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ABSTRACT ARTICLE HISTORY
For a random sample of n iid p-dimensional vectors, each partitioned Received 5 June 2020
into b sub-vectors of dimensions p;, i =1,...,b, tests for zero correl- Accepted 15 June 2021

ation of sub-vectors are presented when p; > n and the distribution
need not be normal. The test statistics are composed of U-statistics
based estimators of the Frobenius norm measuring the distance covariance tests; high-
between the null and alternative hypotheses. Asymptotic distribu- dimensional infe’rence;
tions of the tests are provided for n, p; — oo, with their finite-sample cross-covariance
performance demonstrated through simulations. Some related tests

are discussed. A real data application is also given.

KEYWORDS
Canonical correlation;

1. Introduction

A considerable part of multivariate statistics concerns studying correlations and their
structures. Often an observed vector can be partitioned into several sub-vectors, possibly
of different dimensions, and the interest focuses on testing independence, or reveal the
cross-correlations, among sub-vectors; canonical correlation analysis being an important
application. We discuss such tests of independence or zero correlation of two or more
sub-vectors when the dimensions of the sub-vectors may exceed their number and the
data may follow a non-normal distribution. Let

Xi = (Xpp> -0 Xpp) €RE, k=1,...,m,

be iid vectors partitioned into b>2 sub-vectors Xy € R with E(Xy) = p=

(H,. i) €ERP, Cov(Xy) =E(Xg— p)(Xp—p) =E= (Zij)i,j:l’l e RP*P, where E(Xy)=
p; € RPand Cov (X, Xxj) = E(Xpi — ;) (X — yj)/ =X, € RF™P A hypothesis of frequent
interest in multivariate theory is of independence of Xj; (see e.g. Anderson 2003;
Muirhead 2005)

Hy: XXy Vi#jvs. H;:Xy; X for at least one pair i # j. (1)
As it leads to a drastic dimension reduction under H,, the test is even more desirable

for large parameter spaces which motivates our main objective, that is, to present a test
of Hy when p; > n. Multivariate theory offers likelihood ratio tests of (1) under
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normality, that is, Xy ~ N »(ms Y), whence Xl Xy <= X; =0 and H, in (1) reduces
to testing significance of cross-correlations, that is,

Hy:X;=0Vi#j vs. Hy:X;#0 for at least one pair i # j. (2)

Thus, under normality, (1) <= (2), where in general (1) = (2). There is extensive lit-
erature on the tests of Hy in the classical set up, that is, n > p;. Anderson (1999) and
Eaton and Tyler (1994) established basic asymptotic theory with an extension for non-
normal case in Muirhead and Waternaux (1980), where Nkiet (2017) discussed the case
of multiple blocks. A nonparametric test is considered in Gretton and Gyorfi (2010),
Pfister et al. (2018) provide a kernel based test, Horvath, Huskova, and Rice (2013) treat
the case for functional data and Albert et al. (2015) give permutation tests.

The classical tests, however, collapse or are inefficient when p; > n, mainly due to

singularity of £ or £;, i =1,...,b, where A denotes an estimator of A. Several modifi-
cations have recently been put forth; see for example, Schott (2008) where a test of
complete independence is given in Schott (2005), an extension of which is given in Mao
(2020). Yang and Pan (2015) extend the canonical correlation through regularization for
high-dimensional case. Another test, using block correlation matrices, is proposed in
Bao et al. (2017), where Srivastava, Kollo, and von Rosen (2011) and Xu (2017) provide
diagonality tests relaxing normality assumption, where a similarity coefficient based
treatment is given in Ahmad (2019).

We present tests of Hy in (1) when the data are high-dimensional but not necessarily
normal. The tests are defined as U-statistics with kernels estimating the Frobenius norm
of cross-covariance matrix X;. This helps us study the properties of tests under a gen-
eral multivariate model with certain mild assumptions. For practical use, however, we
also provide simpler, computationally more efficient versions of the same estimators.

An important property of the tests is that they are location-invariant, so that the true
mean vector can be assumed zero for their use, without any loss of generality. This
property follows from the kernels of the U-statistics used to compose the test statistics.
Given that, a completely affine invariant test in high-dimensional set is possible only
under very restricted cases, the location-invariance property provides an added value to
the tests for their practical applications.

Tests under normality are presented in Section 2, with an extension to the general
case in Section 3. Some related tests are discussed in Section 4. Section 5 provides simu-
lation based assessment and a real data application is given in Section 6. Proofs are col-
lected in the Appendix.

1.1. A note on notations

Following basic notations will be used throughout the manuscript. Given the data set
above, we assume Cov(Xy) =X € RYf, where R*? denotes the space of real (and
symmetric, positive-definite, if a = b) matrices, so that X; > 0 (i=j). We assume, with-
out loss of generality, that p; <p; ¥ i <j, i,j=1,...,b. For a matrix A, [A|’=
tr(A’A) denotes the Frobenius norm. The notation ®upq = tr(AmpApcAciAds), A €

R**?, will help us simplify many expressions. Since the test statistics are defined as U-
statistics, at times, we assume a Hilbert space IL,(-) equipped with inner product (-,-) :
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R? x R? — R, used to define the kernel h(-) as measurable, square-integrable function,
|'W*dP < 0o, composed of symmetric bilinear forms denoted as A, = X, Xp with
Aj = X}, X1 corresponding quadratic form.

2, Test statistics under normality

2.1. The case of two blocks

For the set up in 1.1, let b=2 so that X; = (Xi,Xp). For a quadruplet
{Xki X X, Xi} € Xy k# 1 #1#s, let Dy = Xg — Xy, Dy = X — X with E(Dgy,)
=0, COV(Dkn') = 22,‘1', i=1,2, E(DkrlD;crz) = 2212 so that E(AlskrIZ) = 4||212||2 for the
bilinear form Alskr1z = Alskr1 Agris2 with Alsri = Dlsszrz Denote  Byys12 = Ajskri2 +
Apsria + Aksiz and P(n) = n(n — 1)(n — 2)(n — 3). The test statistic for H, is defined
as following where 7(-) implies all indices unequal.

;;gz 12p P2 lskr12a (3)
n(k, r, I, s)

T, is a U-statistic with E(T,) = ||Z1,]|>/p1p, and

2
Var(Tz) [4(1(}1)”212221” + Zb( )601122 + C(n){[HEIZH]Z + HEUHZHEZZHZ}]
P(n)pip}
(4)
4 4 2 2 1
= s Pl = 2 |20 ) under o

where  a(n) = 3n® — 24n* + 44n + 20, b(n) = 6n° — 40n* + 22n + 181, c(n) = 2n*—
12n + 21. Tests for high-dimensional covariance matrices are often defined in terms of
Frobenius norm between the null and alternative hypothesis. Following this, we can
define a test as an estimator of ||E — Xpl|* with £ = X, = @2 X; under Hy, where @
denotes the Kronecker sum. Since ||Zp,||* = |1, — O|]* measures the same distance
between H, and H;, it helps us define a simpler form of T, in Equation (3) as an esti-
mator of ||E,]°.

Note that, T, is defined as a non-parametric (U-statistic) estimator of ||):.12||2 to test
Hy in (1) which, under normality, implies (2). It holds since E(T,) = ||212H2 = 0 under
H, in both (1) and (2). This will help us keep the same statistic for the non-normal
case in Section 3. Further, T, is location-invariant. If, however, we can assume that y =
0, then E(Xklx;cz) = 212 so that E(A%]Ak,z) = ||212||2 with Arki = X;ciXTi’ k §é r, i= 1,
2, and T, in (3) simplifies to ZZ¢,Ark1Akr2/P1P2Q(H), Q(n) =n(n—1). As a U-statis-
tic of order 2, it is simpler than T, and has simpler properties, except that it is not loca-
tion-invariant.

For the limit of T,, we need certain assumptions. We state them in a general form to
also use them later when we generalize T, to b > 2 blocks and to non-normal case. Let
/i be the eigenvalues of X;;, so that vy = Ay/p; are those of X;;/p;.
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Assumption 1. For p; — oo, Y2 vg=0(1), i=1,..,b>2.
Assumption 2. For n,p; — 0o, p;/n — dg € (0,00), i, =1,...,b > 2.

Let iy = (/@ (= |1E4l*/pip; (i=j o ri # ], i,j=1,2), so that ¢ = ||Zn[|[Ex]l/p1pa-
By Assumption 1, || Z;/pipj = O(1) and wy; = O(1), i, j=1, 2 (see 1.1). Thus, {, ¢, 11
are each bounded, and from (4)

Var[n(T; — [Z2]1*) /0] = (n7, +1)0(1) +o(1), (6)

which further implies Var[n(T, — ||E12]|*)/@] = O(1). In particular, under H,,
Var(nT,/¢@) = O(1) so that nT, has a non-degenerate limit, under the assumptions.
That this is the case for many useful covariance structures under the assumptions, con-
sider for example, X = (1 — p)I+ pJ (compound symmetric, CS) with I as identity
matrix, J=11, 1 a vectors of 1s, peR, —1/(p—1)<p<1. Then tr(X¥)=
O(p™), m=1, 2, satisfying Assumption 1. Note that, CS belongs to the class of spiked
structures where a few eigenvalues dominate the rest. In Section 5, we show the accur-
acy of T, under CS, and under AR(1) as non-spiked structure. Assumptions 1 and 2
will let part of Var(nT,) vanish and the rest uniformly bounded, providing the
required limit.

Theorem 1 gives the limit of T, which holds only under Assumptions 1 and 2 (in
fact, the null limit needs only Assumption 1). In the theorem, G%Z denotes Var(T,) in

Equation (4) and Uszo denotes Var(T,) under H, in Equation in (5).

Theorem 1. For T, in (3), (T, —|Z5n|*)/or, LA N(0,1) as n,p; — oo, under
Assumptions 1-2. In particular, under Hy and Assumption 1, nT,/or,, —N(0,1).

From the proof (Section A.3), we note that the kernel of T, is first-order degenerate
under H, and the null limit follows through a weighted sum of y? variates. To use T,

we need to estimate ||E;|*. Using the notations around Equation (3), define C2_, =

krik'r'
2 2 2 : _ 2 _ 2
Alskri + Alksri + Alrski with Alskri - D;;,'Dkri and E(Alskri) = 4”21,” . Define

n

—_ 1 n n n
(|| :mzzzgcﬁﬂw (7)

k=1 r=1 I=1
n(k, r, I, s)

—

where 7(-) denotes that all indices are unequal. Note that, ||E;|* is also a U-statistic

and it can be shown that Var(||Z|’/||Z|?) is uniformly bounded in p;. By Assumption
1, as nj,p — o0

— 77 o0 ‘
Iz 2 S 8 i=12, )
s=1

giving consistency of ||X;]||*/p?. We have the following corollary to Theorem 1.
Corollary 1. Theorem 1 remains valid if | Zq||” is replaced with ||| in Var(T,).

For power of T, let z, be 1000% quantile of N(0, 1) and denote f(0) as the power func-
tion with 0 = {X;, X%, X5}, or {X;,X»} under Hy. By Theorem 1, P(T,/or, > z,) =
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a Let y = o1, /0r,, 0= ||En||*/or,. Then 1 — f = B(O|H,) = P(T,/0r, < yz, — 9) =
1 - ®(yz, — 5), where ®(-) is the distribution function of N(0, 1), > = 1/(1 +#3,) and
6> =, /(1 +1%). With i, € (0,1] under Hy, we have 1 — # — 1 as n,p; — oc. A simi-
lar behavior can be shown for local power, taking X1, = A,/+/7 with 7, = ||A12||>/n where
Aj; > 0 is any fixed matrix.

2.2. Extension to b blocks

For the general case, consider Xy = (X}, ..., X},)" with X = ():,]),]bl, see 1.1. To extend
T, for b blocks, let By = Agskriij + Atksrij + Airksij (Equation (3)). We define the general
statistic as

b b
;; M Ty = ;ZZZUPP i ©)
i<j nlky 1, 1, s)

where E(Ty) =3, |Z;1%, which is 0 under Ho, and

b b b b b
Var(T,) = ) Y Var(Ty) +2> > > Cov(Ty, Ty)

i=1 j=1 i=1 j=1 j=1
i<j i<j<j'
10
b b b (10)
+2 E g g Cov(Tj, Tij) + E E E g Cov(Tj, T
i=1 i'=1 j=1 i=1i'=1 j=1j=1
i<i'<j i<i'<j<j

Var(Tj) follows from Equation (4) and Cov(Ty, Tiy), Cov(Tj, Tyj), Cov(Tj, Tyy), say
C,, Cy, Cs, respectively, are given as following; see also Theorem 2.

4 2 2 2 2
Cr = 5 |2a1 (m) oy + di (W + (n — {212y + 51 Z 121l
P(”)P?Pjpj’ vy bj ) ) 7]
(11)
s = o [2as(m)ouy + dh (W) + (n — ) {2IE5 P2 1P + 512 712517 }
P(n)pipips
(12)
4 2 2
Cs = 5 [2a(moyy + ba(mos + (4n — 1oy + 301 — 3)|Zy 1 Zy |
P(n)pipipipy i j i i j i
+ (31— 10)||Zi |1 Zy ]
(13)

where  a;(n) = 3n® — 381> + 170n — 262, by(n) = (n —4)(6n> — 47n+ 104), ¢;(n) =
7n* — 57n + 117, ay(n) = 3n® — 391> + 176n — 269, by(n) = 6n®> — 70n* + 2861 — 199
and dy(n) = {by(n) 4+ 2¢1(n)} and @apcs = tr(AgpApcAgAds).



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS ‘ 2149

Theorem 2. For Ty in (9), E(T) = 37 ||E,»j||2 with Var(Ty) as in (10). Under Hy

i<j
202n —12n 4 21) K& 1 e 12
Var(T,) = —— 1 Zall 71211 (14)
P(n) ;;P%Pf ’
i<j

Under Assumptions 1 and 2, Var(nT;,) and nCy, nC,, nCs are uniformly bounded, so
that the limit of T}, follows similarly as of T,. To see this precisely, write T, = 1'Tp
with Tg = (T1,...., Tp_1)s Ti = (Tiis1r- Tip)'s i=1,...,b—1, where B=0b(b—1)/2
and 13 is the vector of 1s. Then E(T,) = 1'Tp and Var(T,) = 1’A1, where Cov(Tp) =
A = (Ay); jfl is a partitioned matrix with diagonals A; : (b — i) x (b — i) and off-diago-
nals Ay = Aj; 2 (b—1i) x (b—j), j>i.

As for Var(T;), elements of A are uniformly bounded in terms of n;=
IZ4ll /1%l ;] as pi — oo, under the assumptions. For example, for b=3,
Var(nT;) = 1’A 1[1+ O(1)], where A converges to 4 times a matrix with diagonal ele-
ments 1+4#2,, 1+, 1+4n3; and off-diagonal elements 7,115 + Mp3 Niallas +
Mi3> Mi3Mas + M3 Thus, under Hy, A converges to 4I;. The limit of T; follows now
from that of Ty by Cramér-Wold device (van der Vaart 1998), and is given in Theorem
3 where ¢, = Var(T) and 67, = Var(T,) under H, are given in Equations (10) and
(14), respectively.

Theorem 3. For Ty, in (9), (Ty — E(Ty)) /o, LA N(0,1) as n,p; — oo, under Assumptions
1-2. In particular, under Hy and Assumption 1, nTy, /o, 2N (0,1).

3. The non-normal case

Defined as U-statistic, Tj is a nonparametric measure of ||X,||>. Further, many of the
computations in Section 2 are valid, exactly or asymptotically, without normality. It
motivates us to show that T, and its properties can be used by relaxing normality.
Given the notations for X; in 1.1, let Y, = (de,...,chb)', Yii = Xii — u; with Zy =
(24, .- Z,), T = Y!/2. Define the model

Y, =TZ,, k=1,...n (15)

where Zj; ~ F, E(Zy;) = 0p,, Cov(Zy) =1, and F denotes a distribution function.
Model (15) is very general and covers for example, elliptical class including multivariate
normal, so that the results in Section 2 are a special case of those under Model (15). To
see this precisely, first note that, working under Model (15), we need to control the
fourth moment of F as the computations involve moments of bilinear forms. For this,
we define x;; which is 0 under normality.

2 2 2
Kij = E(AkiAk) — 2(|Z4]° — [ITall "[T5 (16)
with T';; = Z;/ 2 Ak = Y, Yjr. To mirror this fact through assumptions, we also let

Assumption 3. E(Y},) =7, <y, < o0, Vs=1,.,p, 7 € R".
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Under this set up, the basic moments under Model (15) are either same as under
normality or can be easily extended using x;. These moments are given in Theorem 8
where the constant K is used to represent such terms. Note that, these terms also
involve Hadamard products like tr(I' ® I') for E(A%), but are suppressed in K since all
such terms vanish under Assumptions 1 and 2 whence x15/|Z11]|*||Z22]|> — 0; Under
normality, K is exactly 0; see Ahmad (2017b) for details. Now, Theorem 2 can be
extended under Model (15), using the results of Theorem 8. For example, Equation (4)
extends by an extra term c(n)KO(1) as

Var(Tz) = % [a(m) |20 Zon | + 26(m)orsan + c(m){ [1Z 0l + 0120 + KO() }]

(17)

Finally, the proof of main theorem in Section 2 (Theorem 1) is in fact carried out without
assuming normality, so that the same proof holds under Model (15); see Appendix A.3.
We thus state the following theorem which generalizes all main results of Section 2. Note
that, under Model (15), Theorem 4 pertains only to testing of zero correlation, where under
normality, all results reduce to those in Section 2, pertaining to testing independence.

Theorem 4. Theorem 3 and Corollary 1 remain valid for Model (15) under Assumptions 1-3.

4, Some related tests

4.1. Test of complete independence

For p, = 1 Vi X¢= (Xkl,...,ka)', = (,ul,...,up)/, X = (61]),] 1» Xij =05 so that
tests of (1) or (2) reduce to complete independence, denoted Ho, : Xy L Xy; V i # j vs.
Hi. : Xy _JLij for at least one pair i # j or, under normality, Ho.: 6;; =0 V i #j vs.
Hy :0; #0 for at least one pair i #j, i,j=1,...,p, k=1,..,n, ;= Cov(Xy;, Xj).
We want to test Hy. when p > n.

For T, in Section 2, E(T},) = ZK] i=0 under Hy.. We can thus reduce Tj to
define a test, say T,, for Hy.. For brevity, we only discuss the test under the null. For
p=2, it is the correlation test of Hy:p=0. Denote biuij = Aiskrij + Aiksrij +
Alrksij>  Rlskrij = AlskriBGkrisj> Hlskri = dlsidkri’ dkri = in - X (dkri) =0, Var(dkri) =
20, E(diidii) = 204, E(aisknj) = 40'12.. Then T, = T with E(Tj;) = o?j where

1<]

ij 12P ;Zz_:zbkﬂszj (18)

n(k, r, I, s)

Now E(T) =2, a5, Var(T,) =2(2n* — 12n+21) 1<] ;0% /P(n). The covariances
in (11)-(13) follow similarly, and vanish under Hy,. Like T}, the moments and limit of
T, depend on 1n;= pl] Assumptions 1-3  simplify where, under Hy, X =
dlag(au,- »0p), so that 4; =o; are the eigenvalues of X. By Assumption 1,

,<] ay0%/p* = O(1), (7) gives b; = 3 1 o di/12P(n) as consistent estimator of

6%, i=1,..,p, and nT./p has finite limit. Theorems 3 and 4 are thus valid with results
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reduced for T.. Theorem 5 gives the null limit under the following assumptions, where v;
are eigenvalues of X/p and o7 is Var(T,) under Hy,; in particular, 63, = 407,03,0(1).

Assumption 4. For p — oo, Y7 v; = 0(1).

Assumption 5. For n,p — oo, p/n — d; € (0,00).

Theorem 5. Given T, with Tj; in (18). Then nTC/paTEgN(O, 1) as n,p — oo, under Hy,
and Assumptions 1-5. The limit holds if 6% are replaced by b; given above.

4.2. Tests of homogeneity of diagonal blocks

Under Hy in (1) or (2), X = @LIZ,-,- and it might be of interest to test equality of diag-
onal blocks

Hoyp : X=X, Vi vs. Hy:X;#X, for atleast one i. (19)

For p; = q V i under Ho,, p = bg, E=1, X, Ey: gx g, |T|I> = b||Lul° |2 =
blIT, . Further, under HyslHo, [ZI7 = Y0, [Tull% [ZI2 = 20, £l where I =
X2 etc. (see Section 3). A high-dimensional test of homogeneity of g > 2 covariance
matrices, using Frobenius norm of the difference between null and alternative hypothe-
ses, is given in Ahmad (2017b) for models like (15). With X}; independent under H,,
the test can be used for Hyy, as is briefly explained below.

First let b=2 with 1, = ||Xy; — 222”12: = Zle |Zil* — 2|11 T2 >, With E; and E;,
as unbiased and consistent estimators of ||X;]|*
statistic is

, respectively, the test

2
Top = Z%’Ei —2a,E 1

where a; = ||Z;]|°/¢% an = |[Tulu|’/¢® and E =E/E(E) —1. Using all pairwise
norms, Ty, = >0 < 1% — ijHi-, the statistic for b blocks is

i<j i<j
with T; = a;E;, T; = aijEija

ITT;]%, where Xy = Y0 (X — Xi) (X — Xi)'/(n — 1); see also Section 4.3. Now
E(Tyn) = 0 and

or, = (b —1) ZaZVar +4ZZ“uVar +8ZZZa,]a,/Cov i Eip)

Thaij is Tzh for (i, j)th pair, E; is as in (7) and E; =

i=1 j= i=1 j=1j=1
i<j i<j<j
b b
+ SZZZ a,]a,]COV ij» Evj) — 8(b ZZ a,a;;Cov(E;, Ejj)
i=1 i'=1 j= i=1 j=1
i<i'<j i<j

(20)
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The moments composing o7, follow from Ahmad (2017b), where Var(E;), Var(E;)
and Cov(E;, Ejj) are each O(1/n) and uniformly bounded in p; which help determine
the limit of Ty, under the following assumptions in addition to Assumption 1. Let k =
1311 /[IZ4l*)?. For n,p; — oo

Assumption 6. inf, x > 0.

Assumption 7. p;/n — 0; < 0, € (0,00).

Under Hyy, with a, = ||E4]|%, we have

b b
Tbh = ay (b— 1)ZE1—ZZEij
i

i1
where 63, & 4ajb?(b — 1)/n* with consistent estimator 67, using a, = S i Eji/b(b —1).

Theorem 6. Given Ty, o1, and o}, . Then ar! (T, —rbh)gN(O,l) as n,p; — oo,

D
under Assumptions 1-2 and 6-7. In particular, under Hop, o7} Ton—N(0,1). Further,
the limits hold by replacing ay, with ay in a%bh as defined above.

4.3. Alternative form and computational efficiency

Test statistics in Sections 2 and 3 are defined using Frobenius norm 7 = ||£ — Xp|® in
terms of cross-covariance operator X;. But, since 1= ||X|* — ||Zp|]® = |IE|* -
Z,.bzl |Z;|°, same tests can also be defined using unbiased and consistent estimators,
say Ej, and E;, of ||E||* and ||Z;]||%, respectively. Then we can define T, = E;, — Eo with
Ey = E?:1Ei/ p? and E, = E;,/p* where E; is given in Equation (7) and likewise (see
Ahmad 2017a) Ep =3 4 .19 D?, /12P(n) with D}, = A?, + A% + A2, Apis =
D, Dj;, Dy = X — X,. Under Hy, both E, and E, estimate Z?:l ||Z,-,‘||2 and the proper-
ties of the tests remain same as given above.

A final remark concerns the estimators. All estimators are defined as U-statistics of

symmetric kernels which help us study their properties and those of the test statistics.
For computational efficiency and practical use, however, same estimators can be defined

in a much simpler way, as functions of sample covariance matrices, £ and ﬁ‘.,] We pro-
vide these estimators for T, in Sections 2 and 3; see also Ahmad (2017a, 2017b). Let
X =20 X¢/n and £ = 377, X4 X} /(n — 1) be unbiased estimators of u and T with
X =X; — X. Define Q=Y}_, (XiXx)*/(n—1). Similarly define Q; using X; and
Xii» i=1,..,b. Then, we can define E, = n{2|Z|]* + (n* — 3n+ 1)[|£]* — nQ} and
B = 120/l + (v — 3n + D[|Z4lF — nQ:}, where 5 = (n — 1)/[n(n — 2)(n — 3)].

5. Simulations

We evaluate the performance of T, under Model (15). We generate n = {10, 20,50} iid
vectors of dimension p = {60,100,300,500,1000} from normal, uniform and fs
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Table 1. Estimated 1 — o of T, for normal distribution.

p
i n 1—u 60 100 300 500 1000
cs 10 0.90 0.908 0916 0.915 0913 0.908
0.95 0.945 0.947 0.948 0.946 0.951
0.99 0.983 0.984 0.981 0.980 0.983
20 0.90 0.916 0913 0.914 0.912 0.907
0.95 0.958 0.953 0.955 0.951 0.948
0.99 0.985 0.978 0.981 0.980 0.983
ARl 10 0.90 0918 0.920 0.916 0.915 0.913
0.95 0.952 0.956 0.954 0.955 0.952
0.99 0.985 0.987 0.989 0.989 0.990
20 0.90 0914 0.906 0.908 0.914 0.907
0.95 0.960 0.953 0.954 0.952 0.948
0.99 0.988 0.986 0.985 0.985 0.989
AR-lI 10 0.90 0.915 0919 0.908 0.907 0.904
0.95 0.945 0.948 0.942 0.944 0.946
0.99 0.981 0.981 0.980 0.978 0.984
20 0.90 0.916 0913 0.914 0.918 0.907
0.95 0.955 0.957 0.958 0.958 0.955
0.99 0.980 0.981 0.981 0.983 0.988
Table 2. Estimated 1 — a of T, for uniform distribution.
p
i n 1—a 60 100 300 500 1000
cs 10 0.90 0.916 0.914 0.914 0.916 0.909
0.95 0.947 0.949 0.948 0.945 0.944
0.99 0.982 0.982 0.980 0.979 0.985
20 0.90 0.0.912 0.916 0.911 0.913 0.910
0.95 0.957 0.952 0.954 0.957 0.954
0.99 0.982 0.980 0.980 0.982 0.988
ARl 10 0.90 0.916 0.912 0.914 0.911 0.907
0.95 0.954 0.954 0.951 0.952 0.955
0.99 0.989 0.986 0.988 0.987 0.985
20 0.90 0.916 0.915 0.913 0.908 0.906
0.95 0.961 0.958 0.962 0.956 0.952
0.99 0.987 0.986 0.985 0.982 0.991
AR-Il 10 0.90 0.916 0.907 0.913 0.912 0.910
0.95 0.946 0.940 0.945 0.946 0.949
0.99 0.976 0.973 0.980 0.982 0.981
20 0.90 0.916 0.911 0.914 0.914 0.907
0.95 0.954 0.957 0.955 0.956 0.955
0.99 0.981 0.980 0.980 0.981 0.984

distributions, assuming g = 0 and X as CS and AR(1) with equal and unequal p;. Under
H,, = EB?ZIZ,-,- with CS and AR block diagonals defined as X; = (1 — p)L,, + Iy,

(Section 2.1) and X; = BAB with A = ,0“"”1/5 and B a diagonal matrix with entries
square roots of p + (1: p)/p. For unequal p;, B; has elements p + (1: p;)/p;. Under Hy,
same structures are imposed on X; for example, X = (1 — p)I, +J, with p =0.3, X =
BiAB; + 03], Jpp, = Ip1j, 6 =1, 2.

The size and power are estimated as averages, over 5000 simulation runs, of o =
P(T, > Z|Hy) and 1— i = P(T, > Z|H;), where T, denotes standardized T,. We use
o ={0.01,0.05,0.10} for size and oo=0.05 for power. Tables 1-3 report estimated test
sizes where Table 4 reports estimated power, where AR-I and AR-II denote AR(1)
structures with equal and unequal blocks, respectively.
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Table 3. Estimated 1—o of T, for ts-distribution.

p
X n 1—a 60 100 300 500 1000
cs 10 0.90 0.905 0.901 0.907 0.902 0.905
0.95 0.940 0.941 0.946 0.948 0.949
0.99 0.978 0.979 0.978 0.973 0.980
20 0.90 0.919 0.914 0.909 0.912 0.908
0.95 0.946 0.944 0.940 0.942 0.948
0.99 0.975 0.973 0.976 0.980 0.982
AR-I 10 0.90 0.908 0.904 0.906 0.898 0.901
0.95 0.946 0.944 0.945 0.944 0.950
0.99 0.984 0.983 0.982 0.983 0.986
20 0.90 0.914 0.910 0.907 0.910 0.904
0.95 0.948 0.943 0.940 0.954 0.941
0.99 0.978 0.977 0.986 0.981 0.982
AR-ll 10 0.90 0.901 0.908 0.901 0.900 0.903
0.95 0.940 0.941 0.944 0.947 0.949
0.99 0.979 0.980 0.978 0.983 0.981
20 0.90 0.912 0.911 0.908 0.906 0.904
0.95 0.944 0.941 0.940 0.943 0.945
0.99 0.978 0.983 0.981 0.979 0.982
Table 4. Estimated 1 — f§ of T,: all distributions.
p
F ) n 60 100 300 500 1000
Normal cs 10 0.654 0.852 0.970 0.990 0.997
20 0.960 0.99 1.000 1.000 1.000
AR-l 10 0.754 0.876 0.971 0.987 1.000
20 0.984 0.99 1.000 1.000 1.000
AR-II 10 0.214 0.244 0.274 0.277 0.302
20 0.405 0.434 0.468 0.501 0.513
50 0.835 0.845 0.890 0.908 0.921
Uniform cs 10 0.650 0.845 0.970 0.990 1.000
20 0.952 0.995 1.000 1.000 1.000
AR-I 10 0.757 0.870 0.976 0.987 1.000
20 0.981 0.998 1.000 1.000 1.000
AR-II 10 0.209 0.228 0.259 0.262 0.280
20 0.373 0.446 0.512 0.528 0.531
50 0.799 0.828 0.856 0.887 0.908
ts cS 10 0.655 0.823 0.965 0.984 1.000
20 0.945 0.992 1.000 1.000 1.000
AR-I 10 0.744 0.850 0.962 0.982 0.999
20 0.972 0.995 1.000 1.000 1.000
AR-ll 10 0.235 0.248 0.275 0.280 0.295
20 0.424 0.459 0.485 0.497 0.511
50 0.802 0.806 0.873 0.877 0.898

We observe an accurate size control for all distributions under all parameters, par-
ticularly for moderate n and increasing p;,, We also notice strong robustness of T} to
normality. Moreover, the power increases not only with increasing n but also with
increasing p; for all other parameters. We also investigated the test for other p values,
for example, 0.2 or 0.85, and found that the power improves slightly for higher p and
drops slightly for smaller p. For unequal p; in AR, we notice a slight decline and rela-
tively slow growth in power. For this, we add results for n=50 which indicates an
increasing power with p;, particularly improving with increasing n.
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6. Applications

To demonstrate an application of the proposed test, we use the well-known COMBO
galaxy data set. The data set provides classification of n=3438 astronomical objects as
galaxies, based on the information on 29 variables measured on each object. The varia-
bles are grouped into two vectors, with p; = 23 and p, = 6 dimensions. We denote the
vectors as Xy € R” and Xj, € R”, respectively, so that X; = (X}, X},) €R?, p=
p1+ p2 = 29. Since the objects are independent, we once use all 3438 objects and once
take a random sample of 10 objects whence #n < p, in order to show the application of
the test statistic for high-dimensional case.

For full data, we compute the test statistic (see Section 2.1) as 236.4 with p-value vir-
tually 0, seriously rejecting the null hypothesis. For the subset of the data, with n =10,
the test statistic is 0.364 with p-value 0.3579, providing no sufficient evidence to reject
the null hypothesis.

7. Discussion and conclusions

Correlation tests for two or more vectors are proposed when the data are high-dimen-
sional and the distribution may not be normal. Properties of the tests are studies and
their asymptotic distributions are derived under certain mild assumptions. Some subse-
quent tests are also discussed. All tests are defined as functions of U-statistics based esti-
mators of the Frobenius norm between the null and alternative hypotheses. Simulation
results are used to show the accuracy of the proposed tests for a general multivariate
class of distributions including multivariate normal.
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Appendix

A. Miscellaneous results and proofs

A.1. quadratic and bilinear forms

For the following moments, see for example, (Searle 1971, Chap 2).

Theorem 7. Let u=(u},...,u,) ~N(0,Z), u; ER”, E:(Eij)i,j:‘*l, Cov(u;,u;) = L. For symmet-
ric Ay, By, let Q;=ujAw;, Bj=u;Au;. Then E(Q)=tr(AL), Var(Ql)ZZtr(AZH)Z, E(Bpy)=

tr(AZZI), Val‘(Blz) :tl‘(AZZI)Z +tr(A222A,211), COV(Blz,B34) :tr(A223B241) +tr(A224B/231),
COV(QI,Qz) = tr(AleB/Zﬂ)‘

The results of Theorem 7 can be used to derive extended moments of quadratic and bilinear
forms, as given in the following lemma.

Lemma 1. Let a; ~ N,(0,X;), Cov(as,ag) =X (t=s) or 0 (t # s). Then

COV(D;viZijDuvj’a;,‘Eijavj) = CL)I,]] + ||EUZ]1H2 (21)
COV(DIuW-EijDWj, a;iaiva’vjavj) = Wijjjj + 2”21']‘2]‘1'”2 (22)
Cov(D}, EyDryj 4 Do D) ) = 205 + 3| Zy | (23)
2
Var(al avalyay) = 4o + 20252l + [I551°] + 12l 1207 (29)

! ! ! ! ! ! ! . ]
(21) also holds for Cov(auiEijauj,auiaviaujavj), Cov(atiauiatjauj,auiaviaujavj). Covariances like
! ! ! ! ! ! ! .
Cov(a),Zja,, auiaviaujavj), Cov(aﬁam-atjauj, auiaviatjavj) vanish.

For Yy in Equation (15), let A=Y}, Y, A=Y}, Yii, k%L Bx = Y, Z12Yk, By = Y X2 Yo,
From Equation (16), K,-i:E(Alzci)—Ztr(Efi)—[tr(Zii)]z = 0 under normality. Theorem 8 extends
the moments further under Model (15), relaxing normality, with constant K involving only x;,
and x;;.

Theorem 8. E(Aki):tr():ii), E(Akr,»):O, E(Ailz) = ||Zii 2, E(Bk) = ||Z]2
= K+ o, Var(By) = 0115, Var(AgAgs) = K+201+||Z0 [P 22|

%, E(By)=0, Var(By)

A.2. U-Statistics

Here we collect some basic results of U-statistics; for details, see Koroljuk and Borovskich (1994) or
Serfling (1980). For iid X;, let h(Xi,...,X;u) : R™ — R denote the kernel of an mth order U-statistic,
U, with E(U,) = 0 = E[h()] with its projection hc(x1, ..., Xc) = E[h(-)|x1, ...,xc}, hm(-) = h(-) and
¢ = Var[h(-), c=1,..,m, so that Var(U,) =}, <m> (n __nz>§c/<:q>. fo<é <o

C m

V ¢, then (U, — E(U,))/+/Var(U,) 2 N0, 1). For two U-statistics, U of order m;, kernels h;(-),

projections hi(+), i=1, 2, let & = Cov[hlc(j,hk(-)], c=1,...,m; < my. Then Cov(U,;,U,) =

s (mz) <n - mz)iw/ (n};) Let U,,, be a U-statistic of two independent samples, with

=1\ ¢ m; — ¢
kernel  h(Xi1,..., Ximy> X215 - Xom, ),  symmetric in  each  sample, projection k. =
E[h(.)‘Xu, w0 X1ey 3 Xa1 ...,chz], b, = Cov[h(.),hclcz(.)], =0, ¢, =0,1,...,m;. If 0<
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D
ni/n<1, n=mn+mny, 0<&,, <oo V¢, then (Uyn, —E(Unn,))/+/Var(Uyy) — N@O, 1)

_ 1 2 ny —m my n; —m; ny ny
where Var(U,,,,) = chzo ZCFO ( o > <m1 o > ( o ) (m2 o )f_c,cz/(ml ) (ﬂh)

A.3. Proof of Theorem 1

Consider T, in Equation (3) with kernel h(-) = Biss12/p1p2, degenerate under Hy. By the asymptotic
theory of U-statistics (van der Vaart 1998), n/2U, has a non-degenerate limit with variance c!&,, with
¢ the least value for which h(-) is non-degenerate. In our case c=2 so that nU, has a limit. Further,
h(-) varies with n (and p; through #). Many authors have considered U-statistics with varying kernels;
see Anderson, Hall, and Titterington (1994) or Koroljuk and Borovskich (1994).

The key point in the limit of nU,, is the behavior of &. For Hy, all &, c=1, ..., 4, are bounded
under the assumptions; see Section A.5. Then, by Equation (6), the second term is bounded by
the first which in turn vanishes as p; — oo, under A1-A2. Thus Var[n(T, — IZ52]1%) /9] = O(1)
with @2 = ||Zy,||*| 221> /p3p%. The limit follows from (Lehmann 1999, Theorem 6.1.2). Under
Hy, &, =0 and h(:) is first-order degenerate. From Section A.2 and Equation 5, ¢ =
1200111 E22]?/p203 keeps & > 0 = Var(T,) > 0. With h(-) : R"*P2 — R square-integrable func-
tion, composed of inner products, we have h(-) € £,(H), where H is the Hilbert space and
L,(-) is the space of square-integrable random variables. We write

Alskr12 = [(D;ﬂ ® D;crl)(Dk"z ® DlsZ)} /12P1P2 = tr(Dkrngsl & DZSZD;crz)/plpL

similarly other parts of h(-), where the components are independent under H, with variance &,.
Further, by the properties of Kronecker product (Harville 2008, Ch. 16), y,, = vavs are the
eigenvalues of T'1; = (211 @ Xyp)/p1p2, where v = A/p; are the eigenvalues of X;;/p;. Thus &,
corresponds to fle Vfl 522:1 l/f2 and the eigenvalues of the kernel correspond to those of I'y,
since " 92, = tr(T%,) =2 _ 4 372 2. Under this set up, h(-) is a Hilbert-Schmidt (prod-
uct) kernel (Serfling 1980) with an orthonormal decomposition, where the weak convergence of
such a kernel is given as

(Tz — E(TZ —> Z Z 1/511/52 5152 1) (25)
sl=1s2=

with Z, a sequence of independent N(0, 1) variables. The normal limit follows by an applica-
tion of Lindeberg-Feller CLT for triangular arrays (see also Ahmad 2017a).

A.4. Proof of Corollary 1

The proof follows by showing the consistency of ||):.,-,—H2 = E; (Section 4.3) under Model (15).
With «;, as in Equation (16), this immediately follows from Ahmad (2017a)

Var(E;) = (2n® — 9n% +9n — 16)||E2||* + (n? —3n+8)[||IX2 ||} +K1,0(n?)|.

4
P(n)
under Assumptions 1-3, as n, p; — oo. This proves Equation (8) and the corollary.
A.5. Proof of Theorem 2

From Equation (3) and Section A.2, h(ak; a,, ay, as) = Algkr1 Akrisz + Aisr1Asrikz + Airks1 Az With
projection h.(-) = E[h(-)|as, ...], ¢=1,...,4, so that
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m() = 6] (2} Ban) + [Tl
hy(-) =2 [d;slzlzdlsz + 3;1212312 + aél):lzalz + aﬁlaslaﬁzazz + tr():lz):m)]
hs(-) = di [aklaiz + 212]d152 +dy, [aslaﬁz + le]dklz + dksl)/ [3113;2 + Elz]aksz

and hy(-) = h(-) with A, = Dy D), dig = aj — ag etc. We need &, = Varlh(-)] where &; fol-
lows from Theorem 7 which, along with Lemma 1, also gives &,, with several covariances like
Cov(apXpap, ag Xi2as) vanishing by independence. Part of &; follows exactly as &, and the rest,
after tedious computations, using the moments below which themselves follow from Lemma 1

Var(DioXa D) = 4{ o2 + [|EnEa*}
Cov(al, Axizaks, Do a1 D) = 3{ @112 + [ E2Zan||*}
Cov(DyE21Dist, DjoXai Dyt ) = 01122 + [|Z2Za1 ||
Cov(aj; Aginak, al Ajnan) = 70112 + 5|20 |° + [||212||2]2 + 1= P IZ2 )
Var(aj; Axag) = 4{4‘”1122 + 2|0 P + [IE0l?]” + ||>311||2||>322||2}
Consider for example, Var(a}; Aji2ak). Using Ay = djid), we can write
Var(ay,ananan) + Var(ay,agagag ) + Var(ay,anal,ax) + Var(ay, agapag)
+ 2Cov(a} anaj,ak, a, agal,ak) + 2Cov(ay, anal,an, aj, aqaj,ak)

with other covariances zero. First two variances give the same result, using Lemma 1. Next two
reduce, by conditioning on ay, to Var(a;Mag,), M = ajaj,, and also give same result. The cova-
riances, using independence and trace properties, reduce to Var(aj,Xi,ax,) which also follow
from Theorem 7. Now &, = 3Var(Asrn Akrs2) + 6CoV(Ajskr1 Akrisz> Atksr1 Asrikz) for which

2
Var(Agr ko) = 16420112 + 41 E0Zar P + [1Z0 2] + 12071220}
Cov(ay; Ag2ap, 4y Agnan) = 3{3(01122 + H):lz):zlnz} = Cov(a}; Axr2a2, ) Agr2a)

where Cov(aj, Axr12an, ) Ag2an) and Cov(a); Agr2a0, 8} Ag128k) are also same as given above.
With Ajgr1Akrsz = Disi DDy, D, the variance part follows from Lemma 1, and with Ay, =
D1 D},,, the covariance part follows by conditioning as argued above. The other three covarian-
ces follow the same way. We thus have

& = 36{onn + | Znl*}

&= 4{22601122 + 20| Z 8 + (120l + ||211H2||222”2}

& = 6{ 2801 + 21 ZZar | + 3[1Zual)” + 320 Zaa) |
&y = 12{260)1122 + 16H212221H2 + 5[”212”2]2 + 5H211||2||222||2}~

Substituting in Var(U,) in Section A.2 gives Var(T,). For Var(T;), Var(T,) gives Var(T;). For
covariances we focus on C; = Cov(Ty, Tjy) where C,, C; follow similarly. From Section A.2, h;(-)
are same as h(-) above, so that h; = E[h;()|as,a,,...] with &, = Cov[hi(-), hae(+)]. This, after
long and tedious computations, gives
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511 = 36COV(a;izija[j + ||Elj

|2,a;i):,»j/alj/ + HZinz) = 36wy +
&y = 4Cov(DyZyDiy + ajagagay + aTyay + al Tyag + [|Z4]°, DLy Dy
+ajagagay + aTyay +a Tyag + | Ty ) = 56{wyy + ;)
&3 = Cov(Di(akay; + Ly)Dyg + Dy (asay + L;)Diy + Dy (asay + Lij) Dy,
D;si(akia;cj’ + Eij')Dlsj’ + D;ki(afiagj’ + Zij’)lej’ + D;csi(aSiagj’ + Zij’)Dksj')
— 6{ 2205 + 310y, + 2551y I+ Sy P12
= 48{2(047 + 0ugy+ 0y} + 15517155 I+ 15 ISl .

Substituting and simplifying gives the required covariance.
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