
Citation: Barrera-Diaz, C.A.;

Nourmohammadi, A.; Smedberg, H.;

Aslam, T.; Ng, A.H.C. An Enhanced

Simulation-Based Multi-Objective

Optimization Approach with

Knowledge Discovery for

Reconfigurable Manufacturing

Systems. Mathematics 2023, 11, 1527.

https://doi.org/10.3390/math11061527

Academic Editor: Alfonso Mateos

Caballero

Received: 15 February 2023

Revised: 15 March 2023

Accepted: 17 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Enhanced Simulation-Based Multi-Objective Optimization
Approach with Knowledge Discovery for Reconfigurable
Manufacturing Systems
Carlos Alberto Barrera-Diaz 1,* , Amir Nourmohammadi 1 , Henrik Smedberg 1 , Tehseen Aslam 1

and Amos H. C. Ng 1,2

1 Division of Intelligent Production Systems, School of Engineering Science, University of Skövde,
P.O. Box 408, 54128 Skövde, Sweden

2 Division of Industrial Engineering and Management, Department of Civil and Industrial Engineering,
Uppsala University, P.O. Box 256, 75105 Uppsala, Sweden

* Correspondence: carlos.alberto.barrera.diaz@his.se

Abstract: In today’s uncertain and competitive market, where manufacturing enterprises are sub-
jected to increasingly shortened product lifecycles and frequent volume changes, reconfigurable
manufacturing system (RMS) applications play significant roles in the success of the manufacturing
industry. Despite the advantages offered by RMSs, achieving high efficiency constitutes a challenging
task for stakeholders and decision makers when they face the trade-off decisions inherent in these
complex systems. This study addresses work task and resource allocations to workstations together
with buffer capacity allocation in an RMS. The aim is to simultaneously maximize throughput and to
minimize total buffer capacity under fluctuating production volumes and capacity changes while
considering the stochastic behavior of the system. An enhanced simulation-based multi-objective
optimization (SMO) approach with customized simulation and optimization components is proposed
to address the abovementioned challenges. Apart from presenting the optimal solutions subject to
volume and capacity changes, the proposed approach supports decision makers with knowledge
discovery to further understand RMS design. In particular, this study presents a customized SMO
approach combined with a novel flexible pattern mining method for optimizing an RMS and conducts
post-optimal analyses. To this extent, this study demonstrates the benefits of applying SMO and
knowledge discovery methods for fast decision support and production planning of an RMS.

Keywords: reconfigurable manufacturing system; simulation; multi-objective optimization;
knowledge discovery

MSC: 37M05

1. Introduction

In today’s volatile market, manufacturing enterprises are often challenged by ever-
shortening product lifecycles together with unpredictable demands and fluctuating pro-
duction volumes [1]. Therefore, the ability of a manufacturing system to react and adjust
its capacities and equipment to cope with suddenly arising challenging variations en-
compasses a crucial consideration for production organizations [2,3]. The concept of a
reconfigurable manufacturing system (RMS) was introduced to cope with challenges gener-
ated by a dynamic market wherein variations in demand need to be addressed [4]. RMSs
are responsive production systems that, through reconfigurations, can efficiently add, re-
move, or relocate resources and equipment in response to market shifts [5,6]. Specifically,
RMSs are essential to achieve cost efficiency, high flexibility, and to provide better scala-
bility and responsiveness than traditional production systems. Many recent studies have
highlighted that RMS research is a mainstream topic and a major drive towards the future
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of the manufacturing industry because companies need to avoid significant investment
loss caused by non-utilized equipment when facing dynamic market demands [7–9].

An RMS consists of several workstations (WSs) that contain several parallel and
identical resources [10]. When a single-product type is produced, the RMS is classified as a
single-part flow line (SPFL), and when several product types are produced, it is classified
as a multi-part flow line (MPFL) [11,12]. In the automotive industry, where several product
types are produced in the same system, the adoption of MPFL is increasingly common [2].
There are only a few studies that have focused on resource and task assignments of MPFL-
RMSs and the buffer allocation problem has been overlooked.

As a consequence of successfully modeling and analyzing production systems, simulation
methods have been widely employed within the manufacturing industry [13]. In an era of
digitalization, simulation models are essential to better understand and to assess the complex
nature inherent in the dynamic scenarios found in manufacturing systems [14]. Simulation
modeling, particularly discrete-event simulation (DES), is considered to be an effective tool for
handling the uncertain and changing scenarios of manufacturing systems [15,16]. Additionally,
optimization techniques have been used to solve the NP-hard combinatorial problems found
in RMSs. However, despite the success shown by simulation and optimization techniques,
researchers have shown their shortcomings when employed separately. On the one hand, as
the complexity of a system and its decision variables increase, simulation techniques become
impractical [17,18]. On the other hand, most RMS optimization studies have simplified
the problem by disregarding the variability and stochasticity of the systems. Against this
backdrop, simulation-based optimization (SBO) has emerged as a combination of simulation
and optimization that can provide solutions to large-scale problems. SBO investigates an
extensive decision space, searching for the optimal or near-optimal combination of input
variables [19]. Simulation-based multi-objective optimization (SMO) is employed when
several conflicting objectives exist. Although prior studies have applied optimization to deal
with the challenges of RMS configuration, the use of SMO has been very sporadic. Researchers
have identified opportunities for using SMO to tackle RMS NP-hard problems [8,20]. Exact and
heuristic methods have been used for these combinatorial problems, whereas metaheuristic
methods, in particular, genetic algorithms (GAs) for single-objective and non-dominated
sorting genetic algorithm II (NSGA-II) [21] for multi-objective problems, have proven to
perform better in achieving near-optimal solutions in the RMS field [22–24].

For an RMS where many scenarios are involved, SMO generates complex and large
datasets that are difficult to analyze. Knowledge-driven optimization (KDO) is a recent
research area where data mining methods are used on the resulting SMO datasets to expose
underlying knowledge regarding what constitutes the preferred solutions in accordance
with the generated Pareto-optimal front. Decision makers can benefit from using data
mining methods to extract the patterns that support a better understanding of the problems
under different circumstances (e.g., production volumes) [25].

Considering that the preferences of the decision maker are unknown in many real-
world RMS problems, and therefore, they cannot be solved effectively with scalar weighted
functions, this study aims at addressing an RMS system configuration with resource and
work task allocations within a truly multi-objective optimization context. This study aims
at contributing to the RMS research domain as follows:

1. For an MPFL-RMS, a customized NSGA-II is proposed with an encoding and decoding
strategy specifically designed to optimize system configuration subjected to scalable
capacities and fluctuating production volumes by simultaneously addressing the task
assignments to WSs and the buffer allocation problem for maximum throughput
(THP) and minimum total buffer capacity (TBC). With this contribution, this study
does not aim to compare the performance of the customized NSGA-II with other
optimization methods or algorithms but to extend the performance of the NSGA-II
and to show the benefits gained by customizing the genetic representation.

2. To overcome inaccurate results and to cope with the dynamic and stochastic behavior
of an RMS (e.g., resource failures, variability of task times, and inter-station buffers)
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while simultaneously dealing with multiple objectives, the customized NSGA-II is
incorporated with DES to render an SMO approach that takes the dynamic nature of
the RMS into account.

3. This study enhances the proposed SMO approach with a data mining methodology
for a post-optimal analysis on multi-dimensional and multi-objective optimization
datasets by employing a novel flexible pattern mining algorithm in an industrial R&D
RMS application. Knowledge is extracted and represented as decision rules to discover
the underlying patterns that constitute the preferred solutions for a scalable RMS un-
der different production volumes. This contribution exploits the multi-objectiveness
nature of the approach to analyze the trade-off solutions found in the Pareto front and
gain knowledge from it.

The remainder of this article is structured as follows: Section 2 provides a frame
of reference for the RMS challenges, the related work, and an understanding of SMO
combined with multi-criteria decision making and knowledge discovery. In Section 3, we
mathematically formulate the RMS required information. The proposed approach and
the RMS-customized procedures are presented in Section 4. Section 5 introduces the case
application and its multiple instances, and Section 6 shows the results and the discovered
knowledge. Finally, the conclusions are presented in Section 7

2. Frame of Reference
2.1. Reconfigurable Manufacturing System Challenges and Related Work

According to Koren et al., the three main challenging areas that an RMS needs to
address are the configuration of the system, the process planning, and the components of
the system [6]. The system configuration involves the physical arrangement of resources
(e.g., equipment, machines, and operators). The arrangement of the resources impact
aspects such as the scalability, productivity, and functionality of the RMS [5,26]. Most
previous research has focused on the assignment of machines to WSs. The process planning
area addresses balancing the work tasks and assignments throughout the system, affecting
the reconfiguration efficiency to cope with production changes (e.g., scalable capacities and
volume changes) [27,28]. Research within process planning gravitates around work task
assignment optimization. Lastly, the components of a system deal with the required type
and amount of resources, such as machines, operators, buffers, and material handling, to
achieve the desired capacity [6]. This area is crucial for scaling an RMS, and most of the ex-
isting research has merely focused on optimizing the number of resources [1]. Accordingly,
for an RMS to accommodate changes in production during its lifecycle, reconfigurations in
these areas are required. Generally, prior research has targeted one or more of the areas
mentioned above by reallocating, adding, and removing resources, as well as rebalancing
the tasks in the system [3,29]. However, although these areas are studied, they are rarely
addressed simultaneously. Some of the most relevant studies are reviewed below.

2.1.1. Single-Part Flow Lines

Concerning SPFLs, Shabaka and Elmaraghy presented a GA-based method for the
process plan generation of an RMS with cost as an objective [30]. Doe et al. presented
two studies [31,32], in which they introduced two GA approaches for optimizing the
RMS configuration with capital cost as an objective. A single-objective GA approach
aiming at either maximizing THP or minimizing the number of machines employed in
the system was presented in [29]. This study reconfigured a system without buffers, and
tasks were rebalanced to meet specific production capacities. In a subsequent study, the
authors presented five principles for designing a scalable RMS and extended their previous
approach to include three cases in which the inter-station buffers had the same constant
capacity [3]. Moghaddam et al. introduced an integer linear programming model to select
the optimal configuration based on cost [33]. Deif and ElMaraghy also presented a GA
optimization study where cost was utilized as an objective, and the authors investigated
managing the capacity scalability in the RMS [34]. Borisovsky et al. and Makssoud et al.



Mathematics 2023, 11, 1527 4 of 23

presented two different single-objective approaches, a GA approach and a mixed integer
linear programming approach, which were utilized to find the best task allocations to
minimize capital costs and the number of machines, respectively [35,36].

Contrary to single-objective studies, Goyal et al. presented a MOO NSGA-II-based
approach for obtaining the optimal configuration regarding convertibility, cost, and resource
utilization [12]. In a subsequent study, Goyal and Jain extended their previous research
by proposing a particle swarm optimization that searched for an optimal set of SPFL
configurations with the same optimization objectives as before: cost, resource utilization,
and convertibility [37]. A MOO approach for finding the optimal RMS configuration, in this
case, based on a simulations, was proposed by Diaz et al., wherein NSGA-II was employed
for production rate, buffer capacity, and lead time optimization [5]. Targeting the process
plan area, Khezri et al. optimized cost, production time, and sustainability using three
different approaches: a posteriori augmented ε-constraint and two evolutionary approaches,
i.e., NSGA-II and the strength Pareto evolutionary algorithms [38]. Touzout and Benyoucef
employed exact and evolutionary methods to target the process plan area by optimizing
cost, time, and energy consumption during the utilization of machines [39,40].

2.1.2. Multi-Part Flow Lines

In the context of MPFLs, a cost-oriented study considering the availability of the
machines was formulated by Youssef and ElMaraghy to address the RMS configuration
problem using GA and Tabu search [41]. The RMS configuration problem was approached
again by J. Dou et al. using a GA [11]. A mathematical approach to minimize the cost of
the RMS configuration design was developed by Saxena and Jain [42]. Cost was also the
objective in an integer linear programming approach to find the optimal configuration
design in a hypothetical part family proposed by Moghaddam et al. [43]. The RMS resource
selection was approached by Bensmaine et al. using a simulation-based NSGA-II with
completion time as the objective [44]. Bensmaine et al. proposed a new heuristic approach
that was focused on the process plan of a MPFL with the makespan as the objective [45].

From a multi-objective optimization (MOO) perspective, Musharavati and Hamouda
employed a simulated annealing algorithm to address generating a process plan, optimizing
cost, and the THP [46]. Chaube et al. also targeted the process plan area using the conventional
NSGA-II with cost and time as objectives [47]. Doe et al. targeted the flow line design of a
MPFL using NSGA-II with cost and tardiness as objectives [48]. The same objectives were
optimized by Doe et al., introducing, this time, a particle swarm optimization approach [2].

2.2. Simulation-Based Multi-Objective Optimization and Multi-Criteria Decision Making

Multiple conflicting objectives offer many challenges for decision makers in practical
MOO scenarios. Not only do several objectives have to be optimized simultaneously to
find a representative set of the Pareto-optimal front of solutions, but decision makers
also need to select the final trade-off solution to be implemented. Neither one is a trivial
task. A decision maker may have certain preferences about the solutions to a MOO
problem [49,50]. When these preferences are known ahead of the optimization process,
the decision maker may employ a priori methods to focus the search on certain preferred
regions. When the preferences are unknown beforehand, a posteriori methods are used to
find a representation of the entire Pareto-optimal front before the decision maker begins to
analyze the solutions and find a preferred region. Assuming no preference, multi-objective
evolutionary algorithms (MOEAs) are a proficient tool for finding solutions that both
converge close to the true Pareto-optimal front while also having a good spread over the
front. For the decision maker to perform an adequate a posteriori analysis of the solutions, a
MOEA needs to live up to both requirements of convergence and diversity on the Pareto-
optimal front [51]. SMO is the process of combining MOO and simulation. Combining
these two techniques brings advantages to both fields [52]. The general representation
of an SMO problem is defined by several conflicting objectives included in the objective
functions and possibly subjected to several equality and inequality constraints. The use of
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simulation allows the decision maker to optimize a real-world system with much higher
fidelity without the need to simplify the MOOP problem and lose intricate details and
relationships that might exist in the system. Additionally, using MOEAs to solve SMO
problems will discover and explore many more solutions than manual processes [53].

2.3. Knowledge Discovery and Flexible Pattern Mining

Once the optimization process has ended, the decision maker faces many trade-off
solutions to analyze. Much of the literature has focused solely on analyzing the objective
space while disregarding the role the decision space plays in a decision maker’s preferred
solutions. It can be argued that more knowledge about both the objective space and the
decision space and how they relate, generated with data mining and machine learning
methods, will lead to more informed decision making [25,54].

Flexible pattern mining (FPM) [55] is a recent rule-mining method developed explicitly
for knowledge discovery in MOO. FPM is based on the Apriori algorithm [56] and generates
decision rules that describe a decision maker’s preferences regarding selected and unselected
sets of solutions. Typically, the decision maker chooses the selected set as the preferred
non-dominated solutions and the unselected set as the remaining solutions found in the
search. Then, the FPM procedure extracts rules that discriminate the selected set from the
unselected set, on the forms x < c1, x > c2 and x = c3, for a decision variable x and constant
values c1, c2, and c3. Each FPM rule also has an associated significance and insignificance
where the significance indicates the fraction of solutions in the selected set that lives up
to the rule (the support of the rule in the selected set), and the insignificance indicates
the fraction of solutions in the unselected set that corresponds to the rule (the support in
the unselected set). A meaningful and descriptive rule would have high significance while
having low insignificance, thereby describing more solutions in the selected set. Additionally,
using frequent itemset mining, single rules can be combined to find rule interactions and
their significance and insignifiacnce. Consider the following example of a three-level rule
interaction: {x1 < 0.2∧ x2 > 0.3∧ x3 = 4} with significance equal to 90% and insignificance
equal to 5%, it indicates that the combination of these three rules covers 90% of the preferred
solutions, while only capturing 5% of the remaining (unpreferred) solutions.

2.4. Concluding Remarks

To the best of our knowledge, most of the prior studies have neglected real-world
uncertainty and consideration of buffers. Most of the optimization studies have adopted
metaheuristic algorithms. However, the use of MOO is sporadic, and the challenging areas
of an RMS are rarely tackled simultaneously. The limited use of SBO has usually focused on
small single-objective cases and mostly targeted one main area. Nearly all prior work that
has combined simulation and optimization required a manual data transfer from one to
the other [15]. This constitutes an evident research gap in the use of SMO to combine task
and resource assignments of a scalable MPFL-RMS while considering the buffer allocation
problem as an additional decision variable and the unreliability of the resources.

Knowledge discovery methods have been applied to extract patterns from manufactur-
ing systems. Studies have shown that decision rules extracted from applying data mining
and knowledge discovery methods to historical datasets can boost the effectiveness of
production development and constitutes a challenging area for the future of manufactur-
ing systems [57,58]. Although RMSs constitute one of the critical enablers that impacts
significantly on today’s so-needed changeable manufacturing systems, the knowledge-
capturing and decision-making process is very complex due to their intrinsic complexity
and stochastic nature [1,59,60]. Accordingly, considering that the optimization of an RMS
involves a large number of decision variables and that setting-up changeable optimization
scenarios is a time-consuming task, the applicability of knowledge discovery methods to
RMS applications becomes even more crucial. It indicates a research opportunity in order
to support decision makers [6,59].
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Thus, in this article, we aim to mitigate the abovementioned gaps by optimizing the
tasks and resource assignments of a scalable MPFL-RMS while considering the buffer
allocation problem by developing a customized SMO approach enhanced with a novel
FPM method for conducting post-optimal analyses.

3. A MOO Problem Formulation for RMS

This study originated from the challenges that manufacturing enterprises face when
adjusting production resources so that MPFL-RMSs can efficiently address volume and
capacity changes. Many factors must be considered, including work task and resource
reconfigurations to maximize THP and minimize TBC. As the parts mix and volumes
change, the RMS evolves accordingly. Therefore, because decision makers’ preferences are
not incorporated, this study uses a multi-objective problem formulation to analyze how
the throughput is affected by different buffer capacities. The problem assumptions are as
follows:

• An MPFL-RMS that consists of one or several WSs manufactures several products
under different production volumes.

• Resources within the RMS are subjected to maintenance, breakdown, setup times, and
variability of the task times.

• All resources within a WS are identical and perform the same sequence of tasks.
• There are reserved places for adding or relocating resources in the WSs.
• There are inter-station buffers with variable capacity.
• Tasks are subjected to precedence relationship and technological requirements that

ensure a feasibility sequence is performed in specific WSs.

The following notations and their definitions are used while dealing with formulating
and optimizing the MPFL-RMS.

Notations Definition

Indices:
i, r task index
j WS index

m resources index
v variant index

Parameters:
NS number of WS
NV number of variants
NTv number of tasks for variant v (v = 1, . . . , NV)
TNM total number of resources in RMS

NMWSmax maximum number of resources per WS
NMWSmin minimum number of resources per WS

NB number of buffers (NS − 1)
Bmin minimum safety buffer
Bmax maximum buffer capacity
Bunit buffer incremental unit

PRirv
precedence relationships for variant v; 1 if task i is the
predecessor of task r; otherwise 0

TRjiv
technological requirement for variant v; 1 if task i can be
assigned to WS j; otherwise 0

THP throughput per hour
TBC total buffer capacity

Decision variables:
xijv 1 if task i is assigned to WS j for variant v; 0 otherwise
ymj 1 if resource m is assigned to to WS j; 0 otherwise
Bj in-between buffer capacity for WS j and j + 1
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The problem formulation is presented below. The following two conflicting optimiza-
tion objectives are defined:

Maximize f 1 = THP= #products/(simulation horizon− warmup) (1)

Minimize f 2 = TBC = ∑NS
j=2 Bj−1 (2)

The following constraints must be satisfied when optimizing the MPFL-RMS.
Task assignment: For each variant v, each task must only be assigned to one WS, i.e.,

∑NS
j=1 xijv = 1, ∀v, ∀i = 1, 2, . . . , NTv. (3)

Precedence relationships: For each variant v, each task can only be assigned to a WS
only if all its predecessors are assigned to the same WS or earlier, i.e.,

∑NS
j=1 j×

(
xrjv − xijv

)
≤ 0, ∀v, ∀(r, i) = 1, 2, . . . , NTv ∈ {PRirv| PRirv = 1}. (4)

Resource assignment: Each resource must be assigned to a WS, i.e.,

∑NS
j=1 ymj = 1, ∀m = 1, 2, . . . , TNM. (5)

Technological requirement: For each variant v, each task can only be assigned to a WS
if it has the required machinery to perform the task, i.e.,

xijv ≤ TRjiv; ∀v = 1, . . . , NV, ∀i = 1, 2, . . . , NTv, ∀j = 1, 2, . . . , NS. (6)

Minimum WS equipment: At least NMWSmin should be assigned to each WS, i.e.,

∑TNM
m=1 ymj ≥ NMWSmin, ∀j = 1, 2, . . . , NS. (7)

Maximum WS equipment: WSs cannot have more than a certain number of resources, i.e.,

∑TNM
m=1 ymj ≤ NMWSmax, ∀j = 1, 2, . . . , NS. (8)

Buffer capacity: The inter-station buffers should not be less than the minimum safety
buffer (Bmin) and not exceed the maximum buffer capacity (Bmax), i.e.,

Bmin ≤ Bj−1 ≤ Bmax j = 2, . . . , NS. (9)

Because the considered MPFL-RMS belongs to NP-hard optimization problems, the
next section proposes an SMO approach to address it.

4. A Simulation-Based Multi-Objective Optimization Approach

The SMO approach proposed in this paper consists of two major components, i.e.,
simulation and optimization. The simulation component consists of a DES software named
FACTS Analyzer [61] in which the RMS and the studied scenarios are modeled and simu-
lated. The optimization component is implemented in the well-known platform MATLAB
where the assignment of tasks and resources to WS is performed. The tight integration of
the simulation and optimization components allows an accurate representation of a realistic
RMS, including many types of system variables regardless of their nature (e.g., failures,
mean time to repair, availability, process time of resources, etc.) while avoiding simplifying
the RMS as seen in other optimization studies.

The process starts in the optimization component, in which a population of size NP
of priority-based RMS solutions is generated. Then, custom-made RMS-specific encoding
and decoding mechanisms are used to generate feasible RMS solutions. Subsequently,
the generated population of feasible solutions is mapped to the simulation component in
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which the RMS configurations are generated based on the received combination of input
parameters from the optimization. Then, the DES engine runs several replications and
uses the simulation function to evaluate the produced number of products considering
the system’s stochastic nature. After these solutions are simulated, the results of the
simulation-based fitness function evaluation in terms of multiple objectives are fed back
to the optimization component. Next, by using a random solutions selection mechanism,
the population of solutions goes through the crossover and the mutation operators, based
on specific probabilities cp and mp, respectively, generate a new population of offspring.
The above iterative process is repeated until the integrated optimization and simulation
components converge to a set of Pareto-optimal solutions or the stopping criteria, i.e., a
prespecified number of generations (Gmax), is reached. The main structure of the proposed
SMO approach is illustrated in Figure 1.

Figure 1. SMO approach.

In the context of optimization, metaheuristic algorithms have proven to be promising
approaches for any combinatorial optimization problem. Among metaheuristics, GAs have
been extensively employed to optimize manufacturing systems [62]. When dealing with
two conflicting objectives, the NSGA-II is known to be one of the most effective MOEA,
endowing a proper convergence and spread of solutions [22]. Three main factors drive
the outstanding performance of NSGA-II: the fast non-dominated sorting approach that
decreases the computational complexity; the elitism mechanism storing the non-dominated
solutions; and the crowding distance calculation that ensures a diverse population by
comparing and selecting solutions after the non-dominated sorting [63]. In this study, by
incorporating simulation components into the fitness function evaluation of NSGA-II, a
customized SMO-NSGA-II for RMS is developed, as described below.

4.1. SMO-NSGA-II for RMS

The NSGA-II sorts the solutions into different fronts based on their dominance re-
lationship (dominated and non-dominated). The dominance relationship is established
between each pair of solutions by comparing the objectives set by the objective functions.
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The crowding distance ensures a good spread of solutions by determining the density in the
region, impacting the selection of the solutions that will be preserved for future generations.
Once the fast non-dominated sorting is completed, the crowding distance calculation ranks
the solutions in each individual front. The above features of NSGA-II promote the selection
of dispersed solutions on the fronts. The proposed SMO-NSGA-II for RMS is summarized
in Algorithm 1.

Algorithm 1: SMO-NSGA-II

1 Algorithm inputs : Gmax, NP, cp , mp
RMS inputs : TRj,iv, PRirv, NS, NTv, TNM, NMWSmin, NMWSmaxn, NB, Bmin, Bmax, Bunit

2 Using Section 4.1.1, create a population of priority-based representation vectors
3 While g ≤ Gmax
4 Using the proposed encoding and decoding mechanisms in Section 4.1.2 to ensure a
population of RMS feasible solutions
5 Using the simulation component in Section 4.1.3, evaluate the fitness function for
each solution
6 Rank the solutions using the fast non-dominated sorting mechanism
7 Calculate the crowding distance of each solution in each individual front
8 Select parents for crossover using tournament selection
9 Using crossover and mutation operators in Section 4.1.4, generate a new set of offspring
10 Using the elitism mechanism to preserve the best individuals
11 Increment g
12 End
13 Output: The Pareto-optimal solutions for RMS

The components of the SMO-NSGA-II for RMS are described below.

4.1.1. Solution Representation

The NSGA-II starts with an initial population of individual solutions in which each row
represents a string of real numbers (σ) where the elements are randomly generated between
(0,1). The length of a solution string is equal to the number of WSs (NS) plus the number of
tasks for all the variants (∑v∈NV NTv) plus the number of inter-station buffers (NB = NS − 1).
The bit content at the ind-th index, called σind (ind = 1, . . . , NS + ∑v∈NV NTv + NB), contains
the random number showing the relative priority of WSs, tasks, and buffers depending on
where the i index relies, as depicted in Figure 2. As the figure shows, the first NS columns
relate to the WSs priority, meaning that the higher the priority, the more resources will be
assigned to the WS. The same priority rule applies to the buffers in the last NB columns of
the string. The random keys from column NS + 1 to NS + ∑v∈NV NTv relate to the priority
of the tasks, indicating that a task with a higher relative priority value is ranked higher
to be assigned to the WSs. Figure 2 illustrates the solution representation for an example
with two WSs, one inter-station buffer, and two parts to be produced with two and three
tasks, respectively.

Figure 2. Solution representation.

4.1.2. Encoding and Decoding

The encoding and decoding procedures aim at generating a feasible solution for each
solution string in the population.
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For each string, the encoding attempts to find feasible settings for the RMS con-
figuration by assigning resources to the WSs, deciding on the assignment order of the
tasks to WSs, and assigning inter-station buffer capacities. The number of resources
per WS is calculated using NMWSmin + σind × (NMWSmaxn − NMWSmin), where σind
(ind = 1, . . . , NS) refers to the WSs priorities and [ ] is the lowest bigger integer number.
If the total number of resources per WS is not equal to TNM, they are updated until their
sum equals TNM. The assignment order of the tasks to WSs for each variant v is decided
by the flexibilities of the tasks, based on TRjiv, and the proprieties of the tasks based on
σind (ind = NS + 1, . . . , NS + ∑v∈NV NTv), in ascending and descending orders, respec-
tively. The inter-station buffer capacity is calculated using Bmin + σind × (Bmax − Bmin),
where σind (ind = NS + ∑v∈NV NTv + 1, . . . , NS + ∑v∈NV NTv + NB) refers to the prior-
ities of the buffers. If the summation of the inter-station buffer capacities is less than
Bmin × NB or larger than Bmax × NB, then they are updated until they fall in the range
above. The encoding procedure is shown in Algorithm 2.

Algorithm 2: Encoding

1 Input: σ, TRjiv, NS, NTv, TNM, NMWSmin, NMWSmaxn, NB, Bmin, Bmax, Bunit
2 For ind = 1 to end
3 If ind = 1 to NS
4 Calculate the number of assigned resources per WS based on σind, NMWSmin,
and NMWSmaxn
5 If the total number of assigned resources > TNM
6 Sort WSs in terms of their σind in descending order
7 While the total number of assigned resources > TNM
8 Decrease one resource from the sorted WSs in line 6
9 End
10 Elseif the total number of assigned resources < TNM
11 Sort WSs in terms of their σind in ascending order
12 While the total number of assigned resources < TNM
13 Increase one resource to the sorted WSs in line 11
14 End
15 End
16 Elseif ind = NS + 1 to NS + ∑v∈NV NTv
17 For v = 1 to NV
18 Sort the tasks of variant v in terms of their flexibility (based on TRjiv) and priority
(based on σind) in ascending and descending orders, respectively
19 End
20 Elseif ind = NS + ∑v∈NV NTv + 1 to end
21 Calculate the allocated in-between WSs buffer capacity based on σind, NB,
Bmin, and Bmax
22 If the total allocated buffers capacity > Bmax × NB
23 Sort in-between buffers in terms of their σind in descending order
24 While the total number of in-between buffers capacity > Bmax × NB
25 Decrease one Bunit from the sorted in-between buffers in line 23
26 End
27 Elseif the total allocated buffers capacity < Bmax × NB
28 Sort in-between buffers in terms of their σind in ascending order
29 While the total number of in-between buffers capacity < Bmin × NB
30 Increase one Bunit to the sorted in-between buffers in line 28
31 End
32 End
33 End
34 End
35 Output: number of resources per WS, vectors of sorted tasks based on flexibility and priority
per variant, in-between buffers capacity
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For each setting obtained via the encoding procedure, the decoding aims to generate
a feasible solution for the RMS by assigning tasks to WSs, considering the vectors of the
sorted tasks based on the flexibility and the priority for each variant. This is performed
by selecting each task of variant v based on the related vector of sorted tasks, and then
positioning the task within the eligible range of WSs considering the cumulative normalized
vector of TRjiv and their priorities σ. The decoding procedure is shown in Algorithm 3.

Algorithm 3: Decoding

1 Input : PRi rv, TRjiv, NS, NTv, vectors of sorted tasks based on flexibility and priority per
variant
2 For v = 1 to NV
3 For i = 1 to NTv
4 task = set the selected task as the ith index in the sorted tasks vector for variant v
5 Normalize the TRjiv matrix by TR2jiv = TRjiv/ ∑j∈NS TRjiv

6 Calculate the accumulative sum for TR2jiv by TR3jiv = ∑
j2
j=1 TR2jiv where j2 = 1 to NS

7 Station= min
j

f ind
{

TR3j task v ≥ σtask

}
; set the selected station by finding the next index

where TR3j task v is bigger than σtask for variant v
8 Update TRjiv after the current task has been assigned to WS for variant v including all
its predecessors and successors in PRi rv
9 End
10 End
11 Calculate the total task time per variant per WS
12 Output: A feasible solution for RMS includes the number of resources per WS (encoding),
assignment of tasks to WSs (decoding), the total task time per variant per WS (decoding), and
in-between buffers capacity (encoding)

4.1.3. SMO-Based Fitness Function Evaluation of the RMS Solution

To guide the optimization and enable NSGA-II to perform the non-dominated ranking,
the simulation measures and provides the fitness function of the solutions. To this end, each
RMS solution is mapped to the simulation component, where a simulation scenario is built
according to the information received from the optimization. These sets of scenarios are
simulated, including the production variabilities in terms of availability of resources,
failures, setup times, and production proportions. For each scenario, the simulation
component calculates the value of the objective functions in terms of THP and TBC before
they are fetched back to the optimization component.

4.1.4. Genetic Operators (Crossover/Mutation)

To preserve diversity between generations, the genetic operator takes place randomly
in each generation, as inspired by biological processes. To ensure that the best solutions are
more likely to get more copies, tournament selection is used to select the best solutions to be
preserved based on the SMO-based fitness function evaluation. Then, they go through the
crossover and the mutation operators to generate a new diverse population. The crossover
and mutation probabilities (cp and mp) of the genetic operators indicate the percentage of
the population that will go through these processes.

A two-points-based weight mapping crossover is implemented. This crossover opera-
tor can be explained in four steps. The first step randomly chooses two intervals on the
chromosomes of two selected solutions (parents). In the second step, the bits included in
the crossover interval are ranked in ascending order based on their priority values. A lower
ranking value indicates a bit with a higher priority. In the third step, the ranks between
the chosen intervals are swapped between the parents, and the priorities are rearranged
based on the new ranks. Therefore, the offspring are generated according to the newly
mapped priorities in the four steps. The upper part of Figure 3 illustrates the implemented
crossover steps.
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Figure 3. Genetic operators.

The implemented mutation operator swaps the values of two randomly selected bits.
The bits that are not selected are preserved from the parent. The bottom part of Figure 3
illustrates the mutation operator, where the darker bits represent those that are swapped.

The applicability of the proposed SMO-NSGA-II is demonstrated using an application
case and its multiple instances described in the next section.

5. An Application Case with Multiple Instances

The case is based on an MPFL at a R&D facility of a truck manufacturer in Sweden,
where the manufacturer tests and evaluates future concepts. The system manufactures
two product families. The company has invested in three reconfigurable WSs in which
the resources can be added, removed, or reallocated to a different WS if required due to
production changes. Each WS has space for up to five resources (e.g., operators). Figure 4
represents an example of the MPFL in which there are seven operators configured in a 3-2-2
setting, meaning three operators in the first WS, and two operators in each of the remaining
WSs. It can be observed that there are two, three, and three extra spaces remaining for
resources in the first, second, and third WS, respectively. Furthermore, the WSs of this
MPFL are subjected to uncertainty and variability, and they consider a specific availability
and mean time to repair (MTTR). The availability is considered to be 85% with a 10-minute
MTTR. There are two inter-station buffers with a minimum safety capacity of Bmin = 1
and a maximum buffer capacity of Bmax = 40. Additionally, the buffers require 5 s for
loading/unloading as the material handling times.
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Figure 4. MPFL layout.

In the studied case, the two product families must be produced at specific volumes
to meet customers’ demands. As the customers’ demands vary over time, the MPFL
configuration, the components of the system, and the process plan evolve accordingly to
meet the new requirements. Changes in the line involve the total number of resources
needed, the layout configurations in the WSs, as well as the assignment of the tasks to the
resources. Moreover, a configuration change is required to accommodate a new demand
requirement, which also implies changes in buffer capacity. The manufacturing company
was interested in finding out the production capacity of the MPFL with an initial investment
of seven operators for different production proportions, i.e., 70/30 (70% part 1 and 30% part
2) and 30/70. In addition, the company also requested information regarding the capacity
that could be gained if one and two operators were added to the system, including where
they needed to be placed according to the desired production proportion and the new
optimized tasks assignment of both parts. This study simultaneously strives for maximum
THP and minimum TBC as the optimization objectives, while deciding on the capacity of
the buffers in the line and the allocation of resources and tasks to WSs according to the
desired scenarios.

The total task time of Part 1 is 336.38 s, divided into 29 tasks, while the total processing
time of Part 2 is 293.38 s, divided into 24 tasks. Figure 5 shows the precedence relationship
of the tasks for both parts.

Figure 5. Precedence graphs.
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6. Experimental Results and Knowledge Discovery

The SMO-NSGA-II approach is implemented in MATLAB VERSION 2022a and Facts
Analyzer version 3.1.7. The experiments include six different scenarios that investigate the
above-explained RMS under variable production proportions utilizing a scalable number
of operators. A baseline simulation model of the RMS was developed in the mentioned
DES software to be used in the proposed SMO approach. Every scenario was optimized
using 500 generations and a population size of 50.

Figure 6 illustrates the objective space of the non-dominated solutions found by the
proposed SMO-NSGA-II for the RMS regarding the studied scenarios. According to this
figure and as it was expected, the more operators used, the higher the THP of the system.

Figure 6. Objective space of non-dominated solutions.

To better explain the results in Figure 6, the obtained ranges for the THP, the capacities
of the inter-station buffers (Bu1 and Bu2), and the TBC (sum of Bu1 and Bu2) for each
scenario are shown in Table 1. Each scenario in the table is characterized by the number
of operators used (NO) and the production proportion. Considering the maximum THP
obtained as the results of different scenarios shown in Table 1, one can observe that the
optimized average THP increases that can be gained from every operator added to the
considered RMS are approximately 9.64 JPH (jobs per hour) for the 30/70 proportion and
8.11 JPH for the 70/30 proportion. This is important for engineers to consider when scaling
up (or down) the system to adjust the production volume required.

Table 1. Throughput and buffers capacity ranges.

NO Proportion THP Bu1 Bu2 TBC

7 30/70
70/30

66.76–68.90
62.86–65.48

2–13
2–6

2–14
2–21

4–27
4–27

8 30/70
70/30

79.31–79.82
78.27–79.81

3–7
2–16

4–28
2–24

7–35
4–40

9 30/70
70/30

83.86–88.18
82.16–84.69

2–5
2–5

3–33
2–7

5–38
4–12

Table 2 presents how the results presented in Table 1 are attained in terms of the
system configuration (operators per WS) and the task allocations per WS. Under columns
WS1, WS2, and WS3, the number of parallel operators employed in Workstations 1, 2, and
3 are presented, respectively. The last column shows the number of tasks performed at
each WS (i.e., no. tasks allocated to WS1/no. tasks allocated to WS3/no. tasks allocated
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to WS3). Note that the more operators at a WS, the more tasks assigned to the WS. Ad-
ditionally, it is shown that, in most cases, the number of tasks per WS ranges among the
non-dominated solutions.

Table 2. Configurations and work task allocations.

NO Proportion WS1 WS2 WS3 Tasks

7 30/70
70/30

1
1

2
2

4
4

9/14–15/29–30
8/11–12/33–34

8 30/70
70/30

2
3

3
2

3
3

13–16/17–20/19–20
19–20/12–14/20–21

9 30/70
70/30

2
2

3
3

4
4

13–14/12–14/26–28
15–16/13–15/23–24

An overview of a core tenant of this approach, the assignment of tasks to WSs, and
the related pattern in the non-dominated solutions are presented in Figure 7. In this figure,
each row represents one solution, and each column illustrates one task for either Part 1 or 2.
Moreover, the color of the cells indicates the WS where the related task (A indicates tasks
from Part 1 and E indicates tasks from Part 2) of each part has been assigned. The figure
shows how most non-dominated solutions for each scenario share common task allocations.
Nonetheless, all solutions shown in Figure 7 are distinct in terms of the allocation of the
inter-station buffers.

Figure 7. Task assignment in the non-dominated solutions for the RMS scenarios.

6.1. Approach Comparison

In this subsection, the proposed SMO-NSGA-II is compared to the standard SMO
approach presented by [1] for RMS, in which both optimization and simulations are run
on the standard SMO approach. This comparison aims to explore whether the proposed
SMO approach with customized procedures improves the resulting RMS solutions. To
this end, the same scenarios were implemented and optimized using the standard SMO
approach and the same algorithm settings for the considered RMS application and its
multiple instances. The abovementioned study proved that the standard SMO approach
was effective for an industrial RMS application. However, the total number of decision
variables was much lower, mainly due to the total number of tasks of the produced
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products, which was 25 tasks compared to the 53 tasks involved in the current RMS. The
standard SMO approach uses a commercial NSGA-II embedded in the software that does
not allow customization of specific procedures such as encoding and decoding, leading to
a repair mechanism.

A comparison of the convergence rates of the standard SMO and the proposed SMO
approaches is shown in Figure 8 by plotting the hypervolume (HV) [64] of the optimization
algorithms at each generation. The higher the HV, the better the quality of the obtained solu-
tions. According to this figure, one can observe that the proposed SMO approach has better
convergence than the standard SMO approach in finding Pareto-optimal RMS solutions.

Figure 8. Convergence rate plots of the standard and proposed SMO approaches for the scenarios
with 7 operators (left-hand side), 8 operators (center), and 9 operators (right-hand side).

Furthermore, the HV of the non-dominated solutions obtained by the optimization
approaches for different scenarios, including the number of operators (NO) and the pro-
duction proportions, are shown in Table 3. The comparison of results in Table 3 indicates
that, in all considered scenarios, a considerable improvement in HV was achieved when
the proposed SMO approach was applied. These improvements can be explained by
the customization of NSGA-II performed in the proposed SMO approach, enabling the
optimization algorithm to deal with larger and more complex RMS applications.

Table 3. Quantitative HV comparison.

NO Proportion Proposed SMO Standard SMO

7
30/70 1.066 × 100 3.277 × 10−1

70/30 1.055 × 100 3.516 × 10−1

8
30/70 1.031 × 100 2.981 × 10−1

70/30 1.159 × 100 1927 × 10−1

9
30/70 1.070 × 100 3.512 × 10−1

70/30 9.341 × 10−1 3.072 × 10−1

To further validate that the proposed SMO approach outperforms the standard SMO
approach, not just when increasing the number of operators used, we increased the number
of WSs in the system. In this case, a new set of optimization scenarios was designed for the
system using nine operators but distributed in four and five WSs with the same production
proportions considered above.

The convergence rate plots, presented in Figure 9, for the system with four and five
WSs also confirm a better convergence for the proposed SMO approach when finding
the Pareto-optimal front. Similarly, the HV obtained from both approaches for the non-
dominated solutions indicates significant improvements for the four new scenarios tested,
as shown in Table 4.
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Figure 9. Convergence rate plots of the standard and proposed SMO approaches for the 9 operators
scenario distributed in 4 and 5 WSs.

Table 4. Quantitative HV comparison for the 9 operators scenario distributed in 4 and 5 WSs.

WS Proportion Proposed SMO Standard SMO

4
30/70 1.103 × 100 2.233 × 10−1

70/30 1.021 × 100 2.422 × 10−1

5
30/70 1.074 × 100 2.980 × 10−1

70/30 9.153 × 10−1 2.840 × 10−1

A better convergence rate and HV performance can also be observed when plotting
the solutions in the objective space. Figure 10 presents all solutions for the proposed SMO
(blue points) and the standard SMO (red points) approaches for three, four, and five WSs.
The three upper graphs in the figure refer to the 30/70 proportion scenarios, while the
three lower graphs refer to the 70/30 proportion scenarios. As expected, the figure shows
that, regardless of the number of WSs used in the system, the proposed SMO approach still
outperforms the standard SMO approach, reaching significantly better solutions regarding
the conflicting objectives.

Figure 10. Solution point comparison for the 9 operators scenario distributed in 3, 4, and 5 WSs.

6.2. Knowledge Discovery from SMO

This subsection presents the knowledge discovered by applying FPM to datasets
generated by the proposed optimization approach. Due to the ability of an RMS to increase
and decrease the number of resources to address, among other challenges, fluctuating
production volumes, in this study, we focused on discovering generalized knowledge
regarding the different numbers of operators employed and the production proportions for
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the two products in the considered RMS application and its multiple instances. Therefore,
to run the FPM procedure, the scenarios were merged into five groups in terms of the
different numbers of operators and production proportions. FPM generates knowledge
in the form of decision rules, and we focused on generating knowledge for both task
allocations per WS and buffer allocations.

For each group, we ran FPM with the non-dominated solutions from the involved
scenarios as the selected set while keeping the remaining solutions (dominated and non-
dominated) as the unselected set. In this way, general knowledge was discovered between
the scenarios. Because of the high number of decision variables involved that impacted
the run time of the FPM procedure, the maximum level of rule interactions was limited
to five, and the minimum required significance of the rules that described the selected set
was set to 90%. The openly available decision support tool Mimer (https://assar.his.se/
mimer/html/, accessed on 15 January 2023) was employed to generate the results. Mimer
enables the interactive knowledge discovery framework for MOO proposed in [65]. The
rule interactions found by using FPM regarding task allocations are presented in Table 5,
where “A” and “E” refer to the related tasks for Part 1 and Part 2, respectively. The value of
the variable represents in which WS the task was assigned. As an example, the first rule of
the table, for the case with seven operators, states that in 100% of the solutions found in the
Pareto-front, for Part 1, Task 10 was set to WS 2, whereas for Part 2, Task 5 was set to WS 2,
Task 23 was set to WS 1, Task 4 was not set to WS 3, and Task 6 was not set to WS 1.

Table 5. Decision rules regarding work task allocations.

Scenario
NO Proportion Rule-Interaction Sig. Unsig.

7 A10 = 2 ∧ E4 6= 3 ∧ E5 = 2 ∧ E6 6= 1 ∧ E23 = 1 100% 10.49%
8 A10 = 1 ∧ A14 6= 1 ∧ A17 = 2 ∧ E7 = 1 ∧ E16 = 2 100% 15.44%
9 A23 = 2 ∧ A26 = 1 ∧ E6 6= 1 ∧ E9 6= 1 ∧ E23 = 1 90.00% 11.91%

30/70 A2 6= 3 ∧ A14 = 3 ∧ E3 = 1 ∧ E10 6= 1 ∧ E23 6= 3 97.06% 29.98%
70/30 A3 = 1 ∧ E3 6= 3 ∧ E11 6= 2 ∧ E13 6= 1 ∧ E23 = 1 100% 23.97%

Looking at the rules presented in Table 5, we can see that the scenario with seven
operators has the highest ratio significance of 100% and unselected significance of 10.49%,
meaning that all non-dominated solutions support the rules found while only 10.49%
of the unselected set of solutions support the rule interaction. This implies that the non-
dominated solutions in this scenario are perhaps easier to distinguish than the rest. Another
highlighted aspect from the rules of the seven operators scenario is a higher involvement
of tasks for Part 2 than for Part 1. This could indicate that Part 2 needs to be prioritized
over Part 1 when seven operators are employed regardless of the production proportion.
Additionally, it can also be seen that the scenarios focused on the number of operators have
a lower unselected significance than those focused on the production proportion. Therefore,
more general knowledge is extracted regarding the number of operators employed in the
system than the production proportion.

Decision makers can use the results presented in the table to identify which tasks to
prioritize when a new scenario needs to be optimized. Another interesting aspect extracted
is the importance of some tasks. When looking at the table, it can be seen that Task E23 (Task
23 of Part 2) is repeated in almost all the rules, suggesting the relevance of this task for the
overall RMS. Furthermore, as can be interpreted from the rules, E23 does not take the value
3; in fact, in all the cases, one is equal to 1, meaning that this specific task should, instead,
be allocated at the beginning of the RMS and never in the last WS. Furthermore, Table 5
shows that, regarding the decision rules extracted for all studied scenarios, except for the
scenario with eight operators, there is a higher involvement of Part 2 than that of Part 1.
This suggests that decision makers could prioritize the assignment of the tasks for Part 2
over Part 1, even in cases where the production of Part 1 is greater such as 70% of Part 1 and
30% of Part 2 production volumes. Consequently, with this information, decision makers

https://assar.his.se/mimer/html/
https://assar.his.se/mimer/html/
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can better understand which decision variables are more critical and how they impact the
overall performance of the system. It is important to note that the rules in the table best
distinguish the selected set from the unselected set. A rule would not be interesting if
it has both a high significance and a high unselected significance; only the rules unique
to the non-dominated solutions in each group of scenarios distinguish the selected and
unselected sets.

Table 6 presents the decision rules extracted regarding WSs and buffer allocation. Sim-
ilar to the rules describing task allocations presented in Table 5, the unselected significance
of the results in Table 6 confirms that it is more difficult to generalize knowledge regarding
production proportion compared to the number of operators used. Additionally, we can
see that the unselected significance results for the rules in Table 6 are higher than in Table 5,
meaning it is more difficult to distinguish the scenarios based on the workstation and buffer
allocation. This is, however, expected since the number of variables considered in Table 5 is
much greater (53) than the number of variables considered in Table 6 (5). Furthermore, the
rules presented in Table 6 provide information regarding operators’ load per WS, hinting
at which WSs need a higher or lower number of operators. Likewise, interesting aspects
can be extracted from the rules regarding the inter-station buffers, for example, the rules
display information regarding each buffer’s maximum capacity, which decision makers
can use when deciding on new scenarios. This analysis shows that the FPM procedure can
provide decision makers with a better knowledge of the system and consequently save
time and cost.

Table 6. Decision rules regarding workstations and buffer allocations.

Scenario
NO Proportion Rule-Interaction Sig. Unsig.

7 WS1 = 1 ∧WS2 = 2 ∧ Bu1 < 7 ∧ Bu2 < 22 90.63% 20.51%
8 WS3 = 3 ∧WS1 6= 1 ∧ Bu1 < 17 ∧ Bu1 > 2 92.86% 26.15%
9 WS2 = 3 ∧WS3 = 4 ∧ Bu1 < 7 ∧ Bu2 < 34 100% 24.80%

30/70 WS1 < 3 ∧WS2 6= 1 ∧ Bu1 < 15 ∧ Bu2 > 2 94.12% 71.01%
70/30 WS2 6= 1 ∧WS3 > 2 ∧ Bu1 < 17 ∧ Bu2 < 25 100% 83.81%

The employed FPM methods and knowledge discovery can also be used to compare
the performances of the SMO approaches. The significance of the rules indicates their
quality in achieving better results. For comparison purposes, we ran FPM regarding work
task allocations using the datasets generated by the standard SMO approach. Table 7
displays the decision rules. The results presented in this table are particularly different
from the rules presented in Table 5, implying that the standard SMO approach did not
converge to optimal solutions.

Table 7. Decision rules of the standard SMO approach regarding work task allocations.

Scenario
NO Proportion Rule-Interaction Sig. Unsig.

7 A16 6= 1 ∧ A18 = 3 ∧ E5 6= 1 ∧ E19 6= 2 ∧ E21 = 2 92.86% 16.48%
8 A5 6= 2 ∧ A11 = 2 ∧ A13 6= 2 ∧ A28 6= 2 ∧ E19 6= 2 90.48% 23.00%
9 A4 = 3 ∧ A12 = 2 ∧ A18 6= 1 ∧ E4 6= 2 ∧ E19 6= 3 100% 6.83%

30/70 A5 6= 3 ∧ E4 6= 3 ∧ E5 6= 1 ∧ E11 6= 2 ∧ E16 6= 1 96.00% 15.57%
70/30 A13 6= 2 ∧ A16 = 2 ∧ A21 6= 1 ∧ A28 6= 1 ∧ E18 6= 1 91.30% 29.21%

In addition, the significance/insignificance relationship of the rules, displayed in
Table 7, indicates they are less relevant to achieve better results when compared to those
displayed in Table 5. This is further exposed for the seven machines scenario, as shown
in Figure 11. This figure presents both datasets, where a circle indicates solutions from
the proposed SMO approach and a square indicates a solution from the standard SMO
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approach. The solutions that match the rules for seven machines extracted through the
proposed SMO are highlighted in blue, and the solutions that match the rules extracted
from the standard SMO approach are highlighted in red in both datasets. On the one hand,
the number of solutions that match the rules extracted from the proposed SMO approach
is significantly smaller than those matching the rules from the standard SMO approach.
Since almost no blue points were found in the standard SMO dataset, this demonstrates the
uniqueness and quality of the rules extracted from the proposed SMO approach dataset. On
the other hand, many solutions match the rules extracted from the standard SMO approach
regardless of the dataset. This proves that the rules extracted from the standard SMO dataset
are not unique and do not represent the optimal solutions. Many of the solutions in the
proposed SMO dataset match the rules extracted from the standard SMO dataset; however,
as shown in Figure 11, they do not provide the best performance. Consequently, evaluating
the quality of the rules extracted using FPM supports the statement from Section 6.1, where
the proposed SMO approach outperforms the standard SMO approach.

Figure 11. Rules quality comparison for the 7 machines scenario.

7. Conclusions

In the current uncertainty and competitiveness of the market, RMS applications play a
significant role in the success of manufacturing industries. However, prior SMO research
that has considered the variability of RMS applications is scarce and neglects knowledge
discovery to support decision makers. This study introduced a novel SMO approach to
concurrently address the main challenging areas by combining task and resource assign-
ments with the configuration of a system in a scalable MPFL, while considering the buffer
allocation dilemma as an additional decision variable and the unreliability of the system. A
customized SMO-NSGA-II approach was developed with specifically designed solution
representation, encoding, and decoding mechanisms combined with a simulation compo-
nent where the RMS solutions could be evaluated in terms of conflicting objectives, namely,
the THP and TBC. The performance of the proposed SMO approach was tested against the
standard SMO approach in the studied application with its multiple instances. The experi-
mental results show the proposed SMO approach is promising in finding Pareto-optimal
solutions compared to the standard SMO approach. It should be emphasized that instead of
comparing the performance of the customized NSGA-II with other optimization algorithms,
the current study focuses on showing how the performance of an ordinary SMO algorithm,
such as NSGA-II, can be significantly enhanced by the problem-customized genetic repre-
sentation. Furthermore, due to the ever-increasing amount of data generated by the MOO
of an RMS, which is required to address frequent market changes, this study demonstrates
how knowledge discovery and data mining methods can be used for extracting decision
rules from RMS problem instances.
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Essentially, the proposed enhanced SMO approach provides fast decision support for
RMS production planning, especially when facing fluctuating production volumes. To this
extent, the proposed approach supports decision makers with key information to enable
an RMS with the capability to provide the required production capacity when needed.
Specifically, this approach reveals underlying information that facilitates understanding the
RMS and how the decision variable affects the performance of the system. This study used
the FPM procedure to generate significant knowledge in the form of decision rules that
describe the tasks and resource allocations to workstations and buffer capacity allocations
for all considered scenarios.

Future research will use the generated knowledge to achieve faster optimization of addi-
tional scenarios using a process known as knowledge-driven optimization (KDO) [25]. Since
FPM generates knowledge in the form of explicit decision rules, it would be straightforward
for an optimizer to incorporate rules describing a general scenario into a future optimization
run by applying the rules as constraints in the decision space. Future work may also consider
additional RMS aspects, such as sustainability and reconfiguration frequency.
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