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Abstract

The objectives of this study were to evaluate the effect of perfluoroalkyl substances on early

embryonic development and apoptosis in blastocysts using a porcine in vitro model. Porcine

oocytes (N = 855) collected from abattoir ovaries were subjected to perfluorooctane sulfonic

acid (PFOS) (0.1 μg/ml) and perfluorohexane sulfonic acid (PFHxS) (40 μg/ml) during in

vitro maturation (IVM) for 45 h. The gametes were then fertilized and cultured in vitro, and

developmental parameters were recorded. After 6 days of culture, resulting blastocysts (N =

146) were stained using a terminal deoxynucleotidyl transferase dUTP nick end labeling

(TUNEL) assay and imaged as stacks using confocal laser scanning microscopy. Proportion

of apoptotic cells as well as total numbers of nuclei in each blastocyst were analyzed using

objective image analysis. The experiment was run in 9 replicates, always with a control pres-

ent. Effects on developmental parameters were analyzed using logistic regression, and

effects on apoptosis and total numbers of nuclei were analyzed using linear regression.

Higher cell count was associated with lower proportion of apoptotic cells, i.e., larger blasto-

cysts contained less apoptotic cells. Upon PFAS exposure during IVM, PFHxS tended to

result in higher blastocyst rates on day 5 post fertilization (p = 0.07) and on day 6 post fertili-

zation (p = 0.05) as well as in higher apoptosis rates in blastocysts (p = 0.06). PFHxS

resulted in higher total cell counts in blastocysts (p = 0.002). No effects attributable to the

concentration of PFOS used here was seen. These findings add to the evidence that some

perfluoroalkyl substances may affect female reproduction. More studies are needed to bet-

ter understand potential implications for continued development as well as for human

health.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0279551 December 28, 2022 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Leclercq A, Ranefall P, Sjunnesson YCB,

Hallberg I (2022) Occurrence of late-apoptotic

symptoms in porcine preimplantation embryos

upon exposure of oocytes to perfluoroalkyl

substances (PFASs) under in vitro meiotic

maturation. PLoS ONE 17(12): e0279551. https://

doi.org/10.1371/journal.pone.0279551

Editor: Hai O. Xu, Jiangsu University, CHINA

Received: October 2, 2022

Accepted: December 9, 2022

Published: December 28, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0279551

Copyright: © 2022 Leclercq et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

file.

https://orcid.org/0000-0002-7108-9781
https://orcid.org/0000-0002-6699-4015
https://doi.org/10.1371/journal.pone.0279551
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279551&domain=pdf&date_stamp=2022-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279551&domain=pdf&date_stamp=2022-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279551&domain=pdf&date_stamp=2022-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279551&domain=pdf&date_stamp=2022-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279551&domain=pdf&date_stamp=2022-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0279551&domain=pdf&date_stamp=2022-12-28
https://doi.org/10.1371/journal.pone.0279551
https://doi.org/10.1371/journal.pone.0279551
https://doi.org/10.1371/journal.pone.0279551
http://creativecommons.org/licenses/by/4.0/


Introduction

Infertility, defined as the inability to conceive within 12 months of actively trying, is an issuees-

timated to affect about ten percent of women aged 20–44 worldwide [1]. Even after medical

investigation, the reason for infertility remains unknown in approximately 25–30% of cases [2,

3]. In addition to factors concerning genetics and lifestyle, the potential effects of endocrine

disrupting chemicals (EDCs) on fertility has gained attention in later years [4]. Per- and poly-

fluoroalkyl substances (PFASs) is one group of chemicals which is of particular concern due to

their widespread distribution and persistence in the environment [5]. PFASs constitute a large

group of chemicals with surfactant properties that are present in commonly used products

such as fire-fighting foam, textiles and packaging materials [6]. Humans are mainly subjected

to PFASs via contaminated foodstuff. Inhalation of particles and direct contact are also known

routes of exposure [7–9]. PFASs can be detected in blood of the general population worldwide

[10–12], as well as in foetuses [13] and in ovarian follicular fluid [14]. Blood concentrations of

PFASs in residents of heavily contaminated areas, and individuals subjected to occupational

exposure, have been found to be substantially higher than in the general population [15, 16].

Exposure to PFASs has been associated with negative effects on health, including increased

serum cholesterol levels [17, 18], decreased response to vaccines [19], and lower birth weights

in children [20]. In the human general population as well as in heavily exposed groups.

Even though manufactured and used for over 50 years, potential effects of PFASs on female

reproduction are incompletely understood [21, 22]. Human cohorts have shown an association

between exposure and early onset of menopause [23], alterations of the menstrual cycle [24],

prolonged time to pregnancy [25] and sporadic first trimester miscarriages [20].

The process of forming a healthy offspring starts with germ cells, where the female contributes

with the oocyte. The quality, ordevelopmental competence, of oocytes affect survival rates of early

embryos as well as the establishment of pregnancy and subsequent development [26]. Oocyte

quality is determined during the complex process of folliculogenesis. The final stages of oocyte

maturation constitute a particularly sensitive period in time where critical events take place.

There is only limited information regarding potential oocyte toxicity of PFASs. In animal

models, oocyte toxicity has been observed in the mouse [27] and pig [28]. It has also previously

been shown that development of blastocysts is affected upon exposure during oocyte matura-

tion in the bovine using an in vitro model [29].

In this study, we aimed to evaluate the effects of exposure to perfluorooctane sulfonic acid

(PFOS) and perfluorohexane sulfonic acid (PFHxS) during the final stages of oocyte matura-

tion and the consequences for the developmental competence regarding blastocyst formation

using a porcine in vitro model.

Previously, PFOS has been associated with increased rates of apoptosis in zebrafish and

xenopus embryos [30–32]. Apoptosis is commonly described as programmed cell death and

can, for instance, occur as a response to toxicity [33]. In the bovine blastocyst, PFASs appear to

alter genes associated with apoptotic pathways [29]. Therefore, we also wished to assess the

effects of PFASs on cell count and proportion of apoptotic cells in resulting blastocysts, by

using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay

and objective image analysis.

Materials and method

Project overview

For this project, porcine oocytes obtained from abattoir ovaries were used. A total of 855

oocytes were run in nine replicates of in vitro embryo production according to standard
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procedures. Selected oocytes were divided into three equally large groups; PFOS group, PFHxS

group, and control group (range: 28–40 oocytes/group). Oocytes were matured with the addi-

tion of PFOS (0.1 μg/mL) and PFHxS (40 μg/mL) respectively, for a total of 45 h. They were

then fertilized using frozen thawed semen, where the same boar was used throughout the

experiment. During the culture process, cleavage rate and cleavage rate above 2 cells were

recorded 48 h post fertilization (hpf).

Number of blastocysts, as well as developmental stage and grade, were documented on day

5 and 6 post fertilization (pf), respectively. On day 6 pf, blastocysts were collected to be fixated

and stained using 40,6-diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) stains to evaluate proportion apoptotic cells and

cell count in blastocysts.

Media and reagents

Porcine oocyte maturation medium (POM), porcine fertilization medium (PFM), and porcine

zygote medium (PZM) were purchased from the Research Institute for the Functional Pep-

tides, FHK Fujihura Industry Co Ltd, Osaka, Japan. Wash media and wash media with heparin

were produced on site (wash media: gentamycine sulphate 10 μg/ml, L-glutamine MW 146.14

1 mM, PVA 3 μg/ml in Hepes TCM 199; wash media with heparin: heparin 20 U/ml in basic

wash media). Commercial media were always pre-equilibrated for at least 2 hours in 38˚C and

5.5% CO2 before use. For all in vitro production (IVP) procedures, four-well nunclon plates

were used.

Exposure

For exposure, PFOS (potassium salt>98%, CAS 1763-23-1) and PFHxS (potassium salt

>98%, CAS 355-46-4) dissolved in molecular grade water was added to the maturation media

of the respective exposed groups to reach the concentration of 0.1 μg/mL (PFOS) or 40 μg/mL

(PFHxS). These concentrations were chosen based on results from previous experiments [29,

34]. In the control, vehicle (molecular grade water) was added in the same volume as the stock

solutions containing PFOS/PFHxS. Stock solutions were stored at 4˚C protected from light

during the course of the experiment. Due to persistence of the compounds used, significant

degradation was not expected during storage. The stock solution concentrations of PFOS and

PFHxS were validated using mass-spectrometry which is described elsewhere [29, 34].

Collection of ovaries and maturation of oocytes

Ovaries from gilts intended for human consumption were collected at an abattoir in Uppsala,

Sweden and transported (range, transportation time: 1.5–3 h) in 0.9% saline at 31˚C (range

30–32˚C) to the IVF laboratory. Ovaries were subsequently rinsed with 35˚C NaCl (0.9%), and

poured into fresh NaCl (0.9%). Follicular fluid was aspirated from follicles measuring 3–8 mm

in diameter using 5 mL syringes and 20 gauge cannulas, and transferred to approximately

7–10 mL of wash media with heparin (kept at 38˚C) in 25 mL tubes. Aspirated oocytes were

allowed to settle to the bottom of the 25 mL tubes, and were then transferred to 60 mm petri

dishes and covered with wash medium. Using stereo microscopes, oocytes with an even cyto-

plasm and at least two cumulus cell layers were chosen [35] and washed through three 30 mm

petri dishes with wash media. Selected oocytes were randomly allocated into 3 morphologically

and numerically equal groups (i.e. PFOS group, PFHxS group, and control group), which were

kept separated and treated equally (with the exception of exposures) for the remainder of IVP

including in vitro maturation, fixation and staining processes. For technical reasons, treat-

ments were not blinded. Oocyte groups were washed in 460 μL of POM medium each, and
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subsequently, transferred in 20 μL to POM medium with the addition of PFOS (0.1 μg/mL)

and PFHxS (40 μg/mL), respectively. For details, see previous section. The corresponding

amount of sterile water (used as vehicle) was added to the control group. The POM medium

used in this step was, additionally, enriched with FSH (follicle stimulating hormone, 0.05 IU/

mL) (FSH Porcine, OOPA00171, Insight Biotechnology, Middlesex, United Kingdom), LH

(luteinizing hormone, C = 0.05 IU/mL) (LH Protein, OOPA00173, Insight Biotechnology),

and dibutyryladenosine cyclic monophosphate (dbcAMP, 1mM) (dibutyryl-cAMP, sodium

salt, 1698950, Biogems, Westlake Village, United States). Oocyte groups were matured in 5.5%

CO2 and 38.5˚C for 22 h. They were then transferred in 20 μL to 480 μL each of fresh POM

medium with PFOS (0.1 μg/mL), PFHxS (40 μg/mL), and sterile water (respectively) and fur-

ther matured (now without LH, FSH or dbcAMP) in 5.5% CO2 and 38.5˚C for 23 hours.

Fertilization in vitro

For all fertilizations, frozen thawed semen from the same boar, stored in in plastic 0.5 mL

straws, was used. Prior to each fertilization, one straw was thawed for 30 seconds in 35˚C tap

water. Motility of spermatozoa was controlled using a stereo microscope by putting 1 drop of

thawed sperm directly on a glass slide. The semen was then poured into, and mixed with, 4 mL

of PFM. Two mL of the sperm dilution was placed on top of 4 mL of room temperature single

layer colloid (SLC) [36] in a centrifuge tube. The colloid and sperm were then centrifuged for

20 minutes at 300 × g. Supernatant sperm and excess fluid was disposed of, so that only a

sperm pellet was left on the bottom of the centrifuge tube. The pellet was transferred to 0.75

mL of PFM. Sperm was counted in room temperature using a light microscope and a Bürcher

chamber. Oocyte groups (now matured for 45 h) were washed in 480 μL/each of PFM, and

subsequently transferred (in 20 μL/group) to 400 μL/each of PFM, to reach a final volume of

500 μL. Sperm dilution with adjusted concentration (1.2 × 106) was added to each oocyte

group. The oocytes and spermatozoa were incubated together in 5.5% CO2 and 38.5˚C for

24 h.

Culture and assessment of embryo development

Presumed zygotes were denuded by gentle pipetting in 4-wells containing 500 μL of wash

media/well. They were then washed in 480 μL/each of PZM, and subsequently transferred (in

20 μL/group) to 480 μL of PZM, with a top layer of 400 μL of IVF oil (IVF Bioscience, Fal-

mouth, United Kingdom), each. The zygotes were incubated in 38.5˚C, 5.5% CO2 and 6% O2

for 6 days. During the culture process, embryo development parameters were assessed (see

below).

Forty-eight hours after fertilization, percentage of cleaved zygotes (all) and percentage of

cleaved zygotes (above 2 cells) were documented for each group. On day 5 and 6 pf (respec-

tively) number of blastocysts, as well as stage and grade of every individual blastocyst, were

documented. Stages assigned were as follows: early blastocyst, blastocyst, expanding blastocyst,

and hatching blastocyst [37]. Grade scores assigned were as follows: grade 1; excellent or good

quality, grade 2; fair quality, grade 3; poor quality, grade 4; dead or degenerating [37]. Half

grades were used when appropriate (e.g. grade 1.5).

Fixation and staining

On day 6 pf, blastocysts were fixated overnight in 2% paraformaldehyde at 4˚C. After fixation,

they were washed × 2 in phosphate buffered saline (PBS) with 0.1% polyvinyl alcohol (PVA).

A TUNEL staining kit (In Situ Cell Detection kit, TMR red, 12156792910, Roche, Mann-

heim, Germany) was used to stain apoptotic nuclei. To stain all nuclei, anti-fade mounting
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medium with DAPI (Vectashield with DAPI, H-1200, Vector Laboratories, Burlingame,

United States) was used. Staining procedures were executed according to the manufacturer´s

instructions. The groups of stained blastocysts were mounted onto black-well plates (Diagnos-

tic microscope slides 6.7 mm, ER-208B-CE24, Thermo Scientific, Braunschweig, Germany) in

2 μL PBS with 0.1% PVA and 2 μL anti fade mounting medium with DAPI. Slides were sealed

using cover glasses and nail polish. Sealed slides were stored in darkness and 4˚C until confocal

laser scanning procedures (see below).

For each staining session (n = 4), 2 of the blastocysts (chosen randomly) were sacrificed for

use as positive and negative controls for the TUNEL assay. The control blastocysts were incu-

bated in deoxyribonuclease (DNase I, 1073395, Qiagen, Hilden, Germany) solution (0.1 UI/

μL in tris buffer) for 1 h at 37˚C in darkness, according to instructions. With the exception of

the negative control not being subjected to the TUNEL reaction, controls were treated under

the same circumstances as the remaining blastocysts.

Confocal microscopy

All stained blastocysts were imaged as z-stacks with the use of a confocal microscope (LSM

800, Zeiss, Oberkochen, Germany). Section thickness was set to 2 μm. The 20x objective as

well as lasers 405 and 561 were used for all blastocysts. Snap images were captured from the

positive and negative controls in both channels. Treatments were blinded during confocal

laser scanning procedures and image analysis.

Image analysis

A total of146 embryos were included in the image analysis. An apoptotic nucleus was defined

as: a nucleus within the blastocyst area, stained with both DAPI and TUNEL stains. TUNEL-

positive cells were segmented and identified using a macro developed for ImageJ [38] as previ-

ously described [29]. In brief, the basis for the apoptosis segmentation was an iterative 3D ver-

sion of the Per Object Ellipsefit (POE) algorithm. The original POE method computes local

threshold levels for each object, where the threshold level is set to optimise the ellipse fit of the

object, given that it fulfils input criteria of minimum and maximum diameters, also available

in a 3D version [39]. To avoid complications with threshold settings when darker objects

touches brighter objects, we developed an iterative version of the 3D POE method [29]. In

brief, this version was set up as follows: first, the resulting mask from the 3D POE was kept as a

“seed” image. This contained the segmented objects but eroded two voxels. Secondly, the seg-

mented objects were masked from the raw image by making the corresponding voxels black.

Subsequently, 3D POE was used to segment objects in the masked image. The resulting mask

was merged with the previously segmented objects and the “seed” image was merged with the

previous “seed” image. These steps were repeated until no more objects were segmented from

the masked image. The objects in the resulting mask were separated using the 3D Watershed

Split function [40] in ImageJ, with the combined mask as input, and the combined “seeds” as

seeds. The nuclei were segmented by applying a global grey-level thresholding based on object

size, SizeIntervalPrecision (SIP) [41], followed by watershed separation using the 3D Water-

shed Split function [40] in ImageJ, with local maxima in the 3D Distance Map of the initial

threshold as seeds.

Manual validation of the automated image analysis was performed for all blastocysts by

comparing the TUNEL z-stacks to the corresponding macro-derived images, and dead or

degenerated embryos (n = 6) were excluded from the analysis, resulting in 140 embryos being

included in further analyses.
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Statistical analysis

Statistical analyses were conducted in RStudio for R (R i386, 4.0.5). The effect of treatment

(PFOS, PFHxS) compared to control on developmental parameters (proportions of cleaved,

cleaved beyond 2 cell stage and proportion of blastocysts at day 5 and 6) was calculated using

mixed effect logistic regression with binary distribution (glmer model of the lme4 package).

Groups were weighted for size and replicate was included as a random effect. Day 5 and 6 blas-

tocysts were considered repeated measurements and hence only one model for blastocyst

development is presented. Odds ratio (OR) <1 indicate a negative effect of treatment.

The effect of treatment (PFOS, PFHxS) on ordinal variables (stage, grade) were analysed

using cumulative link mixed-effect models (clmm model of CRAN-package). Replicate was

included as a random factor. Blastocyst stages were condensed to stage 1 (early blastocyst/blas-

tocyst) or 2 (expanded/expanded/hatching/hatched) for analysis.

Cell count and TUNEL-positive cells were log-transformed to estimate normal distribution.

Generalized linear mixed models (glmer model of lme4 package) were used to calculate the

effect of cell count (blastocyst size) on TUNEL-positive cells as well as the effect of treatment

on cell count and TUNEL positive cells. The proportion of TUNEL positive cells were lower in

blastocysts with high cell counts compared to those with lower cell counts (see Results section).

Therefore, the number of nuclei was accounted for in the model of the effect of treatments

(PFOS, PFHxS) on proportion of TUNEL-positive cells.

P-values <0.05 were regarded as significant, and p-values�0.05<0.1 were regarded as

tendencies.

Results

Developmental competence & blastocyst morphology

Of the 855 fertilized oocytes, 341 were cleaved (of which 181 beyond the 2-cell stage) 48 hpf.

Further, 158 presumed blastocysts developed. Mean developmental parameters, odds ratios

(OR), and p-values categorized by treatment are presented in Table 1. None of the treatments

had a significant effect on cleavage rate (p = 0.86 (PFHxS), p = 0.58 (PFOS)), cleavage rate

above the 2 cell stage (p = 0.84 (PFHxS), p = 0.48 (PFOS)), or blastocyst rate on day 5 pf

(p = 0.07 (PFHxS), p = 0.31 (PFOS)). PFOS did not have an effect on blastocyst rate on day 6

pf (p = 0.17), however PFHxS tended to result in a higher number of blastocysts on day 6 pf

compared to the control group (OR: 1.56, p = 0.05). There was no difference in developmental

stage (p = 0.21 (PFOS), p = 0.62 (PFHxS)) nor quality grade (p = 0.93 (PFOS), p = 0.56

(PFHxS)) upon PFAS exposure during IVM. See Fig 1.

Table 1. Developmental competence parameters.

Control PFHxS, 40 μg/mL PFOS, 0.1 μg/mL

Mean (SD) Mean (SD) OR (CI) p-value Mean (SD) OR (CI) p-value

Cleaved 0.38 (0.09) 0.39 (0.15) 1.1 (0.78–1.54) 0.86 0.38 (0.17) 1.03 (0.73–1.45) 0.58

Cleaved above 2 cell stage1 0.59 (0.27) 0.50 (0.23) 0.86 (0.57–1.30) 0.84 0.59 (0.28) 0.96 (0.64–1.44) 0.48

Blastocyst day 5 0.07 (0.06) 0.12 (0.07) 1.69 (0.96–3.04) 0.07 0.09 (0.07) 1.36 (0.75–2.49) 0.31

Blastocyst day 6 0.15 (0.08) 0.21 (0.11) 1.56 (1.01–2.42) 0.05 0.19 (0.09) 1.37 (0.88–2.14) 0.17

Means and standard deviations (SD) of developmental competence parameters upon exposure to PFASs during 45h IVM, expressed as proportions Odds ratios (OR)

and 95% confidence intervals (CI) are given for each developmental parameter.
1Calculated from cleaved cell embryos 48 hpf

https://doi.org/10.1371/journal.pone.0279551.t001
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Cell count in blastocysts upon exposure to PFAS during IVM

Embryos developed upon exposure to PFASs during IVM with no evident toxicity (see previ-

ous section) were stained to detect nuclei (DAPI) and apoptotic cells (TUNEL). The total num-

ber of nuclei in blastocysts were as follows: control group mean 35.8 (standard deviation

±17.7); PFHxS group 41.0 (15.2); PFOS group 39.7 (15.6). The increased number of nuclei in

embryos treated with PFHxS compared to the control was statistically significant (p = 0.02).

For PFOS, the difference was not statistically significant although a tendency was observed

(p = 0.07). See Fig 2.

TUNEL assay

Observation of the positive and negative control blastocysts indicated that the TUNEL assay

had labelled apoptotic nuclei (i.e. nuclei with exposed 3’-hydroxyl DNA ends) as intended. For

the positive controls, the TUNEL staining pattern corresponded to the DAPI staining pattern,

and for the negative controls, no stained nuclei were visible in the TUNEL channel. Further-

more, nuclei labelled by the TUNEL assay were typically shrunken/pycnotic in appearance, i.e.
morphologically implying apoptosis (Fig 3).

Proportion of apoptotic cells in blastocysts

Embryos containing higher total numbers of cells (i.e. larger blastocyst) contained a lower pro-

portion of apoptotic cells (-0.13%, p = 0.002) (Fig 4), which was accounted for in the statistical

analyses.

Fig 1. Developmental competence of embryos. Box plots over proportion of zygotes cleaved 48 hours post

fertilization (hpf, top left), cleaved over the 2-cell stage 48 hpf (top right), proportion of blastocysts 5 days post

fertilization (dpf, bottom left) and proportion of blastocysts 6 dpf (bottom right), categorized by treatment (PFOS: 0.1

μg/mL PFHxS: 40 μg/mL).

https://doi.org/10.1371/journal.pone.0279551.g001
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The proportion of apoptotic cells was 10.4% in the control group. Upon PFOS exposure

during IVM, there was no significant difference in proportion of TUNEL-positive cells (12.6%,

p = 0.19). Upon PFHxS exposure, the resulting blastocysts had a tendency towards a higher

proportion of TUNEL-positive cells (13.3%, p = 0.06). See Fig 5 and Table 2.

Discussion

In this study, porcine oocytes were exposed to PFHxS (40 μg/mL) and PFOS (0.1 μg/mL) dur-

ing 48h of in vitro maturation. This was followed by subsequent embryo development. The

concentrations used here were based on previous work within our group on bovine oocytes

[29, 34]. The exposure for PFHxS was set higher than for PFOS due to presumed lower toxicity

based on our previous findings in the bovine model, where altered early embryonic develop-

ment upon PFOS and PFHxS exposure was seen at 0.053 μg/mL and >10 μg/mL, respectively

[29, 34]. Additionally, earlier research suggests that shorter chained PFASs exert lower toxicity

than longer chained equivalents [42].

The concentrations used in this study exceed the levels detected in the average human pop-

ulation. Blood levels of PFASs correlate well with levels in follicular fluid of women [12] and

can therefore be used as a proxy for oocyte exposure. Blood levels of PFASs in humans vary

depending on compound and geographic region [10]. In one study, median level of PFOS and

PFHxS in serum were 5.38 ng/mL and 1.23 ng/mL, respectively [20]. In a second study, levels

Fig 2. Blastomere counts. Box plot over blastomere count in blastocysts, categorized by treatment (PFOS: 0.1 μg/mL,

PFHxS: 40 μg/mL). There was a significantly higher number of blastomeres in blastocysts upon exposure to PFHxS

during in vitro maturation (p = 0.02), but no significant difference (although a tendency) was seen for PFOS (p = 0.07).

https://doi.org/10.1371/journal.pone.0279551.g002
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Fig 3. Stained blastocysts. Blastocysts stained with DAPI (blue) and TUNEL stain (green). A) shows an overlay

section of a blastocyst with DAPI and TUNEL staining, arrow and arrowhead symbolize object detected with TUNEL-

assay. B) represents a section of an output from the automated image analysis. Note the cell denoted as apoptotic,

where TUNEL and DAPI align (white) compared to the cell where an object is positive for TUNEL, but where positive

DAPI is absent (red). In this case, the cell is not annotated as apoptotic. DAPI (C, E) and TUNEL (D, F) of the positive

control stained after DNAse treatment and negative control with no TUNEL staining confirm TUNEL assay is

labelling as intended.

https://doi.org/10.1371/journal.pone.0279551.g003

Fig 4. TUNEL positive cells depending on blastomere count. Scatterplot of proportion TUNEL positive cells

depending on blastomere count in blastocysts. With increasing blastocyst size (increasing blastomere count), the

proportion of TUNEL positive cells decrease (p = 0.002).

https://doi.org/10.1371/journal.pone.0279551.g004
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of PFOS and PFHxS in plasma ranged between 1.03–47.8 ng/mL and 0.09–8.46 ng/mL, respec-

tively [43]. However, in heavily contaminated areas, there are reports of substantially higher

concentrations in human body fluids [15]. In a cohort of industrial workers in China, some

individuals showed serum levels ranging up to 19.8 μg/mL (PFHxS) and 118 μg/mL (PFOS)

[16]. Considering the narrow window of exposure used here (oocytes were only exposed dur-

ing in vitro maturation) and possible species differences in sensitivity towards PFASs, it cannot

be precluded that findings from studies using higher concentrations may be relevant for

humans in general or certainly exposed groups.

Apart from PFHxS appearing to have a positive impact on blastocyst development on day 6,

the exposure used did not dramatically affect developmental competence of the oocyte or blas-

tocyst stage/quality grade. Higher concentrations of PFHxS have been showed to inhibit matu-

ration of porcine oocytes [44]. In the work from Martinez-Quezada [44], it was concluded that

that 91.68 μM PFHxS inhibited oocyte maturation (40 μg/mL is equivalent to 73 μM).

Fig 5. TUNEL-positive cells in blastocysts. Box plots over proportion of TUNEL-positive cells for control group,

PFOS group (0.1 μg/mL) and PFHxS group (40 μg/mL).

https://doi.org/10.1371/journal.pone.0279551.g005

Table 2. Proportion of TUNEL-positive cells.

Treatment Mean proportion of apoptotic cells, (SD) p-value

Intercept (control) 0.104 (0.089) -

PFHxS 0.133 (0.087) 0.06

PFOS 0.126 (0.093) 0.19

Means, standard deviations (SD) and p-values for proportion of TUNEL-positive cells in blastocysts 6 days post

fertilization, upon exposure to PFHxS and PFOS. Exposure groups are compared with control group.

https://doi.org/10.1371/journal.pone.0279551.t002
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Cytotoxic effects were seen at 329.1 μM. Interestingly, in the bovine model, exposure to

PFHxS during 22h IVM resulted in altered development already at lower concentrations.

Developmental toxicity was observed from concentrations� 40 μg/mL and decreased cell

count in blastocysts at concentrations� 20 μg/mL [29]. Thus, even though the porcine oocytes

was exposed for a longer duration (48h of IVM), they seem less sensitive to PFHxS exposure

compared to bovine oocytes.

Exposure to PFHxS during oocyte maturation resulted in a tendency towards higher blasto-

cyst count on day 6 post fertilization and significantly increased total cell count in resulting

blastocysts. In the bovine model, upon exposure levels below those causing apparent toxicity, a

similar response (increased blastocyst stage) was seen. Alterations in genes related to estro-

genic pathways could also be observed [29]. Additionally, PFHxS has been showed to be able

to exert estrogenic effects [45]. Thus, the increase in blastocyst rate and cell count seen here

could potentially be due to an estrogenous effect exerted by PFHxS, while higher concentra-

tions of PFHxS may cause suppressed development. However, mechanisms behind the

increased cell count in blastocysts upon PFHxS exposure cannot be determined using the cur-

rent experimental setup.

We did not see any effects on developmental competence upon exposure to PFOS during in
vitro maturation. This is in line with previous results seen in murine and porcine oocyte sys-

tems using similar concentrations as here [28, 46]. In bovines, slight morphological changes

have been observed at lower concentrations (53 ng/mL [34]) despite the fact that bovine

oocytes are generally only matured for 24 h, which further implies possible differences in sensi-

tivity between species.

In this study, traditional IVP procedures are combined with objective image analysis. We

were able to establish a method to objectively analyse TUNEL positive cells in blastocysts using

automated image analysis. The method was deemed satisfactory based on manual validation.

Objective methods for image analysis has the potential to make procedures more efficient and

to eliminate bias that can be introduced with subjective evaluation. With the use of this

method, we were able to show that overall, larger embryos contained lower proportions of apo-

ptotic cells. This could be expected since embryos developing at a faster rate could be assumed

to have a greater potential for continued growth.

In contrast to some earlier results seen in other in vitro systems [30, 31] no effects on apo-

ptosis attributable to PFOS exposure were seen (as visualized in Figs 1, 2 and 5). This could

potentially be explained by lower sensitivity towards PFOS in pigs compared to other species

(see discussion regarding species differences above). When it comes to PFHxS, only a tendency

towards increased apoptosis rate was seen. Previously, PFHxS has been linked to possible alter-

ation of genes associated with pathways related to apoptosis and oxidative stress [29]. Although

there is too little evidence to draw firm conclusions, the effect of PFASs on apoptosis should be

studied further.

In this study, a porcine in vitro model was used to model early embryo toxicity without the

use of experimental animals. Hence, the use of in vitro models could contribute to implemen-

tation of 3R strategies in research. Ultimately, the developmental competence of an oocyte is

not proven until the birth of a healthy offspring, and the in vitro setting can only be used to

evaluate development until the blastocyst stage. As embryos are only cultured for a limited

period of time after fertilization, it is not possible to study effects of PFASs on continued devel-

opment of the embryo, foetal development, or live offspring when using in vitro models. Fur-

thermore, although the pig could be regarded as physiologically similar to humans when

compared to e.g. rodents, the possibility of species differences in responses to PFAS exposure

cannot be precluded.
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Conclusion

In summary, this study indicates that PFHxS impacts early embryonic development by

increasing the total cell number in blastocysts. It is still unclear whether PFHxS impacts apo-

ptosis rates in porcine blastocysts, and although this study adds to the evidence of a possible

effect, further research is needed to be able to draw firm conclusions. The concentration of

PFOS used here did not impact any of the parameters studied. However, earlier experiments

have revealed negative effects on reproduction. Further studies are needed to investigate impli-

cations for continued embryonic and foetal development as well as public health.

Finally, the current research provides insightful interpretation of coming trends in assisted

reproductive technologies (ARTs) targeted at recognizing the ectopic multi-functional molec-

ular factors (PFOS and PFHxS) that represent a family of PFASs and act as endocrine disrup-

tors, inducers of gameto- and embryotoxicity and promoters/agonists of apoptotic cell death.

The use of these factors for assisted reproductive technologies can contribute to attenuation of

cytological quality of porcine IVF-derived embryos by augmented incidence of TUNEL-posi-

tive (i.e., late-apoptotic) cells in the blastocysts generated under the in vitro culture conditions.

The results of these investigations might be extrapolated to studies focused on the IVP of por-

cine and other mammalian embryos that have been generated by such innovative assisted

reproductive technologies as intracytoplasmic sperm injection (ICSI)-mediated IVF [47–50]

and somatic cell nuclear transfer (SCNT)-mediated cloning [51–56].
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