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Some correlation tests for vectors of large dimension
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ABSTRACT
For a random sample of n iid p-dimensional vectors, each partitioned
into b sub-vectors of dimensions pi, i ¼ 1, :::, b, tests for zero correl-
ation of sub-vectors are presented when pi � n and the distribution
need not be normal. The test statistics are composed of U-statistics
based estimators of the Frobenius norm measuring the distance
between the null and alternative hypotheses. Asymptotic distribu-
tions of the tests are provided for n, pi ! 1, with their finite-sample
performance demonstrated through simulations. Some related tests
are discussed. A real data application is also given.
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1. Introduction

A considerable part of multivariate statistics concerns studying correlations and their
structures. Often an observed vector can be partitioned into several sub-vectors, possibly
of different dimensions, and the interest focuses on testing independence, or reveal the
cross-correlations, among sub-vectors; canonical correlation analysis being an important
application. We discuss such tests of independence or zero correlation of two or more
sub-vectors when the dimensions of the sub-vectors may exceed their number and the
data may follow a non-normal distribution. Let

Xk ¼ ðX0
k1, :::,X

0
kbÞ0 2 R

p, k ¼ 1, :::, n,

be iid vectors partitioned into b� 2 sub-vectors Xki 2R
pi with EðXkÞ ¼ l¼

ðl01, :::,l0bÞ0 2R
p, CovðXkÞ¼ EðXk�lÞðXk�lÞ0 ¼R¼ ðRijÞ b

i, j¼1 2R
p�p, where EðXkiÞ¼

li 2R
pi and CovðXki,XkjÞ¼ EðXki�liÞðXkj�ljÞ0 ¼Rij 2R

pi�pj : A hypothesis of frequent

interest in multivariate theory is of independence of Xki (see e.g. Anderson 2003;
Muirhead 2005)

H0 : Xki??Xkj 8 i 6¼ j vs: H1 : X1i ??= X1j for at least one pair i 6¼ j: (1)

As it leads to a drastic dimension reduction under H0, the test is even more desirable
for large parameter spaces which motivates our main objective, that is, to present a test
of H0 when pi � n: Multivariate theory offers likelihood ratio tests of (1) under
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normality, that is, Xk � N pðl,RÞ, whence Xki??Xkj () Rij ¼ 0 and H0 in (1) reduces
to testing significance of cross-correlations, that is,

H0 : Rij ¼ 0 8 i 6¼ j vs: H1 : Rij 6¼ 0 for at least one pair i 6¼ j: (2)

Thus, under normality, (1) () (2), where in general (1) ) (2). There is extensive lit-
erature on the tests of H0 in the classical set up, that is, n > pi: Anderson (1999) and
Eaton and Tyler (1994) established basic asymptotic theory with an extension for non-
normal case in Muirhead and Waternaux (1980), where Nkiet (2017) discussed the case
of multiple blocks. A nonparametric test is considered in Gretton and Gy€orfi (2010),
Pfister et al. (2018) provide a kernel based test, Horv�ath, Hu�skov�a, and Rice (2013) treat
the case for functional data and Albert et al. (2015) give permutation tests.
The classical tests, however, collapse or are inefficient when pi > n, mainly due to

singularity of R̂ or R̂ii, i ¼ 1, :::, b, where Â denotes an estimator of A: Several modifi-
cations have recently been put forth; see for example, Schott (2008) where a test of
complete independence is given in Schott (2005), an extension of which is given in Mao
(2020). Yang and Pan (2015) extend the canonical correlation through regularization for
high-dimensional case. Another test, using block correlation matrices, is proposed in
Bao et al. (2017), where Srivastava, Kollo, and von Rosen (2011) and Xu (2017) provide
diagonality tests relaxing normality assumption, where a similarity coefficient based
treatment is given in Ahmad (2019).
We present tests of H0 in (1) when the data are high-dimensional but not necessarily

normal. The tests are defined as U-statistics with kernels estimating the Frobenius norm
of cross-covariance matrix Rij: This helps us study the properties of tests under a gen-
eral multivariate model with certain mild assumptions. For practical use, however, we
also provide simpler, computationally more efficient versions of the same estimators.
An important property of the tests is that they are location-invariant, so that the true

mean vector can be assumed zero for their use, without any loss of generality. This
property follows from the kernels of the U-statistics used to compose the test statistics.
Given that, a completely affine invariant test in high-dimensional set is possible only
under very restricted cases, the location-invariance property provides an added value to
the tests for their practical applications.
Tests under normality are presented in Section 2, with an extension to the general

case in Section 3. Some related tests are discussed in Section 4. Section 5 provides simu-
lation based assessment and a real data application is given in Section 6. Proofs are col-
lected in the Appendix.

1.1. A note on notations

Following basic notations will be used throughout the manuscript. Given the data set

above, we assume CovðXkÞ ¼ R 2 R
p�p
>0 , where R

a�b denotes the space of real (and
symmetric, positive-definite, if a¼ b) matrices, so that Rii > 0 (i¼ j). We assume, with-

out loss of generality, that pi � pj 8 i < j, i, j ¼ 1, :::, b: For a matrix Ap�q, kAk2 ¼
trðA0AÞ denotes the Frobenius norm. The notation xabcd ¼ trðAabAbcAcdAdaÞ, Aab 2
R

a�b, will help us simplify many expressions. Since the test statistics are defined as U-
statistics, at times, we assume a Hilbert space L2ð�Þ equipped with inner product h�, �i :

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 2145



R
p � R

p ! R, used to define the kernel hð�Þ as measurable, square-integrable function,Ð
h2dP < 1, composed of symmetric bilinear forms denoted as Akl12 ¼ X0

k1Xl2 with
Ak1 ¼ X0

k1Xk1 corresponding quadratic form.

2. Test statistics under normality

2.1. The case of two blocks

For the set up in 1.1, let b¼ 2 so that Xk ¼ ðXk1,Xk2Þ0: For a quadruplet
fXki,Xri,Xli,Xsig 2 Xi, k 6¼ r 6¼ l 6¼ s, let Dkri ¼ Xki � Xri, Dlsi ¼ Xli � Xsi with EðDkriÞ
¼ 0, CovðDkriÞ ¼ 2Rii, i¼ 1, 2, EðDkr1D0

kr2Þ ¼ 2R12 so that EðAlskr12Þ ¼ 4kR12k2 for the
bilinear form Alskr12 ¼ Alskr1Akrls2 with Alskri ¼ D0

lsiDkri: Denote Bklrs12 ¼ Alskr12 þ
Alksr12 þ Alrks12 and PðnÞ ¼ nðn� 1Þðn� 2Þðn� 3Þ: The test statistic for H0 is defined
as following where pð�Þ implies all indices unequal.

T2 ¼ 1
PðnÞ

Xn
k¼1

Xn
r¼1

Xn
l¼1

Xn
s¼1

pðk, r, l, sÞ

1
12p1p2

Blskr12, (3)

T2 is a U-statistic with EðT2Þ ¼ kR12k2=p1p2 and

VarðT2Þ ¼ 2
PðnÞp21p22

4aðnÞkR12R21k2 þ 2bðnÞx1122 þ cðnÞ kR12k½ 	2 þ kR11k2kR22k2
� �� �

(4)

¼ 4
PðnÞp21p22

kR11k2kR22k2cðnÞ ¼ 4
p21p

2
2
kR11k2kR22k2O 1

n2

� �
under H0, (5)

where aðnÞ ¼ 3n3 � 24n2 þ 44nþ 20, bðnÞ ¼ 6n3 � 40n2 þ 22nþ 181, cðnÞ ¼ 2n2�
12nþ 21: Tests for high-dimensional covariance matrices are often defined in terms of
Frobenius norm between the null and alternative hypothesis. Following this, we can

define a test as an estimator of kR� RDk2 with R ¼ RD ¼ �2
i¼1Rii under H0, where �

denotes the Kronecker sum. Since kR12k2 ¼ kR12 �Ok2 measures the same distance
between H0 and H1, it helps us define a simpler form of T2 in Equation (3) as an esti-

mator of kR12k2:
Note that, T2 is defined as a non-parametric (U-statistic) estimator of kR12k2 to test

H0 in (1) which, under normality, implies (2). It holds since EðT2Þ ¼ kR12k2 ¼ 0 under
H0 in both (1) and (2). This will help us keep the same statistic for the non-normal
case in Section 3. Further, T2 is location-invariant. If, however, we can assume that l ¼
0, then EðXk1X0

k2Þ ¼ R12 so that EðArk1Akr2Þ ¼ kR12k2 with Arki ¼ X0
kiXri, k 6¼ r, i¼ 1,

2, and T2 in (3) simplifies to
Pn

k 6¼r Ark1Akr2=p1p2QðnÞ, QðnÞ ¼ nðn� 1Þ: As a U-statis-

tic of order 2, it is simpler than T2 and has simpler properties, except that it is not loca-
tion-invariant.
For the limit of T2, we need certain assumptions. We state them in a general form to

also use them later when we generalize T2 to b � 2 blocks and to non-normal case. Let
ksi be the eigenvalues of Rii, so that �si ¼ ksi=pi are those of Rii=pi:
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Assumption 1. For pi ! 1,
Ppi

s¼1 �si ¼ Oð1Þ, i ¼ 1, :::, b � 2:
Assumption 2. For n, pi ! 1, pi=n ! d0 2 ð0,1Þ, i, ¼ 1, :::, b � 2:

Let g212 ¼ f=u, f ¼ kRijk2=pipj (i¼ j o ri 6¼ j, i, j ¼ 1, 2), so that u ¼ kR11kkR22k=p1p2:
By Assumption 1, kRijk2=pipj ¼ Oð1Þ and xiijj ¼ Oð1Þ, i, j¼ 1, 2 (see 1.1). Thus, f, u, g12
are each bounded, and from (4)

Var nðT2 � kR12k2Þ=u
� �

¼ ðg212 þ 1ÞOð1Þ þ oð1Þ, (6)

which further implies Var½nðT2 � kR12k2Þ=u	 ¼ Oð1Þ: In particular, under H0,
VarðnT2=uÞ ¼ Oð1Þ so that nT2 has a non-degenerate limit, under the assumptions.
That this is the case for many useful covariance structures under the assumptions, con-
sider for example, R ¼ ð1� qÞIþ qJ (compound symmetric, CS) with I as identity
matrix, J ¼ 110, 1 a vectors of 1 s, q 2 R, � 1=ðp� 1Þ � q � 1: Then trðRm

ii Þ ¼
OðpmÞ, m¼ 1, 2, satisfying Assumption 1. Note that, CS belongs to the class of spiked
structures where a few eigenvalues dominate the rest. In Section 5, we show the accur-
acy of T2 under CS, and under AR(1) as non-spiked structure. Assumptions 1 and 2
will let part of VarðnT2Þ vanish and the rest uniformly bounded, providing the
required limit.
Theorem 1 gives the limit of T2 which holds only under Assumptions 1 and 2 (in

fact, the null limit needs only Assumption 1). In the theorem, r2T2
denotes VarðT2Þ in

Equation (4) and r2T20
denotes VarðT2Þ under H0 in Equation in (5).

Theorem 1. For T2 in (3), ðT2 � kR12k2Þ=rT2 !D Nð0, 1Þ as n, pi ! 1, under
Assumptions 1–2. In particular, under H0 and Assumption 1, nT2=rT20 !Nð0, 1Þ:
From the proof (Section A.3), we note that the kernel of T2 is first-order degenerate

under H0 and the null limit follows through a weighted sum of v21 variates. To use T2,

we need to estimate kRiik2: Using the notations around Equation (3), define C2
krik0r0 ¼

A2
lskri þ A2

lksri þ A2
lrski with Alskri ¼ D0

lsiDkri and EðA2
lskriÞ ¼ 4kRiik2: Define

dkRiik2 ¼ 1
12PðnÞ

Xn
k¼1

Xn
r¼1

Xn
l¼1

Xn
s¼1

pðk, r, l, sÞ

C2
krlsi, (7)

where pð�Þ denotes that all indices are unequal. Note that, dkRiik2 is also a U-statistic

and it can be shown that Varð dkRk2ii=kRk2iiÞ is uniformly bounded in pi. By Assumption
1, as ni, p ! 1

dkRk2ii=p2i !P
X1
s¼1

d2si , i ¼ 1, 2, (8)

giving consistency of dkRiik2=p2i : We have the following corollary to Theorem 1.

Corollary 1. Theorem 1 remains valid if kRiik2 is replaced with dkRiik2 in VarðT2Þ:
For power of T2, let za be 100a% quantile of N(0, 1) and denote bðhÞ as the power func-

tion with h ¼ fR11,R22,R12g, or fR11,R22g under H0. By Theorem 1, PðT2=rT20 � zaÞ ¼
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a: Let c ¼ rT20=rT2 , d ¼ kR12k2=rT2 : Then 1 � b ¼ bðhjH1Þ ¼ PðT2=rT2 � cza � dÞ ¼
1 - Uðcza � dÞ, where Uð�Þ is the distribution function of N(0, 1), c2 ¼ 1=ð1þ g212Þ and

d2 ¼ g212=ð1þ g212Þ: With g12 2 ð0, 1	 under H1, we have 1� b ! 1 as n, pi ! 1: A simi-

lar behavior can be shown for local power, taking R12 ¼ A12=
ffiffiffi
n

p
with s2 ¼ kA12k2=n where

A12 � 0 is any fixed matrix.

2.2. Extension to b blocks

For the general case, consider Xk ¼ ðX0
k1, :::,X

0
kbÞ0 with R ¼ ðRijÞ b

i, j¼1; see 1.1. To extend

T2 for b blocks, let Bkrlsij ¼ Alskr1ij þ Alksrij þ Alrksij (Equation (3)). We define the general
statistic as

Tb ¼
Xb
i¼1

Xb
j¼1

i<j

Tij with Tij ¼ 1
PðnÞ

Xn
k¼1

Xn
r¼1

Xn
l¼1

Xn
s¼1

pðk, r, l, sÞ

1
12pipj

Bkrlsij, (9)

where EðTbÞ ¼
P

i<j kRijk2, which is 0 under H0, and

VarðTbÞ ¼
Xb
i¼1

Xb
j¼1

i<j

VarðTijÞ þ 2
Xb
i¼1

Xb
j¼1

Xb
j0¼1

i<j<j0

CovðTij,Tij0 Þ

þ 2
Xb
i¼1

Xb
i0¼1

Xb
j¼1

i<i0<j

CovðTij,Ti0jÞ þ
Xb
i¼1

Xb
i0¼1

Xb
j¼1

Xb
j0¼1

i<i0<j<j0

CovðTij,Ti0j0 Þ:
(10)

VarðTijÞ follows from Equation (4) and CovðTij,Tij0 Þ, CovðTij,Ti0jÞ, CovðTij,Ti0j0 Þ, say
C1, C2, C3, respectively, are given as following; see also Theorem 2.

C1 ¼ 4
PðnÞp2i pjpj0

2a1ðnÞxijij0 þ d1ðnÞxiijj0 þ ðn� 4Þ 2kRijk2kRij0k2 þ 5kRjj0k2kRiik2
n oh i

(11)

C2 ¼ 4
PðnÞp2i pjpi0

2a1ðnÞxii0ij þ d1ðnÞxiii0j þ ðn� 4Þ 2kRijk2kRi0jk2 þ 5kRii0 k2kRjjk2
n oh i

(12)

C3 ¼ 4
PðnÞpipjpi0pj0

h
2a2ðnÞxiji0j0 þ b2ðnÞxijj0i0 þ ð4n� 11Þxii0jj0 þ 3ðn� 3ÞkRi0jk2kRij0 k2

þ ð3n� 10ÞkRii0 k2kRjj0 k2
i

(13)

where a1ðnÞ ¼ 3n3 � 38n2 þ 170n� 262, b1ðnÞ ¼ ðn� 4Þð6n2 � 47nþ 104Þ, c1ðnÞ ¼
7n2 � 57nþ 117, a2ðnÞ ¼ 3n3 � 39n2 þ 176n� 269, b2ðnÞ ¼ 6n3 � 70n2 þ 286n� 199
and d1ðnÞ ¼ fb1ðnÞ þ 2c1ðnÞg and xabcd ¼ trðAabAbcAcdAdaÞ:
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Theorem 2. For Tb in (9), EðTbÞ ¼
Pb

i<j kRijk2 with VarðTbÞ as in (10). Under H0

VarðTbÞ ¼ 2ð2n2 � 12nþ 21Þ
PðnÞ

Xb
i¼1

Xb
j¼1

i<j

1
p2i p

2
j
kRiik2kRjjk2 (14)

Under Assumptions 1 and 2, VarðnTbÞ and nC1, nC2, nC3 are uniformly bounded, so
that the limit of Tb follows similarly as of T2: To see this precisely, write Tb ¼ 10TB

with TB ¼ ðT1, :::,Tb�1Þ0, Ti ¼ ðTi, iþ1, :::,TibÞ0, i ¼ 1, :::, b� 1, where B ¼ bðb� 1Þ=2
and 1B is the vector of 1 s. Then EðTbÞ ¼ 10TB and VarðTbÞ ¼ 10K1, where CovðTBÞ ¼
K ¼ ðKijÞ B

i, j¼1 is a partitioned matrix with diagonals Kii : ðb� iÞ � ðb� iÞ and off-diago-

nals Kij ¼ K0
ji : ðb� iÞ � ðb� jÞ, j> i.

As for VarðT2Þ, elements of K are uniformly bounded in terms of gij ¼
kRijk=kRiikkRjjk as pi ! 1, under the assumptions. For example, for b¼ 3,
VarðnT3Þ ¼ 10K 1[1þO(1)], where K converges to 4 times a matrix with diagonal ele-
ments 1þ g212, 1þ g213, 1þ g223 and off-diagonal elements g12g13 þ g23, g12g23 þ
g13, g13g23 þ g13: Thus, under H0, K converges to 4I3: The limit of Tb follows now
from that of TB by Cram�er–Wold device (van der Vaart 1998), and is given in Theorem
3 where r2Tb

¼ VarðTbÞ and r2Tb0
¼ VarðTbÞ under H0 are given in Equations (10) and

(14), respectively.

Theorem 3. For Tb in (9), ðTb � EðTbÞÞ=rTb !D Nð0, 1Þ as n, pi ! 1, under Assumptions

1–2. In particular, under H0 and Assumption 1, nTb=rTb0 !D Nð0, 1Þ:

3. The non-normal case

Defined as U-statistic, Tb is a nonparametric measure of kR12k2: Further, many of the
computations in Section 2 are valid, exactly or asymptotically, without normality. It
motivates us to show that Tb and its properties can be used by relaxing normality.

Given the notations for Xk in 1.1, let Yk ¼ ðY0
k1, :::,Y

0
kbÞ0, Yki ¼ Xki � li with Zk ¼

ðZ0
k1, :::Z

0
kbÞ, C ¼ R1=2: Define the model

Yk ¼ CZk, k ¼ 1, :::, n (15)

where Zki � F , EðZkiÞ ¼ 0pi , CovðZkiÞ ¼ Ipi and F denotes a distribution function.
Model (15) is very general and covers for example, elliptical class including multivariate
normal, so that the results in Section 2 are a special case of those under Model (15). To
see this precisely, first note that, working under Model (15), we need to control the
fourth moment of F as the computations involve moments of bilinear forms. For this,
we define jij which is 0 under normality.

jij ¼ EðAkiAkjÞ � 2kRijk2 � kCiik2kCjjk2, (16)

with Cii ¼ R1=2
ii , Aki ¼ Y0

ikYik: To mirror this fact through assumptions, we also let

Assumption 3. EðY4
kisÞ ¼ cs � c0 < 1, 8 s ¼ 1, :::, p, c0 2 R

þ:
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Under this set up, the basic moments under Model (15) are either same as under
normality or can be easily extended using jij. These moments are given in Theorem 8
where the constant K is used to represent such terms. Note that, these terms also
involve Hadamard products like trðC
 CÞ for EðA2

ikÞ, but are suppressed in K since all

such terms vanish under Assumptions 1 and 2 whence j12=kR11k2kR22k2 ! 0; Under
normality, K is exactly 0; see Ahmad (2017b) for details. Now, Theorem 2 can be
extended under Model (15), using the results of Theorem 8. For example, Equation (4)
extends by an extra term cðnÞKOð1Þ as
VarðT2Þ ¼ 2

PðnÞ 4aðnÞkR12R21k2 þ 2bðnÞx1122 þ cðnÞ kR12k2
� �2 þ kR11k2kR22k2 þ KOð1Þ

n oh i
(17)

Finally, the proof of main theorem in Section 2 (Theorem 1) is in fact carried out without
assuming normality, so that the same proof holds under Model (15); see Appendix A.3.
We thus state the following theorem which generalizes all main results of Section 2. Note
that, under Model (15), Theorem 4 pertains only to testing of zero correlation, where under
normality, all results reduce to those in Section 2, pertaining to testing independence.

Theorem 4. Theorem 3 and Corollary 1 remain valid for Model (15) under Assumptions 1–3.

4. Some related tests

4.1. Test of complete independence

For pi ¼ 1 8 i, Xk ¼ ðXk1, :::,XkpÞ0, l ¼ ðl1, :::, lpÞ0, R ¼ ðrijÞpi, j¼1, Rij ¼ rij so that

tests of (1) or (2) reduce to complete independence, denoted H0c : Xki??Xkj 8 i 6¼ j vs.
H1c : Xki ??= Xkj for at least one pair i 6¼ j or, under normality, H0c : rij ¼ 0 8 i 6¼ j vs.
H1c : rij 6¼ 0 for at least one pair i 6¼ j, i, j ¼ 1, :::, p, k ¼ 1, :::, n, rij ¼ CovðXki,XkjÞ:
We want to test H0c when p � n:
For Tb in Section 2, EðTbÞ ¼

P
i<j r

2
ij ¼ 0 under H0c: We can thus reduce Tb to

define a test, say Tc, for H0c: For brevity, we only discuss the test under the null. For
p¼ 2, it is the correlation test of H0 : q ¼ 0: Denote bkrlsij ¼ alskrij þ alksrij þ
alrksij, alskrij ¼ alskriakrlsj, alskri ¼ dlsidkri, dkri ¼ Xki – Xri, EðdkriÞ ¼ 0, VarðdkriÞ ¼
2rii, EðdkridkrjÞ ¼ 2rij, EðalskrijÞ ¼ 4r2ij: Then Tc ¼

Pp
i<j Tij with EðTijÞ ¼ r2ij where

Tij ¼ 1
12PðnÞ

Xn
k¼1

Xn
r¼1

Xn
l¼1

Xn
s¼1

pðk, r, l, sÞ

bkrlsij: (18)

Now EðTcÞ ¼
P

i<j r
2
ij, VarðTcÞ ¼ 2ð2n2 � 12nþ 21ÞPp

i<j r
2
iir

2
jj=PðnÞ: The covariances

in (11)–(13) follow similarly, and vanish under H0c: Like Tb, the moments and limit of
Tc depend on gij ¼ q2ij: Assumptions 1–3 simplify where, under H0c, R ¼
diagðr11, :::, rppÞ, so that ki ¼ rii are the eigenvalues of R: By Assumption 1,Pp

i<j r
2
iir

2
jj=p

2 ¼ Oð1Þ, (7) gives bi ¼
P

pðk, r, l, sÞ d
2
krlsi=12PðnÞ as consistent estimator of

r2ii, i ¼ 1, :::, p, and nTc=p has finite limit. Theorems 3 and 4 are thus valid with results
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reduced for Tc: Theorem 5 gives the null limit under the following assumptions, where �i
are eigenvalues of R=p and r2Tc0

is VarðTcÞ under H0c; in particular, r220 ¼ 4r211r
2
22Oð1Þ:

Assumption 4. For p ! 1,
Pp

i¼1 �i ¼ Oð1Þ:
Assumption 5. For n, p ! 1, p=n ! d1 2 ð0,1Þ:

Theorem 5. Given Tc with Tij in (18). Then nTc=prTc!
D
Nð0, 1Þ as n, p ! 1, under H0c

and Assumptions 1–5. The limit holds if r2ii are replaced by bi given above.

4.2. Tests of homogeneity of diagonal blocks

Under H0 in (1) or (2), R ¼ �b
i¼1Rii and it might be of interest to test equality of diag-

onal blocks

H0h : Rii ¼ Rh 8 i vs: H1h : Rii 6¼ Rh for atleast one i: (19)

For pi ¼ q 8 i under H0h, p ¼ bq, R ¼ Ib � Rh, Rh : q� q, kCk2 ¼ bkChk2, kRk2 ¼
bkChk2: Further, under H1hjH0, kRk2 ¼ Pb

i¼1 kCiik2, kRk2 ¼ Pb
i¼1 kRiik2, where C ¼

R1=2 etc. (see Section 3). A high-dimensional test of homogeneity of g � 2 covariance
matrices, using Frobenius norm of the difference between null and alternative hypothe-
ses, is given in Ahmad (2017b) for models like (15). With Xki independent under H0,
the test can be used for H0h, as is briefly explained below.

First let b¼ 2 with s2h ¼ kR11 � R22k2F ¼ P2
i¼1 kRiik2 � 2kC11C22k2: With Ei and E12

as unbiased and consistent estimators of kRiik2 and kC11C22k2, respectively, the test
statistic is

T2h ¼
X2
i¼1

ai~Ei � 2a12~E12

where ai ¼ kRiik2=q2, a12 ¼ kC11C22k2=q2 and ~E ¼ E=EðEÞ � 1: Using all pairwise

norms, sbh ¼
Pb

i<j kRii � Rjjk2F , the statistic for b blocks is

Tbh ¼
Xb
i<j

T2hij ¼ 4ðb� 1Þ
Xb
i¼1

Ti � 2
Xb
i<j

Tij

with Ti ¼ ai~Ei, Tij ¼ aij~Eij, Th2ij is T2h for (i, j)th pair, Ei is as in (7) and Eij ¼
kĈiiĈjjk2, where R̂ii ¼

Pn
k¼1ðXki � �XiÞðXki � �XiÞ0=ðn� 1Þ; see also Section 4.3. Now

EðTbhÞ ¼ 0 and

r2Tbh
¼ ðb� 1Þ2

Xb
i¼1

a2iVarð~EiÞ þ 4
Xb
i¼1

Xb
j¼1

i<j

a2ijVarð~EijÞ þ 8
Xb
i¼1

Xb
j¼1

Xb
j0¼1

i<j<j0

aijaij0Covð~Eij, ~Eij0 Þ

þ 8
Xb
i¼1

Xb
i0¼1

Xb
j¼1

i<i0<j

aijai0jCovð~Eij, ~Ei0jÞ � 8ðb� 1Þ
Xb
i¼1

Xb
j¼1

i<j

aiaijCovð~Ei, ~EijÞ

(20)
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The moments composing r2Tbh
follow from Ahmad (2017b), where Varð~EiÞ, Varð~EijÞ

and Covð~Ei, ~EijÞ are each Oð1=nÞ and uniformly bounded in pi which help determine

the limit of Tbh under the following assumptions in addition to Assumption 1. Let j ¼
kR2

hk2=½kRhk2	2: For n, pi ! 1
Assumption 6. infp j � 0:

Assumption 7. pi=n ! di � d2 2 ð0,1Þ:
Under H0h, with ah ¼ kRhk2, we have

Tbh ¼ ah ðb� 1Þ
Xb
i¼1

~Ei � 2
Xb
i 6¼j

~Eij

2
4

3
5

where r2Tbh0
� 4a2hb

2ðb� 1Þ=n2 with consistent estimator r̂2
Tbh0

using âh ¼
Pb

i6¼j Eij=bðb� 1Þ:
Theorem 6. Given Tbh, r2Tbh

and r2Tbh0
. Then r�1

Tbh
ðTbh � sbhÞ!D Nð0, 1Þ as n, pi ! 1,

under Assumptions 1–2 and 6–7. In particular, under H0h, r�1
Tbh0

Tbh!D Nð0, 1Þ. Further,
the limits hold by replacing ah with âh in r2Tbh

as defined above.

4.3. Alternative form and computational efficiency

Test statistics in Sections 2 and 3 are defined using Frobenius norm s ¼ kR� RDk2 in

terms of cross-covariance operator R12: But, since s ¼ kRk2 � kRDk2 ¼ kRk2 �Pb
i¼1 kRiik2, same tests can also be defined using unbiased and consistent estimators,

say Eb and Ei, of kRk2 and kRiik2, respectively. Then we can define Tb ¼ ~Eb � ~E0 with
~E0 ¼

Pb
i¼1 Ei=p

2
i and ~Eb ¼ Eb=p2 where Ei is given in Equation (7) and likewise (see

Ahmad 2017a) Eb ¼
P

pðk, r, l, sÞD
2
krls=12PðnÞ with D2

krls ¼ A2
krls þ A2

klrs þ A2
ksrl, Akrls ¼

D0
krDls, Dkr ¼ Xk � Xr: Under H0, both Eb and E0 estimate

Pb
i¼1 kRiik2 and the proper-

ties of the tests remain same as given above.
A final remark concerns the estimators. All estimators are defined as U-statistics of

symmetric kernels which help us study their properties and those of the test statistics.
For computational efficiency and practical use, however, same estimators can be defined

in a much simpler way, as functions of sample covariance matrices, R̂ and R̂ij: We pro-
vide these estimators for Tb in Sections 2 and 3; see also Ahmad (2017a, 2017b). Let
�X ¼ Pn

k¼1 Xk=n and R̂ ¼ Pn
k¼1

~Xk ~X 0
k=ðn� 1Þ be unbiased estimators of l and R with

~X ¼ Xi � �X: Define Q ¼ Pn
k¼1 ð~X 0

k
~XkÞ2=ðn� 1Þ: Similarly define Qi using R̂ii and

~Xki, i ¼ 1, :::, b: Then, we can define Eb ¼ gf2kR̂k2 þ ðn2 � 3nþ 1Þ½kR̂k	2 � nQg and

Ei ¼ gf2kR̂iik2 þ ðn2 � 3nþ 1Þ½kR̂iik	2 � nQig, where g ¼ ðn� 1Þ=½nðn� 2Þðn� 3Þ	:

5. Simulations

We evaluate the performance of Tb under Model (15). We generate n ¼ f10, 20, 50g iid
vectors of dimension p ¼ f60, 100, 300, 500, 1000g from normal, uniform and t5
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distributions, assuming l ¼ 0 and R as CS and AR(1) with equal and unequal pi. Under
H0, R ¼ �2

i¼1Rii with CS and AR block diagonals defined as Rii ¼ ð1� qÞIpi þ Jpi
(Section 2.1) and Rii ¼ BAB with A ¼ qjk�lj1=5 and B a diagonal matrix with entries
square roots of qþ ð1 : pÞ=p: For unequal pi, Bi has elements qþ ð1 : piÞ=pi: Under H1,
same structures are imposed on R; for example, R ¼ ð1� qÞIp þ Jp with q ¼ 0:3, R ¼
BiABj þ 0:3Jpi�pj , Jpi�pj ¼ 1pi1

0
pj , i, j¼ 1, 2.

The size and power are estimated as averages, over 5000 simulation runs, of a ¼
PðTz � ZjH0Þ and 1� b ¼ PðTz � ZjH1Þ, where Tz denotes standardized Tb: We use
a ¼ f0:01, 0:05, 0:10g for size and a¼ 0.05 for power. Tables 1–3 report estimated test
sizes where Table 4 reports estimated power, where AR-I and AR-II denote AR(1)
structures with equal and unequal blocks, respectively.

Table 1. Estimated 1 � a of T2 for normal distribution.

Rii n 1� a

p

60 100 300 500 1000

CS 10 0.90 0.908 0.916 0.915 0.913 0.908
0.95 0.945 0.947 0.948 0.946 0.951
0.99 0.983 0.984 0.981 0.980 0.983

20 0.90 0.916 0.913 0.914 0.912 0.907
0.95 0.958 0.953 0.955 0.951 0.948
0.99 0.985 0.978 0.981 0.980 0.983

AR-I 10 0.90 0.918 0.920 0.916 0.915 0.913
0.95 0.952 0.956 0.954 0.955 0.952
0.99 0.985 0.987 0.989 0.989 0.990

20 0.90 0.914 0.906 0.908 0.914 0.907
0.95 0.960 0.953 0.954 0.952 0.948
0.99 0.988 0.986 0.985 0.985 0.989

AR-II 10 0.90 0.915 0.919 0.908 0.907 0.904
0.95 0.945 0.948 0.942 0.944 0.946
0.99 0.981 0.981 0.980 0.978 0.984

20 0.90 0.916 0.913 0.914 0.918 0.907
0.95 0.955 0.957 0.958 0.958 0.955
0.99 0.980 0.981 0.981 0.983 0.988

Table 2. Estimated 1 � a of T2 for uniform distribution.

Rii n 1� a

p

60 100 300 500 1000

CS 10 0.90 0.916 0.914 0.914 0.916 0.909
0.95 0.947 0.949 0.948 0.945 0.944
0.99 0.982 0.982 0.980 0.979 0.985

20 0.90 0.0.912 0.916 0.911 0.913 0.910
0.95 0.957 0.952 0.954 0.957 0.954
0.99 0.982 0.980 0.980 0.982 0.988

AR-I 10 0.90 0.916 0.912 0.914 0.911 0.907
0.95 0.954 0.954 0.951 0.952 0.955
0.99 0.989 0.986 0.988 0.987 0.985

20 0.90 0.916 0.915 0.913 0.908 0.906
0.95 0.961 0.958 0.962 0.956 0.952
0.99 0.987 0.986 0.985 0.982 0.991

AR-II 10 0.90 0.916 0.907 0.913 0.912 0.910
0.95 0.946 0.940 0.945 0.946 0.949
0.99 0.976 0.973 0.980 0.982 0.981

20 0.90 0.916 0.911 0.914 0.914 0.907
0.95 0.954 0.957 0.955 0.956 0.955
0.99 0.981 0.980 0.980 0.981 0.984
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We observe an accurate size control for all distributions under all parameters, par-
ticularly for moderate n and increasing pi. We also notice strong robustness of Tb to
normality. Moreover, the power increases not only with increasing n but also with
increasing pi for all other parameters. We also investigated the test for other q values,
for example, 0.2 or 0.85, and found that the power improves slightly for higher q and
drops slightly for smaller q. For unequal pi in AR, we notice a slight decline and rela-
tively slow growth in power. For this, we add results for n¼ 50 which indicates an
increasing power with pi, particularly improving with increasing n.

Table 3. Estimated 1�a of T2 for t5-distribution.

Rii n 1� a

p

60 100 300 500 1000

CS 10 0.90 0.905 0.901 0.907 0.902 0.905
0.95 0.940 0.941 0.946 0.948 0.949
0.99 0.978 0.979 0.978 0.973 0.980

20 0.90 0.919 0.914 0.909 0.912 0.908
0.95 0.946 0.944 0.940 0.942 0.948
0.99 0.975 0.973 0.976 0.980 0.982

AR-I 10 0.90 0.908 0.904 0.906 0.898 0.901
0.95 0.946 0.944 0.945 0.944 0.950
0.99 0.984 0.983 0.982 0.983 0.986

20 0.90 0.914 0.910 0.907 0.910 0.904
0.95 0.948 0.943 0.940 0.954 0.941
0.99 0.978 0.977 0.986 0.981 0.982

AR-II 10 0.90 0.901 0.908 0.901 0.900 0.903
0.95 0.940 0.941 0.944 0.947 0.949
0.99 0.979 0.980 0.978 0.983 0.981

20 0.90 0.912 0.911 0.908 0.906 0.904
0.95 0.944 0.941 0.940 0.943 0.945
0.99 0.978 0.983 0.981 0.979 0.982

Table 4. Estimated 1 � b of Tb: all distributions.

F R n

p

60 100 300 500 1000

Normal CS 10 0.654 0.852 0.970 0.990 0.997
20 0.960 0.996 1.000 1.000 1.000

AR-I 10 0.754 0.876 0.971 0.987 1.000
20 0.984 0.996 1.000 1.000 1.000

AR-II 10 0.214 0.244 0.274 0.277 0.302
20 0.405 0.434 0.468 0.501 0.513
50 0.835 0.845 0.890 0.908 0.921

Uniform CS 10 0.650 0.845 0.970 0.990 1.000
20 0.952 0.995 1.000 1.000 1.000

AR-I 10 0.757 0.870 0.976 0.987 1.000
20 0.981 0.998 1.000 1.000 1.000

AR-II 10 0.209 0.228 0.259 0.262 0.280
20 0.373 0.446 0.512 0.528 0.531
50 0.799 0.828 0.856 0.887 0.908

t5 CS 10 0.655 0.823 0.965 0.984 1.000
20 0.945 0.992 1.000 1.000 1.000

AR-I 10 0.744 0.850 0.962 0.982 0.999
20 0.972 0.995 1.000 1.000 1.000

AR-II 10 0.235 0.248 0.275 0.280 0.295
20 0.424 0.459 0.485 0.497 0.511
50 0.802 0.806 0.873 0.877 0.898
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6. Applications

To demonstrate an application of the proposed test, we use the well-known COMBO
galaxy data set. The data set provides classification of n¼ 3438 astronomical objects as
galaxies, based on the information on 29 variables measured on each object. The varia-
bles are grouped into two vectors, with p1 ¼ 23 and p2 ¼ 6 dimensions. We denote the

vectors as Xk1 2 R
p1 and Xk2 2 R

p2 , respectively, so that Xk ¼ ðX0
k1, X0

k2Þ0 2 R
p, p ¼

p1 þ p2 ¼ 29. Since the objects are independent, we once use all 3438 objects and once
take a random sample of 10 objects whence n 
 p, in order to show the application of
the test statistic for high-dimensional case.
For full data, we compute the test statistic (see Section 2.1) as 236.4 with p-value vir-

tually 0, seriously rejecting the null hypothesis. For the subset of the data, with n¼ 10,
the test statistic is 0.364 with p-value 0.3579, providing no sufficient evidence to reject
the null hypothesis.

7. Discussion and conclusions

Correlation tests for two or more vectors are proposed when the data are high-dimen-
sional and the distribution may not be normal. Properties of the tests are studies and
their asymptotic distributions are derived under certain mild assumptions. Some subse-
quent tests are also discussed. All tests are defined as functions of U-statistics based esti-
mators of the Frobenius norm between the null and alternative hypotheses. Simulation
results are used to show the accuracy of the proposed tests for a general multivariate
class of distributions including multivariate normal.
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Appendix
A. Miscellaneous results and proofs

A.1. quadratic and bilinear forms

For the following moments, see for example, (Searle 1971, Chap 2).

Theorem 7. Let u¼ðu01,:::,u04Þ0 �N ð0,RÞ, ui2R
pi , R¼ðRijÞ 4

i,j¼1, Covðui,ujÞ ¼ Rij. For symmet-
ric Ap, Bp, let Qi¼u0iAui, Bij¼u0iAuj. Then EðQ1Þ¼ trðAR11Þ, VarðQ1Þ¼2trðAR11Þ2, EðB12Þ¼
trðAR21Þ, VarðB12Þ¼ trðAR21Þ2þ trðAR22A0R11Þ, CovðB12,B34Þ¼ trðAR23BR41Þþ trðAR24B0R31Þ,
CovðQ1,Q2Þ¼ trðAR12B0R21Þ:

The results of Theorem 7 can be used to derive extended moments of quadratic and bilinear
forms, as given in the following lemma.

Lemma 1. Let ati � N pð0,RiiÞ, Covðati, asjÞ ¼ Rij (t¼ s) or 0 (t 6¼ s). Then

CovðD0
uviRijDuvj, a

0
uiRijavjÞ ¼ xiijj þ kRijRjik2 (21)

CovðD0
uviRijDuvj, a

0
uiaiva

0
vjavjÞ ¼ xiijj þ 2kRijRjik2 (22)

CovðD0
tuiRijDtuj, a

0
tiDuvjD

0
uvjatjÞ ¼ 2xiijj þ 3kRijRjik2 (23)

Varða0uiavia0vjaujÞ ¼ 4xiijj þ 2kRijRjik2 þ kRijk2
h i2

þ kRiik2kRjjk2: (24)

(21) also holds for Covða0uiRijauj, a0uiavia
0
ujavjÞ, Covða0tiauia0tjauj, a0uiavia0ujavjÞ: Covariances like

Covða0uiRijavj, a0uiavia
0
ujavjÞ, Covða0tiauia0tjauj, a0uiavia

0
tjavjÞ vanish.

For Yik in Equation (15), let Aki¼Y0
kiYki, Akli¼Y0

kiYli, k 6¼l, Bk ¼ Y0
k1R12Yk2, Bkl ¼ Y0

k1R12Yl2:

From Equation (16), jii¼EðA2
kiÞ�2trðR2

iiÞ�½trðRiiÞ	2 ¼ 0 under normality. Theorem 8 extends
the moments further under Model (15), relaxing normality, with constant K involving only j12
and jii.

Theorem 8. EðAkiÞ¼trðRiiÞ, EðAkriÞ¼0, EðA2
kliÞ ¼ kRiik2, EðBkÞ ¼ kR12k2, EðBklÞ¼0, VarðBkÞ

¼ Kþx1122, VarðBklÞ ¼ x1122, VarðAkl1Alk2Þ ¼ Kþ2x1122þkR11k2kR22k2:

A.2. U-Statistics

Here we collect some basic results of U-statistics; for details, see Koroljuk and Borovskich (1994) or
Serfling (1980). For iid Xi, let h X1, :::,Xmð Þ : Rm ! R denote the kernel of an mth order U-statistic,
Un, with E Unð Þ ¼ h ¼ E h �ð Þ� �

with its projection hc x1, :::, xcð Þ ¼ E h �ð Þjx1, :::, xc
� �

, hm �ð Þ ¼ h �ð Þ and
nc ¼ Var hc �ð Þ, c ¼ 1, :::,m,

�
so that Var Unð Þ ¼ Pm

c¼1
m
c

� �
n�m
m� c

� �
nc=

n
m

� �
: If 0 < nc < 1

8 c, then Un � E Unð Þð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Unð Þp !D N(0, 1). For two U-statistics, Uni, of order mi, kernels hi �ð Þ,

projections hic �ð Þ, i¼ 1, 2, let ncc ¼ Cov h1c �ð Þ, h2c �ð Þ
� �

, c ¼ 1, :::,m1 � m2: Then Cov Un1,Un2ð Þ ¼
Pm1

c¼1
m2

c

� �
n�m2

m1 � c

� �
ncc=

n
m1

� �
: Let Un1n2 be a U-statistic of two independent samples, with

kernel h X11, :::,X1m1 ,X21, :::,X2m2ð Þ, symmetric in each sample, projection hc1c2 ¼
E h �ð ÞjX11, :::,X1c1 ;X21, :::,X2c2

� �
, nc1c2 ¼ Cov h �ð Þ, hc1c2 �ð Þ� �

, n00 ¼ 0, ci ¼ 0, 1, :::,mi: If 0 �
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ni=n � 1, n ¼ n1 þ n2, 0 < nc1c2 < 1 8 ci, then Un1n2 � E Un1n2ð Þð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Un1n2ð Þp !D N(0, 1)

where Var Un1n2ð Þ ¼ Pm1
c1¼0

Pm2
c2¼0

m1

c1

� �
n1 �m1

m1 � c1

� �
m2

c2

� �
n2 �m2

m2 � c2

� �
nc1c2=

n1
m1

� �
n2
m2

� �
:

A.3. Proof of Theorem 1

Consider T2 in Equation (3) with kernel hð�Þ ¼ Blskr12=p1p2, degenerate under H0. By the asymptotic
theory of U-statistics (van der Vaart 1998), nc=2Un has a non-degenerate limit with variance c!nc, with
c the least value for which hð�Þ is non-degenerate. In our case c¼ 2 so that nUn has a limit. Further,
hð�Þ varies with n (and pi through n). Many authors have considered U-statistics with varying kernels;
see Anderson, Hall, and Titterington (1994) or Koroljuk and Borovskich (1994).

The key point in the limit of nUn is the behavior of nc. For H1, all nc, c¼ 1, :::, 4, are bounded
under the assumptions; see Section A.5. Then, by Equation (6), the second term is bounded by
the first which in turn vanishes as pi ! 1, under A1-A2. Thus Var½nðTg � kR12k2Þ=u	 ¼ Oð1Þ
with u2 ¼ kR11k2kR22k2=p21p22: The limit follows from (Lehmann 1999, Theorem 6.1.2). Under
H0, n1 ¼ 0 and hð�Þ is first-order degenerate. From Section A.2 and Equation 5, u2 ¼
kR11k2kR22k2=p21p22 keeps n2 > 0 ) VarðT2Þ > 0: With hð�Þ : Rp1�p2 ! R square-integrable func-
tion, composed of inner products, we have hð�Þ 2 L2ðHÞ, where H is the Hilbert space and
L2ð�Þ is the space of square-integrable random variables. We write

Alskr12 ¼ D0
ls1 �D0

kr1

	 

Dkr2 �Dls2ð Þ� �

=12p1p2 ¼ trðDkr1D
0
ls1 �Dls2D

0
kr2Þ=p1p2,

similarly other parts of hð�Þ, where the components are independent under H0 with variance n2.
Further, by the properties of Kronecker product (Harville 2008, Ch. 16), cs12 ¼ �s1�s2 are the
eigenvalues of C12 ¼ ðR11 � R22Þ=p1p2, where �si ¼ ksi=pi are the eigenvalues of Rii=pi: Thus n2
corresponds to

Pp1
s1¼1 �

2
s1

Pp2
s2¼1 �

2
s2 and the eigenvalues of the kernel correspond to those of C12

since
P

s c
2
s12 ¼ trðC2

12Þ ¼
Pp1

s1¼1 �
2
s1

Pp2
s2¼1 �

2
s2: Under this set up, hð�Þ is a Hilbert-Schmidt (prod-

uct) kernel (Serfling 1980) with an orthonormal decomposition, where the weak convergence of
such a kernel is given as

nðT2 � EðT2ÞÞ !D
X1
s1¼1

X1
s2¼1

�s1�s2ðZ2
s1s2 � 1Þ (25)

with Zs1s2 a sequence of independent N(0, 1) variables. The normal limit follows by an applica-
tion of Lindeberg-Feller CLT for triangular arrays (see also Ahmad 2017a).

A.4. Proof of Corollary 1

The proof follows by showing the consistency of dkRiik2 ¼ Ei (Section 4.3) under Model (15).
With j12 as in Equation (16), this immediately follows from Ahmad (2017a)

VarðEiÞ ¼ 4
PðnÞ ð2n3 � 9n2 þ 9n� 16ÞkR2

iik2 þ ðn2 � 3nþ 8Þ kR2
iik

� �2 þ j12Oðn2Þ
h i

:

under Assumptions 1–3, as n, pi ! 1: This proves Equation (8) and the corollary.

A.5. Proof of Theorem 2

From Equation (3) and Section A.2, hðak, ar, al, asÞ ¼ Alskr1Akrls2 þ Alksr1Asrlk2 þ Alrks1Akslr2 with
projection hcð�Þ ¼ E½hð�Þjal, :::	, c ¼ 1, :::, 4, so that
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h1ð�Þ ¼ 6 ða01lR12al2Þ þ kR12k2
h i

h2ð�Þ ¼ 2 d0ls1R12dls2 þ a0l1R12al2 þ a0s1R12al2 þ a0l1as1a
0
s2al2 þ trðR12R21Þ

� �
h3ð�Þ ¼ d0ls1 ak1a

0
k2 þ R12

� �
dls2 þ d0lk1 as1a

0
s2 þ R12

� �
dkl2 þ dks1Þ0 al1a0l2 þ R12

� �
aks2

and h4ð�Þ ¼ hð�Þ with Als12 ¼ Dls1D0
ls2, dls1 ¼ al1 � as1 etc. We need nc ¼ Var½hcð�Þ	 where n1 fol-

lows from Theorem 7 which, along with Lemma 1, also gives n2, with several covariances like
Covðal1R12al2, as1R12as2Þ vanishing by independence. Part of n3 follows exactly as n2 and the rest,
after tedious computations, using the moments below which themselves follow from Lemma 1

VarðDls2R21Dls1Þ ¼ 4 x1122 þ kR12R21k2
� �

Covða0k1Als12ak2,Dlk2R21Dlk1Þ ¼ 3 x1122 þ kR12R21k2
� �

CovðDls2R21Dls1,Dlk2R21Dlk1Þ ¼ x1122 þ kR12R21k2

Covða0k1Als12ak2, a
0
s1Alk12as2Þ ¼ 7x1122 þ 5kR12R21k2 þ kR12k2

� �2 þ kR11k2kR22k2

Varða0k1Als12ak2Þ ¼ 4 4x1122 þ 2kR12R21k2 þ kR12k2
� �2 þ kR11k2kR22k2

n o
Consider for example, Varða0k1Als12ak2Þ: Using Als12 ¼ dls1d0ls2 we can write

Varða0k1al1a0l2ak2Þ þ Varða0k1as1a0s2ak2Þ þ Varða0k1al1a0s2ak2Þ þ Varða0k1as1a0l2ak2Þ
þ 2Covða0k1al1a0l2ak2, a0k1as1a0s2ak2Þ þ 2Covða0k1al1a0s2ak2, a0k1as1a0l2ak2Þ

with other covariances zero. First two variances give the same result, using Lemma 1. Next two
reduce, by conditioning on ak, to Varða0l1Mas2Þ, M ¼ ak1a0k2, and also give same result. The cova-
riances, using independence and trace properties, reduce to Varða0k1R12ak2Þ which also follow
from Theorem 7. Now n4 ¼ 3VarðAlskr1Akrls2Þ þ 6CovðAlskr1Akrls2,Alksr1Asrlk2Þ for which

VarðAlskr1Akrls2Þ ¼ 16 2x1122 þ 4kR12R21k2 þ kR12k2
� �2 þ kR11k2kR22k2

n o
Covða0l1Akr12al2, a

0
k1Asr12ak2Þ ¼ 3 3x1122 þ kR12R21k2

� �
¼ Covða0s1Akr12as2, a

0
l1Asr12al2Þ

where Covða0l1Akr12al2, a0l1Asr12al2Þ and Covða0s1Akr12as2, a0k1Asr12ak2Þ are also same as given above.
With Alskr1Akrls2 ¼ Dls1Dkr1D0

kr2Dls2, the variance part follows from Lemma 1, and with Akr12 ¼
Dkr1D0

kr2, the covariance part follows by conditioning as argued above. The other three covarian-
ces follow the same way. We thus have

n1 ¼ 36 x1122 þ kR12k2
� �

n2 ¼ 4 22x1122 þ 20kR12R21k2 þ kR12k2
� �2 þ kR11k2kR22k2

n o
n3 ¼ 6 28x1122 þ 22kR12R21k2 þ 3 kR12k2

� �2 þ 3kR11k2kR22k2
n o

n4 ¼ 12 26x1122 þ 16kR12R21k2 þ 5 kR12k2
� �2 þ 5kR11k2kR22k2

n o
:

Substituting in VarðUnÞ in Section A.2 gives VarðT2Þ: For VarðTbÞ, VarðT2Þ gives VarðTijÞ: For
covariances we focus on C1 ¼ CovðTij,Tij0 Þ where C2, C3 follow similarly. From Section A.2, hið�Þ
are same as hð�Þ above, so that hic ¼ E½hið�Þjak, ar, :::	 with ncc ¼ Cov½h1cð�Þ, h2cð�Þ	: This, after
long and tedious computations, gives
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n11 ¼ 36Covða0liRijalj þ kRijk2, a0liRij0alj0 þ kRijk2Þ ¼ 36xijij0 þ xijj0i

n22 ¼ 4CovðDlsiRijDlsj þ a0liasiasjalj þ a0liRijalj þ a0siRijasj þ kRijk2,DlsiRij0Dlsj0

þ a0liasiasj0alj0 þ a0liRij0alj0 þ a0siRij0asj0 þ kRij0 k2Þ ¼ 56 xijij0 þ xiij0 jf g
n33 ¼ CovðD0

lsiðakia0kj þ RijÞDlsj þD0
lkiðasia0sj þ RijÞDlkj þD0

ksiðasia0sj þ RijÞDksj,

D0
lsiðakia0kj0 þ Rij0 ÞDlsj0 þD0

lkiðasia0sj0 þ Rij0 ÞDlkj0 þD0
ksiðasia0sj0 þ Rij0 ÞDksj0 Þ

¼ 6 22xijij0 þ 31xijj0i þ 2kRijk2kRij0 k2 þ 5kRjj0 k2kRiik2
n o

n44 ¼ 48 2 xijij0 þ xiij0 j þ xiijj0f g þ kRijk2kRij0 k2 þ kRjj0 k2kRiik2
n o

:

Substituting and simplifying gives the required covariance.
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