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Abstract The future risk for droughts and water shortages

calls for substantial efforts by authorities to adapt at local

levels. Understanding their perception of drought hazards,

risk and vulnerability can help to identify drivers of and

barriers to drought risk planning and management in a

changing climate at the local level. This paper presents a

novel interdisciplinary drought case study in Sweden that

integrates soft data from a nationwide survey among more

than 100 local practitioners and hard data based on

hydrological measurements to provide a holistic

assessment of the links between drought severity and the

perceived levels of drought severity, impacts,

preparedness, and management for two consecutive

drought events. The paper highlights challenges for

drought risk planning and management in a changing

climate at the local level and elaborates on how improved

understanding of local practitioners to plan for climate

change adaptation can be achieved.
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INTRODUCTION

Droughts are a natural part of climate: they always have

and will always take place. They are multifaceted natural

hazards caused by a lack of precipitation (i.e., drier than

normal conditions) that can occur in any region of the

world and are not restricted to dry climate zones (Wilhite

1996; WMO and GWP 2016). In contrast to other natural

hazards like floods or earthquakes, drought events develop

slowly and are cumulative in nature (Şen 2015), which

means they become increasingly severe over time given an

insufficient water input to the system (Zaidman et al.

2002). They are sometimes even called ‘creeping disasters’

(Van Loon 2015), as they are one of the most costly natural

hazards affecting many societal sectors.

Drought risk depends on the combination of physical

factors (hazard), exposure of the society and its vulnera-

bility (IPCC 2021), where vulnerability includes suscepti-

bility to impacts, coping capacity, and adaptive capacity

(UNDRR 2021). Adequate drought risk management

strategies increase a society’s capacity to cope more effi-

ciently (Wilhite 2019), but also require measuring and

addressing aspects related to the hazard, exposure, and

vulnerability (Buurman et al. 2017). However, the disaster

literature has to date mostly neglected droughts (Raikes

et al. 2019). Simultaneously, the intensity of droughts has

already increased due to climate change in recent decades

(Schlaepfer et al. 2017) and the number of drought disas-

ters has grown considerably over the years, primarily due

to increasing exposure and vulnerability rather than due to

an increase in frequency (UNDRR 2019; Wilhite 1996).

Developing countries are typically most vulnerable to

drought due to structural features that quickly turn droughts

into cascading events. However, even in the global north,

vulnerability to droughts is substantial and socially co-

produced, e.g., by dependency chains in the society, or by

the lack of drought risk management. There is thus a need

for improved risk management strategies to address

drought hazards and to adapt to a changing climate also in

the global north (AghaKouchak et al. 2015a).

Adaptation to climate change implies the ‘‘adjustment to

actual or expected climate and its effects’’ and aims to
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alleviate or even prevent negative impacts and to take

advantages of potential positive consequences (IPCC

2014a). While national adaptation policies have started to

be implemented (Dannevig et al. 2012), the local variation

of climate change impacts require different types of local

strategies, with regional and local actors responsible

(Measham et al. 2011; IPCC 2014b). At the same time,

only little is known about how these regional and local

actors respond to an increased drought risk, what capacity

they have to deal with it, what improvements are needed

(Measham et al. 2011; Nordgren et al. 2016), and, partic-

ularly, what their drought related risk perceptions are that

impact the design of risk planning and management

approaches (Steg and Sievers 2000; Fuchs et al. 2017;

Ridolfi et al. 2020). For example, it has been shown that the

perceptions of climatic variability or hazards by different

actors may diverge from what the actual ‘‘hard’’ data shows

(Agrawal et al. 2020; Dakurah 2021; Salam et al. 2021),

but such studies are rare. Scholars have also explored

theoretically how different risk perceptions can impact risk

management strategies (Ridolfi et al. 2020), but empirical

applications are lacking. In our study, we address the above

knowledge gaps by investigating Swedish municipalities’

perception of drought risk, by exploring challenges for

drought risk planning and management, and by comparing

the drought perceptions to actual ‘‘hard’’ data on droughts

in Sweden.

Although Sweden has historically been rich in water, it is

not exempt of droughts. Especially the 1976 Northwest

European drought and the 2003 European heatwave will

long be remembered for their devastating effects (Fink et al.

2004; Bradford 2000). More recently, late 2015 was the

onset of another longer dry period (especially in southern

and central Sweden), which continued to worsen in 2016

and 2017 due to a lack of precipitation. Many municipalities

in the southern part of the country, where streamflow was on

average 43% below normal, issued local water use restric-

tions in the first half of 2017 (Geological Survey of Sweden

2017). Toward the end of 2017, precipitation amounts

returned to normal levels, but 2018 developed into yet

another dry and unusually warm year (Swedish Government

2018a), leading to the most serious wildfires in modern

history (The Local 2018). These latest drought events led to

water shortages across Sweden that severely affected the

environment and society, ranging from lost harvests and

emergency slaughter of livestock (Sveriges Radio 2018), to

lower revenues from tourism (Vattenmyndigheterna 2018),

damage to aquatic ecosystems (HaV 2018), and forest fires

(Swedish Government 2018a). The wildfires alone caused

financial damage of over 70 million € (Vikström 2018),

while the agricultural sector suffered financial damage of

almost 1 billion € (Rapp 2018), ten times more than the

most costly flooding damage that occurred in recent years

(Elfström 2015; Nyhetsbyrån 2018). Another major societal

function affected by these drought events was the drinking

water supply (Vattenmyndigheterna 2018). In the future,

meteorological shifts will further aggravate present-day

water stress during summer, especially in southern Sweden

(Eklund et al. 2015; Teutschbein et al. 2022b). Due to

additional pressures such as growing population, tourism,

and overexploitation of water resources, water resources

management may face major challenges, which further

increases the need for developing local and regional adap-

tation plans.

The European Commission encourages its member

states to develop national disaster risk assessments (Euro-

pean Commission 2013) and provides a set of recommen-

dations and guidelines for that (Casajus Valles et al. 2019),

including a chapter on droughts, stating that ‘‘every

Member State should have a drought management plan to

cope with possible impacts’’ (Casajus Valles et al. 2019).

This has, to our best knowledge, not yet been implemented

in Sweden. The Swedish government has only recently

published a Government Bill with its first strategic national

plan for climate adaptation (Swedish Government 2018b).

The strategy addresses a number of climate change effects

in Sweden, but the issue of a reduced water availability is

only briefly mentioned in relation to southern Sweden.

However, considering the challenges with drinking water

availability linked to recent droughts, increased attention is

imperative, particularly at municipal levels where vulner-

ability typically unfolds (Dannevig et al. 2012). In 2010,

only 12% of Swedish drinking water producers specifically

considered potential effects of droughts on drinking water

in their risk assessment (Norén, researcher in drinking

water risk management, pers.comm. 2015). More recently,

a 2017 online survey in central Sweden showed that only

27% of surveyed municipalities had an action plan for

water shortages prior to 2017 (Lundkvist and Andersson

2018).

There is a lack of knowledge on how drought hazards

and their associated impacts are perceived, assessed, and

managed by practitioners, and if these perceptions reflect

the objective risks. Therefore, the aim of this study is

twofold. First, we examine the perceptions of Swedish

municipalities on their local water resources, future risks of

droughts, as well as their perceptions of the 2017 and 2018

droughts, including severity, impacts, local preparedness,

and management of these events. Second, we compare the

perceived severity of the 2017 and 2018 drought hazard

with the actual severity of these droughts assessed using

hydrological drought indices based on precipitation (as a

proxy for surface water) and groundwater measurements.

Based on the results, we discuss challenges for drought risk

planning and management in a changing climate and how

improved understanding of local practitioners to plan for
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climate change adaptation can be achieved. The study is

carried out utilizing an interdisciplinary approach that

combines perspectives and methods from social sciences

and hydrology.

MATERIALS AND METHODS

Study area Sweden

The study was conducted in Sweden, a country in northern

Europe with a total population of 10.3 million and a land

area of approximately 408 000 km2. Sweden is a heavily

forested country and, under normal conditions, one of the

50 water-richest countries in the world (FAO 2020).

Sweden is subdivided into 290 municipalities organized

within 21 counties. While the counties are the top-level

administrative and political subdivisions, municipalities are

the local government bodies. The water governance system

largely relies on municipal self-government, which is

important in the development of drought management

strategies and has legal obligation to create local action

plans. The Swedish Civil Contingencies Agency (MSB)

offers support and guidance for municipalities to fulfill this

task. Municipalities act as operators who are directly

responsible for local water management and the imple-

mentation of necessary measures to protect local surface

and groundwater bodies that are used (or maybe used in the

future) for drinking water supply. It should be stressed that

Sweden has implemented the principle of responsibility/

accountability (‘Ansvarsprincipen’), which implies that

those responsible for water management in ordinary times

will also be responsible in times of crisis, such as water

shortages (Swedish Defence University 2019). The

responsibilities of municipalities also include a large part

of all public services and infrastructure planning, such as

drinking water distribution and sewerage systems (Carls-

son-Kanyama 2013). For a detailed description of Swe-

den’s geographic/hydroclimatic features and its water

governance, we refer to the Supplementary Information

(Sects. S1. Study area Sweden and S2. Water management

in Sweden).

Data collection and analysis

Soft data—drought risk, planning, and perception

An online survey using a web-based Swedish questionnaire

was sent to all 290 Swedish municipalities in December

2018 (response rate 41% with 118 unique responses). The

survey combined both open- and closed-end questions

(Vicente and Reis 2010), including a mixture of multiple-

choice, binary, rating scale, ranking, free-text answers, and

respondent-specific (e.g., name of county and municipality,

job role) questions organized in six key sections: back-

ground, concepts and terminology, collaborations and

action plans, summer 2018, summer 2017, and adaptation.

A more detailed description of the survey design can be

found in the Supplementary Information (see S3. Survey

design, Fig. S1).

Responses were first analyzed by means of descriptive

statistics to present the municipalities’ water management,

perception of drought and flood hazard, as well as the

respondents’ perception of the 2017 and 2018 droughts

using Microsoft Excel and MATLAB software. These

simple, descriptive statistics included summary statistics,

non-parametric Spearman’s rank correlation (Spearman

1904) and crosstabulations with significance tests.

For a more in-depth analysis, the municipalities were

further categorized into northern (above 60�N) and south-

ern (below 60�N) municipalities that defer in their climate

conditions and population characteristics, as well as into

urban (population density[ 300 per km2) and rural (pop-

ulation density\ 300 per km2).

To unravel the link between drought management and

the perceived drought risk, we computed the non-para-

metric Spearman’s rank correlation coefficient qs (Spear-
man 1904) between perceived severity, impacts,

preparedness, and management. Spearman rank correlation

was chosen over linear Pearson product-moment correla-

tion (Pearson 1920), because Spearman assumes only

monotony without making prior assumptions about the

nature of the relationships (e.g., linear or logarithmic). We

further hypothesized that municipalities with action plans

differ from those without plans regarding (1) the perception

of severity, impacts, preparedness, and level of manage-

ment, (2) the number of affected sectors, and (3) the

implementation of different countermeasures when hit by a

drought. We also tested whether municipalities without

action plans are more likely to implement one soon if they

(1) assume an increasing risk of future droughts or if they

(2) recently perceived strong drought impacts.

The Wilcoxon rank sum test (Asadzadeh et al. 2014)

was utilized to compare different levels of perception (i.e.,

interval data) between the different groups of municipali-

ties (i.e., with vs. without drought action plans). To com-

pare categorical responses (e.g., ‘‘yes/no’’) between

different groups of municipalities, we applied Fisher’s

exact test (Fisher 1922).

Hard data—hydroclimatic analysis

To compare the perceived drought severity with the actual

drought hazards, the droughts of 2017 and 2018 were also

analyzed from a hydrological perspective, i.e., including

assessments of (1) precipitation deficits (as a simplified
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proxy for surface water deficits), (2) groundwater deficits,

and (3) concurrence of both precipitation deficit and

extreme temperatures across the country. A brief descrip-

tion is provided below, for a detailed explanation on the

underlying data and applied methods, we refer the reader to

the Supplementary Information (see S4. Hydroclimatic

Data and Analysis Methods).

Precipitation deficits were assessed using the Standard-

ized Precipitation Index (SPI) originally developed by

McKee et al. (1993). The SPI provides a dimensionless

anomaly from normal situations, where positive SPI values

indicate conditions above normal (i.e., wet conditions) and

negative values below normal (i.e., drought conditions).

The SPI was computed based on a 6-month moving aver-

age (i.e., the so-called SPI6) as it integrates precipitation

anomalies over a sufficiently long period to reflect

anomalies in both precipitation and surface water (e.g.,

streams and lakes). In addition, groundwater deficits were

evaluated based on the Standardized Groundwater Index

(SGI), which was developed by Bloomfield and Marchant

(2013) and is based on the same concept as the SPI. All

hydrological data was obtained from the Swedish Meteo-

rological and Hydrological Institute (SMHI) and the

Swedish Geological Survey (SGU), details can be found in

the Supplementary Information (see S4. Hydroclimatic

Data and Analysis Methods). The severity of the precipi-

tation and groundwater deficits was assessed with a clas-

sification scheme ranging from normal conditions through

mild, moderate, and severe, to extreme droughts (for details

see Supplementary Information, Table S1). Based on the

computed SPI6 and SGI6 values, the spatial extent and

severity of the 2017 and 2018 drought were mapped and

compared to the perceived severity obtained from the

online survey.

We also evaluated the 2017 and 2018 droughts based on

their empirical return periods, a concept commonly applied

to identify critical events (e.g., floods or droughts) and

provide critical information for practitioners (Hosking and

Wallis 1993; Salvadori et al. 2011). We here computed

both univariate and multivariate empirical return periods

for observed March-August precipitation deficits and

annual summer temperature anomalies over the period

1961–2020, following the methodology described in the

Supplementary Information, section S4.3). The multivari-

ate approach using bivariate copulas (Tootoonchi et al.

2022) better reflects the compound risk of warm tempera-

tures (high evaporation) and low precipitation (Agha-

Kouchak et al. 2015a).

Integrating soft and hard data—a combined approach

We related the perceived drought severity in each munic-

ipality to the actually observed municipality-specific

hydrological severity of the 2017 and 2018 drought con-

ditions using the non-parametric Spearman’s rank corre-

lation coefficient qs (Spearman 1904). Spearman rank

correlation was chosen over linear Pearson product-mo-

ment correlation (Pearson 1920) because Spearman

assumes only monotony without making prior assumptions

about the nature of the relationships (e.g., linear or

logarithmic).

In addition, perceived and observed hydrological

severity of the droughts were visually compared to each

other to identify consistent over- or underestimations in the

individual perceptions.

Limitations

To analyze the data for a potential non-response bias, we

categorized all municipalities by their observed precipita-

tion drought category (i.e., SPI6 for 2018) and then

checked the response rates across the different categories.

The response rate was rather stable for most drought cat-

egories, except for the most extreme droughts. Munici-

palities hit by mild, moderate, and severe droughts had

response rates of 37, 35, and 39%, respectively. However,

out of the eleven municipalities with extreme droughts,

nine (82%) answered the survey. This means municipalities

heavily affected by droughts were more inclined to respond

to the survey. They are only a small proportion (N = 9)

among all survey respondents (N = 118). But this means

that for analyzes that do not distinguish between drought

severity categories, results may slightly overestimate the

overall drought experience among Swedish municipalities

and may therefore statistically not be entirely representa-

tive for all of Sweden’s municipalities. Nonetheless, the

results provide important empirical insights on drought risk

perceptions and managements among municipalities in

Sweden.

RESULTS

Municipalities’ understanding of droughts

Our survey revealed that out of all the municipalities that

responded to the survey, 81% did not have an operational

drought definition, while 15% did not know for sure. Only

4% (5 respondents) indicated to have an operational

drought definition in place, either based on a threshold for

groundwater or reservoir levels, or on the supply–demand

relationship.

The respondents associated drought conditions with

different types of implications: low groundwater levels

(76%) and dry individual wells for residents (71%) were

mentioned most frequently. In contrast, increased risk for
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forest fires (33%) and low soil moisture (21%) were

mentioned least often (see Fig. 1 for detailed results).

Municipalities’ water management

Among the surveyed municipalities, groundwater is the

most frequently used water source for drinking water

production in Sweden (38%), followed by surface water

(29%). Several other municipalities use groundwater

recharged artificially through infiltration of surface water

(17%). A few municipalities use a combination of both

ground- and surface water sources (7%), while only a small

fraction (5%) has no own water resources and buys the

water from another nearby municipality. Kindly note that

these numbers correspond only to the percentage of

municipalities indicating to rely on these water resources,

but do not provide an indication of the withdrawn water

volume. In fact, according to Statistics Sweden (2020), the

largest volumetric fraction of total municipal water comes

from surface water (59%), followed by 23% groundwater

and 18% artificial infiltration. This discrepancy is mainly

the result of a few highly-populated municipalities (i.e.,

Sweden’s largest three cities Stockholm, Gothenburg and

Malmö) accounting for nearly half of Sweden’s municipal

water withdrawal while relying on surface water.

When it comes to the municipalities’ preparedness, 35%

of municipalities indicated to have a flood action plan.

Even less (14%) said that they had an action plan for

droughts, and the vast majority of municipalities specifi-

cally stated not having an action plan for droughts in place

(72%).

The survey also revealed that the extent of collaboration

in municipalities’ drought work varied substantially in

terms of choice of potential collaborators (Fig. 1): while

more than half of the respondents indicated to collaborate

with other municipal (65%) or external authorities (64%),

there seemed to be only little collaboration with indepen-

dent experts (15%), landowner organizations (14%), or

NGOs (11%).

Municipalities’ planning for the future

A large fraction (81%) of the municipalities considered

future climate impacts on their water resources in their

every-day work, while, 12% did not consider that and 7%

did not know. Most respondents agreed on that floods and

drought hazards are on average increasing, and indicated

either strong increase (17 and 16% of respondents,

respectively for floods and droughts) or increase (68 and

81%, respectively). A larger fraction of respondents (15%)

believed flood hazards would not change, while only 3%

assumed drought hazards would not change.

The municipalities that assumed flood hazards would

not change were spread across the entire country, except

for the most extreme south and north, while municipalities

that assumed drought hazards would not change were

mostly located in central and northern Sweden. The vast

majority of municipalities that assumed a strong increase in

either flood or drought hazards were located in southern

Sweden (below 60�N), which is characterized by a warmer

and drier climate, as well as a higher population density.

Indeed, municipalities with higher population density per-

ceived stronger future increases for either flood or drought

hazards (on average 363 and 280 inhabitants per km2 for

floods and droughts, respectively), compared to less den-

sely populated municipalities.

Three quarters of the respondents (75%) indicated to

either have a plan/strategy or to have enough water supply

to cope with a changing climate and population increase in

the long run. The municipalities planned to (1) increase the

capacity within the municipality (21% of respondents),

e.g., through a new/larger water supply or more wells, (2)

Fig. 1 Implications of a drought situation for municipalities (left panel) and a summary of collaboration activities for drought work (right panel)
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improve/renew existing infrastructure (18%), e.g., through

construction of new drinking water plants or the intro-

duction of new technology to recycle water, (3) set up an

emergency water supply (18%), (4) introduce new plans

and policies, including a plan for climate adaptation (15%),

(5) establish new water protection areas (13%), and (6)

increase collaboration especially with neighbor munici-

palities (14%). Only 3% of the respondents mentioned

other activities such as increasing the competence within

the municipality, reducing water demand, and providing

more information to the public.

Perception of the 2017 and 2018 droughts

Overall severity, impact, preparedness, and management

The 2018 drought was perceived as much more severe than

the 2017 drought event (Fig. 2a). With the majority of

municipalities (* 80%) classifying 2018 as a drought

situation, the 2017 drought (only perceived in 49% of

municipalities) was perceived on average one category less

severe (significant with p = 1.3�10–7). The 2018 drought

was also perceived to have stronger impacts compared to

the 2017 drought (Fig. 2b). While 66% of municipalities

reported no impacts in 2017, only 37% reported no impacts

a year later. It is noteworthy that fewer municipalities

experienced strong or very strong impacts in 2018 (22%) in

direct comparison to the number of municipalities that

perceived this year to be a severe or extreme drought

(27%), while this number is rather similar for 2017 (6

versus 5%). With a Spearman correlation of qs = 0.62, the

perception of impacts was significantly correlated to the

perceived severity of the drought events (significance level

a = 0.05). Respondents felt on average better prepared in

2018 than in 2017 (Fig. 2c). For 2017, 28% reported not to

have been prepared, while this number decreased some-

what for 2018 (24%). Despite the 2018 drought being

perceived as much more severe and impactful than the

2017 drought, respondents indicated that they perceived the

management in 2018 as slightly better than in 2017

(Fig. 2d). The number of municipalities who rated their

own management as none or weak decreased from 9% in

2017 to 6% in 2018, while municipalities that perceived

their management as very strong increased from 41 to 43%.

The perceptions of preparedness and management were

significantly correlated (qs = 0.42) at a = 0.05.

The results of our analysis also demonstrate differences

in the perception of different drought features and societal

planning and action toward droughts. The proportion of

municipalities that felt they managed both drought events

well or very well was much higher (71–76%) than the

proportion of municipalities that felt strongly or very

strongly prepared (31–32%). The latter, in turn, was again

much higher than the proportion of municipalities that

experienced strong or very strong impacts (6–22%) or a

severe to extreme drought (5–27%).

Regional differences

Our analysis revealed regional differences (Fig. 3), of

which only the perceived severity (Fig. 3a, left) and the

perceived impacts (Fig. 3b, left) between municipalities in

the North and South were significant for both 2017 and

2018 at the significance level a = 0.05. Respondents from

northern municipalities above 60�N perceived the 2017 and

the 2018 drought on average as one category less severe

and impactful than respondents from southern municipali-

ties below 60�N. Also, respondents from urban areas

Fig. 2 Perception of the 2018 and 2017 drought events evaluated by different measures: a drought severity, which ranges from no drought to

extreme drought as well as b drought impacts, c preparedness, and d management, which are all displayed on a scale from none to very strong

123
� The Author(s) 2023

www.kva.se/en

Ambio



perceived both drought events as less severe and impactful

than respondents from rural areas, but these differences

were not significant (Fig. 3a, b, right).

Although respondents from southern municipalities

rated their own preparedness for both events in 2017 and

2018 higher than respondents from northern ones (Fig. 3c,

left), and similar patterns were found between rural and

urban municipalities (Fig. 3c, right), these regional differ-

ences were not significant. Similarly, no significant regio-

nal differences were found between the perception of

management (Fig. 3d).

The described regional patterns were also confirmed

when analyzing the spatial distribution of survey responses

in more detail (Fig. 4). The 2018 drought was perceived as

much more severe (Fig. 4a) than the 2017 drought

(Fig. 4e), especially in southern and central parts of the

country. A similar spatial pattern occurred for the per-

ceived impacts in 2018 (Fig. 4b) and 2017 (Fig. 4f).

Municipalities farthest north did not perceive drought

impacts at all in both years, while respondents from

municipalities in the central parts of the county perceived

very weak to moderate impacts in 2018 (Fig. 4b) and no (or

only very weak) impacts in 2017 (Fig. 4f). The perception

among respondents from southern municipalities was much

more diverse, ranging from no impacts to strong impacts,

and the municipality of Gotland (an island located in the

Baltic Sea in southeastern Sweden) even indicating very

strong impacts in 2018 (Fig. 4b).

On the other hand, this north–south gradient was not as

pronounced when it comes to the perceived level of pre-

paredness (Fig. 4c) and management (Fig. 4d). Interest-

ingly, municipalities in the South that experienced more

Fig. 3 Regional differences in the perception of the 2017 and 2018 drought events evaluated by different measures: a drought severity, ranging

from ‘no drought’ to ‘extreme drought’ as well as b drought impacts, c preparedness, and d management, which are all displayed on a scale from

‘none or very weak’ to ‘very strong’. Each subplot is divided into two panels, where the left panel shows a direct comparison of northern (white)

versus southern (black) municipalities and where the right panel provides an overview of urban (white) versus rural (black) municipalities.

Differences between regions (i.e., north/south and urban/rural) were tested for significance at a 5% level (p\ 0.05), based on the Wilcoxon rank

sum test and labeled with ‘‘sig.’’ accordingly
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severe droughts and consequent impacts generally judged

both their drought preparedness level and management to

be above average and, in fact, better in 2018 (Fig. 4c, d)

than in 2017 (Fig. 4g, h).

Sectoral drought impacts and their countermeasures

According to the respondents, the drought periods had

certain effects on several different sectors, with drinking

water supply being mentioned most often (54% of

responses in 2018 and 30% in 2017), followed by agri-

cultural irrigation (40 and 18%, respectively) and available

water for livestock (40 and 11%). Industry (3–4% both

years), tourism (6 and 3%), and forest industry through

forest fires (14 and 3%) were mentioned less frequently.

When referring to drinking water supply, various respon-

dents highlighted in free-text responses that the public

drinking water supply was not affected, while households

with private wells were considerably impacted by the

drought events. In general, respondents indicated that the

2018 drought impacted a larger number of sectors (on

average 1.6, with a standard deviation of 1.3) than the 2017

drought (on average 0.7 sectors, with a standard deviation

of 1.0).

On average, the respondents specified that two drought

measures were implemented in 2018 and only one in 2017.

In 2018, the most frequently employed measure was the

introduction of an information campaign targeted toward

the general public (mentioned by 66% of respondents),

followed by regular measurements of water levels and

drought monitoring (62%), and contacts with relevant

authorities (38%). These were also the most frequent

actions in 2017, but implemented to a much lesser degree

by approximately only half as many municipalities. Other

measures mentioned were related to reducing water with-

drawals (29% in 2018 and 8% in 2017), assistance offered

to parts of the municipality (25 and 11%, respectively), and

collaboration with other municipalities (23 and 18%).

Link between perceived drought risk and drought

management

Only 14% of respondents indicated that their municipality

had a drought action plan in place at the time of the survey.

Fig. 4 Comparison of the 2018 (upper row, a-d) and 2017 drought (lower row, e–h) perception. a and e show the perceived drought severity,

ranging from no drought conditions to mild, moderate, severe, and extreme drought. b and f display the perceived impacts, c and g the perceived

preparedness, and d and h the perceived management, all ranging from none or very weak to very strong
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All of these municipalities were located in southern Swe-

den. Respondents from municipalities with a drought

action plan perceived a significantly stronger severity, as

well as better preparedness in both 2017 and 2018, as

compared to municipalities without the plan (Table 1).

While the difference in the perceived impacts between both

groups was not significant in 2017, in 2018 respondents

perceived significantly stronger impacts in the municipal-

ities with drought action plans (Table 1). Although this

seems to contradict the idea that an action plan lowers

vulnerability and subsequently impacts, the effects of

action plans are likely overshadowed by drought severity,

which was perceived as much stronger in the municipalities

with action plans (Table 1) as they are all located in the

more severely affected South. This is also reflected in the

number of affected sectors, which differed significantly

between municipalities with and without a drought action

plan (on average 1.6 sectors in 2017 versus 2.4 in 2018

compared to 0.6 respective 1.5). Moreover, municipalities

with a plan adopted 2 to 2.5 more measures than munici-

palities without an action plan (Table 1).

With the majority of the respondents indicating that they

actively consider a changing climate in the coming future

(81%) and that they believe drought risk will increase 97%)

in a future climate (see Sect. 4.3 Municipalities’ planning

for the future), one might assume that these municipalities

were more likely to have a drought action plan in place.

However, given the generally high number of municipali-

ties that assume increasing drought risks and the low

number (14%) of municipalities with a drought action plan

(see Sect. 4.2 Municipalities’ water management), there

was no statistical evidence to support this assumption.

Furthermore, respondents that perceived strong or very

strong impacts (27%) indicated higher intentions to

develop a drought action plan compared to those that

perceived less strong impacts (18%). However, the

difference between these two groups was statistically not

significant (p-value = 0.43 at a = 0.05; Fisher’s exact test).

Integrating soft and hard data—perceived

versus observed drought severity

Hydroclimatic analysis

The analysis of the standardized precipitation index (SPI)

revealed that the droughts of 2017 and 2018 were wide-

spread moderate to severe drought events (Fig. 5a, d). In

August 2018, all municipalities were in a drought state

(Fig. 5a). Only 21% of the municipalities suffered from a

mild, while the rest experienced either a moderate (41%),

severe (33%), or even an extreme (4%) precipitation

drought. Southern municipalities suffered on average from

more severe drought conditions than northern municipali-

ties (Fig. 5a). Similar patterns could also be observed in the

groundwater deficits (Fig. 5b, e): all except one munici-

pality suffered from such deficit in 2018 (Fig. 5b). With

52% of municipalities suffering from mild, 39% from

moderate, and only 8% from extreme groundwater drought,

the groundwater deficit (Fig. 5b) was generally less

strongly pronounced (i.e., less severe drought conditions)

than the precipitation deficit.

In comparison, year 2017 was hydrologically much less

severe. According to the SPI6 for August 2017, 42% of the

municipalities were not in drought state, while 45% were

suffering from mild and 11% of the municipalities from

moderate precipitation deficits (Fig. 5d). The 2017 drought

had a limited spatial extent, mainly hitting central Sweden,

while the most southern and northern parts were not

affected (Fig. 5d). This event was mainly caused by low

winter precipitation, while the summer precipitation was on

normal levels and was able to compensate for the winter

deficits in many parts of the country (Fig. 5d). Thus, the

Table 1 Characteristics of perceived drought values separated by year of drought (2017 versus 2018) and by municipalities with and without a
drought action plan. p-value s of the Wilcoxon rank sum test are shown as well, with bold italic values with an asterisk (*) denoting significant

differences in the medians of the two groups (i.e., municipalities with and without plans) at the significance level a = 0.05

Perceived drought values 2017 2018

With action plan Without action plan p-value With action plan Without action plan p-value

Severity Moderate No drought 0.041* Severe Mild 0.001*

Impact None/very weak None/very weak 0.862 Strong Weak 0.025*

Preparedness Moderate Weak 0.007* Moderate Weak 0.023*

Management Strong Strong 0.123 Strong Strong 0.903

No. of affected sectors 1.6 0.6 < 0.001* 2.4 1.5 0.007*

No. of measures 3.4 1.4 < 0.001* 4.9 2.4 < 0.001*
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return period for the March-August precipitation deficit

was as low as 1.5 years. But it should be highlighted that

the propagation of precipitation deficits into groundwater

typically takes considerably longer time. Thus, the pre-

cipitation deficits earlier that year were reflected in the

summer groundwater deficits (Fig. 5e), which were mild in

42% and moderate in 30% of the municipalities. Especially

central Sweden suffered from severe (11%) and extreme

(3%) groundwater droughts in 2017 (Fig. 5e).

Due to a relative local hazard, 2017 did not stand out as

a particularly dry (Fig. 6a) or hot (Fig. 6b) summer when

averaged over the entire country. This was, however, dif-

ferent for the 2018 drought: if we consider only precipi-

tation deficits, the return period for the 2018 summer

drought was on average 12 years, ranking fifth among all

years from 1961 to 2020 (Fig. 6a), while the return period

was 20 years (ranking third) if we consider only tempera-

ture anomalies (Fig. 6b). Utilizing the multivariate copula

approach to estimate the concurrent probability of low

precipitation and high temperatures, the 2018 drought

appeared to be a much more extreme and rarer event with a

return period of little over 200 years (Fig. 6c). Comparable

extreme conditions only occurred in 1969 (less extreme

temperature, but drier conditions) and in 1976 (normal

temperatures, but extremely dry conditions).

Comparison between observed and perceived severity

The perceived drought severity, as revealed in the survey,

did not always match the observed severity of meteoro-

logical (i.e., precipitation) or groundwater droughts

(Fig. 5c, f). In fact, the only consistently significant cor-

relations (at 5% significance level) were found between

perceived severity and SPI6 in 2018, while there were only

few significant correlations between perceived severity and

SGI6 (Table 2).

When directly comparing the perceived drought severity

with the SPI6 and SGI6 in each municipality, a common

pattern was revealed, showing that local practitioners

underestimated the drought severity in municipalities that

were suffering from moderate to extreme drought condi-

tions across both years and both hydrological measures

(Fig. 7a–d).

DISCUSSION

This is the first study in a Nordic country that systemati-

cally synthesized drought perception by relevant stake-

holders based on a nationwide survey, and at the same time

compared these perceptions with observed drought

conditions.

Our analysis highlighted large variability in terminology

and local definitions of droughts, impacts, water manage-

ment, and planning for a changing future climate. The lack

of general drought definitions and nationwide operational

declaration schemes showcases current barriers to drought

risk planning and management at the local level in Sweden.

While other countries like Australia or the United States

learned their lessons from previous drought events (cf.,

Botterill and Hayes 2012) and implemented early warning

systems in combination with triggers that activate partic-

ular drought responses (Steinemann 2003), Sweden lags

behind this development, even though several sectors

including hydropower production, agriculture, and forest

industry largely depend on a sufficient quantity of water

(Lehner et al. 2005; Anderegg et al. 2013). While Tsakiris

et al. (2013) highlight the importance of a clear operational

definition, the key concept of droughts (i.e., a temporary

severe water deficiency over a specific period and region)

introduces subjectivity in defining thresholds for severity

and deficiency, as well as in setting the scales for time and

space (Rossi et al. 2003). Therefore, Quiring (2009) rec-

ommends the development of objective methods for

establishing operational drought definitions. However,

creating a universally formalized definition of drought that

applies to all municipalities and sectors in Sweden may be

challenging (Lloyd-Hughes 2014), especially because dif-

ferent policies and authorities govern different sectors

Fig. 5 Comparison of the 2018 (upper row, a–c) and 2017 (lower

row, e, f) precipitation deficits as expressed by the SPI6 in August

(a and d), the groundwater deficits as expressed by SGI6 in August

(b and e) and the perceived drought severity according to the survey

respondents
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(Blauhut et al. 2021). Instead, Lloyd-Hughes (2014) argues

for local drought definitions that holistically consider water

supply, demand, and management.

Ek et al. (2016) pointed out that several factors such as

human resources, available knowledge, and financial con-

straints at the municipal level largely affect the risk man-

agement at local levels. Consequently, awareness of future

drought risks might also be an important factor further

limiting current developments in the arena of drought risk

management. However, while most survey respondents

indicated that they believe drought risk will increase in the

future, very few municipalities had operational drought

action plans, and many respondents did not see a need to

prioritize development of such plans. This is problematic as

the establishment of drought action and management plans

prior to drought events has been identified as a powerful

tool to lower vulnerability to droughts (Wilhite et al. 2000;

Vogt et al. 2018; UNDRR 2021). It also implies that they

will continue to rely on an emergency response in case of

droughts, as during the droughts of 2017 and 2018.

Although short-term measures can be effective to reduce

immediate drought impacts, introducing long-term mea-

sures is essential in the face of climate and demographic

changes (AghaKouchak et al. 2015b). Respondents listed a

variety of suggestions for such long-term measures, which

can either be categorized as (1) increasing supply or as (2)

managing/reducing demand (Inman and Jeffrey 2006; Alias

et al. 2017). Most of the measures mentioned belonged to

the first category, focusing either on more or new water

resources, new investments for new drinking water plants

with higher storage and pumping capacity, or on estab-

lishing an emergency water supply. In contrast, measures

to reduce water demand (e.g., information campaigns for

the public, water reduction measures and reducing water

losses) were mentioned much less often, which is some-

what contradictory to recent trends in sustainable water

resources management. In fact, Gleick (2000) argued

already two decades ago that the world has been experi-

encing a ‘changing water paradigm’, referring to shifts in

the dynamic process of water resources management from

focusing solely on tapping new water resources for supply

toward addressing the management of new demands,

emphasizing the ‘‘ethics of sustainability.’’ Sustainable

water use is ‘the use of water that supports the ability of

human society to endure and flourish into the indefinite

future without undermining the integrity of the

Fig. 6 Ranked historical a total March–August precipitation and b average summer temperature averaged over entire Sweden in direct

comparison to c their concurrent return period based on data from 1961 to 2020. In c, historical observations are shown as circles, while the

return periods are shown as black isolines. Events in the upper-right corner correspond to a warm (y-axis) and dry (x-axis) condition. Both years

(2017 and 2018) are highlighted
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hydrological cycle or the ecological systems that depend on

it’ (Gleick 2000). Thus, rather than exploiting new water

resources to meet future needs, it is essential to understand

how current and future human water demand can be met

with the water presently available, while guaranteeing the

preservation of ecosystems and biodiversity that are vital

for human well-being (Blicharska et al. 2019; Pecl et al.

2017). Consequently, there is growing consensus that an

Integrated Water Resource Management (IWRM) approach

combining both the demand-side management with tradi-

tional supply activities is a more sustainable solution to

cope with water shortages (Da-ping et al. 2011; Inman and

Jeffrey 2006).

Overall, integrated drought risk management, which

considers the entire cycle of disaster management from

prediction and prevention to practical measures reducing

impacts of droughts and supporting recovery in a sustain-

ability context, is favorable over traditional emergency

responses, as it creates opportunities for incorporating

economic, social, and environmental pillars of sustainable

development (Grobicki et al. 2015). This is not only true

for developing countries with economies relying on rain-

fed agriculture and pastoralism (Brüntrup and Tsegai

2017), but also valid for developed countries like Sweden

(AghaKouchak et al. 2015a). Such a holistic approach also

involves a meaningful participation of relevant stakehold-

ers from different drought-prone sectors (e.g., farmer or

forester’s associations) and can contribute to preparedness

strategies, and well-designed communication with the

general public to increase their awareness and strengthen

the overall capacity of the society to deal with droughts

(Matti et al. 2017). However, realizing such ambitious

plans and overcoming current limitations calls for sub-

stantial efforts by authorities to be able to deal with the

complex nature of drought impacts and to increase Swe-

den’s adaptive capacity and resilience by implementing

drought risk management strategies, including measures to

limit hazard, exposure, and vulnerability (Buurman et al.

2017). Strategic efforts could aim to mimic the endeavors

made over the past decades in relation to flood risk man-

agement. In particular, flood prevention, defense, and

mitigation as well as warning, evacuation, and recovery

have been on the agenda (Pettersson et al. 2017) of

Swedish authorities, especially after adopting the EU flood

risk directive (European Parliament and Council of the

European Union 2007, p. 60). This is evident both from the

integration of flood risk into Swedish law (Swedish

Government 2009), but also from the survey responses that

Table 2 Spearman Rank Correlation between perceived severity (variable 1) and observed precipitation and groundwater deficits (variable 2)

during the summer drought events of 2017 and 2018. Correlations are estimated for all municipalities as well as for sub-sets of the data categorize

into different regions (i.e., north versus south and urban versus rural). Significant correlations are highlighted in italic bold and marked with an

asterix (*)

Variable 1 Variable 2 Event Municipalities Correlation (Spearman q) p-value

Perceived severity SPI6 August 2017 All - 0.02 0.824

North - 0.01 0.969

South 0.05 0.603

Urban - 0.30 0.375

Rural 0.01 0.904

2018 All 0.38 < 0.001*

North 0.49 0.012*

South 0.32 0.002*

Urban 0.72 0.012*

Rural 0.36 < 0.001*

SGI6 August 2017 All 0.20 0.030*

North - 0.01 0.945

South 0.20 0.062

Urban 0.30 0.378

Rural 0.19 0.049*

2018 All - 0.13 0.149

North - 0.03 0.900

South - 0.26 0.014*

Urban 0.02 0.945

Rural - 0.14 0.147
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indicate that the proportion of municipalities with opera-

tional flood action plans is 2.5 times higher than the pro-

portion with drought action plans. Similar to drought risk,

the Swedish legal framework concentrates responsibility

for mitigating flood risk also to the municipal level and

according to Becker (2021) all Swedish municipal admin-

istrations commonly employ part- or full-time civil ser-

vants specifically working on flood risk mitigation.

Additionally, the Swedish Civil Contingencies Agency

(MSB) has been mapping and regularly updating the flood

risk for streams and lakes since the late 1990s. Similar

efforts for developing drought risk management strategies

were only recently kicked off, triggered by the severe 2018

drought event, and include, e.g., the monitoring of

groundwater levels and mapping of water bodies across the

country.

Fig. 7 Comparison of the 2018 (a and b) and 2017 (c and d) perceived drought severity (y-axis ranging from normal conditions to mild,

moderate, severe, and extreme) in direct comparison with actual hydrological conditions (x-axis), including precipitation drought severity as

measured by SPI6 (a and c) and actual groundwater drought severity as measured by SGI6 (b and d) for the spring–summer period (April–

September) for all municipalities (points). In a perfect world, the stakeholder perception would match the hydrological conditions and be located

within the diagonally placed colored squares. Points located above those colored squares indicate that stakeholders overestimated the actual

severity, while points below represent an underestimation. The colored lines show the median of all responses within one column (i.e., the

median of all stakeholder perceptions for each hydrological drought category). If a median line is located above one of the colored squares, then

the majority of stakeholders overestimated the hydrological drought severity, while an underestimation of the majority is shown by a line below

� The Author(s) 2023

www.kva.se/en 123

Ambio



The survey revealed high variability of perceptions of

past drought events and future drought risks in Sweden,

including their impacts, preparedness, and management,

reflecting the country’s strong climate gradient, as well as

the socio-economic heterogeneity across the country.

Impacts were perceived stronger in southern and in rural

municipalities. While the southern parts generally suffered

from more severe drought conditions (Teutschbein et al.

2022a), both southern and rural areas commonly depend

more strongly on enough water availability than northern

and urban areas, because of agriculture and the presence of

private wells. A clear majority of Sweden’s agricultural

areas, which is strongly water-dependent for cultivation of

plants and livestock, is located in the South below 60�N
(Statistics Sweden 2019), and was, thus, considerably

impacted by the more severe drought conditions there

(Swedish Board of Agriculture 2019). Also, rural com-

munities in Sweden typically rely on forestry, agriculture,

and mining activities, which are strongly water-dependent

(Hedlund 2016). Moreover, private wells are a common

way of providing individual households with drinking

water (400 000 such wells in Sweden), especially in rural

areas further away from the public drinking water network

(Gunnarsdottir et al. 2020; Löwenhielm 2008). Addition-

ally, the largest fraction of private wells can be found in

southern regions (Maxe 2021). Thus, these households that

are not connected to the public drinking supply seem par-

ticularly vulnerable to variations in the local water supply

and, thus, to droughts. Similar findings have also emanated

from the results of a Finnish study modeling potential

effects of severe droughts on Finland’s water resources

(Veijalainen et al. 2019), which reported an increased

vulnerability of shallow aquifers and private shallow wells.

This is a worrying result as recent reports estimate that 1.1

million people (11%) receive their drinking water perma-

nently from these small and unregulated private wells

(Gunnarsdottir et al. 2017).

Despite most municipalities not having drought action

plans implemented and many households having suffered

from the 2018 drought event, our results indicated a sur-

prising confidence in relation to local preparedness levels

and even more so in the management of droughts, beyond

what would have been expected from the perceived

drought severity and impacts.

In an attempt to explain this dichotomy, we hypothesize

that municipalities that perceived severe drought condi-

tions perhaps had to put in more efforts (i.e., more complex

and time-consuming management tasks) to handle the sit-

uation and, thus, perceived a higher (better) management

level. This hypothesis is supported by the fact that

respondents that indicated a good management in their

municipality did not necessarily perceive a high level of

preparedness. Another potential explanation for this

dichotomy might be a cognitive bias in the perception of

the respondents (Arnott 2006), in particular a self-en-

hancement bias (Gosling et al. 1998), which causes indi-

viduals to rate their performance higher than a normative

criterion would suggest. This type of cognitive bias is not

uncommon for disasters that necessitate emergency man-

agement arrangements (Comes 2016), but is problematic

and continues to challenge the application of good deci-

sion-making principles (Brooks et al. 2020).

Our analysis also revealed that there seems to be a

learning effect, resulting in an increased preparedness for

and improved management of the 2018 drought compared

to 2017. It is common for natural disasters to trigger an

assessment of the existing governance system (Lumbroso

and Vinet 2012; November et al. 2007; Raikes et al. 2019)

and to lead to a process of governance learning (Brody

et al. 2009) that results in corrective measures that can

foster a transition from crisis management toward risk

reduction (Raikes et al. 2019). In this transition, drought

action plans will likely play a key role. We found that

municipalities with an existing action plan implemented

larger numbers of drought response measures, which

highlights the importance of developing drought risk

management strategies. However, surprisingly, neither the

perception of future drought risk nor the experience of

recent drought events was able to explain whether munic-

ipalities already implemented or planned to implement a

drought action plan. A somewhat concerning implication of

these findings may be that municipalities, even when

substantially affected by drought events, may not become

more likely to invest in planning for future drought events.

This result encourages future research to further explore

the intrinsic and extrinsic motivations for municipalities to

implement a drought action plan. As our study revealed a

clear relationship between risk perception and population

density, such efforts must also be placed in the context of

cognitive/behavioral, socio-economic, and geographical

factors within municipalities (Lechowska 2018; O’Neill

et al. 2016) as well as traditional risk perceptions in a

usually water-abundant country (Ahopelto et al. 2019), all

of which might influence local perception and should be

considered in awareness-raising activities.

The novelty of this paper lies in a combined approach

that integrated the benefits of using both soft and hard data

by augmenting the survey respondents’ drought percep-

tions with hydrological drought indices. The hard data

allowed us to quantitatively describe the severity and

dynamics of recent drought events, while a fusion with soft

data was key to explain the impacts of these events and

understand practitioners’ drought responses. Thus, the

combined approach provided more sophisticated insights

about the complexity of social and hydrological systems

impacted by droughts and the cognitive abilities of
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mankind to understand and link them, thus generating

unique empirical knowledge and opportunities for new

developments and improvements in the arena of drought

management and risk reduction.

Our study revealed that the 2018 drought was an out-

standing event across entire Sweden that ranked among the

top three of the most severe drought events over the past

60 years. Record-breaking summer temperatures across

northern Europe and a lack of precipitation caused mete-

orological drought conditions in the Nordic countries

(Bakke et al. 2020), which ultimately propagated within the

hydrological system and led to serious declines in

streamflow (Teutschbein et al. 2022a) and groundwater

levels. While 2018 experienced a classical rainfall-deficit

drought that was further exacerbated by a heatwave with

high evaporation rates during the summer months (Van

Loon and Van Lanen 2012), the 2017 drought was rather a

long-term consequence of low ground- and surface water

levels that started to emerge already in 2016, and which did

not recover in the winter of 2016/2017 due to unusually

warm winter temperatures and less than normal winter

precipitation (Stensen et al. 2019). Such differences in

drought typologies, spatial extent, and severity levels

across different drought events are common as drought

emergence strongly depends on large-scale weather pat-

terns and regional differences in land-surface properties

(Blauhut et al. 2021; Kingston et al. 2015).

Our results indicated that local practitioners perceived

the actual severity of the droughts differently from the

reality and their perceptions did not match the observed

spatial patterns, which might have been caused by a mul-

titude of factors. Smakhtin and Schipper (2008) argue that

drought perception intrinsically depends on the debate

surrounding their conceptualization and related terminol-

ogy. Thus, we can only speculate that perhaps one factor

relates to confusion in the semantics, causing the respon-

dents to weigh in other drought aspects such as demand

(i.e., rather relating to man-made water shortages instead of

focusing on the drought hazard), impacts or preparedness

to provide a final severity estimate. Other potential factors

relate to timing and might be cognitively and neurobio-

logically motivated (Lifanov et al. 2021): the survey was

conducted at the end of 2018, when the 2018 summer

drought was still fresh in mind, while memories from the

2017 drought might have already started to fade. Thus,

estimates of the most recent drought might have been more

accurate than the drought event longer ago. Indeed, the fact

that there are significant correlations between the perceived

and observed drought severity mostly for the latest 2018

drought event and almost no correlations for the previous

2017 event indicates a quickly declining ability of practi-

tioners to keep awareness of drought hazards high, i.e., the

‘‘collective memory’’ of Swedish society is short-lived

(Pfister 2011; Viglione et al. 2014).

However, the mismatch between perception and obser-

vations for2017(SPIandSGI)and2018(onlySGI)mightalso

be motivated by cognitive biases such as the recency bias

(Comes2016) thatcausesus to favor recenteventsoverevents

in the past, or the availability biases (Tversky andKahneman

1973), which refers to judging a situation based on the ease

with which it comes to mind. Consequently, practitioners

seem to find it easier to relate drought severity to easily

observable (and recallable) short-term processes that are

visible ‘‘here and now’’, e.g., like in 2018, the warm temper-

ature or little precipitation over a limited period in summer,

than relating drought severity to long-term processes that

involve the preceding status of aquifers, precipitation deficits

over longer time-periods and lack of snow in winter (which

was the case in 2017). Thus, a potential drought monitoring

and early warning system should not only rely on easy-to-

measure indicators (e.g., precipitation or soil-moisture defi-

cits) that represent shorter-term processes, but should also

include indicators that represent processes in the water cycle

at various spatial and temporal scales that could in the long-

run also trigger droughts (Bachmair et al. 2016).

The existing disconnect between perceived and

observed drought severity may lead to a distorted percep-

tion of drought risks, which could potentially hamper

drought preparedness and, thus, prevent practitioners to

efficiently manage droughts. Therefore, well-designed

communication and education efforts are needed to

increase practitioners’ and public awareness and the ‘‘so-

cial memory’’. However, coordinated national efforts,

including for instance drought monitoring, vulnerability,

and impact assessments, early warning systems, national

drought policies, and the adoption of regional drought

mitigation strategies and action plans are also required to

eventually cope more efficiently with drought hazards and

extended water shortages (Wilhite 2019). First steps for-

ward have been made by national agencies through the

implementation of drought risk mapping tools such as

SMHI’s ‘‘Risk for Water shortages’’ tool (SMHI 2022) or

SGU’s ‘‘Groundwater levels’’ tool (SGU 2022), which

enable a more tailored mapping of the dominating water

resources (surface or groundwater) in a particular county.

Nonetheless, we need to recognize the importance of

overcoming main barriers relating to time, and human and

financial constrains (Aguiar et al. 2018) to boost the

development of a holistic approach in an attempt to

strengthen the overall capacity of the society to deal with

droughts (Matti et al. 2017). Based on the findings in our

study, we argue that such an approach should (1) incen-

tivize municipalities to create holistic climate-change

adaptation plans, (2) consider the supply–demand balance
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and high losses in the drinking water supply chain, (3)

integrate indicators such as SPI or SGI (i.e., hard data) into

municipal planning as support for identification/classifica-

tion of drought events and as potential triggers in drought

early warning systems, (4) provide information and edu-

cation (soft data) to practitioners to improve their percep-

tion, and (5) involve relevant stakeholders from different

drought-prone sectors to co-create local/regional strategies.

CONCLUSION

This study embarked to understand practitioners’ percep-

tion of drought severity, impacts, preparedness, and man-

agement at municipal level in Sweden, and how well their

perception matches observed drought hazards. A mapping

of the perceptions of Swedish municipalities on their local

water resources, future risks of droughts, as well as their

perception of recent drought events revealed a far-reaching

lack of drought definitions and operational drought action

plans at municipal level across Sweden. In particular, rural

areas in southern Sweden with a high proportion of agri-

cultural activities and stronger dependence on private wells

for drinking water supply perceived the strongest impacts

during recent drought events and would benefit most from

integrating drought action plans and management strategies

to lower present-day drought vulnerability. Moreover, a

comparison of observed precipitation and groundwater

deficits with perceived drought severity resulted in a mis-

match, except for the most recent drought event of 2018 for

which correlations were found. Potential contributors to

these discrepancies might be a short-lived social memory,

cognitive biases and a lack of harmonized drought con-

ceptualization and terminology among practitioners. Thus,

further efforts like those for improving flood risk man-

agement are urgently needed to increase practitioners’

awareness, develop a common conceptual understanding

and align their perceptions of drought hazards, eventually

contributing to improved risk management strategies to

deal with drought vulnerability and to adapt to a changing

climate also in developed countries like Sweden.
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arbete med vattenfrågor utifrån erfarenheter från 2017 [English:

Drought effects on drinking water supply in the lake Mälar
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