoagulant.  

Leukocytes in the samples, were separated from RBCs using gradient centrifugation on Ficoll 

(GE Healthcare) according to established protocols. Chicken platelets (thrombocytes) are 

nucleated and, therefore, contain mRNA. They may constitute a considerable amount of the 

cells obtained after gradient centrifugation on Ficoll (20-70%). Thus, the proportion of 

platelets in the samples was reduced to obtain better sequencing of rarer populations of white 

blood cells. For this immunomagnetic cell separation with EasySep PE Selection Kit 

(StemCell Technologies, protocol no. 28898), methodology was used according to protocols 

previously used with chicken white blood cells at SVA (Wattrang et al. 2019). This was done 

using an antibody to integrin CD41/61 (OriGene) that is expressed exclusively on platelets in 

chicken blood cells (Lacoste-Eleaume et al. 1994). In addition to sequencing, the purified cell 

preparations were also analysed by immunofluorescence and flow cytometry to determine the 

proportion of various known types of leukocytes. (Wattrang et al. 2020). 

Preparation of libraries from approximately nine thousand cells per bird was performed on the 

SNP/SEQ platform at SciLifeLab from fresh purified leukocytes. The libraries were used for 

3’ RNA-seq with Chromium NextGEM Single Cell 3’ v3.1 kit (10x Chromium), and 

subsequent sequencing (Illumina) was performed at SciLifeLab (Frejd 2022). The library 

preparation resulted in approximately five thousand cells per bird. Sequencing was performed 

using a NovaSeq SP flow cell (Illumina) to an average depth of 35,000 reads/cell. 
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2.2 Data 

The raw and resulting data, as well as the used scripts, can be found in the supplementary 

materials (https://github.com/maxwelma/exjobb).  

2.2.1 Reference files 

The read counting was performed using the existing reference genome and genome annotation 

for the chicken, scientific name Gallus gallus (NCBI taxa: 9031. Assembly: RefSeq 

GCF_016699485.2; GenBank GCA_016699485.1). The current genome assembly is from 

2021 and was assembled by the Vertebrate Genomes Project. The bird used was of the 

heterogametic sex (female) and a cross between a maternal broiler (bGalGal2) and a paternal 

white leghorn layer (bGalGal3). The sequencing was performed using a combination of long 

and short-read sequencing of the offspring as well as the parents to create a high-quality 

reference genome (NCBI 2022a).  

The annotation (annotation release ID: 106) used is from 2021/2022. The annotation was 

performed using the NCBI genome annotation pipeline, which automatically annotates genes, 

transcripts, and proteins on genomes. The annotation was performed using the same genome 

as above (bGalGal1.mat.broiler.GRCg7b) (NCBI 2022b).  

2.2.2 Sequencing output 

The sequencing data consists of four files per sample, two for each of the two lanes used. 

Each lane has two reads, where read 1 corresponds to barcodes and read 2 to cDNA 

sequences. The MultiQC report of the data shows that all sequences scored well  in the general 

metrics, meaning that the raw data was of good quality. 

2.3 Read counting 

Read counting from the raw data was performed using Cell Ranger standard workflow(10X 

genomics 2020e). First, a Cell Ranger reference was created from the reference 

(bGalGal1.mat.broiler.GRCg7b) genome (.fasta) and annotation (.gtf) file using Cell Ranger 

mkref (script: make_ref.sh). Then read counting was performed for each sample using Cell 

Ranger count (script: count.sh). The outputted matrix files 

(data/processed/count_output/sample_name/outs/filtered_feature_bc_matrix) were used for 

downstream analyses.  

2.4 Data preparation  

Before continued analyses, the data needed to be processed. Putative doublets and damaged 

cells were removed to avoid skewing the results. Cells with high mitochondrial expression 

were removed as they are likely to represent damaged cells. The high mitochondrial count 

indicates that cytoplasmic mRNA has leaked out of the cell, leaving only the mRNA in the 
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mitochondria. Damaged cells are also indicated by low count depth and few detected genes 

(Luecken & Theis 2019). 

2.4.1 Doublet removal 

Doublets are errors that occur in droplet-based single-cell sequencing, where two cells have 

been encapsulated in the same droplet and received the same barcode. Doublets are 

characterised by a very high UMI count per barcode since they include double the amount of 

genetic material as one cell. However, not every sample with a high UMI is a doublet; some 

may be cells with very high activity (Luecken & Theis 2019). Therefore, using doublet 

prediction algorithms rather than simple UMI count cut-offs is preferable.  

Putative doublets were removed from the matrices using the DoubletDetection (Gayoso et al. 

2019) package in python. DoubletDetection utilises the creation of computer-generated 

doublets and compares the expression profiles of the synthetic doublets to the cells in the 

matrix and estimates based on the comparison which cells are likely to be doublets. The script 

predicts doublets and edits the barcode list size to remove barcodes corresponding to putative 

doublets. The doublet removal was performed through UPPMAX using a conda environment. 

2.4.2 Quality Control 

After doublet removal, the matrices were loaded into R and converted to Seurat objects. The 

data was further filtered in R. The filtering was done to ensure that only viable cells were used 

for downstream analyses. 

Cells with a higher mitochondrial percentage than 20%, cells with a lower feature count than 

300, and features that appear in less than three cells were filtered. RBCs were also filtered out 

based on HB-gene expression; cells with more than 5% HB genes were filtered out. Figures 

are available in Appendix A. 

2.4.3 Data normalisation 

After filtering, the data were normalised. This was done to compensate for potential 

differences in gene expression between cells. The normalisation was performed in Seurat 

using the SCT-transform independently on each sample. The SCT transform is a 

normalisation method developed for single-cell data. It uses regularised negative binomial 

regression to normalise UMI count. It is better at correcting for technical factors than other 

normalisation methods when handling scRNA count data while conserving biological 

heterogeneity. The data is returned as a Seurat object with the normalised data stored in assay 

“SCT” (Hafemeister & Satija 2019). 

2.4.4 Data integration 

In this project, four samples have been used. Since the differences between them are not of 

interest and they are studied as one entity, the four samples were integrated into one dataset. 

The data was integrated on 3000 variable features found using SelectIntegrationFeatures(). 

Seurat then identifies cells between datasets that are in a matched biological state and 
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assigning these as anchors FindIntegrationAnchors() (Hoffman 2022a). These anchors are 

then used for integration using IntegrateData(). The datasets are integrated pairwise by 

creating a weight matrix based on the association between the cells and the anchors. The 

weight matrices are used to correct the original expression matrix (Stuart et al. 2019).  

2.5 Cluster determination 

After data preparations, the primary analyses of the data were performed.  

2.5.1 PCA 

Dimensionality reduction was performed using PCA on the integrated data. The PCA was 

performed using the variable features associated with the assay. In this case, they are the same 

as were calculated for the data integration. The cumulative proportion of variance was 

calculated and used to determine how many principal components (PCs) to keep. The cut-off 

was set so that 90% of variance would be conserved; this resulted in 27 PCs being used for 

downstream analyses for the complete dataset.  

2.5.2 Cluster determination 

Seurat implements a combination of PCA, graph-based clustering, and the Louvain algorithm 

to determine clusters in the dataset (Kiselev et al. 2019). After PCA, the nearest neighbours 

for each cell are computed, and Seurat constructs a nearest neighbour graph and a shared 

nearest neighbour (SNN) graph (Hoffman 2022b). These are stored in the Seurat object. 

After PCA, the nearest neighbours for each cell were computed using FindNeighbors() in 

Seurat. In Seurat, the distances between cells are calculated using the PCs established earlier 

(Hoffman 2022d). The nearest neighbour representation is in the form of a graph, where each 

data point is represented by a node (a cell) connected by a set of k edges to its neighbours 

(Levine et al. 2015). The data points are not classified in this step with regard to grouping, but 

rather the groupings are formed when calling FindClusters(), using the nearest neighbour 

graph calculated by FindNeighbours() (Hoffman 2022d).  

Then the FindClusters() function was called to establish cluster boundaries using the Louvain 

algorithm. The function allows the user to choose other algorithms (Louvain algorithm, 

Louvain algorithm with multilevel refinement, Smart local moving algorithm (SLM), Leiden 

algorithm). The algorithm was chosen based on the comparison in Appendix B. The number 

of principal components was used as the dimensions of reduction. The FindClusters() 

resolution was evaluated using clustree (Zappia & Oshlack 2018). The default resolution of 

0.8 was used when analysing the entire dataset (see Appendix C for rationale). 

2.5.3 UMAP 

UMAP was run using RunUMAP() in Seurat, and the default parameters were used (see 

Appendix D for rationale). It is used for the visualisation of cell clustering. The number of 

dimensions used was the selected number of principal components.   
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2.6 Cluster annotation 

Annotations of the clusters were performed using a combination of manual annotation by 

inspection of differentially expressed genes by cluster and GO term enrichment by cluster.  

2.6.1 DE analysis 

DE is used to compare cell groups based on their gene expression. Seurat calculates 

differentially expressed genes for a set of cells compared to another set of cells using the 

Wilcoxon Rank Sum test as the default (Hoffman 2022e). The marker gene-based annotation 

was performed by looking at DE profiles per cluster. This was done by sub-setting the cells 

by cluster identity and running the FindMarkers() function in Seurat on these cells.  

2.6.2 GO terms 

The gene ontology (GO) term enrichment analysis was performed using the R-library 

gprofiler2 (Kolberg et al. 2020). Gprofiler2 works by interfacing the web-based GO term tool 

g:profiler (Raudvere et al. 2019). The functionality used in g:profiler is g:GOSt, which 

performs an enrichment analysis based on gene lists from each cluster. It returns several types 

of over-representation information, including GO terms, Kegg terms, biological pathways, 

cellular components, etc. The source of biological information is the Ensembl database. The 

evaluation of enrichments is performed using the cumulative hypergeometric probability (also 

Fisher’s one-tailed test). The GO terms were created per cluster using gost() with the top 100 

differentially expressed genes as the query. The GO search was performed against the 

reference database for gallus gallus.  

Re-analysis 

The major clusters were all re-analysed using the above steps on the corresponding cell 

subsets. This was done to investigate if any biologically significant subgroups could be found 

within the original clusters.  

2.7 Marker evaluation 

Some marker genes were controlled and evaluated due to unexpected biological signal (see 

Appendix E).  

3 Results 

The results from the analyses consist of annotated UMAP visualisations of both the whole set 

of cells and subsets of cells based on their annotated cell type. The data was annotated using 

marker genes and GO terms. The putative cell types of the main clusters can also be seen in 

Figure 2 (A). The expression patterns of the genes in the data are shown in Figure 3. The 
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central marker genes used and their corresponding cell types are shown in Table 1. The 

putative cell types identified by these marker genes with the addition of some additional genes 

described in the sections below were:  

• T-cells - CD3+ 

o CD8+ T-cells 

o CD4+ T cells 

▪ Tregs - CTLA4+ and IL2RA+ (CD25) 

o γ/δ T-cells – TARP + 

o “Cytolytic cells”- GNLY+, FASLG+, GZMA+ and GZMM+ 

• B-cells – Bu-1+  

o Late-stage differentiating B cells - SOX5+ 

o Possible Pro B-cells 

• Monocytes – MMR1L4+ 

• Red blood cells – HBBA+ 

• Thrombocytes – ITGA2B/ITGB3+ 

• Proliferating cells 

o Plasma cells – JCHAIN+ 

• Possible basophils – CD63+ HDC+ 

When comparing the per cell type fractions (Figure 2 (B)), it was found that they concurred 

with the fractions found experimentally before sequencing (see Appendix F), as well as that 

the fraction of cell groups per sample is similar across samples. 

 

Figure 2 (A) UMAP Visualization of the 16 936 studied cells in a 2D space after clustering with putative cell type 

annotations for the main clusters. Cells (points) are coloured based on their cluster identity. Putative cell types have 

been annotated using manual annotation from marker expression and gene ontology of expressed genes. (B) Fractions 

of cell types per sample.  
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Figure 3 Dot plot of expression of marker genes based on cluster identity. The radius of the dot corresponds to 

percentage of cells in cluster expressing the gene, and colour intensity corresponds to scaled expression values. The 

colour of the gene corresponds to the cell type it annotates. Genes in orange are B-cell markers, genes in green are T-

cell markers, genes in blue are monocyte markers, genes in pink are thrombocyte markers, genes in purple are red 

blood cell markers. 

Table 1 Selected marker genes used for annotation of general cell types. 

Marker gene Name in 

dataset 

Cell type 

chB6/Bu-1 LOC396098 B-cell 

https://pubmed.ncbi.nlm.nih.gov/8662088/ 

SRY-box transcription 

factor 5 

SOX5 B-cell 

(https://pubmed.ncbi.nlm.nih.gov/24945754/) 

Paired box 5 PAX5 B-cell 

(https://pubmed.ncbi.nlm.nih.gov/34301800/) 

CD3 epsilon subunit of T-

cell receptor complex 

CD3E T-cell 

https://www.ncbi.nlm.nih.gov/gene/916 

CD3 delta subunit of T-cell 

receptor complex 

CD3D T-cell 

https://www.ncbi.nlm.nih.gov/gene/916 

TCR gamma alternate 

reading frame protein 

TARP Gamma delta T-cell 

cluster of differentiation 4 CD4 T-cell 

(https://www.ncbi.nlm.nih.gov/gene/920) 

Cluster of Differentiation 

8a 

CD8A T-cell 

(https://www.ncbi.nlm.nih.gov/gene/925) 

Cluster of Differentiation 

8b pseudogene 

CD8BP T-cell  

https://www.ncbi.nlm.nih.gov/gene/926 

macrophage mannose 

receptor 1-like 4 

MMR1L4 Monocyte 

(https://www.ncbi.nlm.nih.gov/gene/4360) 
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integrin subunit alpha 2b / 

CD41 

ITGA2B Thrombocyte 

(https://pubmed.ncbi.nlm.nih.gov/8896225/) 

integrin subunit beta 3 

/CD61 

ITGB3 Thrombocyte 

(https://pubmed.ncbi.nlm.nih.gov/8896225/) 

hemoglobin subunit epsilon 

1 

HBBA Red blood cell 

https://www.ncbi.nlm.nih.gov/gene/396485 

 

3.1 T-cells 

Clusters 0,1,23,25, 3,8,11,12,13,14,15,16,24,30, 7, 29, and 4 were annotated as T-cells based 

on their expression of T-cell marker genes (see Figure 3). Figure 4 (B) shows some general T-

cell markers in black and pink. Among the T-cells, subgroups of cells have been identified 

based on the expression of different T-cell-type specific markers. The groups that have been 

possible to identify are: 

• “Cytolytic cells” (cluster 4). A probable mixture of cytotoxic T-cells (CTLs) 

(TCR+CD8+) and other cytolytic cells, such as NK cells and cytolytic γ/δ T 

cells. These have been identified using genes associated with cytolytic functions, 

GNLY, FASLG, GZMA and GZMM, indicated in Figure 4 (B).  

• γ/δ T-cells (clusters 0, 1, 23 and 25). As shown in Figure 4 (A), the putative γ/δ T-cells 

form their own distinct cluster separate from the other T-cells. These were identified 

using the TARP (TCR gamma alternate reading frame) gene and expression of the 

TCR -chain (LOC121110951) along with  genes associated primarily with TCR+ 

cells indicated in green in Figure 4 (B). 

• α/β T-cells, the α/β T-cells (TRBV6-5) consist of several types of T-cells. The 

subcategories of the α/β T-cells have been challenging to identify but likely include  

CD8+ cells (Cluster 7), cells expressing CD8A and CD8BP but do not 

express CD4, these might also include CTL that are not strongly expressing 

cytolytic genes. 

o CD4+ T-cells (clusters 3, 8, 11, 12, 13, 14, 15, 16, 24 and 30) 

o Treg (cluster 8), putatively assigned to this CD4+ cluster by high expression of 

CTLA4 and IL2RA in some of the cells in the cluster. In resting cells, these 

genes are primarily expressed in Tregs (Haddadi & Negahdari 2022).  

o Clusters of cells in different stages of cellular activity.  

A more detailed annotation of the clusters is available in the supplementary material. 
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Figure 4 Subset of data corresponding to T-cells. (A) UMAP for these cells with putative cell types annotated based on 

the differential expression within the subcluster. (B) Expression levels of relevant genes for establishing of cell types 

are visualised in form of a dot plot. Expression values are scaled within the plot. The first twelve genes (black and 

pink) are genes used to identify T-cells. The following genes are used to identify subtypes of T-cells with genes in green 

primarily associated with gamma/delta T-cells, genes in purple are primarily associated with cytotoxic cells (CD8+), 

genes in blue are primarily associated with CD4+ T-cells, and the last seven genes in black are distinctly expressed in 

some clusters with functions so far not directly associated with T-cells. (C) Fractions of T-cells per sample. 

Cluster 4, putative cytolytic cells, was re-clustered to investigate cell types within the cluster 

(Figure 5). Here, cells in sub-cluster 2 expressed high levels of  TARP, indicating that it 

contains γ/δ T-cells. Of the genes indicative of cytolytic activity GNLY showed the highest 

expression in this sub-cluster. Cells in sub-cluster 1 showed a high expression of CD3D, 

CD3E and TRBV6-6 as well as  CD8A and CD8BP, indicating that this sub-cluster contained 

CTL. In this sub-cluster all the studied genes indicative of cytolytic activity showed 

significant expression and GZMA and GZMM had the highest expression and FASLG the 

lowest. Cells in sub-cluster 0 showed low expression of CD3D, CD3E, TARP and TRBV6-5 

indicating that this subcluster comprises low numbers of T-cells while high expression of 

CD247 (CD3) suggests that a majority of cells might be NK cells. NK-cells are cytolytic 

non-T-cells of lymphoid origin and it is known that they can have separate expression of this 

transmembrane part of the T-cell receptor complex (Lanier 2001). Of the studied genes 

indicative of cytolytic activity cells in this cluster showed a high expression of FASLG. 
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Figure 5 Subset of data corresponding to cytolytic cells. (A) UMAP for these cells after re-clustering with putative cell 

types annotated based on the differential expression within the subcluster. (B) Expression levels of relevant genes for 

establishing of cell types are visualised in form of a dot plot. Expression values are scaled within the plot. The first 

twelve genes (black and pink) are genes used to identify T-cells. The following genes are used to identify subtypes of 

T-cells with genes in green primarily associated with gamma/delta T-cells, genes in purple are primarily associated 

with cytotoxic cells (CD8+), genes in blue are primarily associated with CD4+ T-cells, and the last seven genes in black 

are distinctly expressed in some clusters with functions so far not directly associated with T-cells. 

3.2 B-cells 

The B-cells have been identified using the expression of Bu-1 (LOC396098). Clusters 2, 10, 

18, 19, 20, 21 and 26 showed in addition to expression of Bu-1 a high expression of other 

typical B-cell associated genes such as the B-cell receptor genes CD79A (LOC121108878) 

and CD79B, immunoglobulin light chain, IGLL1, and IgA, VH26L1, as well as genes 

associated with B-cell receptor signaling, EVI2A (Li et al. 2014), VAV2 (Turner 2002) and 

LYN (Brian & Freedman 2021). In addition, cells in these clusters expressed B-cell 

transcription factors PAX5, EBF1 and TCF4, and MHCII genes BLB1, BLB2 and CD74. 

Thus, the B-cell identity of cells in these clusters was quite clear. Moreover, the expression 

pattern of known B-cell associated genes was similar between these clusters with the 

exception of cluster 19 and cluster 10. A striking feature of cluster 19 was a high expression 

of SOX5 that may indicate that  cells in this cluster 19 could be B-cells in late-stage 

development (Rakhmanov et al. 2014). In addition, cells in cluster 19 showed the highest 

expression of Bu-1, EVI2A, IRAG2, BHLHE41, PTPRJ, MAML3 and BANK1 among the B-

cell clusters. In mammals BHLHE41 (Kreslavsky et al. 2018) and PTPRJ (Skrzypczynska et 

al. 2016) are associated to so-called B1 B-cells and MAML3 has been associated with so-

called marginal zone B-cells (Wu et al. 2007). Cells in cluster 10 showed the highest 

expression of B-cell receptor genes CD79A and CD79B, IGLL1, MHCII genes, CXCR4, 

BAFF (TNFSF13B), BAFF-receptor (TNFRSF13C) and HMGB1 among the B-cell clusters. 

This could indicate that cells in cluster 10 are activated by antigen/s.  

Cluster 17 does not express typical B-cell genes, e.g. Bu-1 or CD79A/B, but was putatively 

identified as pro B-cells from the expression of ATP11A that in mice is expressed in 
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developing B-cells but not after the pro B-cell stage (Segawa et al. 2018) and FNIP1 that is 

expressed during B-cell development (Iwata et al. 2017). It is possible that cluster 17 contains 

a mixture of pro-B-cells and myleoid cells since cells share expression of some genes with 

clusters 5 and 6 (data not shown). The expression of these genes may also be due to the 

mutual activity of antigen presentation that both cell types perform. Hence, currently the 

annotation of cluster 17 is unsure. 

 

Figure 6 Putative B-cells (Bu-1+ cells). (A) UMAP for these cells with putative cell types were established based on the 

differential expression of Bu-1 within the data. (B) Fractions of B-cell types.  
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Figure 7 Dot plot of expression levels of relevant genes for establishing of cell types for clusters annotated as B-cells. 

Expression values are scaled within the plot. The first gene corresponds to BU-1. The blue genes are genes associated 

with B-cell receptor and B-cell receptor signalling. The following green genes are B-cell associated transcription 

factors. The black genes and MHCII genes. The red genes are general B-cell associated genes. The following black 

genes are general immune genes. The purple genes are differentiating for the cluster but not directly B-cell associated. 

3.3 Monocytes 

The distinct cluster formed by clusters 5 and 6 (Figure 2 (A)), which likely consists of 

monocytes, was annotated using marker gene MMR1L4 expression. From the dot plot in 

Figure 3, it can be seen that clusters 5 and 6 express MMR1L4. The primary clustering shows 

two populations, corresponding to a population with relatively high MMR1L4 expression and 

relatively low MMR1L4 expression when comparing clusters 5 and 6 (Figure 8). Cluster 5 

expresses more elevated levels of MHCII-associated genes (CD74, BLB1, BLB2) and is 

likely to comprise cells with active MHCII antigen-presenting capacity. Cluster 6 also 

comprised some cells with high MMP9 expression. This gene is not typically associated with 

monocytes in the chicken and suggests this cluster also comprised other cells of putative 

myeloid origin, likely heterophils (Sekelova et al. 2017). 
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Figure 8 Subset of cells corresponding to putative monocytes (MMR1L4+ cells). UMAP for these cells with putative 

cell types were established based on the differential expression of xx within the subcluster (A). Expression levels of  

relevant genes for establishing cell types are visualised in a dot plot of monocyte and heterophil marker genes (B). The 

first black genes correspond to general marker genes associated with monocytes or heterophils. The following yellow 

genes are used to identify primarily subpopulations of monocytes with high expression of MMR1L4 and low 

expression of MHCII, and the green genes are used to identify monocytes with low expression of MMR1L4 and high 

expression of MHCII. The following black genes are markers, e.g pattern recongintion receptors and cytokines, 

generally associated with immune sentinel cells. The purple genes are used to identify primarily heterophils. 

After re-clustering the initial monocyte clusters 5 and 6, six subclusters (0-5) were indicated 

(Figure 9). Based on the differential expression of MMR1L4, exclusively expressed in 

chicken monocytes (Staines et al. 2014), MHCII genes and MMP9 that is expressed in 

chicken heterophils but not in chicken monocytes (Sekelova et al. 2017), it was suggested that 

subclusters 0, 1, 3, 4, and 5 comprised mainly monocytes and that subcluster 2 likely 

contained mainly heterophils. Cells in subcluster 2 also showed a high expression of 

BHLHE40 and NR4A3 that in mammals have been associated with neutrophils (Wang et al. 

2022; Prince et al. 2017) Figure 9 (B). Moreover, the Re-clustering also revealed a 

polarisation of cells with high MMR1L4 expression and low/lower MHCII expression (cluster 

0,1) and low MMR1L4 expression and high/higher MHCII expression (cluster 3,4,5), as seen 

in the original clustering. This analysis also showed that these putative monocyte subtypes 

differed in the expression of several genes, such as genes associated with direct antibacterial 

functions, S100A12 (Cunden et al. 2016) and SPINK2 (Dietrich et al. 2017), or 

proinflammatory responses, e.g., SAA (Rychlik et al. 2014) and cell activation, e.g., ALCAM 

(Bowen & Aruffo 1999). 

(A) (B) 
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Figure 9 (A) Re-clustering of monocytes (MMR1L4+ cells) at resolution 0.8. (B) Dot plot of monocyte and heterophil 

marker genes. The first black genes correspond to general marker genes associated with monocytes  and heterophils. 

The following yellow genes are used to identify primarily subpopulations of monocytes with high expression of 

MMR1L4 and low expression of MHCII, and the green genes are used to identify monocytes with low expression of 

MMR1L4 and high expression of MHCII. The following black genes are markers, e.g. pattern recognition receptors 

and cytokines, generally associated with immune sentinel cells. The purple genes are used to identify heterophils 

primarily. 

3.4 Proliferating cells 

 

Figure 10 Subset of cells annotated as proliferating cells. (A) UPAM of all cells with proliferating cells highlighted in 

red. (B) Re-clustering of proliferating cells show 2 distinct groups of cells. Likely corresponding to lymphocytes (0,2,3) 

and myeloid cells (1). 

The cells in Figure 10 have been assumed to be proliferating due to their high expression of 

proliferation-associated genes (cluster-specific gene expressions available in supplementary 

materials). The cells in this group form one cluster of cells belonging to three other primary 

cell types: Cytolytic cells, monocytes, and B-cells. Some of these cells also form a distinct 
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cluster not embedded in another cell population. When re-clustered, these cells again form 4 

clusters (Figure 10 (B)). 

When comparing the expression patterns of these clusters (Comparison within primary cluster 

4), cluster 0 seemingly contains proliferating cells. Due to its closeness to clusters 2 and 3 and 

some expression of CD4 and CD28, these are likely lymphocytes. Cluster 2 expresses more 

T-cell-specific genes and seemingly consists of cytolytic γ/δ T-cells. Cluster 3 expresses 

typical B-cell genes, specifically a high expression of JCHAIN. Therefore, this cluster is 

believed to be plasma cells. Cluster 1 expresses monocyte markers and is probable MHCII 

monocytes. 

When comparing the cluster’s expressions with the whole dataset, more genes associated with 

cell proliferation are expressed. The GO terms also include terms that are ribosome, 

cytoskeleton, and translation associated. Therefore, it has been concluded that this cluster is a 

mixture of cells from different major cell groups involved in the same, probably proliferating,  

activity. 

4 Discussion 

This project aimed to investigate the possibility of using single-cell transcriptomics to infer 

knowledge about leukocytes in a non-traditional model organism, the chicken. Specifically, 

the aim was to investigate if it would be possible to 1. help identify leukocytes that are 

already known today and infer their functions. 2. identify unknown populations of leukocytes 

and infer their functions.  

This study has shown that it is possible to use single-cell RNA sequencing to identify a large 

number of known leukocyte populations in chicken blood. We have identified populations of 

B-cells, T-cells, monocytes, thrombocytes, RBCs, and basophils. Among these populations, 

we have also identified sub-populations of cells. Some populations were more evident from 

their gene expressions, such as the monocytes and γ/δ T-cells, while others were difficult to 

distinguish, such as the different types of α/β T-cells. Clusters often did not express the 

expected gene patterns or genes for their putative cell types. We thought that re-clustering 

these subsets would help resolve sub-populations, but this was only the case for the 

monocytes, where the heterophils were embedded within the monocytes. This is likely due to 

their common origin as myeloid cells. The re-clustering did, however, not help resolve the α/β 

T-cells. Instead, re-clustering led to other properties of the cells taking precedence in the 

differential gene expression, which means that the cells were clustering on properties such as 

their cellular activity. This problem is inherent within this technique and is discussed further 

in 4.2. 
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Among the T-cell clusters we were able to infer some function and functional differences 

among the “cytolytic cells” with respect to the expression of some genes involved in the 

cytotoxic process (GNYL, FASLG, GZMA and GZMM). However, for most of the T-cell 

populations we were not able to either confirm or gain new information on cell function. 

Similarly as for the T-cell clusters, most identified B-cell clusters did not reveal any distinct 

phenotypical or immune functional differences with the exception of B-cell cluster 19. Within 

this cluster we identified unique or relatively higher expression of several genes associated 

with B-cell type/function. For instance the expression of SOX5 suggests that B-cells in cluster 

19 are terminally differentiated (Rakhmanov et al. 2014). Moreover, cells in cluster 19 had a 

high expression of BHLHE41, PTPRJ and MAML3 that in mammals have been associated 

with  B-1 B-cells (Kreslavsky et al. 2018; Skrzypczynska et al. 2016) and marginal zone B-

cells (Wu et al. 2007). These B-cell types belong to the so-called “innate  -cells” and are 

involved in the primary immune response (Grasseau et al. 2020). To our knowledge, our 

results is the first indication of this type of B-cell in the chicken.  

In contrast to the T and B-cell clusters, our extended analysis of monocytes revealed different 

phenotypic subsets of monocytes, i.e. those with high expression MMR1L4 of and low 

expression of MHCII compared to those with low expression of MMR1L4 and high 

expression of MHCII. In a study detecting cell surface expression of these two receptors by 

immunofluorescence labelling, two different populations of chicken spleen macrophages have 

previously been identified, MMR1L4highMCHIIlow and MMR1L4lowMHCIIhigh, respectively 

(Yu et al. 2020). Functional differences between these populations were then also identified 

where the MMR1L4highMCHIIlow population showed higher phagocytic capacity, higher 

migratory capacity, lower antigen presenting properties and lower expression of some pro-

inflammatory cytokines compared to the MMR1L4lowMHCIIhigh population. Hence, our 

analysis showed that such phenotypic subpopulations also were present among chicken blood 

monocytes. Moreover, analysis of gene expression in the current monocyte clusters also 

indicated that functional differences correlating to those observed for the chicken spleen 

macrophage subsets were present. In addition, our analysis with more sub-clusters within the 

two general populations indicated that chicken monocytes might have more functional 

subsets. This would be in analogy with mammalian systems where e.g., for humans three 

major and potentially several more minor different functional subsets of circulating 

monocytes have been identified (Merah-Mourah et al. 2020). Thus, for the monocytes we 

have been able both to verify phenotypic and functional subtypes previously described with 

non-molecular methods as well as indicating further functional differences novel for the 

chicken.  

Many populations that have been annotated have been of unclear type. For example, 

population 17 is believed to be pro-B cells but does not express typical B-cell genes, so this 

annotation is uncertain. Cluster 28 is annotated as basophils, but this cluster also expresses an 

unclear pattern that includes genes not expected in basophils. It is, therefore, possible that 
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some of the populations that were not confidentially annotated are different cell types than the 

ones postulated here, and some could be novel cell types.  

This study shows that it is possible to study and classify immune cells without the use of 

laboratory methods such as flow cytometry. This is useful since flow cytometry, the leading 

laboratory method (Maecker et al. 2012), can introduce stress on the cells when they are 

sorted, which in turn can affect the expression profiles from these cells (van den Brink et al. 

2017). It has also been seen that methods that rely on antibody binding can lead to a change in 

gene expression in the cell (Kornbluth & Hoover 1989). This means that the use of flow 

cytometry is not only complicated by reagent accessibility (see section 1.3) but also might be 

construing the biological signal. During scRNA sequencing of cells some stress is also 

imposed on the cells, but generally less than with flow cytometry. This means that scRNA-seq 

could achieve better resolution than flow cytometry. Flow cytometry on the other hand allows 

for better cell population specificity, and enrichment of rare cell types in a way that is not 

possible with scRNA-seq (Nguyen et al. 2018).   

4.1 Technical limitations 

ScRNA-seq has opened up a world of possibilities for researchers interested in studying 

cellular activity. The technology does however come with limitations (Lähnemann et al. 

2020). Unsupervised clustering often lies at the centre of these analyses. Unsupervised 

clustering both benefits and suffers from being unbiased towards what signal is used. This is 

what allows for novel biological states to be found, but it also means that discerning between 

real signal and noise becomes challenging. Due to the fact that each cell only expresses a 

small subset of all possible genes in the genome, the majority of gene counts will be zero in a 

single cell mRNA sequencing. This means that there is a high possibility for false signals, and 

technical noise. Since each cell is only sequenced once there is no technical replicate and, 

therefore, no good way to discern technical noise from the biological signal (Kiselev et al. 

2019). It also becomes difficult to evaluate if the lack of gene expression in a cell is due to a 

real biological lack of signal of this gene or if these molecules have not been sequenced due 

to for example too low sequencing depth.  

The computational methods used also carry limitations. The main one is a lack of good 

validation methods. The current best method for validating the results is biologically, by 

working with cells where the expected types are known (Kiselev et al. 2019). This validation 

method becomes unhelpful when working with poorly studied organisms. Another problem 

with the computational methods is the user-set parameters (Kiselev et al. 2019). In this 

project, the user had to set the cluster resolution and umap’s n.neighbours. The decision of 

these parameters strongly affects the outcome of the visualisations and cluster  boundaries and 

introduces the possibility for a large variety of outcomes. Setting these parameters becomes a 

trade-off question between preserving the global structure of the data for finding primary cell 
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types and trying to resolve subpopulations from local structure. It is difficult to evaluate if a 

discovered community has clustered on signal indicating true cell-type difference or not. 

4.2 Biological limitations 

The cluster annotations have been carried out using a heavy focus on marker genes and 

existing knowledge surrounding potential genetic markers for leukocytes. A problem with this 

method is that the knowledge of genetic markers might not be represented in the cell’s gene 

expression. Transient cell states and cellular activity, such as proliferation, can mask the 

relevant immunological signal (Kiselev et al. 2019). This is why we found that cells 

sometimes clustered based on other activity rather than their cell types, such as in cluster 4, 

where seemingly several types of cytolytic cells formed one cluster or in cluster 22, where 

several types of proliferating cells formed a cluster. Many marker genes are associated with 

surface proteins unique to the cell but most likely have little to do with their current activity. 

Thus cells in transient states or involved in other activities become challenging to annotate. 

This means that to fully map cells based on their expression profiles, we would require more 

specific knowledge surrounding cellular activity in immune cells. We would also need to be 

able to discern between confounding cell markers and those that signify a genuine cell-type 

difference.  

Relying on manual annotation of cell populations also means that the project outcome 

depends on prior knowledge regarding existing populations. The annotation also becomes 

time-consuming, and the reproducibility of the annotations becomes poor (Lähnemann et al. 

2020). This is currently a considerable limitation when using single-cell transcriptomics in 

this way, and the development of good resources for automatic annotation is needed. The use 

of GO term enrichment somewhat simplifies this, as GO terms for a cluster can give 

information about the primary cellular processes in a cluster but does not solve the issue of 

prior knowledge being needed about the cell types (Kiselev et al. 2019). 

4.3 Future work 

We found that for some leukocyte populations, e.g. T-cells, the expression of lineage marker 

genes such as CD4, CD8 and CD8 was low, and in some cases we could not find 

expression of expected marker genes e.g. FOXP3 for identification of Treg, despite special 

efforts to detect these genes. Consequently, some of the analysis of data was difficult to 

interpret and confident identification of cells was not possible. Deeper sequencing might 

improve detection of lineage marker genes and warrants evaluation improve analysis.  

Moreover, single cell sequencing of purified cell populations of known identity, function and 

activation stage could provide cell-specific gene expression profiles that could improve the 

identification of samples with mixed cell populations such as in the current  study. With such 
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information the data from the current experiment may easily be re-analysed and further 

information might be revealed. 

5 Conclusion 

This study was aimed to serve as a first investigation into the possible usage of single-cell 

genomics in avian immunology and as a basis for continued research into the chicken immune 

system and possible furthering of poultry medicine. It has been shown here that sequencing-

based characterisation of immune cells is possible using currently available methods. It could 

prove a robust option in immunology study cases where traditional methods are limited by 

mapping the immune system using single-cell data and gaining novel insight into the type and 

function of immune cells. 
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8 Supplementary material 

Link to data and scripts: https://github.com/maxwelma/exjobb 
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Appendix A Quality metrics 

Before analysis the entire dataset consisting of 18 483 cells was filtered according to the steps 

in heading 0. The remaining 16 936 cells after filtering were analysed according to the steps 

in heading 2.5.  

 

 

 

Figure 1 Violoin plots of considered parameters, from left to right, feature count/cell,  read count/cell, percentage of 

mitochondiral genes/cell, percentage of red blood cell genes/cell, respectively. From top to bottom,  raw data, after 

doublet removal and after filtering. 
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Figure 2 Histogram of read count per cell for whole dataset (A) before doublet removal, (B) before filtering and (C) 

after filtering. 

 

Figure 3 Histogram of feature count per cell for whole dataset (A) before doublet removal, (B) before filtering and (C) 

after filtering. 

 

Figure 4 Scatterplot of number of features per cell vs number of reads per cell for whole dataset (A) before doublet 

removal, (B) before filtering and (C) after filtering.  

(B) (C) (A) 

(C) (B) (A) 

(A) (B) (C) 



51 

 

Appendix B Comparison of clustering algorithms  

The results of the first 3 of the clustering algorithms were compared, all other settings were 

set to the same values. There is no significant difference between the results of the standard 

Louvain algorithm and the Louvain algorithm multilevel refinement and SLM algorithm, 

except for the definition of more small clusters in the second. Since these internal cluster 

borders are not used at this stage but rather the major clusters are re-clustered, the definition 

of the sub-clusters is not essential to the analysis. Therefore, we chose to work with the 

standard Louvain algorithm when defining clusters since it is fast and shown to perform well 

for large datasets. 

 

Figure 5 Cluster determination of the data using the standard Louvain algorithm (A) and the Louvain algorithm 

multilevel refinement (B) and the SLM algorithm. 

 

  

(C) (A) (B) 
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Appendix C Resolution comparison 

The cluster assignment is based on the resolution of the FindClusters() function. To avoid 

over clustering and compare differences in outcome based on resolution, Clustree is run 

(Zappia & Oshlack 2018). Clustree generates graphs of how samples move between clusters 

depending on resolution. The investigated resolutions lie between 0-1 and are evaluated using 

the stability index. This corresponds to the number of times a solution appears when running 

the method 100 times.  

As seen in Figure 6 there is an increase in stability between resolutions 0-0.1 and incremental 

increases between the following resolution steps. Further increases in resolution also lead to 

more cells moving from stable to unstable states. Indicating that higher resolution is splitting 

up sub-graphs into smaller modules.  

In order to not loose biological information and the merging of subgraphs that do not belong 

together we chose a resolution which generates smaller subclusters. Keeping in mind when 

annotating clusters that it is probable that these subclusters belong to the same higher order 

cluster. This way smaller clusters that carry biological information are not lost and the 

clustree graph is used to guide the choice of higher order clusters 

 

 

Figure 6 Clustree output for whole dataset, this shows the sequential increase in modules based on resolution. The 

colour of the node indicates stability, with a lighter colour indicating a more stable module. 
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Appendix D UMAP values comparison 

The parameter n.neighbors can be used used to choose where to lay the trade-off between 

local structures and global structures in the visualisation. Lower values of n.neighbors forces 

the algorithm to prioritise local structure while higher values put more focus on global 

structure of the data. It is important to choose a value for n.neighbors that preserves global 

structure without packing the points so densely that local structure is lost. The figure below 

(Figure 7) shows the dataset of this study at different values for n.neigbors.  

By comparing the plots, we can see that the default value for n.neigbors of 30 yields a plot 

with defined global structure without too densely packing the points. Comparing the default 

plot to that of other values allowed only slight further insight into the structure of the data, but 

neither values below or above 30 provided an significantly increased insight into the data 

structure. Therefore, the default value of 30 was used in this study.  

 

Figure 7 Comparison of UMAP results using different values for number of neighbouring points (n.neighbors). 

Larger values for n.neighbors give priority to global structure preservation while smaller numbers preserves more 

local structure by constraining connectedness between neighbouring points. The default value of 30 was used in this 

analysis. 
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Appendix E Marker gene quality control  

Some marker genes that did not behave as expected were traced back for quality control in the 

original data. These were the genes TARP, TRBV65, and FOXP3.  

E.1 TARP and TRBV65 

TARP and TRBV65 were controlled by looking comparing were in the gene the annotated 

sequences occur. Since the sequencing is performed from the 3’ end of the mRNA the reads 

are expected to map to the 3´end of the gene. This was true for TRBV65 but not for TARP. 

The histograms in Figure 8 show that the TARP sequences in a larger frequency than the 

TRBV65 sequences map to downstream parts of the gene. When performing short nucleotide 

blast on the TARP sequences it was also found that a large amount of reads did not hit against 

the expected gene in the database. This indicates that some of these mappings are probably 

faulty and might lead to erroneous interpretation of the expression profiles for the g/d T-cells.  

 

Figure 8 Histograms of sequence mapping for TRBV65 (A) and TARP (B) based on position on the chromosome. First 

position corresponds to starting position of the gene on the chromosome. 

E.2 FOXP3 

FOXP3 is a gene recently hypothesised to be present in chicken Tregs. It has been known to exist as a Treg 

transcription factor in mammals but was earlier unknown within chickens (Burkhardt et al. 2022). It is still currently 

missing from the reference annotation of the chicken genome. Therefore, it was controlled if any instances of reads 

belonging to this gene occurred. This was controlled both by manually adding the putative FOXP3 gene to the 

annotation file before read counting and looking for expression (in one sample). This led to no indication of significant 

expression. It was also controlled using short nt blast. This was done by constructing a blast database of all reads per 

sample and querying the mRNA sequence against this database. Neither this showed any indication of presence of 

FOXP3 genes in the samples. Due to this this gene was not used in this study.  
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Appendix F Sample compositions 

 
Table 1 Comparison of fractions of cell types in total data per sample in (A) the computationally analysed data and 

(B) FACS-analysis of cells prior to sequencing. Large percentual differences are marked in yellow. These are 

probably due to issues in marker gene expressions (see Appendix E)  

(A) 
% of total counts  

      

Cell type Heterop
hils  

Tre
g 

MMR
1L4 

LOC3
96098 

TRBV
6-5 

TARP CD4 CD8A CD8B
P 

ITGA
2B 

ITGB
3 

Sample 
1 

1,86 5,6
2 

6,15 14,13 68,28 27,85 13,27 7,21 1,95 1,82 2,13 

Sample 
2 

3,56 2,7
4 

16,61 17,24 51,76 29,51 9,34 4,52 1,74 3,23 4,75 

Sample 
3 

2,17 4,3
7 

14,69 12,63 58,70 29,04 11,77 8,20 2,21 3,05 4,07 

Sample 
4 

2,17 4,3
9 

14,73 12,59 58,68 29,08 11,77 8,17 2,21 3,04 4,00 

Total 
sum 

2,31 4,4
5 

12,77 13,75 60,11 28,81 11,78 7,35 2,07 2,75 3,65 

 
           

(B) 
% of singlets  

         

Cell type Hetero
phils % 

singlet
s 

CD4C
D25 

%singl
ets 

MRC1
L-B % 

Bu1 % TCRab 
all % 

TCRgd CD4 
all % 

singlet 

CD8a 
%Singl

ets 

CD8b
% 

singlet
s 

CD41/
61 

mean 

Sample 
1 

3,37 0,5
6 

4,72 9,63 11,48 11,24 6,41 4,89 4,21 
 

3,03 

Sample 
2 

3,92 0,3
2 

9,87 6,37 9,21 10,06 5,88 3,56 3,58 
 

2,38 

Sample 
3 

2,86 0,4
9 

14,33 7,06 16,27 12,74 8,40 8,55 6,55 
 

5,03 

Sample 
4 

3,40 0,5
4 

14,50 6,94 16,27 16,61 8,49 9,22 7,17 
 

5,46 

Total 
sum 

3,39 0,4
8 

10,86 7,50 13,31 12,66 7,30 6,55 5,37 
 

3,98 

 

 


