UPTEC F 23012
Examensarbete 30 hp
April 2023

UNIVERSITET

Online Minimum Jerk Velocity
Trajectory Generation

for Underwater Drones

Jakob Andrén

Civilingenjorsprogrammet i teknisk fysik

Online Minimum Jerk Velocity Trajectory Generation

UPPSALA Jakob Andrén
UNIVERSITET

Abstract

This thesis studies real-time reference ramping of human input for remotely operated vehicles
and its effect on system control, power usage, and user experience. The implementation,
testing, and evaluation were done on the remotely operated Blueye Pioneer underwater drone.

The developed method uses minimum jerk trajectories for transitioning between varying target
velocities with a constant end jerk target. It has a low computational cost and runs in real-time
on the Blueye Pioneer underwater drone. The presented method produces a well-defined
reference with continuous position, velocity, and acceleration states that can be used in the
feedback loop.

Experiments and simulations show that the method produces a smoother and more predictable
motion path for the user. The motions are better suited for video recordings and remote
navigation, compared to the direct usage of human input velocity. The smoother reference
reduces the controller tracking error, the peak control input, and the energy usage. The
introduced acceleration reference state is used for feedforward control on the system. It
improves the feeling of controlling the drone by reducing the system lag, the position tracking
error, and the rise time for velocity changes.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Uppsala

Handledare: Johannes Schrimpf Amnesgranskare: Hans Rosth

Examinator: Tomas Nyberg

Popularvetenskaplig sammanfattning

Antalet ting som vi ménniskor styr och interagerar med har genom historien blivit
fler och fler. Bétar, tdg, cyklar och bilar tillhor vardagen och har nu anvints ldnge.
Vi har flygplan som &ker snabbare #n ljudet och en mingd andra farkoster. Gemen-
samt for alla dessa fall &r att vi har akt med som en forare eller pilot och diarmed
upplevt de krafter, ljud och dynamik som fordonet upplever och utsitts for. De
hjélper oss avsevirt med att forsta och kidnna vad som dr mojligt for tekniken da vi
har en direkt aterkoppling av vad som sker vilket i sin tur hjdlper oss i var inldrning.

Det senaste deceniet har sett en explosion i anvdndningen av obemanade farkoster
dér en ménniska fortfarande ér ansvarig for att styra men fran en annan plats. Pi-
loten kan ge samma kommandon men anvénder sig av live video och sensordata
for att se och kidnna vad som sker. Detta dr dock inte helt litt for oss ménniskor
da videotverforingen introducerar lite fordr6jning i vad man ser och kinslan av
acceleration och vibrationer dr oerhort svéara att formedla. Det innebir att man
styr farkosten med reducerad kénsla av kontakt. En liknelse ir att dansa en pardans
utan hinder eller annan form och kontakt och basera all kommunikation pa visuella
intryck.

Det gar att som distanspilot kompensera for avsaknaden av andra intryck &n
visuella via video genom trining, talamod och helst mojligheten att se farkosten pa
néra hall. Att just se farkosten ir inte alltid mojligt och det dr extra svart i samman-
hanget med undervattensdronare som det hir arbetet 4r fokuserat pd. Dronaren
Blueye Pioneer har dessutom som mal att vara enkel att kontrollera fran forsta
dyket, i princip utan nagon traning. Ett av de storsta problemen som identifier-
ades var att nyborjare ofta gjorde alltfor extrema rérelser, vilket orsakade kraftiga
accelerationer och skakig video. For att sitta det i perspektiv s kommer en er-
faren dykare att berdtta for dig att langsamma och lugna rorelser dr nycklen till
framgéang vid dykning. Slutprodukten av undervattensdronaren dr dessutom video
och bra video ér till stor del beroende av att kameran ror sig mjukt och kontrollerat.

Tanken med det hir arbetet dr att lata farkosten ta ett storre ansvar for vilka
rorelser som &r passande och mojliga att genomfora och ddrmed lugna ner rorelserna.
Inldrningsbehovet skulle dramed kunna reduceras genom att ta bort en av de saker
som annars hade varit svart fér en nyborjare att ta in precis i borjan. Aven erfarna

anvidndares korning forbéttrades med exaktare och jimnare rorelserna som resultat.

Acknowledgements

Thank you Blueye for giving me a change at first developing this at first crazy idea
and then allowing me to develop as a human and engineer at the company during
the process of taking the amazing Blueye Pioneer to market. Thank you Johannes
for introducing me to the team and supporting me as suppervisor even during my
much belated and challenging finalization of the report. To my parents for nagging
about finishing the written part as well not just the product. Thank you Maja for

being there all the time along the way.

Table of Contents

Populérvetenskaplig sammanfattning

Acknowledgements

Table of Contents

List of Tables

List of Figures

1

2

Introduction

1.1 Setting
1.2 Project Purposeand Goal
1.3 Scope
1.4 Structure of the Thesis

Blueye Pioneer

2.1 Movement
2.2 Video and Communication
2.3 Software Platform
2.4 Pressure Sensor e e e e

2.5 Inertial Measurement Unit

Smoothness
3.1 Mathematical Definition

3.1.1 Piecewise Functions

11

12
12
12
13
13

14
14
16
17
17
18

3.1.2 Minimum Jerk Trajectories
3.2 Human Motion and Perception
32.1 HandMotion
322 PartnerDance
323 Busesand Braking
3.2.4 Animation and Movies

33 A Smooth Summary

The Control Problem

41 Controller
4.1.1 Linear Control
4.1.2 Non-Linear Control

42 Observer.
42.1 Linear Observation
4.2.2 Non-Linear Observation

4.3 Reference Generation
4.3.1 Filter Based Trajectory Generation
4.3.2 Geometrical Trajectory Generation . . .

4.3.3 Optimal Trajectory Generation

434 Comparison of Reference Generation Methods

Implementation

5.1 Motivation.

5.2 Minimum Jerk Velocity Reference
5.2.1 Minimum Jerk Velocity Trajectory
5.2.2 Converge Time
5.2.3 Online Minimum Jerk Velocity Trajectory
5.2.4 Position Reference
5.2.5 Clamped Acceleration

53 Observers
5.3.1 DepthObserver
5.3.2 Heading Observer

54 Controller
5.4.1 Depth Controller
5.4.2 Heading Controller
5.4.3 Accelereation Feedback

TABLE OF CONTENTS

27
28
29
30
30
30
33
35
35
36
36
37

6 Results

6.1 Simulations
6.1.1 VelocityStep
6.1.2 Acceleration Feedforward
6.1.3 RiseTime
6.1.4 Pseudo Random Velocity Target
6.2 Experiments
6.2.1 AutoDepth
6.2.2 AutoHeading
6.2.3 CurrentUsage

7 Conclusion and Future Work

7.1 Conclusion
7.2 FutureWork
7.2.1 Formalized Acceleration Feedforward
7.2.2 Positionas UserInput
7.2.3 Optimization
724 ExtendtoMIMO
7.2.5 Quadratic Drag Compensation
Bibliography

TABLE OF CONTENTS

59
59
60
62
63
65
66
67
68
70

71
71
72
72
72
73
73
73

74

List of Tables

3.1 Common easing types for animation and viusal effects softwares,

their polynomial order and smoothness. 25

6.1 The peak input, i.e., the maximum force used. And the square sum
of; position error, control inputs, and jerk for the transition. Lower
isbetter forall metrics. L. 61
6.2 Performance metrics for pseudo-random input. Peak input, i.e., the
maximum force used. The square sum of; position error, control

inputs, and jerk for the transition. Lower is better for all metrics. . 66

List of Figures

2.1
22

4.1

4.2

4.3

5.1

52

53

Some core design elements of the Blueye Pioneer.

Data flow for the Blueye system.

The basic structure of a feedback controlled system .5, under the
disturbance w, using the control system C' which reads the state
z using some sensor y with measurement noise v. The goal is to
keep z as close as possible to the reference
Comparison of pure integration (orange), linear filter (green), min-
imum time (red), and minimum jerk (blue) based reference gener-
ation methods. Showing the tracking of a small stepped user input
(dashed violet).
Comparison of pure integration (orange), linear filter (green), min-
imum time (red), and minimum jerk (blue) based reference gen-
eration methods. Showing the tracking of a large step user input
(dashed violet).

Minimum jerk velocity trajectories between two velocities for three
different initial acceleration states a; = —2,0,2.
Minimum jerk velocity trajectories with constant converge time be-
tween a set of linearly-spaced initial velocities. Acceleration is
zero for both the initial and final states.
Minimum jerk velocity trajectory recalculated multiple times dur-
ing a transition towards a constant target. The setup assumes con-

stant times, which also is the culprit for the warped result.

15
16

54

55

5.6

5.7

5.8
59

6.1

6.2

6.3

6.4

6.5

6.6

Minimum jerk velocity trajectory recalculated multiple times dur-
ing a transition towards a constant target. The remaining converge
time is calculated from the states with a planned end jerk.
Minimum jerk velocity trajectories with converge time calculated
based on planned end jerk, plotted for a set of linearly spaced initial
velocities and zero acceleration in both the initial and final states. .
Online Velocity Minimum Jerk Trajectory for discontinuous user
IMput. . . .
Position reference integrated from a piece-wise planned minimum
jerkvelocity.o
Minimum jerk velocity trajectories with clamped acceleration.

Minimum jerk velocity trajectories with planned clamping of the

acceleration.o

Rectangular step velocity target, with (blue and dashed orange) and
without (green and dashed red) reference ramping.
Impact by acceleration feedforward, 0%, blue to 200%, orange in
steps of 20%. The black line represent a perfect tuning of acceler-
ation feedforward.
Changing the rise time by changing the planned maximum jerk.
Light green, low maximum jerk, orange high maximum jerk. Dark
green trajectory is the system response with no velocity ramping.
Blue is the minimum jerk trajectory with equal rise time to the
Naive trajectory.o e e e
Typical pseudo-random non-linear human input. With a compar-
ison of naive and minimum jerk trajectory references. The naive
reference is marked as a red dashed line, and its result is marked in
green. The minimum jerk reference is the orange dashed line with
the result markedinblue. oL,
Step input for depth using direct velocity reference, orange line.
The estimated depth, velocity, and force are in blue.
Step input for depth using a minimum jerk trajectory based refer-
ence shown in orange. Resulting position, velocity, and used thrust

inblue.

LIST OF FIGURES

10

6.7

6.8

Step input for heading using direct integration of the reference,
orange line. The estimated heading, angular velocity, and moment
areinblue.
Step input for heading using a minimum jerk trajectory based ref-
erence shown in orange. The resulting heading, angular velocity,

and used moment areinblue.

LIST OF FIGURES

11

Chapter

Introduction

1.1 Setting

The work for this thesis has been conducted at Blueye Robotics AS in Trondheim
as part of their underwater drone development. My focus, apart from gathering
the data for my research, was always to deliver deployable work. Meaning tested
and robust solutions ready for deployment on hundreds of units in the field. The
work was done during an early phase of the company’s development and required
solving several other tasks apart from the thesis work. These are not included in
the report as they were more in the nature of bug hunting and general development.
The presented material is what I consider to be the core contribution that I hope
might be interesting to future developers at Blueye as well as other control system

developers around the globe.

1.2 Project Purpose and Goal

This thesis started with the idea of developing a control system for underwater
drones optimal for cinematic video capture. The crucial thing here is providing

smooth motion, which can be broken down into two parts:
* Static and stable if no motion is demanded.
* Any demanded motion starts and stops gradually.

The first part means that the control system should do whatever it can not to

oscillate or drift away from the drone’s current state. This is what a regular control

12

system is already good at achieving, and no new contributions are expected in this
area. Starting and stopping gradually and smoothly is, on the other hand, something
that is not yet an integrated part of most control methods. This is what this thesis
is targeting: a better method for smooth responses to any human input than found

in the available literature.

1.3 Scope

All work is targeted for the Blueye Pioneer underwater drone as a hardware plat-
form, and the controllable dimensions of the drone are its depth and heading. Any
other degrees of freedom are either free or inherently stable. The command input
is real-time user input from a 4 axis gamepad which is interpreted as forces for
horizontal movements and velocity for the heading and depth.

The control system has access to an onboard pressure sensor for depth readings
and an Inertial Measurement Unit for attitude and heading. No external sensors for
velocity and position were available for the project. This means that the project
does not cover position hold or attitude stabilization topics. The final result has
to be computationally lightweight enough to run on the drone’s microprocessor

hardware with room for extending it to all six degrees of freedom.

1.4 Structure of the Thesis

The thesis begins by introducing the Blueye Pioneer hardware platform, its cus-
tomers, and its expected usage areas. Subsequently, the thesis presents the available
sensors and briefly describes the drone’s dynamics and motion constraints. Chap-
ter 3 focuses on the theory and concepts of smoothness and piecewise functions.
It is presented from the perspective of mathematics as well as human motion and
perception. Theory on control setups, observers, and reference generation is de-
scribed in the next chapter. Related work for underwater robotics is also presented
here.

Chapter 5 concentrates on the actual implementation details of the system for
the thesis, including deriving the Online Minimum Jerk Velocity Reference and
acceleration feedforward tuning. The results of using the presented reference gen-
eration method are then shown in both simulations and experiments. The thesis

finally ends with a conclusion and proposals for future work.

CHAPTER 1. INTRODUCTION 13

Chapter

Blueye Pioneer

The Blueye Pioneer, Figure 2.1a, is an underwater drone developed by the Nor-
wegian company Blueye Robotics AS in Trondheim. It is developed for easy in-
spection and exploration of assets, objects, structures, and marine life. The drone
is sold to a large variety of customers, including aquacultures, water management,
harbors, universities, and diving companies. One of its core principles is user-
friendliness. This is achieved by not requiring complicated setup work and secur-
ing intuitive control. The starting point of this master thesis was to improve the
control of the drone for higher quality video and easier piloting. All development
has been done with the Blueye Pioneer platform in mind, and the resulting methods

are integrated and released to the customers.

2.1 Movement

The Blueye Pioneer is equipped with four 350 W brushless outrunner electric mo-
tors, Figure 2.1b. These motors are placed and vectored to achieve control over
four freedom dimensions. One is placed vertically in a central tube close to the
center of mass for vertical movement. One is placed sideways through the body
for sideways motion, and two are placed on the arms for forward and backward
motion. The drone’s heading can also be controlled by differential thrust on the
thrusters placed on the arms. The two remaining dimensions of freedom, pitch,
and roll of the drone are non-controllable but instead passively stable by design.
This is achieved by concentrating heavy parts of the drone towards the bottom and

adding buoyancy material on the top. This creates an offset between the center of

14

(a) The Blueye Pioneer. (b) Thrusters.

(¢) Pendulum principle. (d) Hydrodynamic shape.

Figure 2.1: Some core design elements of the Blueye Pioneer.

mass and the center of buoyancy of the drone. The offset can be seen as a simple
pendulum that always returns the drone upright.

The heaviest single part of the drone is the 96 Wh battery placed at the bottom
of the drone and delivers about 2 hours of dive time. The reason for using an
onboard battery instead of delivering power over the tether is to keep the tether as
thin as possible. A thinner tether means lower drag in the water column which can
make a significant difference, especially when there are significant water currents.
The drone is also hydrodynamically designed for low drag when moving forward
and vertically. The smooth shell of the drone adds another advantage. It is less

likely for the Pioneer to get entangled in underwater objects.

CHAPTER 2. BLUEYE PIONEER 15

2.2 Video and Communication

The primary purpose of the Blueye Pioneer underwater drone is to deliver an “un-
derwater eye” by providing high-quality, low latency live video for the user. The
HD camera is optimized for streaming and is assisted by the onboard 3000 lumens
of artificial light for deep dives where almost all-natural light is gone.

The video is compressed on the drone and transmitted to the surface using a
wired connection. The cable between the surface unit and the drone is also known
as a tether or umbilical. The tether connects to a surface unit which provides a Wi-
Fi access point. A smart device running the Blueye App can then connect to the
video stream from the drone with low latency. The same connection flow delivers
telemetry data from the drone, such as depth, heading, battery status, and water
temperature.

Human input commands such as motion requests, mode change, start and stop
recording, and light changes are also sent over this communication pipeline. The
pilot has two possible input interfaces, touch control on the smart device or a ded-
icated Bluetooth controller.

The drone is equipped with a tether because wireless communication cannot
be done with radio waves through water. Electromagnetic radiation is quickly ab-
sorbed by water and thus impossible to use for high-speed data transmission. One
option is to use sound as a carrier wave instead, but acoustic communication meth-
ods are too slow for live transmission of video. The transmission speed is counted
in bits per second and would only be able to send low-resolution pictures occasion-
ally. This can be good enough for autonomous vehicles but not when high-speed

communication is needed.

@
o
s
o 7
(A
~

Figure 2.2: Data flow for the Blueye system.

CHAPTER 2. BLUEYE PIONEER 16

2.3 Software Platform

The Blueye Pioneer runs an entire Linux computer, an iMX6 System-on-Module
with a Quad core ARM Cortex A9 processor and 4 GB of RAM. This provides
enough performance for running everything from a video pipeline to the control
system on the drone. The foundation of the software stack is the inhouse Linux
distribution Blunux, which is based on the Yocto Project [26]. The control system
is, based on the Robotics Operating System, ROS [17], which is not an operating
system but an inter-process communication tool. It makes communication between
processes on the same computer or several computers on the same local network
easy to set up. Each process in ROS is called a node that can interact with other
nodes on the same network using different communication methods. The two most
common ones are topics and services. Any node can publish messages to a topic,
and any node can subscribe to a topic. Topics thus provide the mechanism for one
to many, many to one or many to many communication. A node can provide a
service that a different node can request. The service can also provide an answer
to the request and is therefore useful for triggering events.

This system proved to be advantageous for the development of this thesis as
it is possible to subscribe and view data from a computer in real-time as well as
in triggering services. Another helpful development setup was the automatic build
server and the possibility to cross compile individual nodes locally and then install
those binaries on a development drone for testing on actual hardware. ROS nodes
can be written in both Python and C++. Most production code for the drone was

written in C++, but Python was used extensively during the development process.

2.4 Pressure Sensor

The Blueye Pioneer drone is equipped with a pressure sensor that is capable of up
to 42 Hz sampling rate, with five mBar precision and 30 Bar maximum pressure.
The measured pressure, p, is a linear function of depth h and the density of water
p.

p = pgh 2.1

Note that the measured pressure is the absolute measured pressure from both
atmospheric and water pressure. It is thus necessary to remove the current atmo-

spheric pressure from the measurement to get the correct depth. This was solved by

CHAPTER 2. BLUEYE PIONEER 17

measuring the pressure at every start-up of the drone and applying that observation

as the atmospheric reference.

j, — Pabs — Patn 2.2)

Py
The water density, p, is dependent on the salinity and temperature of the water that
the dive is performed in and must be manually defined depending on where you are.
Freshwater has a density of 999 kg m~ at a temperature of 10 °C and the average
seawater density is 1025 kg m~3. Note that the pressure in these calculations is in
the SI unit pascal, Pa. The sensor is thus able to measure pressures down to about

300 meters with a precision of 5 cm.

2.5 Inertial Measurement Unit

An Inertial Measurement Unit, IMU, is a sensor made for measuring motion based
on the kinetic forces of motion. It typically has an accelerometer and a gyro-
scope. The accelerometer measures the sum of gravity and the linear acceleration
experienced by the sensor. The gyroscope measures the angular velocity of the
sensor. Both usually consist of an orthogonal triple of accelerometers and gyro-
scopes, making up a total of six sensors in one package. The IMU used on the
Blueye Pioneer also includes a 3 axis magnetic flux sensor which can be used as
a compass. Especially the gyroscope is sensitive to drift and calibration errors, so
extra care was taken to implement a robust calibration routine of always calibrating

the sensor at every startup.

CHAPTER 2. BLUEYE PIONEER 18

Chapter

Smoothness

As the purpose of this thesis is to improve the quality of video recordings, it is thus
essential to take a closer look at the definition and concept of smoothness. The
chapter introduces the fundamentals of smoothness in mathematics and examples
of motion related to humans and how we experience them.

The foundation of a successful inspection video recording is stability, which
can be achieved by using a tripod or similar construction to anchor the camera, thus
reducing vibrations and shaking. Underwater objects are commonly too large to be
seen all at once due to short visibility, and the operator will need to move around
to see them. There is also a need to make minor corrections due to underwater
currents pushing the drone away from objects of interest. The problem formulation
then becomes how to change the framing of a shot during a video recording. Or in
other words, how is the transition between these two frames performed? It turns
out that the key to making these transitions usable and look good in the video is to
make them smooth.

This chapter introduces the fundamentals of smoothness in mathematics and

examples of motion related to humans and how we experience them.

3.1 Mathematical Definition

A function is considered smooth if its derivatives exist and are continuous up to
some order n [29]. It is denoted as C" smooth and is a useful initial metric to eval-
uate smoothness. Functions like sinus are infinitely differentiable and are therefore

considered C*° smooth. Polynomials are also C'*° smooth as they will reach the

19

derivative 0, which is differentiable forever. It is helpful to introduce naming for
first derivatives for functions of time for further discussion. Let the position, p, at
time ¢ be defined by x(t), the names and common notations [27] for the six first

derivatives are as follows.

Position p = =z
Velocity v ‘fl—f
Acceleration a & CCI;T%
Jerk i g
Snap S :% ‘fo
Crackle ; fo
6

Pop z ‘%

A C? smooth function thus has a continuous crackle but a discontinuous pop,

to name an example. A C° function has a discontinues velocity like x(t) = |t

which is not differentiable at £ = 0 because the velocity steps from —1 to 1.

2t —t2, ift>0
x(t) = (3.1
2t + 12, otherwise

Is an example of a C'! smooth function because the velocity, &, is continuous but

the acceleration, &, is discontinuous at ¢ = 0 and changes from —2 to 2.

3.1.1 Piecewise Functions

A piecewise function is a function which is defined by different functions for dif-
ferent segments of the variable its defined over. Equation 3.1 is an example of a
piecewise function defined by two parts separated at ¢ = 0. A piecewise function
can consists of an arbitrary number of pieces joint together and there is no restric-
tion on continuity. A piecewise function is continuous if all pieces are continuous
and if all connections between pieces are continuous, meaning 1 (t1) = xa(t1) if
they connect at ¢ = ¢;. This extends to higher derivatives such that the function is

C' smooth if i1 and 22 also are continuous and 1 (t1) = @2(t1).

3.1.2 Minimum Jerk Trajectories

The smoothness of a function or piecewise function determines the difference be-

tween a function that is C' and C? smooth. However, it does not help determine

CHAPTER 3. SMOOTHNESS 20

which function is better if they both, for example, are C?> smooth. One powerful
tool is the use of a cost function for some metrics. This also opens the door for ap-
plying optimization methods for finding the optimal function, from now on, known
as trajectory, between two states. One useable trajectory cost function is defined in
equation 3.2, which takes the square sum of jerk during the transition. This means
that one trajectory can be determined to be smoother than another by comparing
their total cost, i.e., the total amount of jerk during the transition.

1 ("
C= / 2 dt (3.2)
t

2 1

It turns out that jerk is very problematic in robotics [18][24], industrial appli-
cations [6][1], and human-centric applications [16]. High jerk causes vibrations,
instabilities, and unnecessary damage to equipment and lowers the equipment’s
maximum possible performance. High jerk is uncomfortable and sometimes even
dangerous to humans. There are thus good reasons to minimize the amount of jerk
for the trajectory given by a defined state transition.

This minimization problem has an analytical solution if the time ¢; and 9 are
known and there are no constraints on the states. The function that solves this

minimization problem is the Euler-Lagrange equation.

to 1 t2
x*(t) = argmin L(T,%,&,z,t)dt = argmin/ P2 dt (3.3)
z(t) t1 x(t) 131

oL d (oL d? (0L a3 (oL
w‘w(ai)*cm(ai)_cm(aw)_o G

The cost function only contains %, so all partial derivatives except the last one will
be zero, leaving us with the condition that the sixth derivative of time, pop, should

equal zero.
&
dt6

The trajectory is thus defined by the fifth-order polynomial that satisfies our state

=0 3.5)

transition.
z(t) = co + 1t + cot® + 3t + cqt? + c5t® (3.6)

A quintic function has six parameters, and we thus need to define six conditions for
the trajectory at given times. The most usual and most straightforward approach

is to define the state at the initial and final times and to solve it using a matrix

CHAPTER 3. SMOOTHNESS 21

inversion to find the parameter vector c.

:i’(tl) = 1, i’(tQ) = V2 (37)

i’(tl) =al, i’(tg) = a2

The minimum jerk trajectory can also be found for a velocity transition without
considering the position. Setup the Euler-Lagrange equation again, but this time

with v for velocity and ¢ for jerk.

t2 t2
1
v*(t) = argmin L(D,0,v,t) dt = argmin/ o2 dt (3.8)
v(t) t1 v(t) t1
oL d (oL d? (0L
— = —| == — | =) =0 39
dv dt<8®)+dt2<8i}) ©-9)
Which gives us the condition that the forth derivative of velocity, crackle, should
equal zero.
d*v
— =0 3.10
7 (3.10)

The minimum jerk trajectory for a velocity transition is thus given by a cubic poly-

nomial that satisfies our state transition.
v(t) = co + c1t + cot? + ezt (3.11)

A cubic function has four parameters, and we thus need to define four conditions
for the trajectory. The most straightforward implementation is again to define a set

of boundary conditions and then solve for ¢ using a matrix inversion.

v(tl) = V1, U(tg) = V2

(3.12)
’l.)(tl) =ai, 1.}(752) = a

3.2 Human Motion and Perception

3.2.1 Hand Motion

Flash and Hogan [23] conducted an interesting practical experiment on natural hu-
man motion between waypoints. The experiment was constructed as follows. A

set of lights mounted through a table could be turned on or off at different posi-

CHAPTER 3. SMOOTHNESS 22

tions. The test subjects were told to move their hand to the currently glowing lamp.
The hand motions were then recorded and analyzed as one-dimensional trajecto-
ries between the points. The result showed that the way a human naturally moves
their hand from one point to another closely resembled a minimum jerk trajectory.
Note that this is independent of speed. A faster hand transition will still resemble
a minimum jerk trajectory, just with a different time scale.

We assume that motions resembling natural hand movements will be perceived
as smooth and non-robotic as they will be similar to a type of movement that hu-
mans are accustomed to. It is also observed that humans twist their heads in a
similar fashion to reduce the stress on their bodies. Controlling the drone in a
similar way to people’s hand and head motion should be a good starting point for

motion that feels natural for the human operator.

3.2.2 Partner Dance

An excellent example of jerk trajectory and its human perception is partner dances.
Hence, in this section, we are going to take a closer look at the partner dance
style called Lindy Hop, which originated in the thirties and forties in the Afro-
American communities in Harlem, New York. It is danced in couples, with two
dance roles, leading and following. The leader’s task is to suggest what to do next,
and the follower will follow these suggestions while at the same time adding his
or her styling. Lindy Hop is danced to a wide range of music tempos, with moves
ranging from slow and heavy to fast and acrobatic moves [20].

A core concept that is taught to new dancers is the notion of stretch and com-
pression, the not so easily definable “the feel of the dance.” This is, in simplified
physical terms, the tensions between the dancers’ connected hands and how this
can be modulated for communication. A typical beginner lead problem is that this
connection changes far too quickly, which makes it hard for the follower to respond
in time. This behavior can range from annoying to painful and might even cause
injuries. The rate of this change is, in physical terms, the jerk of the dance. An
interesting additional observation is that it is possible to use a high magnitude of
force when dancing to offer mutual support as long as the jerk is kept low. One
technique of reducing jerk when high tension is needed is to signal the change
early, giving both dancers more time to adjust to a connection equilibrium, with
less jerk as a result. It is also possible to compare dance styles as having more or

less jerk.

CHAPTER 3. SMOOTHNESS 23

Popping and Locking is a style of HipHop [3] with very robotic and mechanical-
looking motions. The name is very descriptive as it aims at popping the motion out
from rest and quickly locking to zero speed when the endpoint is reached. The
velocity between the start and stop is usually also kept constant for greater robotic-
like effect. It is commonly performed to medium or low tempo music, so it is not
the rhythm that is fast but really the way the motion is performed that makes all the
difference for the viewer.

Another example is Blues [25], which is a partner dance performed to soft and
relaxing blues music. This style of dancing is characterized by its low jerk and
high connection awareness between the dancers and should, above all, feel soft.
That does not stop people from making fast motions at times, but it is done with
low jerk, which gives the dance its signature lag feeling. The follower is supposed
to lag the motions suggested by the lead. The significant lag time, which both
dancers have to consider, sets a good start for low jerk motions as accelerations in
new directions can be extended over longer periods while still reaching their final

state in time.

3.2.3 Buses and Braking

A braking vehicle is a classic jerk example. Imagine standing on a bus that is about
to stop. The driver starts to brake smoothly, and you manage counteract the force,
but you lose your balance when the bus finally stops. The reason for the loss of
balance is not the braking force in itself but the sudden change in acceleration when
the bus becomes stationary. The braking force only acts as long as we are moving
forward but drops to zero instantly when the bus becomes static. This instant drop
in acceleration produces a peak of high jerk, which is very hard to counteract, even
if you could handle the braking force until that point. This is why a smooth braking
procedure includes both a progressive press and a release of the brake pedal.

Strong breaking and jerky rides were among the top reasons for uncomfortable
rides in public transport, according to Kottenhoff [16]. The same study mentions
0.6 - 0.9 m s~3 as the threshold for when passengers will lose their balance or even
fall due to high jerk.

CHAPTER 3. SMOOTHNESS 24

3.2.4 Animation and Movies

The main inspiration for this thesis was to improve the video quality produced
by the drone by optimizing its motions for good video. Some informal discussions
with filmmakers were done in the early phase of the project, and the key take-home
message was ensuring stability. A video is only usable for production if it is not
shaky. Keeping a static state is thus of high importance. Nevertheless, motions are
still commonly used to increase interest in a sequence.

A common example is the use of sliding motion, where the camera is slowly
moved sideways while still keeping everything else stable, especially rotations.
These slides are primarily performed horizontally, so the heading control must be
good to guarantee a stable heading. An interesting case happens when a small
correction of the heading is needed to keep a framing as intended. An aggressive
correction would need to be cut out of the final delivery as it would look unsatis-
factory compared to all other footage. A smooth correction could instead be used
as one clip in the editing process, as the heading correction would not be a disturb-
ing movement. There is one more thing that could make even a smooth transition
unusable: overshoot, which would cause an unstable look. Effectively rendering
the correction move unusable in the editing process.

When asked, few filmmakers will be able to explain with what function their
camera moves, but everyone will say that it has to be smooth. A computer animator,
on the other hand, will be able to say what interpolation method they are using.

There are several options, but some of the most common are listed in table 3.1.

Name Order | Smoothness
Constant 0 -
Linear 1 o
Smooth Step 3 Ct
Bezier Curve 3 Cct
Smoother Step 5 C?

Table 3.1: Common easing types for animation and viusal effects softwares, their polyno-
mial order and smoothness.

Constant interpolation is used for jump cuts and instantly moving or changing
some property. Linear interpolation is useful when a constant velocity is needed,
such as a train traveling on a railroad. The two most common types are smooth

step and bezier curves. These are, in essence, the same cubic polynomial, but the

CHAPTER 3. SMOOTHNESS 25

smooth step is defined with zero velocity at the initial and final state, while it is
possible to have non-zero velocities at the boundary state for the bezier curve. The
smoother step is not as common, but it is found in some software packages. It
defines both the boundary velocity and acceleration as zero. This makes smoother
step C2 smooth over multiple connecting boundaries as the acceleration always
is zero at keyframes. Smooth step and bezier curves are only C'* smooth as they
have unbounded acceleration connecting boundaries and, therefore, discontinuous
acceleration. The smoother step was suggested by Perlin [5] as a fix to the discon-
tinuous acceleration and the non-optimal behavior of the smooth step.

The wide use of only cubic-based interpolation for animation puts a dent in this
thesis argument that minimizing jerk and C? smooth is the optimal goal for natural
trajectories. However, the disadvantage of using cubic polynomials has been noted
by authors like Perlin. It should instead be believed that animation packages still
use these C' smooth curves because of their intuitive editing interface and the

direct hardware support in GPU drivers [14].

3.3 A Smooth Summary

This chapter presented motion smoothness as the central aspect that everything
is based on for the remaining of this thesis. Piecewise functions with at least C?
smoothness and minimum jerk turn out to be a good approximation for several real-
world motions primarily related to humans and body motion. Quintic minimum

jerk polynomials are the basis of this thesis’s continued work.

CHAPTER 3. SMOOTHNESS 26

Chapter

The Control Problem

The Control Problem
Given a system (5) with measured signals (y), find a control input (u) such that
the system state (z) is as close as possible to a reference signal (1), despite pro-

cess noise (w), measurement noise (v) and system variations, while maintaining

reasonable control inputs for the system.

As defined by Glad and Ljung in [9]. A device or software that automatically
generates a suitable control input is usually called a controller C'. The complex-
ity of a controller can vary greatly but is usually dependent on the complexity of
the system that it acts upon. One key component of adding a controller to a sys-

tem is that it forms a feedback loop which is essential for achieving stability and

|

robustness.

Y
\

Y

D=
2

Figure 4.1: The basic structure of a feedback controlled system S, under the disturbance
w, using the control system C' which reads the state z using some sensor y with measure-
ment noise v. The goal is to keep z as close as possible to the reference 7.

27

The following chapter aims at shortly introducing some of the components for
solving the control problem. This is not an exhaustive list, but it brings forward
some previous work in this area. The controller in Figure 4.1 is generally broken
down into two pieces, an observer and a controller. This is because the measured
signal y contains noise, and it might not be possible to measure the wanted system
state directly. An observer’s job is to make the best possible estimate of the system
S from the measured signals y. The controller can then use the estimated states
to find a suitable control input u. The observer and the controller can be further
divided into two main categories, linear and non-linear. A linear setup is usually
much easier to implement and analyze and will also be the optimal solution for a
linear system. Some non-linear systems are controllable even with a linear observer
and controller, but complex non-linear observers and controllers are needed for
many non-linear systems.

The final part of the control problem is the reference generation. The reference
can sometimes be as easy as a static number. For example, keep this motor rpm
stable forever, but it is usually more involved. The reference is a request from
either a human operator, a type of artificial intelligence, or a logic program that
decides what should be done by the controlled system. Who or what the request
comes from is not a relevant question here, as the thesis focuses on how. The how
is divided into two categories: real-time input and preplanned input. A real-time
input means that a pilot or an operator continuously guides the system to where
he, she, or it wants the state to be. An example is a fighter jet pilot who requests
the airplane to roll in a fly-by-wire system. The pilot does not have direct control
of the actuator outputs but instead requests a result, roll the aircraft. In that way,
the control system can work with fulfilling the request and battle any unwanted
motion from the turbulence that affects the airplane. A preplanned example would
be a robotic arm or a vehicle going to a predefined waypoint. The entire trajectory

can, in this case, be calculated beforehand.

4.1 Controller

The controller’s task is, as stated above, to compute a suitable input signal to the
system S such that the state y is kept as close as possible to the reference signal.
There are many different approaches for designing a control law for the calculation

of suitable control input for a given system. It should be noted that the subset of lin-

CHAPTER 4. THE CONTROL PROBLEM 28

ear controllers is much more studied than the larger field of non-linear controllers
and that their properties and behavior are easier to predict. Another important as-
pect is that the optimal controller for a linear system is also a linear controller.
This means that non-linear controllers only have to be considered if the system is

non-linear enough to have a significant impact on the result [9].

4.1.1 Linear Control

Linear controllers can, in general, be seen as calculating the control input u as the
difference between a reference and, by the observer estimated states, &, multiplied
by some constant gain.

u= L,r— L& “4.1)

There exist many methods of organizing and determining the values for L, and L,
but two common methods are PID control and Linear Quadratic control.

PID or Proportional, Integral, and Derivative has a very long history and is still
commonly used due to its pedagogical structure and well-documented implemen-
tation details. Its main characteristic is that L, = L and the introduction of an
integral term I. Determining the constants P, I, and D is usually done through
manual tuning in simulations and on the real system, but there exist a lot of tools

for calculating good starting points.
u:P(r—;z:)H/(r—:e)dm + D —) “2)

Linear Quadratic control or LQ is another linear control law but approaches
appropriate gains differently. It offers a framework for finding the optimal gains
L, and L by finding the set that minimizes the weighted quadratic error and the
input actuation.

min|lr — &3, + [lullg, 4.3)

Note that both r and % can define multiple time derivatives and multiple degrees
of freedom. The system input v can also be multidimensional. The gains found
might very well be exactly the same for a PID controller as for the LQ controller
for single input and a single output, SISO systems. However, PID controllers have
no structure for handling multiple inputs and multiple outputs, MIMO systems.
Tuning is moved from a direct operation on the feedback gains to changing the

weight/cost of the terms to be minimized.

CHAPTER 4. THE CONTROL PROBLEM 29

4.1.2 Non-Linear Control

Non-linear control is needed when some part of the system is not linear or linear
enough to behave well under linear control laws. One common problem for linear
controllers is actuator saturation of the control signal. The demanded control input
is larger than what the system’s actuator can produce. Examples of this are higher
than possible voltages or currents, higher flows than possible, or larger angles than
mechanically designed for. Saturation is a common problem for underwater vehi-
cles with a maximum possible thrust from the thrusters. One common approach
for solving this problem is Model Predictive Control, MPC.

The name introduces the method quite well, and it works by predicting the sys-
tem response from a future input signal using system modeling. The control input
should minimize the same quadratic minimization problem as the LQ controller
but with the difference that the MPC can consider system constraints such as satu-
ration. It does this by finding the minimum using iterative Quadratic Programming
instead of an analytical solution. The technique is very powerful and can solve
many problems where a linear controller would underperform or even be unstable.

The big drawback of using Model Predictive Control is its computational cost.
Model-based optimization has to be performed on every time step, which is pos-
sible for slow systems or controllers with access to enough computational power.
The Blueye Pioneer does not have enough free computational resources for its

speed, so an MPC approach is unfortunately not feasible.

4.2 Observer

An observer is a filter that takes available noisy sensor readings as input and uses
that data to estimate the true state of the system. The estimation task is two-fold,
reduce noise, and find needed implicit states. An implicit state is, for example, the
velocity of an object when we only have positional measurements. There are many
different approaches and types of observers, and they can, like the controllers, be

divided into linear and non-linear observers.

4.2.1 Linear Observation

A simple example of a linear observer is the task of estimating a static state from a

stream of noisy measurements. Let the measurement be called y;, the true state z,

CHAPTER 4. THE CONTROL PROBLEM 30

and assume white noise v.

Yi =T+ 4.4)

The optimal observer for minimizing the mean square error for this problem
is the average of all available measurements. It is done by summation of all mea-
surements and divided by the current sample index k. y is here a vector of k

observations, one for each timestep.

=1 “.5)

Storing every single measurement and performing the summation for every
time step would be computationally expensive and wasteful on a real-time system,
S0 it is better to rewrite it on a recursive form.

k—1 1

Ti_ — 4.
Tk 1‘|‘kyk (4.6)

Tl —

k starts at 1 and Zg is intialized as zero. This version can run in real-time with a
very low memory footprint and will converge to the true value quickly. A state that
needs a control loop is usually not static, so a method for handling varying states
is needed.

The optimal observer for any observable linear system with white noise is de-
scribed by the Kalman Filter [13] first described in the sixties and used on the
NASA Apollo missions on the guidance computers. It is optimal in the sense that

it minimizes the quadratic error between the estimated and true state.
min||z — 2| 4.7
The linear system has to be described in discrete state-space form as follows.
Tpt1 = Axg + Bug + Nwy 4.8)

Y = Cxp + v 4.9)

A describes the system’s dynamics, B is the system response to inputs, and C'is
what we measure with available sensors. The system noise at timestep k is de-
scribed by wyg, and the measurement noise at timestep k by vg. wg and vy are

assumed to be mutually independent. The system is observable, meaning it is

CHAPTER 4. THE CONTROL PROBLEM 31

possible to estimate its state from the chosen measurements if and only if the ob-

servability matrix rank is full. n is the size of the square matrix A.

C
CA
rank | C A2 =n (4.10)

CAn—l

The optimal discrete observer is then given by a two-step predict and update rou-

tine, beginning with prediction.
Tk4+1 = ATy + Bug “4.11)

The update step takes the predicted state and compares it with the latest measure-
ment ¥y, such that a refined a refined estimate, Ty, of the state vector x; can be
made.

T = & + K(yr, — Cdy) (4.12)

K can be iteratively estimated for varying disturbances. The expected process
noise is for example higher when the thrusters of the drone are active. This can be

done in the following way.

P = AP,AT + NRINT (4.13)
S, = CP,CT + Ry (4.14)

Ky, = p,cTst (4.15)

P, = (I — K;;O)P, (4.16)

R; and R, are the covariance matrices describing the process noise w and the
measurment noise v.

The Kalman Filter is both computationally efficient and optimal for problems
where it is applicable, which makes it popular in a wide range of applications. It
works well for some of the situations encountered by an underwater drone but not

all, and it is therefore important to introduce a couple of non-linear observers.

CHAPTER 4. THE CONTROL PROBLEM 32

4.2.2 Non-Linear Observation

There are a couple of reasons why non-linear observers are essential to underwater
drone state estimation. Three examples of common problems found in Fossen’s
book Guidance, Navigation, and Control of Marine Craft 7] are quadratic damp-
ing, positioning, and attitude estimation. The impact of non-linearities varies from
minor insignificant errors to significant impacts, making the system unstable. Tak-
ing extra care when developing the observer is therefore of importance.

Hydrodynamic drag from moving in the water is not linear as it is on the form
D(U) = Ddepthv + unadraticv|v‘ . 4.17)

A Kalman Filter which includes the system input signal u, will, with a system
that includes quadratic drag, overestimates the predicted speed, which will cause
errors in the state estimate. A common solution to this problem is the Extended
Kalman Filter (EKF), which, as the name suggests, extends the linear Kalman
Filter to non-linear functions by linearizing them around the current state. This
works well for dealing with quadratic drag as it is easy to linearize at any point,
and the linearization is valid for a large change in velocity. An Extended Kalman
Filter also works well for the situation of stabilizing the horizontal position of an
underwater vehicle [4]. The position and velocity can be expressed in earth frame,
while the dynamics are expressed in body frame. The non-linear part of such a
setup is the rotation matrix from body-frame to earth frame and its corresponding
sine and cosine functions.

The third common need for a non-linear observer is attitude estimation. This
is the task of estimating the current orientation of the underwater drone. The Euler
angles representation, pitch, roll, and yaw are common and easily understood but
highly non-linear. An EKF can solve the non-linearity of the space [7], [11], but the
implementation is both cumbersome and not optimal. One of its main drawbacks
is the presence of gimbal lock, which is when its two rotation axes align, and the
system loses one degree of freedom.

A better approach is presented by the work of Madgwick [19] who uses quater-
nions for the rotation representation and a gradient descent method for the filter.
The advantage of using quaternions as the mathematical representation of rota-
tions is that they do not exhibit gimbal lock. They are efficient, and any rotation is

described as a simple multiplication. The easiest way to describe how they work

CHAPTER 4. THE CONTROL PROBLEM 33

is to introduce them as an extended complex number with three imaginary parts
instead of one. A one-axis rotation can be described by the multiplication of two
complex numbers. The multiplication of two quaternions can describe a three-axis
rotation. Say that we initially have a rotation A to B and want to add the rotation

B to C, then multiply them to get the combined rotation.
qg=w+zi+yj+zk (4.18)

dq="2q® pq (4.19)

A vector v can be rotated from frame A to frame B by the following multipli-
cation, where the vector is put into a quaternion container with the element w = 0.

And ¢* is the quaternion conjugate.

Ap =0+ vgi + vyj + vk (4.20)

By = 4qo 40 ® fq* (4.21)

A filter based on this method can be constructed by a similar predict and up-
date structure as the Kalman Filter. The prediction is based on angular velocity
measurements provided by the gyro in the IMU sensor and is done through simple
discrete integration. Note that prescript notation of sensor readings being in sensor

frame S and the estimated quaternion as earth frame to sensor frame E(j rotation.

_

Bk = 5 51 ® S 4.22)

Pk = k1 + pardt (4.23)

The gyro-based prediction works great for tracking fast motions, but it will fail
over time as the estimate will drift due to bias in the measurements. The bias can
be corrected by rotating the expected gravity “d vector by the estimated quaternion
and comparing it to an acceleration sensor reading ®s. A correction step can then
be done to minimize the error between the expected gravity vector and measured
gravity.

minl|f(34)|| = min|| 5¢* @ Pd® 5§ — 5| (4.24)

An efficient optimization method for finding the above minima is to use an iterative

CHAPTER 4. THE CONTROL PROBLEM 34

gradient descent algorithm.

Vf

—_— 4.25
] (42

Bk = Bk — B
The above algorithm will eventually find a quaternion ¢ such that the error between
the expected gravity vector and the measured gravity vector is minimized. S is the
correction step size and can be seen as the parameter weighting accelerometer mea-
surements against the gyro measurements. This works very well, and acceleration
that is not due to gravity can be filtered away using small 3 values. A correct head-
ing is added in the same way as for the acceleration by comparing an expected and

measured magnetic flux vector.

4.3 Reference Generation

Fossen [7] introduces three overall cases for reference generation for marine crafts

which also applies to other systems.

» Setpoint Regulation, the basic approach, keeps a constant state

* Trajectory-Tracking Control, time varying changes in some or all of the
states. Used for velocity, position, and heading changes when the timing

is important.

 Path Following Control, time-independent navigation, follows a predefined

state change as the system propagates along the defined path.

The problem statement for this thesis is related to Trajectory-Planning Con-
trol as the work is focused on velocity and position changes due to pilot input
commands. The methods for generating these trajectories vary from simple linear
filters to advanced minimization problems with motion constraints and collision
avoidance. Three groups of trajectory generation are presented; filter-based, geo-

metrical, and optimization-based, with two different cost metrics.

4.3.1 Filter Based Trajectory Generation

Filter-based trajectory generation takes some usually computationally inexpensive
linear filter and filters the input commands from a human. This is commonly a

low pass filter or a model-based filter that moves the reference for the controlled

CHAPTER 4. THE CONTROL PROBLEM 35

system. One model-based filter is a mass-damper-spring system which is used by
Dukan [4] on the SF30k ROV at NTNU for velocity ramping. A problem for linear
filters is that they only work well for a small envelope of step sizes and a non-
symmetrical shape for the start-up and converge phases. The start-up phase tends
to have high jerk, and the converge phase is comparatively slow, causing a reported
feeling of drift and being out of control.

A filter can also be on the form of an integrator. A pilot can directly define
the velocity, and the position is then integrated over time. Velocity integration
produces a continuous position which makes it usable for position hold. It was the
initial method of the Blueye Pioneer and thus served as the baseline case for this

thesis.

4.3.2 Geometrical Trajectory Generation

A different approach to trajectory generation is geometrically based approaches.
This method is, for example, used on naval crafts [7] where it provides a suitable
trajectory to follow. This approach assumes that the operating velocity is mostly
a constant cruise velocity and the direction straight. Imagine the trajectory being
a series of position waypoints and draw straight lines between them. The linear
parts will work fine with a constant cruise towards the next waypoint. Passing
a waypoint is problematic as it instantly changes to a new direction. This can be
mitigated by placing a circle with some design radius tangental to both the inbound
and outbound lines. This provides a C! instead of C” smooth trajectory but will
still be discontinuous in acceleration when entering and exiting the circle. The
technique is mainly used for transitions between position waypoints, and it is thus

not a suitable approach for handling human real-time velocity inputs.

4.3.3 Optimal Trajectory Generation

Reference generation can be approached similarly to the optimal control problem
by formulating cost metrics that should be optimized. A common approach is
to formulate the reference generation as a minimum time problem given a set of
constraints, usually with bounded velocity, acceleration, and jerk. This results in
a trajectory with constant jerk segments and linearly ramped accelerations which
can be efficiently solved using iterative solvers [10], [15]. Jerk limited motion is

fundamental for CNC operation, and Trinamic has a good presentation page on

CHAPTER 4. THE CONTROL PROBLEM 36

why, among other reasons, less beer is spilled when the motion jerk is limited [28].
Dukan [4] implemented this method for ROV waypoint transitions and called it a
constant jerk trajectory, improving performance and usability as a result. Time-
optimal trajectories are essential when there is a need for pushing hardware to the
limit while still guaranteeing operation within its physical constraints. The goal
of this thesis is, in contrast, to find an optimal shape of motion transitions. This
requires a different cost function, determined to be the minimum jerk trajectory
given a maximum jerk.

Most examples of the usage of minimum jerk trajectories use either constant
time [8], time derived from a known event such as intercepting a ball [22], or
direct minimization as part of the control loop of a model predictive controller
[21]. The limitation and minimization of jerk for a smoother response to human
input should not affect the responsiveness against disturbances. Therefore, it is
not suitable to include the jerk minimization as part of the control loop. The next
chapter presents a method of using minimum jerk trajectories for online velocity

reference generation between any state transition.

4.3.4 Comparison of Reference Generation Methods

It can be hard to appreciate the difference between the reference interpolation meth-
ods given above from just a description. Plotting them together in one figure helps
with showcasing the difference. Figure 4.2 and 4.3 illustrate the difference be-
tween pure integration, linear filter, minimum time and minimum jerk given then
same jerk constraint of 10 m s~ when tuned at a setpoint step in velocity of 0.1

1 as shown in Figure 4.2. The pure integration case is the direct usage of the

ms
user input without taking any constraints or dynamics into consideration. It has
the fastest possible response to the input, which can be seen in Figure 4.2 leading
the position reference and always equal to the user input for the velocity reference.
The downside is that it requires enormous and unrealistic amounts of acceleration
and jerk for the controlled system to perform the transition. The other methods
look very similar for the position reference with a slight lag compared to the pure
integration case. The lag is caused by the smooth ramping of velocity, and the po-
sition stays slightly behind until the reference stops, and the same lag in stopping
results in the same final position.

The difference between the methods is more evident when looking at their

time derivatives. The minimum time reference utilizes the maximum possible

CHAPTER 4. THE CONTROL PROBLEM 37

0.1 4

Position m

00 h T T T T T T T 1

0.1— I T

| |

' I
0.0 +— L

1A

—1 1

T
T
10 1
_10 -
T T T T T T T 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time s

Acceleration m/s> Velocity m/s

Jerk m/s?

Figure 4.2: Comparison of pure integration (orange), linear filter (green), minimum time
(red), and minimum jerk (blue) based reference generation methods. Showing the tracking
of a small stepped user input (dashed violet).

jerk throughout the velocity ramping, causing the reference acceleration to become
triangle-shaped with a higher peak acceleration than the other two methods. The
minimum jerk trajectory-based method is tuned such that the peak jerk equals the
constraint. The solution is, in this case, a linear ramp for jerk and a quadratic
acceleration profile with a flat peak acceleration which is only 62% of the peak
acceleration of the minimum time method despite only taking 15% longer time to
complete. The linear filter designed as a mass-damping-spring system begins with
the same jerk as the other two but has a much longer tail and lower jerk in the
second half of the transition.

Figure 4.3 uses exactly the same setup for handling user input changes as in
Figure 4.2 but with a ten times larger step in requested velocity. The big difference
that should be noted first is that the linear filter now has a maximum jerk much
larger than intended, ten times larger than the other methods at 100 ms™3 and a

maximum acceleration more than twice as high as for the minimum jerk trajectory.

CHAPTER 4. THE CONTROL PROBLEM 38

This is clear in the velocity curve, where the linear filter has a much faster rise
time. It is also visible for the position, where the green filtered reference curve is
far ahead of the minimum jerk and minimum time solutions. The linear filter is
better than the unrestricted direct integration, but its property of proportional jerk
to the velocity step size, non-symmetric profile, and overshoot only make it a little
bit better, not good.

The two approaches to optimal trajectories, minimum time and minimum jerk
remain within the jerk bounds and keep their shapes consistent. Both methods have
an increase in acceleration which can be constrained if needed. Two properties are
in favor of the minimum jerk trajectory in this thesis. Firstly, this is the shape of
human motions, and the focus is on optimal shape, not optimal time. Secondly,
the optimal time problem is not described by one polynomial but by piecewise
polynomials. These need to be optimized. Therefore, the minimum jerk trajectory

is chosen as the method of reference generation in this thesis.

1_

Position m

2.5 1
0.0
—2.5 1

Acceleration m/s> Velocity m/s

Jerk m/s?
o o

1

\i

T T T T T T T 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time s

Figure 4.3: Comparison of pure integration (orange), linear filter (green), minimum time
(red), and minimum jerk (blue) based reference generation methods. Showing the tracking
of a large step user input (dashed violet).

CHAPTER 4. THE CONTROL PROBLEM 39

Chapter

Implementation

5.1 Motivation

This chapter describes the methods implemented on the Blueye Pioneer underwa-
ter. It begins with the description of the core contribution of this thesis, which is
Online Minimum Jerk Velocity Trajectories. It can be used for high-quality refer-
ence ramping with smooth and continuous reference states for a position, velocity,
and acceleration.

The second part presents how the observers for the control system were imple-
mented and with what assumptions.

The third part covers the control approach, forming a feedback loop using the
observed states and the minimum jerk trajectory reference. The control method is

linear, and the focus is on using all of the defined reference states efficiently.

5.2 Minimum Jerk Velocity Reference

The goal of the Minimum Jerk Velocity Reference method, later referred to as
MIJVR, is to generate a good reference state from a velocity set point given by
a human pilot. This set point can have substantial and fast changes, which are
hard to track and cause vibrations in the system. The proposed method addresses
these problems by enforcing C? smoothness as a design parameter. Guaranteeing
continuous acceleration and with a configurable smoothness as a maximum jerk.
This section describes the process of generating a reference with continuous

acceleration and planned jerk for any random velocity input from a human pilot.

40

The method is based on the analytical minimum jerk trajectory for any velocity
change which is also the reason for the name. The solution is also explicit with
small computational load and can thus run in real time on lower power platforms.

The remaining of the section investigates the process and details of implement-
ing online minimum jerk velocity trajectories. The process is two fold: It comprises
of defining how to find and calculate the analytical minimum jerk velocity trajec-
tory for any velocity state change over a specified time frame. The second part is
defining the time given to the transition change, later referred to as converge time.
Calculating the converge time is crucial for making the method a real-time online
method. It is crucial as the trajectory has to be identical irrespective of at what time
during the transition the trajectory is calculated.

Combining the two steps makes it possible to do online updates without the
knowledge whether the velocity set point from the pilot has changed or not. An
unchanged set point will regenerate the same trajectory for the remaining transition.
A changed set point will result in a new trajectory reaching this new set point,
while still keeping a continuous acceleration state and staying within the design
jerk parameter.

The section also describes how to use the polynomial velocity to integrate a
position reference which is useful for systems where position drift is undesirable.
In addition, a method for limiting the maximum acceleration is also described as
some systems might be limited by maximum acceleration before jerk becomes a

problem.

5.2.1 Minimum Jerk Velocity Trajectory

As the jerk is the derivative of acceleration, the third time derivative of the position
x and it can be written as ¥ using Newton’s dot notation. The velocity is the first
time derivative of the position is written as . The minimum jerk velocity trajectory
between two velocities is the trajectory that minimizes the squared jerk over that
transition. Let the transition happen between the time ¢; and 5, and the problem

can be written as follows.

to
#(t) = arg mins / () dt 5.1)
t

CHAPTER 5. IMPLEMENTATION 41

It was shown earlier in section 3.1.2 that a polynomial meets this on the form
i(t) = c1 + cot + cat? + eqt® (5.2)

This is a cubic polynomial interpolation between the current and wanted states.

The trajectory is defined between the start point and endpoint of the trajectory
t <t<ty. (5.3)

It was also shown in the chapter 3.1.2 that the trajectory could be found by
solving for the polynomial’s coefficients using a system of linear equations. The
number of needed equations is four as the number of unknown variables is four.
The current reference velocity is known, and so is the target velocity. The target
acceleration is always zero as the reference velocity should converge to the target
and then remain constant. Let us assume that the current reference acceleration is

known and that ¢; equals zero

(ty =0) =c1 = v, (5.4)
ity =0)=c2=a1, (5.5)
i(to) = c1 + coto + c3t3 + cats = vy, (5.6)
i(ta) = co 4 2c3ty + 3cqta =0 . (5.7)
Rewritten to matrix form
1 0 O 0 c1 U1
01 0 0
el I (5.8)
1 ta t3 | |cs ()
0 1 2ty 3t3| |cu 0

The solution is found by solving the equation
Ac=b=c=A"" (5.9

Finding c is inexpensive as the matrix inversion is of low dimension. It is despite
that recommended to use built-in solvers for this operation as it improves code
readability, performance, and numeric stability. Most packages offering linear al-

gebra functionality have this built-in. Python has the Numpy package,

CHAPTER 5. IMPLEMENTATION 42

numpy.linalg.solve (A, b)
and C++ has options like Armadillo with

arma: :solve (A, b);
The problem can be further optimized by observing that this particular problem
will yield ¢; = v; and co = a;. This reduces the problem to two by two matrix
inversion. However, the gains compared to an optimized solver will probably be
minimal, and the details of implementing it is left to the reader.

The result is a polynomial that can be evaluated at any point from ¢; = 0 to
to, which also is the minimum jerk trajectory for said state transition. Figure 5.1

shows the resulting plots for the velocity trajectory and its derivatives.

< 2

g

2

8

= 1

g I T T T T 1

0

~

g 94

c

2

g 07

o

8 =21 T T T T 1

[&]

<<

§ 10

£ 07

(0]

= —10 A T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Time s

Figure 5.1: Minimum jerk velocity trajectories between two velocities for three different
initial acceleration states a; = —2,0, 2.

5.2.2 Converge Time

The section above showed how to find and solve the minimum jerk trajectory for
a given set of initial and final conditions assuming a fixed time. The constant time
assumption is problematic for online applications for two reasons. The first is that
the acceleration and jerk will grow very large for significant transitions, as shown
in Figure 5.2. Additionally, minor changes will be too slow for acceptable response

times if the converge time is tuned for the maximum possible transition. The result

CHAPTER 5. IMPLEMENTATION 43

is that this approach only gives a good trajectory for one transition step size. All
others will be either be too slow for the user, or too aggressive for the system.
Last but not least, a constant time approach will give varying responsiveness of the

system for a user who is changing the target velocity in real-time.

Acceleration m/s> Velocity m/s

Jerk m/s3

_25 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Time s

Figure 5.2: Minimum jerk velocity trajectories with constant converge time between a set
of linearly-spaced initial velocities. Acceleration is zero for both the initial and final states.

The second problem with constant time is that the trajectory can not be updated
in a real-time process. Figure 5.3 shows the result of updating a trajectory along the
way with a new initial state but the same target state. The expected behavior is that
the trajectory should be the same if it is recalculated at any point along the original
trajectory. This is not the case with a constant time assumption as the target always
will stay equally far away in time. Figure 5.3 shows the effect of updating with a
constant converge time of one second. Each update is performed at a marked dot.

It turns out that both the above problems are solved by not assuming constant
converge time. Instead, calculate the converge-time based on the current state.
The trajectories found using this calculated time have to fulfill the following two

properties:
1. Consistent finishing time for recalculated trajectories.

2. Predictable acceleration response for any velocity change.

CHAPTER 5. IMPLEMENTATION 44

Acceleration m/s> Velocity m/s

Jerk m/s®
o o
1 1
°
°

0.0 0.2 0.4 0.6 0.8 1.0
Time s

Figure 5.3: Minimum jerk velocity trajectory recalculated multiple times during a transi-
tion towards a constant target. The setup assumes constant times, which also is the culprit
for the warped result.

Many different methods were tested to solve this problem, and it was eventually
found that a straightforward metric can be used for solving both points, plan for a
constant end jerk. This does not mean that jerk is added to the trajectory calculation
step but that we pick a converge time with a specific final jerk value.

The end jerk for any state transition with known initial and final velocity and
acceleration can be expressed as an inverse quadratic function. to is the time for

arriving at the final state and ¢ is the time for the start of the transition.

6(U2 - Ul) 2(0,2 — al)

(5.10)
(ta —t1)? to — 11

jend =)

The equation can be simplified by assuming ¢; = 0 which leaves t9 as the dura-
tion of the transition. as can also be removed as it is set as zero in the problem

statement. The remaining equation is as follows

6(ve —v1) 241

5.11
2 - (5.11)

jend = ’

Jend 1s then treated as a design parameter which means that it is possible to solve

for t9 as v1 and a; are the current wanted state and vs is the wanted final state. The

CHAPTER 5. IMPLEMENTATION 45

easiest solution is to first split the absolute value operation into two cases and then

reorganize the two cases on standard quadratic form.

Jenats + 2a1ty — 6(vy —v1) =0 (5.12)
—Jenats + 2a1ty — 6(vy — v1) = 0 (5.13)
These two equations usually returns four distinct roots. All are mathematically
correct, but two will be complex solutions and can be discarded as we know our
converge time will be a real number. The other two roots are real, and we always
want the largest one. Negative solutions are correct from a polynomial standpoint
but not valid as the trajectory always is predicted into the future. To summarize,

the largest real root is the correct solution from the set of 4 possible roots.

|

o
1

]
1

[en)
1

Acceleration m/s> Velocity m/s

10 —\

0_
10
T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0
Time s

Jerk m/s3

Figure 5.4: Minimum jerk velocity trajectory recalculated multiple times during a transi-
tion towards a constant target. The remaining converge time is calculated from the states
with a planned end jerk.

Figure 5.4 shows that the trajectory now can be recalculated at any time during
the transition with consistent results. This means that the first property is fulfilled.
The end jerk method of finding the remaining converge time is consistent with
calculating the trajectory from the initial and final states.

Figure 5.5 shows the reference trajectory for different magnitudes of change

in velocity. Acceleration is zero for both the initial and final states. Note how the

CHAPTER 5. IMPLEMENTATION 46

w
B
> 27
5
S
S 0
NUD
~
£ 0
c
O
s
o
g 91
(&)
<
o 25
w
g
< 07
k)
_25 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Time s

Figure 5.5: Minimum jerk velocity trajectories with converge time calculated based on
planned end jerk, plotted for a set of linearly spaced initial velocities and zero acceleration
in both the initial and final states.

maximum acceleration grows with the size of the change but still keeps a consis-
tent end dynamic. This comes from the end jerk planning, which means that all
trajectories will accelerate and decelerate in the same way regardless of how large
the velocity change is. The acceleration envelope of a small velocity change will
always be smaller than for a larger velocity change, helping with the predictability
of the motion. The maximum velocity bounds the maximum acceleration, so the
end jerk must be tuned so that acceleration from negative maximum to positive

maximum does not saturate the system actuators.

5.2.3 Online Minimum Jerk Velocity Trajectory

The previous sections laid the groundwork for an online minimum jerk trajectory
planning approach for reference generation. Assembling these pieces into one

functional unit requires some assumptions and constraints

* Continuous velocity and acceleration
* The target velocity is piecewise constant and random

* Assume that the controller always can follow the the reference state

CHAPTER 5. IMPLEMENTATION 47

These assumptions make it possible to efficiently update the reference state
at every time step. Continuous velocity and acceleration mean that the planned
trajectory always begins at the current reference state. The target is assumed to be
piece-wise constant. Therefore, it is possible to always define the end acceleration
state as zero. The transition time can be found using the above-presented method
of time estimation. The trajectory is then calculated using the estimated time, the
current reference state, and the constant target velocity. The next step’s reference
state is then found by evaluating the polynomial at one time step dt ahead in time.
The edge case of dt being larger than the estimated time is handled by checking

for this case and setting the reference state equal to the wanted state.

2 —==n

|
N
1

Acceleration m/s> Velocity m/s

o 10
B T~
04— — —
<
3 10
T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5

Time s

Figure 5.6: Online Velocity Minimum Jerk Trajectory for discontinuous user input.

The result is shown in Figure 5.6 for which the reference state has been com-

puted with d¢ = 0.01 s and the planned end jerk being 10 ms~3.

5.2.4 Position Reference

It is beneficial for the control feedback to have a reference position to counter any
slow biases that otherwise would build up a large drift over time. An example
of this is keeping a constant depth for the Blueye Pioneer and its small positive
buoyancy. This would cause the drone to slowly float up if it did not have a position

reference to track using the depth measurements.

CHAPTER 5. IMPLEMENTATION 48

The solution is straightforward, initialize the position reference as the current
depth when starting the controller and then integrate the minimum jerk velocity for

each update call. Integration is done on the polynomial and becomes

ts
B(ts) = 2(t1) +/ Bt dt, t <t <t (5.14)
t1

ts

aﬁg:mm+/)q+m+@9+@ﬁﬁ (5.15)
t1

ty is the current time that can be picked as 0 for simplicity, which gives us the

following solution

t2 t3 4
MWZ%@+@%+@§+@§+@5. (5.16)

Figure 5.7 is an example of how a rectangular velocity input is followed by the
minimum jerk velocity and is integrated into a position reference. Note that the
velocity trajectory only is recalculated at the defined nodes but that the reference
state is defined at any point in time on the piece-wise trajectories. This addition to
the reference means that the controller has three smooth reference states to work

with, acceleration, velocity, and position.

Position m

0.0 0.5 1.0 1.5 2.0 2.5
Time s

Acceleration m/s> Velocity m/s

Figure 5.7: Position reference integrated from a piece-wise planned minimum jerk veloc-
ity.

CHAPTER 5. IMPLEMENTATION 49

5.2.5 Clamped Acceleration

The solution for minimum jerk velocity reference has so far assumed unbounded
acceleration and that the acceleration can be achieved. This is not always the case.
It is, in fact, common for the acceleration of the system to be a limiting factor. The
Blueye Pioneer is not acceleration-limited by its thrusters but rather by the human
response time, so this is not a problem that had to be solved for the product, but
there is an easy solution if needed.

Recall that the trajectory planning is done online and on every control loop
update. This means that any constraints only have to be evaluated until the next
update and recalculation of trajectories. The acceleration reference can thus be
clamped to the system’s limits for each trajectory update. The velocity change will

be a linear ramp until the next trajectory update.

N
1
|
1
1
1
1
1
1

J

I
—
1

Acceleration m/s* Velocity m/s

o 10 ~

= AN /

T J — — —

: x

8 10 A ~

1 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time s

Figure 5.8: Minimum jerk velocity trajectories with clamped acceleration.

This method is shown in Figure 5.8, the acceleration limit is obeyed, and the
velocity targets are reached. There is one problem, the acceleration ramps are not
symmetric for growing and fading. The behavior or shape is different and thus
not fully repeatable and predictable. The solution is to plan the clamping of the
acceleration, note how the fading phase always begins with zero jerk and goes to
the planned end jerk. Adding a planning target of zero jerk with the same snap, i.e.,

change of jerk, as for the fade phase yields the behavior as shown in Figure 5.9.

CHAPTER 5. IMPLEMENTATION 50

The acceleration profile is now symmetric and thus more predictable when tuning

the controller later on.

24« mmee-a-m—-m—- =

Acceleration m/s> Velocity m/s
|
o
1

Jerk m/s®
B3
-
| 7
N
N

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time s

Figure 5.9: Minimum jerk velocity trajectories with planned clamping of the acceleration.

The planned acceleration clamping is found by observing that the acceleration
trajectory is quadratic with its extrema at the end. Define the trajectory end as

to = 0 and solve for the remaining time.

t = \/ fmar — 01 Ssgn(“? — o) (5.17)
at = (maz — st2) sgn(vy — vy) (5.18)
t1<t<ty=0 (5.19)

The snap, s, should be the same as for the tangent acceleration trajectory and can

thus be calculated by

j2
= —-end (5.20)
4amax

The reference trajectory uses the clamped trajectory towards maximum accel-
eration if the planned acceleration from the unconstrained trajectory is larger than
the clamped trajectory. The logic for each planning step is thus to plan both alter-
natives and then pick the one that plans for the lowest acceleration in the direction

of the planned velocity change.

CHAPTER 5. IMPLEMENTATION 51

5.3 Observers

An observer is needed for a full state estimation from the available sensors. The
needed states consist of both position and velocity for each controlled dimension.
The control scope for this work was to stabilize the depth and heading of the drone.
The two dimensions are orthogonal to each other and can be seen as independent.
This means that the observer can be broken up into two separate and independent

parts, one for depth and one for heading.

5.3.1 Depth Observer

The depth dynamics of the drone are assumed to be independent of all other drone
movements and can thus be modeled as a one-dimensional kinematic system. A
kinematic only observer will be robust against non-linear hydrodynamics, tether
drag, and collisions and was therefore preferred over including a dynamics model
in the observer. This reduces the problem to a one-dimensional linear system that
can be optimally solved with a Kalman filter. Let be a column vector with the

estimated state for position and velocity, and the Kalman filter becomes the follow-

ing:
1 dt 5.21)
X = X .
k+1 0 1 k
o= [1 o} Th (5.22)
Ry =0.05 (5.23)

The process noise, R, was tuned manually for a good trade-off between low noise
in the velocity estimate and fast response for lower latency in the control loop. The
pressure sensor was sampled at its maximum sampling frequency to improve the
velocity estimates. The drone control system and observer ran at an update rate
of 100H z, and the pressure sensor readings were sampled and held whenever the

sensor could not match that frequency.

5.3.2 Heading Observer

The Blueye Pioneer is equipped with a 3-axis accelerometer, a 3-axis gyroscope,

and a 3-axis magnetic flux sensor. The naive approach for heading estimation

CHAPTER 5. IMPLEMENTATION 52

assumes that the drone always has a stable attitude and that there is no bias or drift
in the gyroscope readings. A heading estimate could, in that case, be made by
simply integrating the body frame gyroscope heading angular velocity over time.
Body frame integration is not good enough for two reasons. The drone does not
always maintain an upright attitude due to its small size, and the angular velocity
measurements contain a bias that will build up over time.

The first problem is solved by estimating the full rotational state in world frame.
The body frame angular velocity observations are used as a predictive step that can
be corrected by comparing the acceleration vector against the earth’s gravity. It is
common in the ROV space to do this estimation in Euler degrees due to them be-
ing easy to understand and directly usable in higher-level control loops [7], and [4].
Euler angles are easy for humans to understand. However, they have multiple prob-
lematic properties, such as being highly non-linear and having states of undefined
behavior, so-called gimbal lock. The attitude estimation space was instead chosen
to be defined as a quaternion, with the observer proposed by Madgwick [19]. This
observer uses a quaternion for its state definition, which can be robustly rotated by
the angular velocity measurements and corrected using the gravity measurement to
define the up axis.

The second problem of correct heading can be solved by comparing the ex-
pected magnetic field vector rotated to the sensor frame with the measured mag-
netic flux. A corrective step can then be made such that the estimated heading
converges to be correctly defined relative to the true north. This method works
well as long as no magnetic disturbances are present. Environmental magnetic dis-
turbances from underwater metallic constructions and ships are unfortunately com-
mon and will sometimes significantly impact the estimate. The impact of this error
is marginal for the navigational task where the heading in the UI will be wrong,
but the pilot can rely on the video feed instead. However, the impact on control is
more severe where the error can cause the drone to violently turn sideways even
though the user wanted to travel straight forward. The solution was to decouple the
heading estimation for the control loop and user interaction. The control loop can
accept some absolute drift as this can be corrected by the human operator, while
uncontrolled turning due to magnetic disturbances is unacceptable. Absolute drift
means that the drone will very slowly turn right or left if no stick input is given
for long periods. It was possible to reduce the drift of the estimate to less than one

degree per minute with automatic calibration routines, even after long dives. That

CHAPTER 5. IMPLEMENTATION 53

drift is slow enough that a human pilot does not even recognize it as an error of the
system and compensates for it without thinking.

The separate observer established for navigation with a geographical heading
was estimated using the magnetic flux readings from the IMU. The pilot could then
independently decide if the compass estimate is trustworthy and adapt depending
on the situation. This means that the heading observation problems are split into
two problems, one for navigation and one for control. The navigation observer
uses the magnetic flux data, which usually provides a true north but is sensitive
to magnetic disturbances. The control observer only uses acceleration and angular
velocity measurements for its estimate and is thus robust against anything magnetic
but with the downside of not knowing where the true north is and drifting over time.
The quaternion representation is unfortunately hard for humans to grasp and the
estimate was thus first converted to the understandable Euler angles representation

[2] before being reported to the user.

pitch atan2(2(qoq1 + q2q3), 1 — 2(q% + q%))
inavigation = [roll | = asin(2(q0q2 — Q3q1)) (524)
yaw atan2(2(qoqs + q1q2), 1 —2(¢3 + ¢3))

The final puzzle piece for the heading observer is to provide an angular velocity
for the dampening term of the heading control loop. This state is directly measured
by the IMU sensor with low noise in body frame and could be transformed into
earth frame with the already estimated attitude of the drone. However, this was
not done. Instead, the heading angular velocity was kept in the body frame as
the actuator for heading control is in the body frame, and that is the frame where
dampening of the drone’s heading is applied. Therefore, the angular velocity is
simply the measured angular velocity from the gyroscope with a bit of exponential
low pass filtering for lower noise. While a quaternion state can be used for full
state feedback [12] this is not needed for heading only stabilization. A earth frame
heading estimate is instead extracted from the quaternion state using the same Euler
angles-based method for navigation. The heading angular velocity estimate is used
as-is.

aw
Feontrol = ly, emh] (5.25)
yawbody

CHAPTER 5. IMPLEMENTATION 54

5.4 Controller

The drone is assumed to have independent degrees of freedom, which reduces the
control problem of this thesis to two separate one-dimensional problems. These
problems can be seen as linear except for the quadratic drag produced by moving
through water. The maximum possible force produced by the thrusters is also so
high that saturation is uncommon. The dynamics are also heavily damped due to
being performed in water. However, this thesis is not about exploring advanced
controller structures but focuses on the importance of high-quality and smooth ref-
erence states. Both the depth and heading controllers are designed and imple-
mented as linear controllers because of these reasons. Recall that the control input

u can be stated on vector form with the full state reference as follows

uw= Lyr— L& (5.26)

,
= [LE 1P LY 7| + LT, LD H (5.27)
X3 $
5

This is the basis for both the depth and heading controllers, and on which they then
can build on top with needed edge case and non-linearity handling.

There is one detail in this setup that is not commonly used when designing
a control system, and that is the acceleration reference, 7. An acceleration refer-
ence is usually not defined for the control problem as it is either Dirac pulses for
the cases of naive integration or a tri-state, bang-bang-like negative max, zero, or
positive max for a linear ramp. None of those cases are constructive to include
as reference states to the control problem and will probably do more harm than
good. The smooth and continuous acceleration curve of the minimum jerk velocity
trajectories is, on the other hand, feasible and possible to achieve. Incorporating
the smooth acceleration as part of the reference allows tuning the response and
minimizing the tracking error of a reference change.

Linear Quadratic Control for gain calculation was explored, but the amount of
required testing and tuning was similar, and the problem is small enough to tune to
wanted properties manually. The system is also relatively stable due to the damping

provided by the water, so missteps in the tuning process had no real consequences.

CHAPTER 5. IMPLEMENTATION 55

5.4.1 Depth Controller

The depth controller’s task on the drone is to keep a stable and constant depth,
especially with a static reference. The primary disturbance on the drone for this
control axis is the slightly positive buoyancy of the drone. Buoyancy is constant
and easy to compensate for by introducing a slow integrator for the position error
term.
k
ep =Y (ri—&;)dt (5.28)
i=0

An important note on this integrator term is that it is specifically introduced for
counteracting the buoyancy and not any dynamics when moving. The integration is
therefore paused during requested motion. The correct value is thus kept for when
the drone stops again. The error term can then be added to the linear controller and

the total is used as control input.
up = Ly, — LT + Lieg (5.29)

The introduction of an integrator introduces the risk of integrator windup. The
typical case for the underwater drone is that the pilot runs it down into the seafloor
but keeps giving the input of diving deeper. In this case, the position reference
will keep going down while the drone is stuck on the seafloor. This will cause
very high control inputs, and the integrator can quickly go towards some large
unrealistic value. The unrealistic integrator state is especially problematic as it can
take a long time to get rid of and make the drone unusable for that time as it will
try to run into the bottom again and again. Three guards were put in place against
this problem. First, a constraint on the maximum allowed position error clamps the
position reference to a realistic set of values. Secondly, clamping of the integral
does not allow it to grow bigger than some number, which is lower than a fully
saturated thruster. Finally, the introduction of an anti-wind-up function.

The anti-wind-up function works by doing a sanity check on the position error
integral e; compared to the current position error pg. It is only seen as a problem
if the absolute position error is larger than some threshold. The error integral ey, is,

in that case, reduced towards zero by iteratively multiplying with D € (0, 1).

Dk = Tk — Tk (5.30)

CHAPTER 5. IMPLEMENTATION 56

Dey, if expr < 0 and |pg| > threshold
Chil = (5.31)
ex + Prr1dt, otherwise
The test checks that the integral error component works in the same direction as the
position error. They will have different signs if that is not the case, and it is easy
to check if the signs are the same by multiplying and a check on the sign of the
result. Adding a threshold check for the error ensures that the controller behaves

like a linear controller during normal operation.

5.4.2 Heading Controller

The heading controller works quite well on the above default setup apart from one
problem due to thruster deadband. The deadband becomes a problem when the
drone holds a static heading and only experiences small perturbations. The ob-
served effect is that the drones start to turn slightly because the calculated input
signal is lower than the smallest achievable thrust. The drone will then suddenly
jerk back once the error is large enough for the thrusters to run due to the thrusters
being very aggressive at startup. Reducing the feedback gains reduced the prob-
lem but also reduced the drone’s ability to accurately follow a moving reference
as well as counteracting disturbances. The controller gain was, because of this,
divided into two different setups, one for static hold and one for moving the drone.
This avoids the negative impact of tuning for reduced deadband problems while

retaining the quick response when moving.

5.4.3 Accelereation Feedback

The reference acceleration state is used as a feedforward argument in the proposed
implementation. It is possible to estimate the acceleration states for the controlled
dimension, and it is thus tempting to introduce feedback for the acceleration state.
This was evaluated and decided against for two main reasons. The first is noise.
The acceleration estimate is noisier as it is a derivative of a random signal and
noisy control signals produce vibrations and higher battery consumption. Filtering
of the acceleration state is possible but introduces a time delay that reduces the
effectiveness of the feedback. The depth acceleration estimate could have been
improved dramatically by including the accelerometer in the estimate. The large

bias of the sensor made that non-trivial, and it was thus left outside the scope

CHAPTER 5. IMPLEMENTATION 57

of this thesis. The second reason is that the deadband on the thrusters used on
the drone caused non-smooth motion, which would be enlarged into oscillation
with acceleration feedback. This was especially true for the heading estimate. To
summarize, it is possible to introduce feedback on acceleration but not on the target

platform with sensors and actuators.

CHAPTER 5. IMPLEMENTATION 58

Chapter

Results

This section presents both simulations and real-world tests for using the reference
ramping method developed in this thesis. Two cases are compared, direct usage of
the user velocity as the set point which is compared against the usage of Online
Minimum Jerk Velocity Trajectories for reference generation. Simulations are first
presented as they are easier to design for and reproduce accurately to show spe-
cific parts of the dynamics. Subsequently, real-world tests are then presented to
show that the simulation results stand in the real world and that the method works

exceptionally well on Blueye Pioneer.

6.1 Simulations

The goal of the simulations is to show the advantage of using high-quality ramping
as a part of the feedback loop. Reference ramping is a commonly overlooked part
of the feedback loop in both university courses and scientific papers. The following

steps have been taken to emphasize the effect of the reference method.
* Assume a known linear system model.
* Use the same controller and controller tuning.
* Assume a perfectly known state.
* Reuse the same process noise.

Reusing the same process noise for every method in the simulations clarifies

what affects and does not affect the controller. The results will be identical when

59

the reference is equal. This is clear at the beginning and end of these simulations,
as these sections are chosen to be a simple static hold. A significant contributor to
the performance of a feedback system is the quality of the state estimates employed
on the drone. The state estimates quality depends on the quality of the sensor read-
ings and the ability of the observer to distinguish signal from noise. However, the
goal of these simulations is not to provide an accurate representation of the Blu-
eye underwater drone but rather to clearly show the effects of reference ramping.
The observer and any simulation of measurement noise are therefore omitted, and
the complete state is assumed to be perfectly known. The same logic is used for
the choice of identical controllers for the shown cases. Keeping the controllers
identical makes it clearer to distinguish between the effects of the reference and
the controller. Therefore, the simulations will show identical results for the parts
where the reference is identical. The dynamics are finally assumed to be linear and
known such that a suitable controller easily can be made, especially the feedfor-

ward part can be precisely calculated.

6.1.1 Velocity Step

Figure 6.1 shows the most straightforward simulation for showing the difference
between no input ramping and minimum jerk based ramping. The user input is a
target velocity, and it starts at zero, meaning no motion, then takes a step to 0.3m/s
keeps that level for 3s, and returns to zero meters per second after that. The user
input is the red dashed line in the velocity graph.

The naive reference method uses the user input directly and integrates it to
acquire a suitable position reference for each discrete time step. The naive position
reference is also a red dashed line. The green line represents the result for this
simulation, and it fulfills the velocity target quickly but overshoots both the velocity
and position reference.

The minimum jerk trajectory-based reference is planned as a smooth trajec-
tory to the user requested velocity and then back to zero when the user reference
changes. The position reference is integrated over time, and both are marked as
dashed orange lines.

The naive solution has a faster rise time at the expense of more overshoot. The
minimum jerk is slower than the naive method, but this is due to the planned rise
time, and the system follows the reference almost perfectly. See 6.1.3 for an elab-

orated look into trajectory rise time. The big difference in rising time is evident

CHAPTER 6. RESULTS 60

Position m

Velocity m/s

Thrust N
(an}
1

\
ot

Time s

Figure 6.1: Rectangular step velocity target, with (blue and dashed orange) and without
(green and dashed red) reference ramping.

in the thrust subplot, where the naive reference results in a sizeable discontinuous
step in thrust for a significant initial acceleration. This causes a high peak thrust
as well as a jerky behavior. Compare that with the minimum jerk approach, where
the peak is lower and comes much later after a smooth increase in thrust. Both tra-

jectories end up at the same position despite the minimum jerk trajectory reference

lag.
Direct Velocity | Minimum Jerk Trajectory
Peak Thrust 8.91 4.88
Position Error 2.16 0.14
Thrust 6554 3669
Jerk 1643461 11728

Table 6.1: The peak input, i.e., the maximum force used. And the square sum of; position
error, control inputs, and jerk for the transition. Lower is better for all metrics.

Table 6.1 presents some key metrics from the two simulations, and there are
significant reductions on all metrics when using the smoother reference. The peak
thrust is reduced by a factor of two, which means that a weaker system with lower
peak output could fulfill the trajectory without clipping.

The square sum of the position error is an entire 15 times lower, which can be

attributed to the large overshoots by the naive method. The minimum jerk trajec-

CHAPTER 6. RESULTS 61

tory based case has in comparison no overshoot caused by the transition, and the
position error is almost entirely due to the presence of process noise.

The significant reduction in the square sum of thrust might be the most im-
portant result of this simulation. This metric directly impacts the drone’s power
consumption and thus its battery life. A reduction by two for small movements
like shown will significantly increase battery life for detailed observation and doc-
umentation missions.

The last metric, the square sum of jerk, is an incredible 140 times larger for the
naive direct usage of the input velocity compared to the smoother minimum jerk
trajectory. This is entirely due to the discontinuous thrust jumps when the input

reference changes.

6.1.2 Acceleration Feedforward

Figure 6.2 shows the effect of different gains for the acceleration feedforward com-
ponent. The coloring of the graph is related to the amount of acceleration feedfor-
ward gain, with blue being zero and yellow double the correct amount. The gain
is in steps of 20% points. The perfectly tuned case is black, whereas the generated
reference is the red dashed line. All cases are simulated with the same process
noise. The only thing that is changed between these 11 simulations is thus the ac-
celeration feedforward gain. This should be clear when viewing the simulations’
beginning and end, where all cases are identical. Looking at the effect of the feed-
forward term tells us several things. First off, a perfectly tuned feedforward yields
a resulting trajectory that is very close to the wanted plan, with no overshoot in
either position or velocity. The lack of overshoot is especially evident in the thrust
graph, where it shows as a clear transition to equal the drag of the planned velocity.
Compared with the no-feedforward case, the blue line lags in reaction and then
overshoots the position reference for a long time before converging to the refer-
ence. The over-tuned case with twice the correct gain has the opposite behavior.
A too-aggressive reaction initially goes too fast and then brakes too much, caus-
ing that case not to reach the final position reference as planned. Note how all
simulated cases which are linearly spaced in gain also are linearly spaced in their
results. This proved to be very helpful when tuning the real system; any change in
gain would have a proportional change in the results.

The vital part of this test is a more general one, and that is that all the tested

feedforward gains were stable and converged to the reference. Hence there exists

CHAPTER 6. RESULTS 62

Position m

Velocity m/s

Thrust N

Figure 6.2: Impact by acceleration feedforward, 0%, blue to 200%, orange in steps of
20%. The black line represent a perfect tuning of acceleration feedforward.

little risk in slowly introducing some of this gain. Another observation should
be done about the magnitude of the gain, 80% or even as little as 60% of the
correct gain is still a significant help in getting a better reaction from the controlled
system. It might even be of an advantage to slightly under-tune this feedforward
component. The minimum square sum of thrust for this particular case was the
simulation with 75% of the correct gain.

Another takeaway of this simulation is that it is easy to tune the acceleration
feedforward manually. The tuning should begin with zero acceleration feedfor-
ward, which means the blue line in Figure 6.2. The controller should first be tuned
for the stable static and constant velocity cases. The feedforward can then be added
once those two cases are satisfactorily tuned. The most straightforward approach is
to increase the acceleration feedforward until the trajectory overshoots the velocity
during the acceleration phase and then reduce it until the result is slightly behind

the reference.

6.1.3 Rise Time

A central aspect of feedback design is the metric of rise time, overshoot, and set-

tling time. They are related to the controller’s ability to follow a quick change

CHAPTER 6. RESULTS 63

in the reference. Rise time has multiple definitions depending on application, the
defintion used here is the time required for the controlled system to go from 0% to
90% of the target state. Figure 6.3 shows a step input in user reference speed from
0 to 0.3 ms~! and the result when using the same controller as in Figure 6.1 and
with no process noise. The difference between the simulations stems only from
how the reference is handled. The dark green line that stands out in shape from
the rest results from naive handling of the reference and direct usage of the user
input. The other simulations use the minimum jerk trajectory reference ramping
presented in this thesis. The ramping cases differ by the planned maximum jerk

3 3

which range from 0.5 ms~3, light green to 10 m s, orange in steps of 0.5 ms 5.

The blue line marks the trajectory with equal rise time to naive implementation,

and it uses a maximum planning jerk of 3 ms™3.

Velocity m/s
o
[\]

o
o
1

—
o
1

Thrust N

Jerk N/s
o ot

0.0 0.5 1.0 1.5 2.0 2.5
Time s

Figure 6.3: Changing the rise time by changing the planned maximum jerk. Light green,
low maximum jerk, orange high maximum jerk. Dark green trajectory is the system re-
sponse with no velocity ramping. Blue is the minimum jerk trajectory with equal rise time
to the naive trajectory.

Remember that the controller feedback stays the same for all simulations and
that the only difference is in the reference state. It is thus possible to define metrics
such as rise time as part of the reference generation instead of the feedback loop
when using acceleration feedforward. Also, pay attention to the lack of overshoot.

This happens because the position state of the reference also follows a realistic

CHAPTER 6. RESULTS 64

trajectory which considers limited jerk. The naive solution assumes that the con-
troller can instantly push the velocity state to the reference velocity and lets the
position reference go full speed ahead. The problem is that the true state lags be-
hind the reference since there is a limit to how sensitive a controller can be made.
This lag must be caught up to later, so there is overshoot in the naive response.
The minimum jerk trajectory ramped reference with acceleration feedforward does
not lag. The reference considers the jerk limited acceleration and uses the known
acceleration as a feedforward component.

Mark a few interesting observations. Firstly, the minimum jerk trajectory ref-
erence can achieve the same rise time with the same peak input thrust as the naive
reference but with complete removal of problems with overshoot. The rise time
can be shorter when using acceleration feedforward, assuming the input signal is
achievable and the acceleration can be properly modeled and calculated. The peak
input will go up considerably with a shorter rise time, and so does the difficulty in

modeling the needed acceleration correctly.

6.1.4 Pseudo Random Velocity Target

The last simulation is done on pseudo-random mock data to show the result better
when using a human input. The user target input signal was generated by logging
the actual human input. This data could then be as the wanted velocity in the
simulation. There are both smooth parts typical of experienced pilots and rapid
full forward and breaking typical for novice drivers.

Figure 6.4 shows the different results when using a naive non ramped reference
(dashed red) and a minimum jerk trajectory based reference (dashed orange). Table
6.2 presents some metrics for the two simulations with data on peak input, the
square sum of the input thrust, and the square sum of the jerk in the control signal.
The most significant difference is found in the jerk metric, where there is a 40-fold
decrease by introducing the minimum jerk trajectory based velocity ramping. This
is caused by the step-like user input, which sometimes changes rapidly and causes
a very high jerk in the non-ramped system. The position error of the trajectory is
reduced by an order of magnitude. When stopping, the almost complete overshoot
removal may be the most significant addition to the improved sense of stability and
control. The used thrust is halved when applying the smooth ramping, which will

result in significant battery life improvements.

CHAPTER 6. RESULTS 65

Position m

w
~
g
>
‘o
o
L
= 57
2
£
o5
T T T T T 1
0 5 10 15 20 25 30

Time s

Figure 6.4: Typical pseudo-random non-linear human input. With a comparison of naive
and minimum jerk trajectory references. The naive reference is marked as a red dashed
line, and its result is marked in green. The minimum jerk reference is the orange dashed
line with the result marked in blue.

Direct Velocity ‘ Minimum Jerk Velocity

Peak Thrust 6.24 441

Position Error 5.57 0.51
Thrust 14814 6987
Jerk 2389915 62596

Table 6.2: Performance metrics for pseudo-random input. Peak input, i.e., the maximum
force used. The square sum of; position error, control inputs, and jerk for the transition.
Lower is better for all metrics.

6.2 Experiments

Experiments were continuously performed on the Blueye Pioneer platform during
the work with this thesis. Bugs and understanding of how the system reacts to the
different approaches were iteratively solved and incorporated into the design. Be-
low is a small comparison between the original direct integration method used on
the drone and the new minimum jerk trajectory based reference. The implemen-
tation effort was focused on releasing a stable and well-tested code to customers.
The setup was not optimized for quantitative comparisons between the methods, so

no comparable numbers are available. The following tests were done with the same

CHAPTER 6. RESULTS 66

controller gains and only the reference generation method where changed between

the tests.

6.2.1 Auto Depth

Figure 6.5 shows the resulting trajectory for a step input from the user using the
original direct velocity method. It shows similar characteristics to the simulations
with a rapid change in thrust at the beginning of the transition. The velocity then
lags behind the reference causing a lag and an overshoot in the position. Figure
6.6 shows a similar depth transition but using the minimum jerk based reference.
The most significant difference is in the amount of jerk in the system, which is
lower due to the smoother change in thrust caused by the smoother reference. The

overshoot in position is also smaller.

\ﬁ
§ 744
c
S
@
£ 724
T T T T 1
S Y et N
2 0.0 .
8 W\‘\.\,,\w J./""\/\/ﬂ
S
2 0.1 7 S
T T T T 1
2 5
®
2
07
T T T T 1
0 2 4 6 8 10

Time s

Figure 6.5: Step input for depth using direct velocity reference, orange line. The estimated
depth, velocity, and force are in blue.

Some qualitative observations of the results are based on the reported feeling of
drone usage. The system’s most noticeable impact of the reduced jerk was visible
in the covariant dynamics of pitch, cruise velocity, and depth acceleration. Chang-
ing the depth when driving the drone forward will cause a pitching motion due to
the asked velocity and the acceleration. The high jerk of the original implemen-

tation caused large oscillations in the pitching axis in these situations and made it

CHAPTER 6. RESULTS 67

7.3 1 —

7.2 \ - P

Position m

7.1 4
T T T T 1

» 0.1
S \,../»,-J\ st _afNlt
Z" _,/AV\A,—,.V,-A._‘ P
£ 0.0 S T v
% e "*"M
> —01 T T T T 1

Thrust N
ot
%

Time s

Figure 6.6: Step input for depth using a minimum jerk trajectory based reference shown
in orange. Resulting position, velocity, and used thrust in blue.

hard to follow the seafloor. The reduced jerk of the online minimum jerk velocity
reference significantly reduced the oscillations and made seafloor navigation and
general tracking of objects under motion much more manageable. The reduced
overshoot also significantly improved stability and control as the drone stops accu-

rately every time.

6.2.2 Auto Heading

Figure 6.7 and Figure 6.8 show the result for driving with direct integration and
minimum jerk trajectory reference respectively. The most important difference is
the lower and less aggressive peak moment used by the minimum jerk method.
Comparing the two trajectories also exposes one of the design problems of the
drone. The thrusters exhibit a relatively large deadband which means that they
can not produce small forces. This is generally a smaller problem for the depth
control as it is biased from the small buoyancy of the drone. The heading is close
to unbiased, though, and the uneven engagement of the thrusters causes effects as
present at about one second in Figure 6.8. The proper response is shown at three

and nine seconds in the same figure.

CHAPTER 6. RESULTS 68

Again, the qualitative results based on usage and feedback from colleges and
customers take up several advantages with the smoother approach. The reduced
jerk at large input changes by the user produces a smoother motion, improving
video quality and ease of use. The usable video length is extended as navigation
changes are much smoother than the direct velocity method. The improved ease of
use comes from the original high jerk motion sometimes being too fast and missed
video targets when diving. The minimum jerk reference also stops faster and with-
out overshoot while still being smooth in its motion. Early tests used jerk bounds
on the control feedback signal instead of the reference. This did improve the situa-
tion by mitigating the high initial jerk. The downside of this approach was that the
control systems’ ability to counteract disturbances was reduced, which was prob-
lematic when operating in conditions with currents and other disturbances. The
minimum jerk trajectory reference method can sustain disturbance rejection while
maintaining navigational smoothness. It was even possible to increase the feed-

back gains when using the improved reference and thus improve the controller’s

strength.
$ —100 - \
s
S /\
2
S —150 1
1
'
3]
S|
> o
8
-~ —25 4
g T T T \I
g 2
Z,
o 0
€
o
= —2 4 T T T T 1
0 2 4 6 8 10

Time s

Figure 6.7: Step input for heading using direct integration of the reference, orange line.
The estimated heading, angular velocity, and moment are in blue.

CHAPTER 6. RESULTS 69

~100 —/

—150 A

Angle deg

w

S 25 \/f

Q

=

> 04—

‘O

3 —25- ‘//

g T T T T 1

g

Z 14

5

e 97

o

= —17 T T T T 1
0 2 4 6 8 10

Time s

Figure 6.8: Step input for heading using a minimum jerk trajectory based reference shown
in orange. The resulting heading, angular velocity, and used moment are in blue.

6.2.3 Current Usage

The final result of developing and implementing Online Minimum Jerk Veloc-
ity Reference for the Blueye Pioneer is deployed on all operational drones. The
smooth and easy control of the drone is stated as one of the product’s most promi-
nent strengths. Several customers have given feedback and expressed how im-
pressed they were with the operation of the drone and the feel of control that was
described as well balanced for its size. The reduced control peaks and jerk in the
thrusters have increased the drone’s battery time by about 10 to 20% to the original
implementation. The same method is also used for controlling the pitch speed of

the drone’s camera tilt system, yielding smooth camera motions for the pitch axis.

CHAPTER 6. RESULTS 70

Chapter

Conclusion and Future Work

7.1 Conclusion

The main goal of this thesis was to improve the perception of stability when re-
motely operating the Blueye Pioneer underwater drone. Two metrics were chosen
for measuring perceived stability; motion smoothness and motion overshot. The
proposed method both restricts beginners to possible motion trajectories and main-
tains high responsiveness for advanced users.

The presented work fills a gap in the literature about the handling of humans
in the loop for underwater vehicles. Most work in this field covers either the actual
control loop or planning algorithms for autonomous applications where humans
are excluded from operation altogether. Humans are generally expected to adapt to
the system if they are part of the control loop. This work takes a different approach
and tries to take more of the load away from the human pilot, even under dynamic
driving to make it easier to focus on the task at hand.

The final implementation is a smooth ramping of the velocity target given by
the human operator before it is used as a reference in the control system. The ramp-
ing is performed using a recursive implementation of the minimum jerk trajectory
for velocity transitions, here called online minimum jerk velocity trajectories. It
runs in real-time and produces a smooth and continuous velocity and an accelera-
tion reference state usable for the feedback controller. The acceleration reference is
determined to be very helpful in reducing lag, rise time, and overshoot of the final
system by integrating it as a feedforward term in the control loop. The reference

position is easily integrated from the smooth reference velocity.

71

The general takeaway of this thesis is that it is essential to take higher-order
derivatives such as acceleration and jerk into account when generating a reference
state. Minimum-jerk-based reference ramping improves human-in-the-loop sys-
tems such as the Blueye Pioneer, even when the response time is fast in highly
dynamic systems. The smoother reference also reduces peak control input, lower-
ing battery consumption and system wear. It also practically eliminates overshoot
which increases the feeling of system stability. Another benefit is decoupling the
system’s response to human input and external disturbances. The disturbance re-
jection can thus be aggressive while the human input response can be tuned to a

desired smoothness.

7.2 Future Work

The original task of improving the control feeling of the Blueye Pioneer is con-
sidered achieved with the Online Minimum Jerk Velocity Reference. However, in

writing this thesis, several new areas for future work have opened up.

7.2.1 Formalized Acceleration Feedforward

The addition of a feedforward component to the control system based on a contin-
uous acceleration reference was successfully simulated, implemented, and tested.
However, it only used manual tuning or direct calculation on simple linear systems.
The next logical step in studying the use and effects of an acceleration reference is
to provide a more generalized approach for including this acceleration reference.
An interesting approach would be to formalize it in the context of Linear Quadratic
Control to prove whether it enhances the optimal control problem for time-varying
reference signals. The same framework could then be used to define the optimal

feedforward gain.

7.2.2 Position as User Input

To use minimum jerk trajectory generation with a position as the user input was
explored but not implemented or adequately evaluated. However, it was found that

an online iterative solution similar to the velocity case exists with the remaining

CHAPTER 7. CONCLUSION AND FUTURE WORK 72

converge time being given by
+ Jenat® + 3act® + 24v.t + 60p, = 0 (7.1)

The correct root out of six possible solutions must be selected and then evaluated
against possible constraints. The situation with constraints becomes tricky, and the
efforts were therefore not included in this study. A possible alternative approach
is to handle it similar to the eight segment minimum time problems but instead
with three phases: acceleration, constant velocity, and deceleration. This would be
an exciting topic to study further as it potentially could reduce the minimization
problem compared to the minimum time problem. In addition, it could introduce a

slightly different metric which might be advantageous in some situations.

7.2.3 Optimization

The method is lightweight enough for running on the Blueye Pioneer, but there
should be plenty of room for optimization. The most obvious one is not recal-
culating the trajectory from scratch at every step. A straightforward approach is
only to do it when needed due to user input changes. A more interesting approach
would be to formulate it as an iterative filter or similar. Again not strictly needed
for the target system but an interesting extension for better understanding and the

possibility for deployment on units with less computational power.

7.2.4 Extend to MIMO

The current implementation only handles heading and depth as two decoupled Sin-
gle Input Single Output (SISO) systems. The drone needs support for feedback
control of the horizontal plane if position measurements are added in the future.
The next step would be to handle 6 DOF navigation of underwater drones. How
would a jerk-aware smoothing be applied in such Multiple Inputs Multiple Outputs
(MIMO) systems?

7.2.5 Quadratic Drag Compensation

Linear dynamics well describe the Blueye Pioneer for low velocities. However,
higher velocities introduce non-linearities such as quadratic drag. It is possible

to compensate for these effects with an integral on the velocity error. There are

CHAPTER 7. CONCLUSION AND FUTURE WORK 73

probably performance gains to be made by dealing with these dynamics directly

within a non-linear controller.

CHAPTER 7. CONCLUSION AND FUTURE WORK 74

Bibliography

[1] Pierre-Jean Barre, Richard Bearee, Pierre Borne, and Eric Dumetz. Influ-
ence of a jerk controlled movement law on the vibratory behaviour of high-

dynamics systems. Journal of Intelligent and Robotic Systems, 2005.

[2] Jose-Luis Blanco. A tutorial on se(3) transformation parameterizations and

on-manifold optimization. Technical report, University of Malaga, 2013.
[3] Tweet Boogie and HowCastArtsRec. How to pop — club dancing, 2011.
[4] Fredrik Dukan. ROV Motion Control System. PhD thesis, NTNU, 2014.

[5] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steve
Worley. Texturing and Modeling, Third Edition: A Procedural Approach.
Morgan Kaufmann, 2002.

[6] K. Erkorkmaz and Y. Altintas. High speed cnc system design. part i: jerk
limited trajectory generation and quintic spline interpolation. International
Journal of Machine Tools and Manufacture, 2011.

[7] T.I. Fossen. Guidance, Navigation and Control of Marine Craft. John, 2010.

[8] Mahdi Ghazaei, Anders Robertsson, and Rolf Johansson. Online minimum-

jerk trajectory generation. Proc. IMA Conf. Mathematics of Robotics, 2015.

[9] T. Glad and L. Ljung. Reglerteori Flervariabla och olinjira metoder. Stu-
dentlitteratur, 1997.

[10] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of time-optimal,
jerk-limited trajectories. Inteligent Robots and Systems, 2008.

75

[11] Eirik Hexeberg Henriksen. Rov control system for positioning of subsea mod-
ules. Master’s thesis, NTNU, 2014.

[12] Hans-Christian Becker Jensen and Rafal Wisniewski. Quaternion feedback
control for rigid-body spacecraft. Technical report, Aalborg Universitet,
2001.

[13] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME—Journal of Basic Engineering, 82(Se-
ries D):35-45, 1960.

[14] John Kessenich. The OpenGL® Shading Language. The Khronos Group inc,
1.4 edition, 2009.

[15] Kim Doang Nguyen, I-Ming Chen, and Teck-Chew Ng. Planning algorithms
for s-curve trajectories. In 2007 IEEE/ASME international conference on

advanced intelligent mechatronics, pages 1-6, 2007.

[16] K. Kottenhoff and J. Sundstréom. Samband mellan korstil och dkkomfort —
forbittringspotentialen inom kollektivtrafiken. Technical report, VTI, 2011.

[17] Jonathan Cacace Lentin Joseph. Mastering ROS for Robotics Programming.
Packt Publishing Ltd, 2018.

[18] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning:
design for real-time applications. IEEE Transactions on Robotics and Au-

tomation, 2003.

[19] Sebastian O.H. Madgwick. An efficient orientation filter for inertial and iner-

tial/magnetic sensor arrays. Technical report, University of Bristol, 2010.

[20] F. Manning and CR. Millman. Frankie Manning: Ambassador of Lindy Hop.
Temple University Press, 2007.

[21] MW. Mueller and R. D’Andrea. A model predictive controller for quadro-

copter state interception. European Control Conference, 2013.

[22] MW. Mueller, R. D’ Andrea, and M. Hehn. A computationally efficient algo-
rithm for state-to-state quadrocopter trajectory generation and feasibility ver-

ification. International Conference on Intelligent Robots and Systems, 2013.

BIBLIOGRAPHY 76

[23] Flash T. Hogan N. The coordination of arm movements: An experimentally
confirmed mathematical model. The Journal of Neuroscience, 5(7):1688—
1703, 1985.

[24] A. Piazzi and A. Visioli. Global minimum-jerk trajectory planning of robot

manipulators. IEEE Transactions on Industrial Electronics, 2000.
[25] RockThatSwing. Rtsf 2017 - lisa & fabien, 2017.

[26] O. Salvador and D. Angolini. Embedded Linux Development with Yocto
Project. Packt Publishing Ltd, 2014.

[27] Peter M. Thompson. Snap, crackle, and pop. Technical report, Systems
Technology Inc, 2011.

[28] Trinamic. Motion control ramping, 2017.

[29] Eric W. Weisstein. ”smooth function.” from mathworld-a wolfram web re-
source., 2020.

BIBLIOGRAPHY 77

	Populärvetenskaplig sammanfattning
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Setting
	Project Purpose and Goal
	Scope
	Structure of the Thesis

	Blueye Pioneer
	Movement
	Video and Communication
	Software Platform
	Pressure Sensor
	Inertial Measurement Unit

	Smoothness
	Mathematical Definition
	Piecewise Functions
	Minimum Jerk Trajectories

	Human Motion and Perception
	Hand Motion
	Partner Dance
	Buses and Braking
	Animation and Movies

	A Smooth Summary

	The Control Problem
	Controller
	Linear Control
	Non-Linear Control

	Observer
	Linear Observation
	Non-Linear Observation

	Reference Generation
	Filter Based Trajectory Generation
	Geometrical Trajectory Generation
	Optimal Trajectory Generation
	Comparison of Reference Generation Methods

	Implementation
	Motivation
	Minimum Jerk Velocity Reference
	Minimum Jerk Velocity Trajectory
	Converge Time
	Online Minimum Jerk Velocity Trajectory
	Position Reference
	Clamped Acceleration

	Observers
	Depth Observer
	Heading Observer

	Controller
	Depth Controller
	Heading Controller
	Accelereation Feedback

	Results
	Simulations
	Velocity Step
	Acceleration Feedforward
	Rise Time
	Pseudo Random Velocity Target

	Experiments
	Auto Depth
	Auto Heading
	Current Usage

	Conclusion and Future Work
	Conclusion
	Future Work
	Formalized Acceleration Feedforward
	Position as User Input
	Optimization
	Extend to MIMO
	Quadratic Drag Compensation

	Bibliography

