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Abstract
Fully implicit Runge–Kutta methods offer the possibility to use high order
accurate time discretization to match space discretization accuracy, an issue of
significant importance for many large scale problems of current interest, where
we may have fine space resolution with many millions of spatial degrees of
freedom and long time intervals. In this work, we consider strongly A-stable
implicit Runge–Kutta methods of arbitrary order of accuracy, based on Radau
quadratures. For the arising large algebraic systems we introduce efficient
preconditioners, that (1) use only real arithmetic, (2) demonstrate robust-
ness with respect to problem and discretization parameters, and (3) allow for
fully stage-parallel solution. The preconditioners are based on the observa-
tion that the lower-triangular part of the coefficient matrices in the Butcher
tableau has larger in magnitude values, compared to the corresponding strictly
upper-triangular part. We analyze the spectrum of the corresponding precon-
ditioned systems and illustrate their performance with numerical experiments.
Even though the observation has been made some time ago, its impact on con-
structing stage-parallel preconditioners has not yet been done and its systematic
study constitutes the novelty of this article.

K E Y W O R D S

fully stage-parallel preconditioning, implicit Runge–Kutta methods, parallelization, Radau
quadrature

1 INTRODUCTION

The availability of substantial computational power and high performance computing resources has enabled high
resolution, both in space and time, when performing numerical simulations of numerous problems of interest, modeling
processes in physics, computational biology, financial and social processes, to name a few application areas.

Combining the requirements to have a fine, sometimes very fine, space resolution, high enough time resolution
to balance the discretization error in space and time, fast and robust numerical simulations tilt the scales in favor of
space discretization methods that easily handle complex geometries and adaptivity, together with higher order implicit
time discretization methods. In this study, we assume that the space discretization is done applying suitable finite
element methods (FEM) and focus on a particular class of implicit time discretization schemes, namely, the implicit
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Runge–Kutta (IRK) methods, based on Radau (also referred to as Radau IIA) quadratures. To be specific, consider a system
of evolutionary equations of the form

M 𝜕u(t)
𝜕t

+ Ku(t) = f(t), (1)

arising after semidiscretization in space of some non-stationary linear partial differential equation of the type 𝜕u
𝜕t
− 𝜀Δu +

b ⋅ ∇u = f (t), equipped with appropriate initial and boundary conditions. In (1), M is a mass matrix, K is a stiffness matrix
and u(t), f(t) are vectors.

As the name suggests, evolution equations describe the time evolution of a physical system starting from given
initial data.

In many real-life problems, where we need to resolve fine features of the solution during the time evolution, Such
problems are, for instance, convection-diffusion problems where various types of layers are developing in time. In this
study, we exclude from consideration explicit time integrators. When we use a stable implicit time-integrator such as the
backward Euler, the trapezoidal method or the Crank–Nicolson method (cf. Reference 1), the time-step must still be small
to guarantee a sufficiently small time-integration error that balances a small space discretization error. Therefore, there
are strong reasons to apply higher order time-integration methods, which can enable the usage of much fewer time-steps
and combine small total discretization error with fast integration in time.

As is also well known, see for example, Reference 2, classical multistep methods cannot have a higher order than two,
otherwise they are not stable for all eigenvalues of the evolution operator M−1K, that is, they are not A-stable. This can be
a severe limitation because in many problems, such as network problems and time-harmonic Maxwell’s equations there
can appear rapidly changing oscillations, leading to the appearance of eigenvalues, widespread in the whole right half
complex plane. On the other hand, in Reference 3 see also Reference 4, it is proven that there exist implicit Runge–Kutta
methods of an arbitrary high order that are A-stable.

Implicit Runge–Kutta methods, known also as collocation methods, are first presented in Reference 5, giving the
methods the name “IRK.” Their general form to solve a problem of the form u′ = F(t,u(t)) reads:

u(k+1) = u(k) + 𝜏
q∑

i=1
biF

(
tk + ci𝜏, v(k)i

)
,

and the so-called stage variables are computed as v(k)i = u(k) + 𝜏
∑q

j=1aijF(tk + cj𝜏, v(k)j ), i = 1, … , q.The method ingredients
are the number of stages q, the Runge–Kutta matrix Aq = [aij], the weights bi that depend on the particular integration
method, and the stage nodes ci, which are the zeros of the shifted Legendre polynomials of degree q, defined in the interval
[0, 1] and normalized at 0, satisfying

∑q
i=1ci = 1. Further, 𝜏 is the time step, u(k) and u(k+1) are the numerically computed

solutions at time-steps k and k + 1.
Independently, such methods are presented in Reference 6 and it is shown that due to their high order of approxima-

tion and stability properties, they could be considered as global integration methods, that is, it could suffice to use just
one or very few time-steps, that is, very large time-step intervals. In these original papers the A-stability property of the
methods is not shown, but it is shown later in References 7 and 3.

There are several versions of IRK methods.8-11 The most familiar methods are based on inner interval integra-
tion points being the zeros of some particular polynomials, namely, the Gauss integration method (G), the Radau or
Gauss-Radau integration method (R) and the Lobatto or Gauss-Lobatto integration method (L).

The approximation order (p) at the endpoints of each time-interval of methods (G), (R), and (L) is corre-
spondingly p = 2q, 2q − 1, and 2q − 2. The approximation order at the interior integration points, however, is
only of order q, compare, for example, Reference 5. We stress, that IRK are particularly important for large time
intervals where we are somewhat less interested in the behavior of the solution in intermediate time instances
but rather mainly of the solution of the underlying evolution systems at the final time in the considered time
interval.

All methods (G), (R), (L) are A-stable, compare, for example, Reference 12. However, methods (G) and (L) are not
strongly A-stable because for them the absolute value of the stability function converges to unity, implying, in the presence
of large eigenvalues of K or the Jacobian matrix, at least a linear growth of rounding errors with increasing number of
repeated time steps. In this work, we advocate the Radau method which is the only strongly A-stable (also called strongly
L-stable) method, for a definition, see for instance.6,9,13 Furthermore, the Radau method (referred to as stiffly accurate,
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compare, e.g., Reference 9) does not suffer from order reduction, that can occur for instance in the solution of systems of
differential-algebraic equations, see, for example, References 14 and 15.

The high accuracy of the IRK methods makes them very attractive, in particular, in the case when the underly-
ing problem requires a very fine space resolution and the time interval to integrate over is large. The drawback with
IRK is that in each timestep we have to solve the arising large algebraic system of order qn, where q is the num-
ber of stages of the method, that is, equals the degree and number of zeros of the Legendre or the combination of
Legendre polynomials and n is the size of M and K. For general IRK methods all stages are coupled and cannot be
straightforwardly decomposed in some easier to handle form. The solution of this system can be costly and some-
what involved, which has been the major reason why IRK methods are more rarely used. In practice, the system
must be solved by some preconditioned iterative method, preferably, implemented efficiently in a parallel computer
environment.

We mention for completeness, that in order to avoid the complications when employing implicit time-integration
methods, there have been efforts in applying Richardson extrapolation and similar techniques in combination with
explicit Runge–Kutta methods. The extrapolation still enables extension of the stability region, see, for example, Refer-
ence 16 and 17. However, in addition to be forced to choose time-steps to make a stable recursion, the methods do not
have the high order of discretization error, inherent in the IRK methods.

For an earlier discussion of solution techniques for IRK methods, see References 18-20, also References 21 and 22,
where diagonally implicit Runge–Kutta (DIRK) methods are presented. DIRK methods allow parallel implemen-
tation but have a much lower order of approximation, compared with the full IRK methods and, therefore, force
the use of smaller time-steps. Since some time an alternative approach to solve time-dependent partial differen-
tial equations have been used, see, for example, References 23-25, based on combined time-space finite elements.
This means that a 2D space partial differential operator is solved in a 3D space-time domain and a 3D space
partial differential operator is solved in a 4D space-time finite element mesh. Clearly this complicates the imple-
mentation of the method, but such methods enable the use of adaptive mesh resolution methods in both time
and space.

As stated above, in this article, we consider the solution of time-dependent partial differential equations and, to
motivate the need of large timesteps, assume that the time interval is large.

The major topic of this study is the construction of preconditioning methods for full IRK. The precondition-
ers considered here differ from other similar preconditioners, being based on a simple observation from Reference
6, which requires only real computations, enables very numerically efficient preconditioning techniques, which
are also fully parallel with respect to the stages. The novelty in this study is that we formulate, analyze, imple-
ment the suggested preconditioning methods and show their robustness and good parallelization properties on
problems of varying difficulty. The construction of the preconditioners is based on the inherent properties of the
Runge–Kutta matrices and not on purely algebraic manipulations with the matrices as in other studies. To our knowl-
edge, this is the first real-arithmetic, discretization-robust, stage-parallel fully implicit Runge–Kutta preconditioning
approach.

In this study, we implement and show the performance of the methods on large scale distributed memory high
performance computer platform for the stage-serial case. Stage-parallel implementations using a memory efficient
matrix-free FEM framework—including comparisons to the stage-serial case and implementation details for example,
necessary communication patterns, virtual typologies and so forth warrant a separate study, available in Reference 26.
(For completeness we state that the idea is first illustrated in Reference 27 without rigorous theoretical background and
parallel performance tests.)

The article is structured as follows. In Section 2, we present the Radau type of IRK methods. Section 3 summarizes
earlier approaches to solve the large IRK matrices efficiently and in parallel. The preconditioners, suggested in this arti-
cle are stated in Section 4 and analyzed in Section 5. Section 6 discusses implementation issues and Section 7 contains
illustrative numerical experiments. Conclusions and outlook are found in Section 8.

For more details we refer to the technical report in Reference 28.

2 IMPLICIT RUNGE–KUTTA METHODS

Time-integration methods are repeated on each time-step, whereby the end solution of the previous step is used as the
initial solution for the next time interval. Therefore, we do not use overlapping time-steps but instead advocate to utilize
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high order methods and very long time steps. To describe the method it suffices to consider just a single time-integration
interval, (0, 𝜏), 𝜏 > 0, without any overlap.

In the subsequent derivations Im denotes the identity matrix of order m. We utilize also the following tensor algebra
identity with ⊗ being the matrix tensor product, known as well as Kronecker product,

(a ⊗ b)(c ⊗ d) = (ac)⊗ (bd). (2)

2.1 Discrete tensor product matrix forms

To give an instance, consider the differential equation (1), that is,

M du(t)
dt

+ Ku(t) = f(t), 0 < t ≤ 𝜏, u(0) = u0.

This can be written as

Mv(t) + K
∫

t

0
v(s)ds = f(t) − Ku0, (3)

where v(t) = du(t)
dt

, that is, u(t) = ∫ t
0 v(s)ds + u0.

Following Reference 3, to solve (3) we approximate the integral term as
∑k

i=0aikv(ci), by using Radau quadrature. Let𝓁q
be the shifted Legendre polynomial of degree q, normalized at 0. We integrate from 0 to 𝜏ci, i = 1, … , q, where ci are the
zeros of 𝓁q(t) − 𝓁q−1(t), 0 < t ≤ 1, use the Lagrange interpolation polynomials for the points ci, lk(z) =

∏q
i=1,i≠k(z − ci)

/

∏q
i=1,i≠k(ck − ci) to represent v(z) ≈

∑q
k=1vklk(z), we obtain that aik = ∫

ci
0 lk(z)dz, i, k = 1, … , q. As shown in for

example, References 29 and 30, the matrix Aq = [aik]qi,k=1 can be presented in the form of a product of four matrices,

Aq = CVRV−1
,

where C = diag{c1, c2, … , cq}, R = diag{1, 1∕2, … , 1∕q} and V is the Vandermonde matrix, generated by ci, that is,

V =
⎡
⎢
⎢
⎢⎣

1 c1 · · · cq−1
1

· · · · · · · · · · · ·
1 cq · · · cq−1

q

⎤
⎥
⎥
⎥⎦
.

Since the zeros {ci} of the Legendre polynomials are distinct, V is nonsingular, thus, invertible. Clearly the IRK
quadrature matrix Aq is nonsingular too.

Having computed Aq, by use of the numerical integration ∫ ci
0 ṽ(s) ds =

∑q
k=1aikṽ(ck), i = 1, 2, … , q, and using tensor

product representation, we obtain the algebraic form of (3),

(Iq ⊗ M + 𝜏Aq ⊗ K)v = f − (Iq ⊗ K)(eq ⊗ u0), (4)

where f = [fi]qi=1, fi = f (𝜏ci) and eq is a vector of length q with all components 1. The matrices M and K are real of size
n × n. The block vector v of length qn has block components vi, i = 1, … , q and each vi is of length n. Multiplying (4)
from the left by A−1

q ⊗ In and utilizing (2) we obtain the alternatively transformed form of (4),

(
A−1

q ⊗ M + 𝜏Iq ⊗ K
)

v =
(

A−1
q ⊗ In

)
f −

(
A−1

q ⊗ K
)
(eq ⊗ u0). (5)

This transformation is suggested in Reference 31, see also Reference 29. The systems (4) and (5) involve the qn × qn block
matrices, respectively,

1 = Iq ⊗ M + 𝜏Aq ⊗ K and 2 = A−1
q ⊗ M + 𝜏Iq ⊗ K. (6)
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The IRK framework is conveniently formulated via the so-called Butcher tableau,32 that is,
[

c Aq
b

]
.We note here,

that for the Radau quadrature method cq = 1, then bi = aqi, i = 1, 2, … , q. For further comments, see Reference 29.
Explicit forms of the matrices Aq and A−1

q for various values of q are given in Reference 28 Appendix A.

3 A SUMMARY OF SOME EARLIER PRESENTED STAGE-PARALLEL
PRECONDITIONING METHODS

Clearly, for large scale algebraic problems, to solve systems with the matrices1 or2 in (6), using an exact block matrix
factorization method in a straightforward manner is infeasible as it would lead to full matrices and would be clearly too
expensive in computer time and memory demands. The way to reduce the computer resource demands is, instead of
direct solution methods, to use a preconditioned iterative solution method, such as the generalized conjugate gradient
method (GCG)33 or the generalized minimum residual (GMRES) method,11 entailing the task to construct an efficient
preconditioner.

Over many years, there have been various attempts to construct parallel solution methods for IRK problems, either
by approximating the method by some lower order method on simpler form, by constructing a parallel preconditioner or
by extending the method to a multistage method on several time steps. We list here some of these methods.

There are three general types of approaches that achieve some parallelism—across the method (across stages), across
the problem, and across the time-steps.

For a more general discussion of parallelization in Runge–Kutta methods, we refer to Reference 34.
An early attempt to achieve parallelism across the method is to apply diagonally-implicit Runge–Kutta methods, also

called DIRK methods, see, for example, References 35 and 19, also Reference 22. However, as already mentioned, the
methods have lower order of approximation (for a given number of stages), and thus require smaller and, therefore,
relatively many time steps. Another possibility is in using a diagonal matrix as a preconditioner to the IRK method. An
early experience is found in Reference 36. There, the linear systems are decoupled into subsystems, which means that the
cost of the full LU factorization of the global matrix is reduced to q factorizations of the diagonal blocks of size n.

Examples of approaches to achieve parallelism across the problem can be found in Reference 37, see also the references
therein, exploring the possibility to solve the problem in subintervals in parallel. Further, as pointed out in Reference 36,
the construction of the preconditioner can be based on the Vandermonde matrix representation of the quadrature matrix.

The parareal approach, for example, in Reference 38 is to seek parallelism across time.

3.1 Using decompositions of Aq or A−1
q

One strategy to construct a stage-parallel preconditioner is based on the spectral decomposition of the quadrature
matrix Aq,

T−1
1 AqT1 = Υ1 = diag{𝜐(1)1 , 𝜐

(1)
2 , … , 𝜐

(1)
q }.

The matrix1 (6) can then be transformed into a factorized form, namely,

1 = Iq ⊗ M + 𝜏Aq ⊗ K =
(

T−1
1 ⊗ In

)
1,ii(T1 ⊗ In), 1,ii = Iq ⊗ M + 𝜏Υ1 ⊗ K. (7)

The second option is to consider T−1
2 A−1

q T2 = Υ2 = diag
{
𝜐
(2)
1 , 𝜐

(2)
2 , … , 𝜐

(2)
q

}
and obtain

2 = A−1
q ⊗ M + 𝜏Iq ⊗ K =

(
T−1

2 ⊗ In
)
2,ii (T2 ⊗ In) , 2,ii = Υ2 ⊗ M + 𝜏Iq ⊗ K. (8)

We see that 1,ii and 2,ii are block-diagonal matrices that decouple the stages. However, some of the eigenvalues of
Aq or A−1

q are complex, which entails the usage of complex arithmetic and increases the computational cost. We refer
to Reference 39, where a Jordan normal form based approach is suggested, which, if Aq is diagonalizable, allows the
transformation to a block diagonal system, enabling stage parallelism on the cost of, in general, solving complex systems
for the complex-conjugate pairs of eigenvalues in real arithmetic. One can exploit the complex-conjugate property in the
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solver but some standard techniques for solving complex systems limit the achievable performance—see Reference 26 for
a detailed comparison.

In Reference 31, ILU-based stage-coupled and stage-parallel preconditioners are presented. There, the stage-parallel
preconditioner is the block-diagonal part of the block-LU factorization of the system matrix, where the blocks are
ILU-factorized themselves. The experiments indicate that the stage-parallel (referred to as stage-uncoupled) precondi-
tioner is numerically less efficient than that of the stage-coupled version.

A comparison study of a series of LDU-based preconditioning approaches, applied on the non-transformed
Equation (4) is recently presented in Reference 40. The authors test various combinations of the LDU factorization of
Aq. The preconditioners are implemented in a block-Jacobi and Gauss–Seidel fashion. The numerical results, presented
there, indicate that the LD option is most robust in terms of small condition number. The approach does not utilize any
particular property of the Runge–Kutta matrix and does not provide estimates of the spectrum or the condition number
of the arising preconditioned matrices.

Another recent work on preconditioning IRK, related to the considered framework, is found in Reference 41. The
preconditioner is based on a form of the system matrix, similar to that of 2, and on a closed form of the inverse of the
matrix A−1

q ⊗ In + 𝜏Iq ⊗ M−1K. The method presented there exploits the complex-conjugate property of the eigenvalues.
It is inherently stage-serial as it requires the sequential solution of stage(-pairs).

3.2 Transforming Aq to avoid complex arithmetic

To construct a preconditioner that requires only real arithmetic, it is suggested to use some transformation of Aq, for
instance,

Aq = CVRV−1 = B−1W−TXW−1
, (9)

where the entries of W are computed as wij = 𝓁j−1(ci) with 𝓁i(x) being the shifted Legendre polynomial of degree i and
B = diag(b1, b2, … , bq). The matrix X is tridiagonal. The above W -transformation is first published in Reference 8 and
also advocated in Reference 42. In this way the complex arithmetic is avoided and the decoupling cost for the parallel
implementation of this approach corresponds to that for the implicit Euler method. In Reference 42, the factorization (9)
is used to obtain a preconditioner of block-tridiagonal form, which is then LU-factorized and simplified using a method
parameter to be determined.

3.3 Other approaches

In Reference 43, standard preconditioners for low-order time discretizations are used to construct order-optimal diagonal
block Jacobi preconditioners for high order discretizations. The convergence properties of the methods are improved in
Reference 44 by employing block Gauss–Seidel techniques.

In Reference 45, optimal complex and real Schur-based preconditioners are compared, together with a block
Jordan-form preconditioner and a near optimal singly diagonal approximate block real Schur decomposition is derived.
The latter in particular has memory requirements and setup cost comparable to singly DIRK methods.

An example of a parallel across the problem method is the waveform relaxation technique, see for instance,
Reference 46. A drawback to mention here is that for stiff problems the convergence of these methods to the exact
solution can be very slow. A similar technique is to use a time-harmonic expansion of the solution, which is a natural
approach for problems with alternating source functions, such as in time-harmonic electromagnetic problems, compare
References 47 and 48 and the references therein. In such an approach the problem decouples into independent subprob-
lems per angular frequency and in this way there is no need to use any time-integration method at all. Another approach
to use Fourier expansions is to extend the interval [0, 𝜏] to [0, 2𝜏] and use the backward form of the IRK method on the
symmetrical interval [𝜏, 2𝜏]. Here the solution can be expanded in ei𝜔kt terms, which, again leads to uncoupled problems
for each frequency 𝜔k and can be solved fully in parallel, compare Reference 48.

For parabolic problems of the form

ut + Ku = 0, u(0) = u0,
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AXELSSON et al. 7 of 24

one can use the Laplace transform with parameter s. We then have

sû + Kû = u0, which implies û = (sI + K)−1u0.

The solution u(t) can be computed via the inverse Laplace transform u(t) = 1
2𝜋 i
∫

Γ
estû(s) ds, where Γ is a contour in the

right half plane, that is, contains no eigenvalues of sI + A. Here the integral is approximated with a quadrature for-
mula with nodes sj. Then one only needs to compute û(s) at all sj, which can be done fully in parallel. For details, see
References 49 and 50.

Another possible parallelization method is the boundary value technique, that has appeared in Reference 51. Here the
whole time interval is solved by computing the equation as arising in the implicit trapezoidal method with a backward
midpoint rule at the endpoint. The whole system then becomes block tridiagonal and can be solved in various ways by
common methods for two-point boundary value problems.

Since long, multigrid methods have successfully been used to solve space discretized problems and also have been
shown to be efficiently parallelized. Parallel-in-time, that is, parallelizable across time methods have also been devel-
oped, such as multiple-shooting techniques, compare, for example, Reference 52. The parareal framework has further
renewed the interest in such methods, see References 38 and 53. We claim that if one can solve the full IRK method in a
stage-parallel manner in each time step, there would less need for such multiple timestep methods. However, these can
be useful to obtain solution with higher accuracy also in interior integration points. A GPU implementation of the fully
implicit IRK method is found in Reference 54, applied to a system of ODEs. There, the matrices to be solved have the
same structure as in (7) and the preconditioner has a tridiagonal structure.

Related to IRK methods, however out of the context of parallel implementation, preconditioners for quadratic matrix
polynomials are analyzed in Reference 55.

In Reference 56, a monolithic multigrid for IRK methods, applied to incompressible flows is studied. The coupled
systems are solved by the designed multigrid, choosing all computational ingredients of the solver to be parallelizable,
however, not aiming to achieve parallelization across the stages.

4 STAGE-PARALLEL PRECONDITIONING METHODS FOR THE RADAU
TENSOR PRODUCT SYSTEM

From now on we consider IRK methods based on Radau quadratures (Radau IIA). The derivations apply to other IRK
methods for which the Butcher matrices A possess the same properties as those for Radau IIA, discussed in Reference 6.

It is straightforwardly observed that the first term in the matrix 1, respectively, the second term of the matrix
2 in (6) involve a block-diagonal matrix and a plausible aim is to get a simpler form of the other matrix term as
well. The approach to use the spectral decomposition of Aq achieves that, however, on the cost of using complex
arithmetic.

In this study, we retain the framework, however, not using the spectral decomposition of Aq. As shown in Reference 6
(p. 75), for IRK methods based on Radau quadratures, Aq has a dominating lower-triangular part in the sense that it has
larger in magnitude entries than the strictly upper triangular part. This property holds also for A−1

q as well as the corre-
sponding exact LU- factorizations of Aq (Aq = L(1)q U (1)

q ) and A−1
q (A−1

q = L(2)q U (2)
q ). Therefore, a possibility to precondition

1 and2 is by the matrices

1 = Iq ⊗ M + 𝜏L(1)q ⊗ K and 2 = L(2)q ⊗ M + 𝜏Iq ⊗ K, (10)

respectively, where L(1)q and L(2)q are the lower-triangular factors in the exact LU-factorizations of Aq, respectively, of A−1
q .

This leads to achieving a block lower-triangular form of 1 and 2, however, in this way the solution with them involves
successively solving systems with the block-diagonal part (Iq ⊗ M + 𝜏(L(1)q ⊗ K))ii of 1 and correspondingly for 2, and
does not allow for any parallelism between the stages of the method.

Clearly, a preconditioner based on directly using the lower-triangular part is mainly sequential and although there
exist general techniques to handle solutions with block lower-triangular matrices in parallel, the amount of parallelism
to achieve is rather limited and we leave this approach out of consideration.
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8 of 24 AXELSSON et al.

Next we make a choice between 1 and 2. For 1 the elimination requires solutions with matrices (Iq ⊗ M +
𝜏(L(1)q ⊗ K))ii. When K is ill-conditioned then these block matrices are also ill-conditioned and we need a good
preconditioner of these matrices too, for instance of algebraic multilevel (AMLI) type or of algebraic multigrid (AMG)
type method.57,58 There exists various possibilities to employ parallel solvers for these inner systems, but we do not
discuss this any further.

The same type of successive elimination method can be applied also for (5). Here the block-diagonal matrices equal
2,ii which may have a much better form for the efficiency of the inner solution than1,ii. Furthermore,

(i) the off-diagonal blocks arise now from the matrix term A−1
q ⊗ M, which is in general sparser than Aq ⊗ K, in

particular if M is a lumped mass matrix, hence, we save also in memory demand;
(ii) in addition, any ill-conditioning of K does not harm the off-diagonal blocks.

Since solving (5) instead of (4) can significantly reduce the computational cost, it can be preferable and this is also
the approach taken in this article. Thus, we consider only the form (5). To simplify the notations, we drop the subscript
2 in 2 and in 2, and the superscript (2) in L(2)q , thus, we deal with  = A−1

q ⊗ M + 𝜏Iq ⊗ K. We consider here a par-
ticular LU factorization of A−1

q , namely, we let A−1
q = LqUq, where the factor Lq is real-valued lower-triangular and the

upper-triangular factor Uq has a unit diagonal, thus, Uq = Iq + Ûq with Ûq strictly upper-triangular. To take an example,
for q = 2, then we have

A−1
2 =

[
3
2

0
− 9

2
4

][
1 1

3
0 1

]
, thus, Û2 =

[
0 1

3
0 0

]
,

that is, ||Û2|| = 1∕3. For q = 3 and q = 4 we have correspondingly, ||Û3|| = 0.4098, ||Û4|| = 0.4779 and

A−1
3 =

⎡
⎢
⎢
⎢⎣

3.225 1.168 −0.253
−3.568 0.775 1.053
5.532 −7.532 5

⎤
⎥
⎥
⎥⎦
,L3 =

⎡
⎢
⎢
⎢⎣

3.225 0 0
−3.568 2.067 0
5.532 −9.535 9

⎤
⎥
⎥
⎥⎦
,U3 =

⎡
⎢
⎢
⎢⎣

1 0.362 −0.079
0 1 0.374
0 0 1

⎤
⎥
⎥
⎥⎦
,

L4 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

5.6441 0 0 0
−5.0492 2.9419 0 0
3.4925 −5.1747 3.1618 0
−6.9235 8.9548 −16.6361 16

⎤
⎥
⎥
⎥
⎥
⎥⎦

, U4 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

1 0.3408 −0.1038 0.0308
0 1 0.4183 −0.0949
0 0 1 0.3869
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥⎦

.

Remark 1. We notice, that the lower-triangular part of A−1
q and Lq itself possess the property that their diag-

onals have alternating signs. Therefore, they can be seen as some sort of difference matrices. There holds also
that L−1

q are positive matrices (with all entries positive). The property is observed for all q up to 12.

4.1 Preconditioner, based on the spectral decomposition of Lq

Consider the matrix in (10) (right) to be used as a preconditioner to,

L = Lq ⊗ M + 𝜏Iq ⊗ K. (11)

The subscript ′L′ denotes that this preconditioner uses the complete factor Lq. If applied straightforwardly, solutions of
systems with L do not allow parallelism across stages. Similarly to some earlier attempts towards overcoming this and
aiming to obtain a fully stage-parallel preconditioner, compare, for example, References 39 and 59, instead of using the
spectral decomposition of A−1

q we use that of Lq.
So, we assume that Lq is a good approximation to A−1

q and construct the spectral decomposition Lq = TqΛqT−1
q . Here,

Tq contains the eigenvectors of Lq and Λq is the diagonal part of Lq that contains the eigenvalues of Lq, all real. We then
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AXELSSON et al. 9 of 24

factor L as

L = Lq ⊗ M + 𝜏Iq ⊗ K = TqΛqT−1
q ⊗ M + 𝜏TqT−1

q ⊗ K
= (Tq ⊗ In)(Λq ⊗ M)(T−1

q ⊗ In) + 𝜏(Tq ⊗ In)(Iq ⊗ K)(T−1
q ⊗ In)

= (Tq ⊗ In)
(
(Λq ⊗ M) + 𝜏(Iq ⊗ K)

)
(T−1

q ⊗ In)
= (Tq ⊗ In) d (T−1

q ⊗ In),

(12)

where d = Λq ⊗ M + 𝜏(Iq ⊗ K) is block-diagonal. Then, the solution of the generic system Lx = f is performed in the
following steps:

(1) Solve dy = (T−1
q ⊗ In)f,

(2) Recover x = (Tq ⊗ In)y.

The eigenvectors of Lq (the columns of Tq) can be computed by a simple recursion, as shown in Reference 28 Appendix
B, or obtained by some available linear algebra software.

4.2 Preconditioner, based on a diagonal approximation of Lq

Let 𝓁 = max{Lq,ii, i = 1, … , q} be the maximum eigenvalue of Lq. Consider the matrix

D = 𝓁Iq ⊗ M + 𝜏Iq ⊗ K (13)

as a preconditioner to . The consequence of the approach (13) is that all blocks in 𝓁 Iq ⊗ M are the same and in the
computations we do not need to involve the eigenvector matrices Tq. The numerical examples in Reference 27 are made
using the latter framework. There, no theoretical analysis is provided and some preliminary experiments in Matlab are
included. We analyse the spectral properties of the corresponding preconditioned matrix in Section 5.2.

Remark 2. Clearly, the approach can be applied to Aq, which is tested in Reference 40. The variant LD from
that article would correspond to our approach when applied to Aq. As mentioned, there it is found empirically
that this variant is numerically most efficient, without considering any particular properties of Aq.

5 SPECTRAL PROPERTIES OF THE PROPOSED PRECONDITIONERS

We analyze the spectral properties of the preconditioned matrices −1
L  and −1

D .

5.1 Spectral properties of the preconditioned matrix −1
L 

We make first the general observation that


−1
L  = (Lq ⊗ M + 𝜏Iq ⊗ K)−1(A−1

q ⊗ M + 𝜏Iq ⊗ K)
= (Lq ⊗ M + 𝜏Iq ⊗ K)−1

[
(Lq ⊗ M + 𝜏Iq ⊗ K) + LqÛq ⊗ M

]

= Iqn + (Lq ⊗ M + 𝜏Iq ⊗ K)−1(LqÛq ⊗ M)
= Iqn + (Iqn + 𝜏(L−1

q ⊗ M−1K))−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

W−1
1

(Ûq ⊗ In)
⏟⏞⏞⏟⏞⏞⏟

W2

,

(14)

where Ûq is the strictly upper triangular part of Uq. Denote Q = W−1
1 W2. Hence,

||−1
L  − Iqn|| = ||Q|| ≤ ||W−1

1 ||||W2||, (15)
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10 of 24 AXELSSON et al.

T A B L E 1 Some characteristics of A−1
q , Lq, and Ûq for different number of stages q, Sq = 1

𝓁
A−1

q − Iq, 𝛾 = |||eigmin
(

Sq
)|||.

Number of stages q

2 3 4 5 6 7 8 9 10 11 12

||Ûq|| 0.33 0.41 0.48 0.53 0.57 0.60 0.62 0.64 0.66 0.67 0.69

𝜆min(Lq) 1.5 2.07 2.94 3.58 4.41 5.08 5.88 6.65 7.35 8.04 8.82

𝜆max(Lq)(= 𝓁) 4 9 16 25 36 49 64 81 100 121 144
‖‖Sq‖‖ 1.32 1.31 1.29 1.28 1.27 1.27 1.27 1.26 1.26 1.26 1.26

𝛾 0.61 0.60 0.71 0.74 0.79 0.82 0.84 0.86 0.87 0.88 0.89

which is predicted to be small since ||Ûq|| is reasonably less than 1. For illustration, in Table 1 we show the value of ||Ûq||
for a number of stages 2 ≤ q ≤ 12. Further, if, for instance, K has a positive definite symmetric part, then ||W−1

1 || is likely
smaller than unity and particularly small for large time-steps 𝜏.

We next attempt to derive an upper bound of the spectral radius of the preconditioned matrix −1
L . To this end,

as an analysis tool we use the field of values(A), defined as(A) = {x∗Ax ∶ x ∈ C, ||x|| = 1}, where x∗ denotes the
conjugate transpose of the vector x. Let A and B denote generic square matrices, (A) be the spectrum of A and(A) -
its field of values, 𝜌(A) and 𝜔(A) be the spectral and the numerical radius of A, respectively, defined as 𝜌(A) = max{|𝜆| ∶
𝜆 ∈ spectrum of A} and 𝜔(A) = max{|x∗Ax| ∶ ||x|| = 1}. Let also 𝜎1(A) ≥ 𝜎2(A) ≥ … ≥ 𝜎n(A) be the singular values of
A. The following relations are known to hold:

(P1) 𝜌(A) ≤ 𝜔(A) ≤ 𝜎1(A), compare, for example, Reference 60, p. 137.
(P2) 1

2
||A|| ≤ 𝜔(A) ≤ ||A||, compare, for example, Reference 60, p. 137.

(P3) 𝜔(AB) ≤ 4 𝜔(A) 𝜔(B), compare Reference 61, Theorem 2.5-2.
(P4) For general matrices A and B there holds (cf. Reference 61 Theorem 2.4-1)

𝜌(A−1B) ⊂ (B)
(A)

=
{

r2

r1
∶ r1 ∈(A), r2 ∈(B)

}
,

where(⋅) denotes the closure of(⋅).
(P5) Let A ∈ Cm×m and B ∈ Cn×n with eigenvalues {𝜆i, i = 1, … ,m} and {𝜇j, j = 1, … ,n}, correspondingly. Then, the

spectrum of A ⊗ B consists of {𝜆i𝜇j}, i = 1, … ,m, j = 1, … ,n. The same holds for the singular values, compare
Reference 62 Theorem 4.2.12.

(P6) Denote the eigenvalues of M−1K by 0 < 𝜃1 ≤ … ≤ 𝜃n, where M and K are the matrices in (1).
The spectrum {𝜃j}, j = 1, … ,n depends on the time-independent part of the equation at hand, whether it is of
diffusion with or without anisotropy, convection-diffusion, or only of advection type, as well as of the chosen
discretization in space. The mass matrix M is symmetric positive definite and in the case of a space operator
of the form −Δu + b ⋅ ∇u, K is also positive definite. For piece-wise linear finite element discretization in space
with a mesh-size h and for arbitrary real vector x, such that ||x|| = 1, we can estimate 𝜃j from the following
relations,

c1h2
≤ xTMx ≤ c2h2

, d1h2
≤ xTKx ≤ d2, c̃1 ≤ 𝜃j ≤ c̃2h−2

. (16)

Here ci > 0, di > 0, i = 1, 2 and c̃1 = d1∕c2, c̃2 = d2∕c1 are constants, not depending on h. The estimates (16) of the
eigenvalues of the global FEM matrices are expressed in terms of the extremal nonzero eigenvalues of the element
stiffness and mass matrices and the maximal degree of the nodes in the discretization mesh, compare, for example,
Reference 63.

We state the following conjecture.

Conjecture 1. Consider the matrix  = A−1
q ⊗ M + 𝜏Iq ⊗ K, where K and M are positive definite matrices,

corresponding to a finite element discretization of a second order elliptic operator. Further, let Aq be the matrix,
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AXELSSON et al. 11 of 24

F I G U R E 1 Problem 1: Eigenvalues of −1
L  - q = 2, q = 6, q = 9, circle with radius ||Ûq|| and centered at 1.

F I G U R E 2 Problem 1: Eigenvalues of −1
L  - q = 9 for a range of 𝜏 (left) and block dimension n (right), circle with radius ||Û9|| and

centered at 1.

corresponding to a fully implicit Runge–Kutta method of Radau type with q stages and Iq be the identity matrix of
order q. Let A−1

q = LqUq be the exact LU factorization of A−1
q , such that Uq has unit diagonal. Denote Û = Uq − Iq,

strictly upper triangular and assume that ||Ûq|| < 1. Define the matrix L = Lq ⊗ M + 𝜏Iq ⊗ K. Consider the
generalized eigenvalue problem

x = 𝜈Lx.

Then, all eigenvalues 𝜈 are contained in a circle, centered at 1 and with radius ||Û||, strictly less than one.
Furthermore, there are at least n eigenvalues that are exactly equal to 1.

Remark 3. Conjecture 1 is supported by strong numerical evidence. Figures 1 and 2 illustrate the spectrum of

−1
L , showing that it is favorably clustered around 1. Figure 3 illustrates the spectrum for the pure convection

case from Problem 3. Note that in the latter case the assumptions of the conjecture are not satisfied. The
circular bound of the spectra is also shown in the figures. However, using various relations between spectral
and numerical radius, norms, singular values, induced norm techniques, rigorous derivation has not been
possible to show. We sketch below one of the possible approaches.
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12 of 24 AXELSSON et al.

F I G U R E 3 Problem 3: Eigenvalues of −1
L  - q = 3, q = 5, q = 9, circle with radius ||Ûq|| and centered at 1.

Consider the generalized eigenvalue problemv = 𝜈Lv. and transform it as

( − L)v = 𝜇Lv (17)

with 𝜇 = 𝜈 − 1. As − L = LqÛq ⊗ M, then 𝜇 is an eigenvalue of QLv = 𝜇v, where

QL ≡ (Lq ⊗ M + 𝜏Iq ⊗ K)−1(LqÛq ⊗ M) = (Iqn + 𝜏(L−1
q ⊗ M−1K))−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

W−1
1

(Ûq ⊗ In)
⏟⏞⏞⏟⏞⏞⏟

W2

, (18)

that is, QL = W−1
1 W2. A straightforward computation shows that the matrix QL has one zero block-column of

size qn × n. Thus, n of the eigenvalues 𝜈 are equal to one. To estimate the rest (q − 1)n eigenvalues we want
to bound 𝜌(QL), or 𝜔(QL).

As the matrices W−1
1 and Û are nonsymmetric and do not commute, we estimate 𝜔(QL) applying (P3) and

we obtain that 𝜔(QL) ≤ 4 𝜔(W−1
1 )||Ûq||. We note that ||Ûq|| < 1. Even more, from Table 1 one can deduce that

for any q ||Ûq|| < 3
4
.

Then, even though, based on estimating the eigenvalues of M−1K one can show that
𝜔
(

Iqn + 𝜏L−1
q ⊗ M−1K

)−1
< 1 it does not suffice to ensure that 𝜌(QL) ≤ 3𝜔

(
W−1

1
)
||Ûq|| ≤ 1.

We include a proof that Conjecture 1 holds true for q = 2.

Theorem 1. Let K and M be symmetric positive definite matrices and 𝜏 > 0. For q = 2, the eigenvalues of −1
L 

lie in a circle in the complex plane centered at 1 with radius ||Û2||.

Proof. We apply (P4) to bound 𝜌(W−1
1 W2) and, thus, we need to find the smallest |r1| in(W1) and the largest

|r2| in(W2) It is straightforwardly seen that

|r2| = 𝜔(W2) ≤ ||W2|| = ||Ûq||.

To estimate the smallest |r1| we use the relations

(W1) =
((

Iqn + 𝜏
(

L−1
q ⊗ M−1K

)))
⊂(Iqn) +

(
𝜏
(

L−1
q ⊗ M−1K

))
,

where the addition denotes a sumset. Next, since(Iqn) = {1} it follows that

(W1) ⊂(Iqn) +
(
𝜏
(

L−1
q ⊗ M−1K

))
=

{
1 + r ; r ∈

(
𝜏
(

L−1
q ⊗ M−1K

))}
.
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AXELSSON et al. 13 of 24

Given that 𝜏 > 0, to estimate the smallest |r1| it is enough to show that all r ∈((L−1
q ⊗ M−1K))} are

nonnegative, that is, it suffices to show

inf
||x||=1

x∗(L−1
q ⊗ M−1K)x ≥ 0. (19)

Since M is symmetric and positive definite, the following similarity relation holds true,

(
L−1

q ⊗ M−1K
)
=

(
Iq ⊗ M− 1

2

)(
L−1

q ⊗ M− 1
2 KM− 1

2

)(
Iq ⊗ M

1
2

)
.

Therefore, (19) is equivalent to inf ||x||=1 x∗
(

L−1
q ⊗ M− 1

2 KM− 1
2
)

x ≥ 0, where K̃ ≡ M− 1
2 KM− 1

2 is symmetric
positive definite. Denote L−1

q = {lij}, i, j = 1, … , q and recall, that lij > 0, compare Remark 1. Let x∗ =
[x∗1, … , x∗q], xi ∈ Cn,1 and S ≡ x∗

(
L−1

q ⊗ K̃
)

x. Then

S =
q∑

k=1

( k∑

j=1
lk,jx∗kK̃xj

)
=

q∑

k=2

( k∑

j=1,j≠k
lk,j⟨xk, xj⟩K̃

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Sod

+
q∑

k=1
lk,k||xk||2

K̃

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Sd>0

. (20)

As K̃ is symmetric positive definite it induces a norm and an inner product. Therefore, in order to show that
S ≥ 0, it is enough to have that |Sod| ≤ Sd. We have:

|Sod| ≤
q∑

k=2

( k∑

j=1,j≠k
lk,j|⟨xk, xj⟩K̃|

)
≤

q∑

k=2

( k∑

j=1,j≠k
lk,j||xk||K̃||xj||K̃

)
,

where we use the Cauchy–Schwarz inequality on the right relation. Now it suffices to show

q∑

k=2

( k∑

j=1,j≠k
lk,j||xk||K̃||xj||K̃

)
≤

q∑

k=1
lk,k||xk||2

K̃
. (21)

For q = 2, in order for (21) to hold, we need to show that l21||x2||||x1|| ≤ l11||x1||2 + l22||x2||2
. If either ||xi|| = 0

this clearly holds. Assuming ||xi|| ≠ 0, we denote z = ||x1||∕||x2|| > 0 and dividing both sides by l21||x2||||x1||,
the relation to be shown reads

1 ≤
l11||x1||2

l21||x2||||x1||
+ l22||x2||2

l21||x2||||x1||
= l11||x1||

l21||x2||
+ l22||x2||

l21||x1||
= l11

l21
z + l22

l21

1
z
.

The latter is equivalent to

p(z) ≡ l11

l21
z2 + l22

l21
− z ≥ 0.

Inserting l11 = 2∕3, l21 = 3∕4, l22 = 1∕4 we obtain that the inequality

p(z) = 8
9

z2 + 1
3
− z ≥ 0

holds true as p(z) has a global minimum at p(9∕16) = 5∕96 > 0. ▪

5.2 Spectral properties of the preconditioned matrix −1
D 

For the spectrum of the preconditioned matrix −1
D  the following result holds true.
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14 of 24 AXELSSON et al.

Theorem 2. Consider the matrix  = A−1
q ⊗ M + 𝜏Iq ⊗ K, where K and M are positive definite matrices, cor-

responding to a finite element discretization of a second order elliptic operator. Further, let Aq be the matrix,
corresponding to a fully implicit Runge–Kutta method of Radau type with q stages and Iq be the identity matrix of
order q. Let A−1

q = LqUq be the exact LU factorization of A−1
q , such that Uq has unit diagonal. Let 𝓁 be the largest

eigenvalue of Lq. Define the matrix D = 𝓁Iq ⊗ M + 𝜏Iq ⊗ K and consider the generalized eigenvalue problem

x = 𝜈Dx.

Then, all eigenvalues 𝜈 are contained in a circle, centered at 1 and with radius 𝛿q > 1, where 𝛿q depends only on
q. In addition, the real parts of the eigenvalues are larger than a constant Cq > 0, depending only of the number
of stages q.

Proof. To analyze the spectrum of the preconditioned matrix −1
D  we consider the generalized eigenvalue

problem v = 𝜈Dv, transform it to ( − D)v = (𝜈 − 1)Dv and analyze 𝜇 = 𝜈 − 1, which is an eigenvalue
of ((A−1

q − 𝓁Iq)⊗ M)v = 𝜇(𝓁Iq ⊗ M + 𝜏Iq ⊗ K)v. In order to derive spectral bounds we rewrite the matrices
in matrix-tensor product form:

QD ≡ (𝓁Iq ⊗ M + 𝜏Iq ⊗ K)−1 ((
A−1

q − 𝓁Iq
)
⊗ M

)

=
(

Iq ⊗ (𝓁M + 𝜏K)−1) ((
A−1

q − 𝓁Iq
)
⊗ M

)

=
(

1
𝓁

A−1
q − Iq

)
⊗

(
In + 𝜏

𝓁
M−1K

)−1
≡ Z1 ⊗ Z−1

2 .

(22)

Then, using (P5) we obtain

𝜔(QD)≤𝜔(Z1)𝜔
(

Z−1
2

)
≤ || 1

𝓁
A−1

q − Iq||𝜔
((

Iqn + 𝜏

𝓁
M−1K

)−1
)
< 𝛿q. (23)

From Table 1 we see that 1 < 𝛿q < 1.5 for q ≤ 12. Since the bound in (23) is larger than 1 and we want to
estimate 𝜈 = 𝜇 + 1, we derive a bound of the real part of 𝜈.

Due to the matrix-tensor form of QD = Z1 ⊗ Z−1
2 , using (P5), we have that 𝜇 = 𝜇1𝜇2, where 𝜇1 is an eigen-

value of Z1 and 𝜇2 is an eigenvalue of Z−1
2 . From (P6) we are in a position to estimate 𝜇2, which are real and

positive, namely,

𝓁
𝓁 + c̃2𝜏 h−2

≤ 𝜇2 ≤
𝓁

𝓁 + c̃2𝜏
< 1.

Further, from Table 1 we see that, at least up to q = 12, |𝜇1| < gq < 1. Therefore, Re(𝜇1) < gq and Re(𝜈) =
Re(1 + 𝜇1𝜇2) > 1 − Re(𝜇1) > 1 − gq ≡ Cq > 0. ▪

The spectrum of −1
D  is illustrated in Figure 4.

6 IMPLEMENTATION ASPECTS

6.1 Choice of inner solvers

As already mentioned, the systems (4) and (5) are in general very large scale, of order qn but with the approach taken here
we solve systems only of size n. In typical problems, in particular for three dimensional problems in space, n itself is very
large. We assume that we can either construct a feasible approximation of the diagonal blocks 𝜆j M + 𝜏K, j = 1, 2, … , q
or can solve the inner systems with some efficient iterative solution method. A suitable approximation could for instance
be based on a modified incomplete factorization, see References 64 and 65 with sparse matrix factors. When solv-
ing systems with the diagonal blocks we can apply some algebraic multilevel technique, see, for example, References
66, 67 and 60, or an algebraic multigrid (AMG) solver, which we utilize in this study, using library-provided AMG
implementations.
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AXELSSON et al. 15 of 24

F I G U R E 4 Problem 1: Eigenvalues of −1
D  (blue) and of −1

L  (red)—q = 3, 9, circle with radius ||Ûq|| and centered at 1.

6.2 Parallelization aspects

As the target solution method is a preconditioned Krylov Subspace iteration, the two major ingredients are the
matrix-vector multiplication with the matrix  and the solution of linear systems with the preconditioning matrix L
or D. The matrices, L, and D are of dimension qn × qn. They are never explicitly stored but rather we utilize their
structure to implement the above two operations efficiently in parallel.

We aim at distributed memory MPI-based implementation of the computations. In the chosen parallel
computing environment there are two general strategies to administer the fully implicit IRK method and the
preconditioner L in (12).

The first strategy is to distribute the space discretization mesh among a number of processes. This entails that the
solution of each system on the diagonal of d is done in parallel in space, using well-known parallelizable methods,
such as multilevel, multigrid, domain-decomposition techniques and so forth implemented and optimized in some of the
established scientific computing libraries. This is the implementation chosen for the numerical tests in this work and we
do not implement parallelism across the stages.

When it comes to implementing simultaneous parallelization across stages and in space, different strategies could be
employed. This aspect of the implementation is a topic of an independent study.26 The strategy, chosen there, is based
on allocating q groups of processes and within group carrying out space parallelism, using matrix-free operations and
matrix-vector multiplications in a block-fashion. The tests include discretization with higher order finite elements, com-
parisons between a stage-parallel and stage-serial implementation as well as between the performance of L using only
real arithmetic with that of the complex factorization from Reference 39.

7 NUMERICAL TESTS

The parallel tests are run on the Rackham cluster at the Uppsala Multidisciplinary Center for Advanced Computa-
tional Science (UPPMAX). Rackham consists of 486 nodes, each node having two 10-core Intel Xeon E5 2630 v4 at
2.20 GHz/core. We use nodes with 128 GB of memory. The test problems are implemented in the deal.II FEM
library,68 interfacing with PETSc69 to utilize the available preconditioned iterative methods. The space discretization for
Problems 1 and 2 is done by piece-wise linear and for Problem 3—by third-order conforming finite element basis
functions on quadrilateral meshes.

The arising systems for the stage variables are solved by an inner-outer solution procedure. Due to the
latter the outer solver must allow for variable preconditioners. Our choice of outer solution method is GCR
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16 of 24 AXELSSON et al.

(Algorithm 3.1 in Reference 57), which, together with GCG and FGMRES, is capable of handling variable precondition-
ing. For Problems 1 and 2 the inner block systems in L and D are solved by AMG-preconditioned CG (P1)/GCR (P2).
For Problem 3 the blocks are solved using the MUMPS sparse direct solver.

The tests, presented here, utilize only space parallelism, that is, the block systems in the preconditioners are solved
one after another. The full stage- and space-parallel implementation is outlined in Section 6.2 and implemented and tested
in Reference 26.

The performance of the IRK method and the proposed preconditioner are illustrated using the following three test
problems.

Problem 1 (Heat equation in two-space dimensions). Consider the equation

𝜕u(x, y, t)
𝜕t

− Δu(x, y, t) = f (x, y, t) in Ω = (0, 1)2, t ∈ [0,T]

u(x, y, 0) = uex(x, y, 0), (x, y) ∈ Ω
u(x, y, t) = uex(x, y, t), (x, y) ∈ 𝜕Ω,

and choose f (x, y, t) to corresponds to the analytical solution

uex(x, y, t) = sin(ax𝜋x) sin(ay𝜋y)(1 + sin(𝜋t))e−att,

f (x, y, t) = sin(ax𝜋x) sin(ay𝜋y)(𝜋 cos(𝜋t) − at(1 + sin(𝜋t)))e−att

+ (a2
x + a2

y)𝜋2 sin(ax𝜋x) sin(ay𝜋y)(1 + sin(𝜋t))e−att.

For the tests we choose ax = ay = 2 and at = 0.5. For the outer solver we use a variant of GCR with relative
stopping criteria 10−8. For the q block-systems in the preconditioner we solve using CG preconditioned by an
AMG, with a relative stopping criteria of 10−6. We fix 𝜏 = 0.1 and take five time-steps. The tests are with two
and nine stages.

Problem 2 (Similar to Reference 55). Consider the two-dimensional time-dependent convection-diffusion
equation

𝜕u(x, y, t)
𝜕t

+ s(t)(−𝜀Δu + b ⋅ ∇u − f ) = 0 in Ω = (0, 1)2, t > 0, (24)

with 𝜀 = 1, initial condition u(x, y, 0) = u0 – the pyramid function shown in Figure 5, boundary conditions

⎧
⎪
⎨
⎪⎩

u = 0 on y = 0, y = 1
u = g(x, y, t) on x = 1,
𝜕u
𝜕n
= 0 on x = 0,

b(x, y) = [−𝓁, 0], 𝓁 > 1, 𝜎(t) = 1 + 2
5

sin(k𝜋t), g(x, y, t) = 2𝓁y(1 − y) sin(k𝜋t) and f (x, y, t) = 2e−𝓁x
. As we deal

with non-homogeneous and time-dependent boundary conditions, we follow the general practice to construct
a partial solution 𝜓(x, y, t) that satisfies the boundary conditions and then reformulate the problem to find
v = u − 𝜓 . In order to homogenize the boundary conditions we choose 𝜓(x, y, t) = e−𝓁xx2y(1 − y) sin(k𝜋t).We
find then that the function v(x, y, t) = u(x, y, t) − 𝜓(x, y, t) is the solution of the initial boundary problem

𝜕v(x, y, t)
𝜕t

+ s(t)(−𝜀Δv + b ⋅ ∇v − f̃ ) = 0 in Ω = (0, 1)2, t > 0,

with f̃ = f + 1
s(t)

𝜕𝜓

𝜕t
− Δ𝜓 + b ⋅ ∇𝜓, boundary conditions v = 0 on y = 0, y = 1, x = 1 and 𝜕v

𝜕n
= 0 on x = 0, initial

condition v(x, y, 0) = u0(x, y) − 𝜓(x, y, 0) = u0(x, y). In detail,

f̃ (x, y, t) = −2e−𝓁x +
k𝜋e−𝓁xx2y(1 − y) cos(k𝜋t)

1 + 2
5

sin(k𝜋t)
−

[
(𝓁2x2 − 4𝓁x + 2)y(1 − y) − 2x2]e−𝓁x sin(k𝜋t).
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AXELSSON et al. 17 of 24

F I G U R E 5 Problem 2: Initial condition.

The additional complication with the 𝜎-scaling is taken into account when constructing the preconditioner
as follows. The system equation, analogous to (4), now reads

(Iq ⊗ M + 𝜏ΣqAq ⊗ K)k = f̂,

where Σq is a diagonal matrix, containing the values of 𝜎 in the integration points. Multiplying the latter
equation by A−1

q Σ−1
q from the left we obtain

(A−1
q Σ−1

q ⊗ M + 𝜏Iq ⊗ K)k = (A−1
q Σ−1

q ⊗ In )̂f.

As for Problem 1, we then select the preconditioner to beL ∶= (LΣ−1
q ⊗ M + 𝜏Iq ⊗ K). Finally we decompose

LqΣ−1
q = TΛT−1 and obtain an analogous form of the preconditioner used in Problem 1 with the difference

that the eigenvalue decomposition is computed in every time step. The cost of this is low, however, as the
matrix in question is of size q × q. The outer solver is GCR with stopping criteria ||Ax − b||2 < 10−8. For the
q block-systems in the preconditioner we now use GCR preconditioned by an AMG with stopping criteria
||Ax − b||2 < 10−6.

Problem 3 (70). Consider the convection-diffusion equation (24) with s(t) = 1, Ω = [−1, 1]2, f = 0 and
b = [−4y, 4x]T and initial condition—the Gaussian pulse

u(x, y, 0) = e−
(x+xc)2+(y−yc)2

2𝜎2 .

Here xc, yc, and 𝜎 are the center of the pulse and the standard deviations, respectively. The corresponding
analytical solution for a constant diffusion 𝜀 is given by

ua(x, y, t) =
2𝜎2

2𝜎2 + 4𝜀t
e−

(x+xc)2+(y−yc)2

2𝜎2+4𝜀t ,

where x = x cos(4t) + y sin(4t) and y = −x sin(4t) + y cos(4t). The time interval is [0, 𝜋
2
], equal to the time for

one complete rotation of the pulse.
As noted in Reference 70, the behavior of this problem changes from advection-dominated in most of

the domain to diffusion-dominated close to the origin. We solve this problem in the purely advection case,
namely, for the numerical experiments we choose 𝜀 = 0, xc = −0.5, yc = 0, and 𝜎 = 0.0447. As the value of the
analytical solution on the boundary of the domain is less than the machine accuracy we choose homogeneous
boundary conditions. The inner multigrid solver used in Problems 1 and 2 is not suitable for the pure advection
case and to keep this work contained and focused on the proposed block preconditioners, we replace the inner
multigrid-based solver by a parallel direct solver and present the outer iterations.
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18 of 24 AXELSSON et al.

T A B L E 2 Problem 1 L: Parallel run times and errors for q = 2, solving for 5 time steps with 𝜏 = 0.1.

No. CPUs Total runtime Av. out. iter. Av. in. iter. ||uc(𝝉F) − ua(𝝉F)||∞ ||uc(𝝉F) − ua(𝝉F)||2∕ndofs

Block dimension 1,050, 625, full system dimension 2,101, 250

20 10 3 7 7.014 × 10−5 3.418 × 10−8

Block dimension 4,198, 401, full system dimension 8,396, 802

20 38 3 7 7.382 × 10−5 1.801 × 10−8

Block-dimension 16,785, 409, full system dimension 33,570, 818

100 39 3 8 7.474 × 10−5 9.119 × 10−9

Block dimension 67,125, 249, full system dimension 134,250, 498

100 203 3 8 7.497 × 10−5 4.575 × 10−9

200 130 3 8 7.497 × 10−5 4.575 × 10−9

300 99 3 8 7.497 × 10−5 4.575 × 10−9

Block dimension 268,468, 225, full system dimension 536,936, 450

600 143 3 9 7.503 × 10−5 2.289 × 10−9

Note: Errors evaluated at 𝜏F = 0.5.

T A B L E 3 Problem 1 L: Parallel run times and errors for q = 9, solving for 5 time steps with 𝜏 = 0.1.

No. CPUs Total runtime Av. out. iter. Av. in. iter. ||uc(𝝉F) − ua(𝝉F)||∞ ||uc(𝝉F) − ua(𝝉F)||2∕ndofs

Block dimension 1,050, 625, full system dimension 9,455, 625

20 119 10 6 4.932 × 10−6 2.403 × 10−9

Block dimension 4,198, 401, full system dimension 37,785, 609

20 496 9 6 1.246 × 10−6 3.039 × 10−10

Block-dimension 16,785, 409, full system dimension 151,068, 681

100 464 10 7 3.246 × 10−7 3.960 × 10−11

Block dimension 67,125, 249, full system dimension 604,127, 241

100 2246 10 7 9.435 × 10−8 5.752 × 10−12

200 1414 10 7 9.437 × 10−8 5.749 × 10−12

300 762 10 8 9.441 × 10−8 5.753 × 10−12

Block dimension 268,468, 225, full system dimension 2,416, 214,025

600 1994 10 8 3.707 × 10−8 1.115 × 10−12

Note: Errors evaluated at 𝜏F = 0.5.

7.1 Results for Problems 1 and 2

For Problem 1 we carry out tests for the parallel performance of the preconditioners L and D. The results for L are
found in Table 2 for q = 2 and in Table 3—for q = 9. The corresponding results for D are shown in Tables 4 and 5.

From the timing results for q = 2 in Table 2, column 2, we see that speedup in the strong scaling, also referred to
as the the fixed-size speedup, is found to be 203∕130 ≈ 1.6, compared to the ideal factor 2 and 99∕203 ≈ 2 compared to
ideal factor 3. Analogously, from the timing results for q = 9 in Table 3, column 2, we compute the fixed-size speedup as
2246∕1414 ≈ 1.6, compared to the ideal factor 2 and 2246∕762 ≈ 2.9 close to the ideal factor 3. Comparing the performance
of L from Tables 2 and 3 with that of D in Tables 4 and 5, we see that D does not require more outer iterations and is
superior to L in terms of total solution time. The main reason for this is that, as D assumes a constant block-diagonal,
it needs only to set up a single AMG in comparison to the q different AMG solvers for L. We find that using constant
diagonal blocks does not harm the convergence of the outer iterative solver in the case of Problem 1. The effect of saving
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AXELSSON et al. 19 of 24

T A B L E 4 Problem 1 D: Parallel run times and errors for q = 2, solving for 5 time steps with 𝜏 = 0.1.

No. CPUs Total runtime Av. out. iter. Av. in. iter. ||uc(𝝉F) − ua(𝝉F)||∞ ||uc(𝝉F) − ua(𝝉F)||2∕N

Block dimension 1,050, 625, full system dimension 9,455, 625

20 5 3 7 7.013 × 10−5 3.418 × 10−8

Block dimension 4,198, 401, full system dimension 37,785, 609

20 20 3 7 7.382 × 10−5 1.801 × 10−8

Block-dimension 16,785, 409, full system dimension 151,068, 681

100 23 3 8 7.474 × 10−5 9.119 × 10−9

Block dimension 67,125, 249, full system dimension 604,127, 241

100 80 3 8 7.497 × 10−5 4.575 × 10−9

200 46 3 8 7.497 × 10−5 4.575 × 10−9

300 38 3 8 7.497 × 10−5 4.575 × 10−9

Block dimension 268,468, 225, full system dimension 2,416, 214,025

600 73 3 9 7.503 × 10−5 2.289 × 10−9

Note: Errors evaluated at 𝜏F = 0.5.

T A B L E 5 Problem 1 D: Parallel run times and errors for q = 9, solving for 5 time steps with 𝜏 = 0.1.

No. CPUs Total runtime Av. out. iter. Av. in. iter. ||uc(𝝉F) − ua(𝝉F)||∞ ||uc(𝝉F) − ua(𝝉F)||2∕N

Block dimension 1,050, 625, full system dimension 9,455, 625

20 53 11 6 4.931 × 10−6 2.403 × 10−9

Block dimension 4,198, 401, full system dimension 37,785, 609

20 223 11 6 1.246 × 10−6 3.039 × 10−10

Block-dimension 16,785, 409, full system dimension 151,068, 681

100 215 10 7 3.246 × 10−7 3.960 × 10−11

Block dimension 67,125, 249, full system dimension 604,127, 241

100 867 10 7 9.434 × 10−8 5.751 × 10−12

200 453 10 7 9.437 × 10−8 5.749 × 10−12

300 372 10 8 9.441 × 10−8 5.753 × 10−12

Block dimension 268,468, 225, full system dimension 2,416, 214,025

600 737 10 8 3.707 × 10−8 1.115 × 10−12

Note: Errors evaluated at 𝜏F = 0.5.

is less pronounced in the case of full stage parallelism as the implementation needs q separate multigrid solvers by con-
struction. As shown in Reference 26 the benefits of stage-parallelism are seen at the scaling limit, hence in many settings
a stage-serial implementation may be preferable and D may be preferred over L due to its lower computational cost.

Problem 2 is tested only for L. The corresponding results for q = 2 are shown in Table 6.

7.2 Results for Problem 3

As we consider the pure advection case with 𝜀 = 0, CG/AMG is no longer an efficient inner solver. For the purpose of
testing the outer preconditioner, as an inner solver we use here a sparse direct solver. As in Reference 41 we use Q3
elements in space, select a fixed time-step and a number of stages, and then choose h such that 𝜏2q−1 ≈ h4. Plots of the
solution of this problem are shown in Figure 6. The outer iterations are given in Table 7.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2532 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [21/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 24 AXELSSON et al.

T A B L E 6 Problem 2: Parallel run times and iteration counts using L.

No. CPUs Total runtime Av. out. iter. Av. in. iter. No. CPUs Total runtime Av. out. iter. Av. in. iter.

q = 2, l = 2, k = 5, 𝜏 = 0.1 q = 4, l = 10, k = 10, 𝜏 = 0.001

Block dim. 4 198 401 Block dim. 4 198 401

20 61 5 11 20 201 9 20

Block dim. 16 785 409 Block dim. 16 785 409

100 59 4 12 100 178 9 20

Block dim. 67 125 249 Block dim. 67 125 249

100 217 4 13 100 724 8 21

200 124 4 13 200 357 9 21

300 98 4 12 300 299 9 21

Block dim. 268 468 225 Block dim. 268 468 225

600 187 4 14 600 609 8 22

(a) (b)

(c)

F I G U R E 6 Problem 3: Plots of the exact and the numerically computed solutions with q = 10, 𝜏 = 𝜋∕60, 𝜏F = 𝜋∕2. Q1 space
discretization using with 66,049 DoFs, 35 avg. outer iterations.
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T A B L E 7 Problem 3: Outer iterations for the pure advection case using a direct solver as inner solver, space discretized by Q3 elements.

Stages 𝝉 iter. Precon. Block dimension # cells

q = 3 𝜋∕60 19 L 37,249 4096

q = 4 𝜋∕60 27 L 591,361 65,536

q = 5 𝜋∕60 33 L 37,761, 025 4,194,304

q = 3 𝜋∕60 47 D 37,249 4096

q = 4 𝜋∕60 58 D 591,361 65,536

q = 5 𝜋∕60 >60 D 37,761, 025 4,194,304

In contrast to the results for Problem 1, Table 7 shows that D exhibits a significantly worse convergence for the more
difficult advection case. The iteration counts for both preconditioners grow with the number of stages but L reaches
convergence in substantially fewer iterations.

Remark 4. As already mentioned, the use of implicit time-stepping methods for convective problems is justi-
fied in applications not aiming to resolving features of the solution that require fine time resolution. Therefore
we leave out of consideration issues, such as adaptive meshes, appropriate discretization using stabilization,
CFL-condition.

8 CONCLUDING REMARKS

Given their fundamental significance in many branches of science, solving time-dependent partial differential equations
has been an important question for centuries and it remains an issue with high impact in many scientific computing
applications. When handling such problems, the use of high order accurate implicit Runge–Kutta methods of Radau type
can be numerically very efficient since the methods are strongly A-stable, enable use of large time-steps and can han-
dle highly ill-conditioned matrices with a widespread spectrum. In this work, for the strongly A-stable IRK methods of
Radau IIa type, applied to linear problems we show that thanks to the particular properties of the quadrature matrices
Aq, originally derived in Reference 6 and holding true also for A−1

q , the arising globally coupled linear systems on each
time-step can be solved efficiently by a preconditioned iterative method with a stage-parallel (block-diagonal) precondi-
tioner. Based on these properties, for the construction of the preconditioner we consider a high quality approximation
of A−1

q , namely, its lower-triangular part having real eigenvalues, and in this way fully avoid complex arithmetic. The
implementation of the idea for two types of preconditioners, the analysis of the properties of the spectrum of the arising
preconditioned nonsymmetric matrices (although currently not in its full generality for any number of stages) and the
comprehensive performance tests are the major contributions of this article.

In this work, we consider only linear problems and constant timesteps. However, the approach allows to use automatic
time step-size control for hybrid implicit-explicit methods enabling fine time resolution for a certain time interval and
coarse time resolution in other parts of the time domain, switching to the considered here IRK method. As a suitable
example we mention the simulation of the so-called glacial isostatic adjustment problem, where the uplift of the earth
surface after melting of continental ice sheets is simulated for a period of about tens to hundreds of years and there
the dynamic of the earth uplift is fast in the beginning but very slow in the larger of the time interval, see for instance
Reference 71 for some details.
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