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A B S T R A C T   

Chemotherapy kills fast-growing cells including gut stem cells. This affects all components of the physical and 
functional intestinal barrier, i.e., the mucus layer, epithelium, and immune system. This results in an altered 
intestinal permeability of toxic compounds (e.g., endotoxins) as well as luminal bacterial translocation into the 
mucosa and central circulation. However, there is uncertainty regarding the relative contributions of the 
different barrier components for the development of chemotherapy-induced gut toxicity. This review present an 
overview of the intestinal mucosal barrier determined with various types of molecular probes and methods, and 
how they are affected by chemotherapy based on reported rodent and human data. We conclude that there is 
overwhelming evidence that chemotherapy increases bacterial translocation, and that it affects the mucosal 
barrier by rendering the mucosa more permeable to large permeability probes. Chemotherapy also seems to 
impede the intestinal mucus barrier, even though this has been less clearly evaluated from a functional stand-
point but certainly plays a role in bacteria translocation. Combined, it is however difficult to outline a clear 
temporal or succession between the different gastrointestinal events and barrier functions, especially as 
chemotherapy-induced neutropenia is also involved in intestinal immunological homeostasis and bacterial 
translocation. A thorough characterization of this would need to include a time dependent development of 
neutropenia, intestinal permeability, and bacterial translocation, ideally after a range of chemotherapeutics and 
dosing regimens.   

1. Introduction 

Cancer treatments with chemotherapy is still a cornerstone in 
oncology as this class of drugs kill fast-growing cells by inhibiting cell 
growth and/or cell division. However, the specificity of chemothera-
peutics, such as 5-fluorouracil, methotrexate, irinotecan, and doxoru-
bicin, is often limited. This means that also rapidly proliferative healthy 
cells are targeted and strongly affected. One tissue that is particularly 
vulnerable is the gastrointestinal (GI) tract, where complete cellular 
renewal of the epithelial surface area occurs every 3–7 days depending 
on intestinal location [1]. This may give rise to a class of GI toxicity 
called chemotherapy-induced intestinal mucositis (CIM), which is 
associated with diarrhea, but also inflammation, ulceration, pain, 
nausea, malnutrition, and sepsis (Fig. 1) [2]. The condition affects a 
majority (40–100%) of cancer patients undergoing high dose 

chemotherapy [3] and it is a significant clinical challenge that lacks 
effective treatment options [4]. Based on severity of these GI adverse 
events, the chemotherapy may need to be ceased temporarily, leading to 
an increase in the healthcare cost and a delay in antineoplastic anti-
tumor therapy [5]. Crucial to find new supportive treatments and in-
terventions to reduce the off-target GI effects of chemotherapy is a better 
understanding of the pathophysiological factors and adaptive processes 
involved in the complex regulation and repair of an injured intestinal 
epithelium [6]. 

For instance, chemotherapy affects all components of the physical 
and functional intestinal barriers, i.e., the mucus layer, epithelium, 
neuroendocrine feedback signalling and/or immune system as well as 
gut vascular barrier. This may give rise to immune response and altered 
intestinal permeability of toxic compounds (e.g., endotoxins) as well as 
an increased translocation of luminal bacteria into the underlying 
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tissues and central circulation. Inflammatory profiles may promote 
further damage to the intestinal epithelial barrier, thereby amplifying a 
vicious cycle leading to exacerbated bacterial translocation into the 
lamina propria. However, there is uncertainty regarding the relative 
contributions of the different components of the critical intestinal bar-
rier for the development and symptoms associated with CIM. For 
instance, is bacterial translocation caused primarily by a reduced mucus 
or epithelial barrier, and is bacterial transaction a driver and/or cause of 
CIM? 

To try to answer these questions, bacterial translocation needs to be 
characterized and investigated together with permeability probes that 
are transported by different routes and mechanisms to reflect different 
barrier disruptions and injuries. Important for the mucosal barrier is also 
the viability of the immune system, which is heavily affected by 
chemotherapy. However, the effect on the immune system will not be 
considered in this review, and readers are instead referred to the 
following publications on the subject [7,8]. 

This review will present an overview of the intestinal mucosal barrier 
determined with various types of molecular probes and methods, and 
how they are affected by chemotherapy. We performed a summary of all 
clinical and preclinical rat and mouse studies investigating the effect of 
chemotherapeutics (without radiotherapy) on intestinal mucus, epithe-
lial permeability, and bacterial translocation. A literature search was 
performed using Pub-Med without any time limit for article inclusion, 
using the following search words in different combinations: 
chemotherapy-induced mucositis, chemotherapy, mucositis, intestinal 
barrier, intestinal permeability, mucus, goblet cells, and bacterial 
translocation. 

2. The intestinal barrier: a critical gate-keeper 

The GI tract was most likely one of the first organs to develop already 

540 million years ago during the Cambrian explosion, as the evolution of 
a digestive organ was necessary for the development from single to 
multicellular organism [9]. To accommodate the higher energy demand 
of larger organisms, the intestines had to be able to both break down 
large food particles, as well as to selectively absorb nutrients across the 
gut barrier via carrier-mediated transport mechanisms. At the same 
time, it was necessary for the barrier to be able to resist uptake of foreign 
potentially toxic components in food and water. As such, the intestine 
forms a selective barrier evolved to balance optimal protection against 
harmful luminal microorganisms and proteins/xenobiotics/toxins while 
allowing efficient nutrient and fluid absorption [10]. 

The total gut barrier is composed of chemical, microbial, neuroen-
docrine, secretomotor, immunological, and physical elements that act in 
coordination to uphold homeostasis. An intact physical intestinal barrier 
is pivotal for immune homeostasis and any deterioration of the barrier 
triggers the immune system and the outcome might be a chronic 
inflammation. Highly dynamic conditions and chemical elements in the 
GI lumen, such as the low gastric pH, and bile and pancreatic secretions, 
limit the possibility for pathogenic organisms to infect and colonize the 
proximal part of the GI tract. Luminal colonization is also restricted by 
the 1013 commensal bacteria living in the gut [11]. These microbiota can 
be regarded as a part of a normal GI ecosystem, where they in addition to 
limiting pathogenic infiltration also maintain intestinal homeostasis in 
synergy with the host’s neuroendocrine systems [12]. Endocrine and 
secretomotor signaling can be regarded as part of the barrier, where a 
range of pathogens triggers luminal fluid secretion and aboral motility. 
This may give rise to diarrhea that aim at excreting unwanted micro-
organisms and their toxins with the feces. The immunological barrier 
resides both in the intestinal lumen and mucosa (lamina propria mac-
rophages). For instance, the adaptive immunity generate immunoglob-
ulin A that are transcytosed by enterocytes into the lumen [13], while 
the innate immune system associated Paneth cells secrete anti-microbial 

Fig. 1. Cell composition and anatomical structure of the intestinal barrier and the time-dependent suppression of normal epithelial cell growth as consequence of 
chemotherapy. 
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peptides [14]. The mucosa is also host to the majority of the body’s 
leukocytes, that take care of toxins and microorganisms that have 
penetrated into the intestinal tissue. There is also interactions with 
dendritic cells in the intestine and associated lymphoid tissue where 
dendritic cells are involved in both the maintenance of tolerance to-
wards the commensal flora, and in the generation of protective immune 
responses against pathogens [15]. Their flexible function is most likely a 
consequence of a sensing function of their local environment and sub-
sequent immune response. The primary focus of this review is the 
physical barrier, composed of the mucus layer and the apical epithelial 
membrane, which together regulate the permeation of various classes of 
solutes and parties. 

3. The physical intestinal barrier 

The inner cell layer facing the intestinal lumen is called the epithe-
lium. This layer contains six mature intestinal epithelial cell types with 
distinctly different functions. They are all polarized, and the apical and 
basolateral membranes have different properties. Two of epithelial cells 
are primarily absorptive (enterocytes and M cells) and four of them are 
primarily secretory (goblet cells, Paneth cells, enteroendocrine cells, and 
tuft cells) (Fig. 1). 

All six epithelial cell types have fundamentally important functions 
in the digestion, overall homeostasis and health of the intestine. In short, 
the main function of the enterocytes, that make up 80% of the total 
epithelial cells, is to absorb nutrients, water and ions [16]. M cells lie 
above intestinal lymphoid follicles where they have a key role in the 
initiation of mucosal immune responses by transporting antigens and 
microorganisms to the underlying lymphoid tissue [17]. Paneth cells 
secrete anti-microbial compounds and the goblet cells secrete a pro-
tective gel mucus, the tuft cells are involved in the defense against 
parasitic infections, and finally, the enteroendocrine cells secrete pep-
tide hormones involved in physiological regulation of digestion and 
metabolism [18]. 

Another important property of the epithelial cells are the intercel-
lular junction proteins that seal them together at the apical to basal 
domains. These tight junctions proteins are composed of transmembrane 
and cytoplasmic scaffolding proteins, such as claudins, zonulin, tri-
cellulin and occludin, which are structurally and biochemically differ-
entiated. They hold the cells together and form a near leak-proof 
intercellular seal by fusing adjacent apical cell membranes. This seal 
constitutes the primary physical barrier against molecular diffusion of 
hydrophilic molecules across the intestinal cell monolayer [19,20]. 
Deeper down from the luminal side resides anchoring junctions 
(adherence junctions and desmosomes) that connect the filaments be-
tween cells to provide essential adhesive and mechanical properties to 
the intercellular space [21]. 

Covering the intestinal epithelium resides a surface mucus glyco-
protein layer. This gel is released at the apical surface of goblet cells as 
secretory granules. It is a viscous layer composed primarily of the highly 
glycosylated mucin (MUC) 2 protein that forms a structural skeleton 
with other gel-forming (e.g. MUC3, MUC6, and MUC 7) and trans-
membrane (e.g., MUC1 and MUC12) mucins [22]. This is the first 
physical mesh-like aqueous based barrier that any luminal solute or 
microorganism must penetrate before it can interact with the epithelial 
cells and be absorbed. For solutes with small molecular size, the mucus 
barrier is insignificant [23], whereas the protein mesh in the mucus gel 
means that complete steric hindrance is observed for solid particles and 
most bacteria with a diameter larger than 200 nm, and for proteins with 
a molecular mass higher than 12 kDa [24]. The mucus barrier thus has a 
fundamental role in limiting bacterial and macromolecular penetration 
from the lumen to the epithelial membrane barrier. This is illustrated by 
that the mucus layer it is substantially thicker, more strongly adherent, 
and more restrictive to bacterial penetration in the colon than the small 
intestine [25], which is likely an effect of the higher abundance of 
bacteria in the distal intestinal regions [26]. 

4. Effects of chemotherapeutics on the physical intestinal 
barrier 

Chemotherapy-induced mucositis (CIM) arises as a consequence of 
DNA injury in the rapidly dividing stem cells residing in the deeper parts 
of the intestinal epithelium along the crypt-villus axis. This causes many 
of them to die by apoptosis and other types of cell death, which disturbs 
the normal and consistent cell mitosis and tissue-regeneration processes 
in the epithelium. It is also important to consider the role of the gut- 
brain axis, which is involved in the maintenance of homeostasis by 
integrating a vast array of signals from neuroendocrine systems [27]. 

A generally accepted model describes the development and effect of 
CIM [28,29]. It starts with an initiation phase characterized by direct 
DNA injury and the generation of reactive oxygen species. This is fol-
lowed by a primary damage response characterized activation of cell 
death and immunological factors and their associated pathways, such as 
Wnt/β-catenin, p53, caspase-1/3, Bcl-2, and NF-kb [30–32]. These 
pathways and signals amplify in a complicated biochemical interplay 
where the overall effect is mucosal inflammation and tissue ulceration 
that peak at about 2–7 days in humans, depending on dosage regime and 
type of chemotherapy drug. The final stage is the spontaneous healing 
phase in which normal epithelial proliferation, migration, differentia-
tion and maturation are restored, which takes about two weeks [2]. 

At the peak of chemotherapeutic induced epithelial injury and bar-
rier deterioration, an increased permeability of luminal solutes, toxins 
and microorganisms is observed, which is also accompanied by a 
plethora of side effects such as diarrhea, nausea, anorexia, stomach 
cramps, fever, physiological and cognitive functions [27,33]. All 
together, these complications lead to extensive morbidity and are 
related to substantial use of hospital resources for supportive care that 
leads to increased healthcare costs [34]. 

The following sections of this review presents a summary of human, 
rat and mice in vivo studies investigating the effect of chemotherapeu-
tics on the physical intestinal barrier with intact neuroendocrine sys-
tems. This includes studies of epithelial solute permeability, goblet cell 
abundance and mucus secretion, and bacterial translocation. The 
ambition is to present the reader with a deeper understanding of how 
these complex processes and functions are inter-related, and to which 
extent they are important for the initiation and subsequent development 
of CIM, and the associated symptoms and potential future supportive 
therapies. 

5. Effects of chemotherapeutics on epithelial solute 
permeability 

The intestinal permeability is defined as the selective ability of the 
intestine to resist uptake of water-soluble solutes. The permeation of 
solutes with different mass and sizes is believed to largely occur via 
paracellular route, and/or transcellular transport by passive diffusion 
and/or carrier-mediated transport, and to a minor extent via endocytosis 
(Fig. 2). Often solute permeation are using different coexisting transport 
mechanisms [35]. Experimentally, permeability is usually indirectly 
determined based on the appearance of inert (metabolically stable and 
passively absorbed) probe molecules in plasma and/or urine following 
oral dosing or during intestinal perfusions. Intestinal permeability in 
humans and animals can also be directly determined based on the 
disappearance rate of the selected marker compounds from the perfused 
intestinal lumen with various techniques [10]. Commonly used water 
soluble inert probe molecules, ranging from small to large molecular 
mass and size, are presented in Table 1. 

Another indirect method to evaluate mucosal status is to measure 
plasma citrulline levels. Citrulline is an amino acid mainly synthesized 
by enterocytes, and a reduced enterocyte mass and/or enterocyte 
function is correlated to decreased plasma citrulline levels [36]. Indeed, 
decreased citrulline concentrations in plasma has been associated also 
with chemotherapy [37], and it is a promising biomarker for evaluating 
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CIM as well as effectiveness of supportive therapies. However, a direct 
correlation between mucosal barrier function and plasma citrulline 
levels is not established, and citrulline will therefore not be discussed 
further in this review. 

Often it is difficult to distinguish if an increased epithelial perme-
ability is a symptom and/or a cause of a condition, but it is nonetheless 
observed in a range of GI and systemic diseases and disorders, such as 
celiac and inflammatory bowel disease, obesity and type 1 diabetes, non- 
alcoholic fatty and alcoholic liver disease, irritable bowel syndrome, as 
well as in conjunction with chemotherapy [6,38]. 

The cause of the increase in permeability vary between different 
conditions, but it is believed to be dependent on the integrity and 
functions of the epithelium as well as its available surface area. The 
small intestinal mucosa is characterized by its large transport capacity as 
it has been reported to have an area of about 32 m2 in humans [39]. 

The intestinal permeability probes in Table 1 are classified to be 
transported through the intercellular space between epithelial cells to 
different extent (paracellular route). This intercellular space is highly 
regulated and it has been proposed that there are variable pore and leak 
pathways generated in human epithelial barrier as a consequence of 
inflammation [35]. Even if the intercellular junctions only comprise 

about 0.01% of the intestinal surface area, paracellular transport is 
believed to contribute to the transepithelial movement of water and 
solutes [40,41]. The smaller pore pathways between the epithelial cells 
is the main route for probes with low molecular mass. Larger molecules, 
such as lactulose and endotoxins, may go through leak pathways as well 
as the transcellular route by different mechanisms [42]. 

Following oral dosing, the rate and extent of absorption of various 
permeability markers will also be dependent on non-permeability fac-
tors, such as gastric emptying, luminal interactions (metabolism, bind-
ing, precipitation) and intestinal transit time. To account for these 
differences to some extent, permeability markers with different molec-
ular mass (e.g. mannitol and lactulose with molecular mass 182.1 and 
342.3 g/mol, respectively) are often combined in the permeability 
evaluation. This is because smaller probes (low molecular mass) are 
assumed to be transported paracellularly across the whole epithelial 
surface are (crypt-villus axis), while the larger ones are assumed to be 
transported in the larger paracellular pores residing in the basal parts of 
the villi and crypts [43]. Thus, an increased permeability ratio of the 
marker compounds (i.e. large vs small) indicates a reduced surface area 
and/or increased paracellular leakage. This also limit the experimental 
uncertainty regarding transit times in different individuals and study 
groups, which can be especially important in many GI conditions where 
diarrhea is commonly observed. 

A summary of 23 clinical studies investigating the effect of chemo-
therapy on intestinal permeability of marker probes is presented in  
Table 2. 

In cancer patients, all but six studies reported chemotherapy-induced 
changes in intestinal permeability. This includes a reduced absorption of 
xylose in two clinical trials, likely reflecting a reduced intestinal mucosal 
surface area available for absorption of this small hydrophilic perme-
ability probe (Table 1). Conversely, an increase in absorption of larger 
marker compounds (PEG 400, Cr-EDTA, povidone) was reported in three 
studies, likely as a result of a reduced paracellular integrity and/or 
increased availability of the markers to crypt areas. In the remaining 
studies an increase in sugar ratio (L/M or L/R or C/M) was observed. 
This effect can be attributed to a reduced surface area and/or increased 
paracellular permeability due to an enhanced intercellular space, where 
both changes are indicative of barrier dysregulation or injury. 

Fig. 2. Intestinal permeability of a dissolved molecule is determined by the sum of transport mechanisms across the epithelium. (1) Passive lipoidal diffusion, (2) 
carrier-mediated uptake, (3) carrier-mediated efflux, (4) passive paracellular diffusion, and (5) endocytosis. 

Table 1 
Molecular mass and diameter of commonly used inert intestinal permeability 
probes. Polyethylene glycol – PEG, 51Cr-labelled ethylenediaminetetraacetic 
acid - 51Cr-EDTA, Diethylenetriamine pentaacetate = DTPA, Fluorescein 
isothiocyanate-dextran 4000 = FD-4, Ångström – Å.  

Probe Molecular mass (Da) Molecular diameter (Å)[38] 

D-Xylose 150 6.7 
Rhamnose 164 6.9 
Mannitol 182 7.2 
51Cr-EDTA 340 9.6 
Lactulose 342 9.7 
Cellobiose 342 9.7 
PEG 400–4000 10.5–30.4 
(Tc-99 m) DTPA 487 11.5 
Iohexol 821 14.7 
FD-4 4000 30.4  
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It should be mentioned that cancer patients often display an altered 
intestinal permeability compared to healthy controls [44–46] as an ef-
fect of cancer-related malabsorption and potentially other disease 
related causes. Furthermore, it has been reported that carrier-mediated 
nutrient transport does not seem to be significantly affected by chemo-
therapy, at least for amino acids in paediatric patients [47]. This is likely 
a consequence of the great overcapacity of the intestines to absorb 
ingested nutrients [10]. 

In summary, with six exceptions [48–53], chemotherapy had a 
relatively minor effect (< 2 fold change) on epithelial solute perme-
ability in treated cancer patients. Furthermore, the overall differences in 
study designs makes it difficult to draw any general conclusions from the 
clinical data regarding different chemotherapeutics/dose/time vs. 
permeability effects (Table 2). For instance, many of the chemothera-
peutics were used in combination [50], with individual dosing regimens 
[48], and over an extended period of time with multiple doses [54]. The 
time points for permeability measurements after dosing also varied in 
relation to the dosing events. 

The shortcomings to interpret data from such clinical trials can be 
avoided by performing mechanistic animal models. This is because the 
experimental procedure can be harmonized and controlled [55,56], 
which enables more mechanistic investigations. A summary of 20 rat 
and 17 mouse in vivo permeability studies are presented in Table 3. 

In opposite to the clinical trials where many reported an absent (or 
minor) effect on intestinal permeability, all rat and mouse studies re-
ported effects. This higher effect in the in vivo preclinical studies is likely 
attributed to the doses commonly applied in animal models of CIM, 
which are chosen at a level known to cause substantial GI effect. This is 
in contrast to treatment in patients where doses of the chemothera-
peutics are balanced between efficacy and safety to reach the optimal 
quality life and outcome. Further, studies with preclinical models often 
include many sampling points and the sampling times are typically 
selected to cover the most severe injury, which is not always possible in a 
clinical setting. 

The overall trend in mouse and rat reports investigating time from 
single dose to permeability effect suggests a peak at about 42–72 h post 
dose [57–59], which is in line with the maximum injury on the rodent 
epithelium [60]. After about 72 h post-dose a reduction in intestinal 
permeability is reported [57], with a return to baseline after about 1 
week (in the Ussing chamber model) [61]; again these data corresponds 
to the adaptation time-line in proposed CIM-model [3,33,62]. 

Comparison of the effect of different chemotherapeutics on intestinal 
permeability is not readily done between studies, given the different 
species, dosing schedules, permeability markers, and time for determi-
nation applied. Only two preclinical studies has reported a head-to-head 
comparison [63,64]. In one, iohexol, was determined in urine, and its 
excretion (assumed to reflect intestinal permeability) was lowest 
following 5-fluorouracil (150 mg/kg), followed by oxaliplatin 
(15 mg/kg) and irinotecan (200 mg/kg). The other study determined 
mannitol permeability in the rat SPIP model, which is the gold standard 
permeability model as in avoids any bias related to GI transit [65,66]. 
They report a reduced and increased intestinal permeability after 
doxorubicin and irinotecan, respectively, while 5-fluorouracil had no 
effect [64]. The different effects of 5-fluorouracil in the two preclinical 
studies may be related to size differences between iohexol and mannitol, 
as discussed above. Further, in the two comparisons [63,64] it cannot be 
excluded that the difference in effect on intestinal permeability might be 
related to the doses applied rather than the cytostatic mechanisms of the 
chemotherapeutics. 

Overall, the compiled rat and mouse experimental data show a clear 
effect of chemotherapy on intestinal epithelial permeability of inert 
permeability probes. In animals this increase is related in time to 
epithelial injury, which can be a combination of a reduced. 

Table 2 
Summary of clinical studies on cancer patients investigating the effect of che-
motherapeutics on intestinal permeability of inert molecular probes (plasma 
apperance or urine excretion after oral dosing) at different time points. Lactulose 
= L, Cellobiose = C, Mannitol = M, Rhamnose = R, Polyethylene glycol – PEG, 
51Cr-labelled ethylenediaminetetraacetic acid - 51Cr-EDTA.  

Cytostatic drug (dose, 
treatment period) 

Permeability 
model and 
probe 

Time 
after 
dosing 

Permeability 
effect 

Ref. 

5-fluorouracil 
(450 mg/m2, 5 days) 

Excretion, C/M 5–6 
days 

Ratio increased 
from 0.015 to 
0.034 

[54] 

Methotrexate (20 mg/ 
m2) 

Excretion, PEG 
400 

48 h 88% increase in 
urine excretion 

[84] 

Different drug 
combinations 

Excretion, L/M 1–4 
weeks 

No effect [44] 

Different drug 
combinations 

Excretion, L/R 7 and 
90 days 

Ratio increased 
from 0.09 to 0.62 
(7 days) and back 
to 0.06 (90 days) 

[48] 

5-fluorouracil 
(12–19.5 mg/kg, 5 
days) 

Excretion, 
Povidone 

72 h 2–20 fold 
increase 

[49] 

Different drug 
combinations 

Plasma, D- 
xylose 

1–4 
weeks 

Reduction from 
0.88 mM to 0.69, 
0.58, 0.53, and 
0.73 mM for 
week 1–4. 

[85] 

Different drug 
combinations 

Plasma, D- 
xylose 

1–4 
weeks 

Reduction from 
0.97 mM to 0.79 
0.66, 0.58, and 
0.78 mM for 
week 1–4. 

[86] 

5-fluorouracil, 
epirubicin and 
cyclophosphamide 
(600, 60 and 
600 mg/m2) 

Excretion, L/M 14 days Ratio increased 
from 0.03 to 0.21 

[50] 

Different drug 
combinations 

Excretion, L/M 10–12 
days 

Ratio increased 
in 44% of 
patients 

[87] 

Adriamycin ( 60 mg/ 
m2) 

Excretion, L/R 2 and 8 
days 

Ratio increased 
from 0.14 to 0.32 
(day 2), normal 
day 8 (0.10). 

[46] 

5-fluorouracil 
(750–100 mg), and 
leucovorin 
(25–50 mg), 5 days 

Excretion, L/M 5, 12, 
and 28 
days 

Ratio increased 
from 0.018 to 
0.036 day12 

[88] 

Melphalan (200 mg/ 
m2) 

Excretion,51Cr- 
EDTA 

5–20 
days 

4 fold increase on 
day 10 

[51] 

Different drug 
combinations 

Excretion, L/R 7–17 
days 

Increase from 
0.11 to 0.26 

[52] 

Different drug 
combinations 

Excretion, L/M 7 days No effect [89] 

Different drug 
combinations 

Excretion, L/M 7–16 
days 

Ratio increased 
from 0.02 to 
0.035 

[90] 

Different drug 
combinations 

Excretion, L/M 3–24 
days 

No effect [91] 

Different drug 
combinations 

Excretion, L/R 1–4 
weeks 

Ratio increased 
week 2–5 

[92] 

Raltitrexed (3 mg/m2) 
or Irinotecan 
(350 mg/m2) 

Excretion, L/M 6–15 
days 

No effect [93] 

Ifosfamide, 
Adriamycin, and 
dacarbazine (1500, 
25, and 200 mg/m2) 

Excretion, L/M 1, 3, 
and 14 
days 

Ratio increased 3 
fold on day 3 

[53] 

Different drug 
combinations 

Excretion, L/R 1–9 
days 

No effect [94] 

Paclitaxel 
(90–175 mg/m2) 
and carbo/cis-platin 

Excretion, L/M 7 days No effect [95] 

CP (500 mg/m2), 
epirubicin (60 mg/ 
m2), 5-fluorouracil 
(500 mg/m2) 

Excretion, L/M 12 days 120% increase [96]  
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6. Effects of chemotherapeutics on intestinal mucus 

The mucus layer in the intestine is involved in the protection of the 
epithelium [22]. Therefore, a dysregulated or impaired mucus secretion 
in the intestine will enable bacteria to penetrate to the cell surface and 
between villi into the crypts [67]. A disease associated with a compro-
mised mucus layer is ulcerative colitis; mice lacking MUC2 spontane-
ously develop colitis, and in humans mucus thickness correlates to 
disease severity [68]. Several investigations over the last decades have 
also highlighted a close connection between chemotherapy and effects 
on the mucus layer [69]. The cause is likely related primarily to an 
impaired cell renewal and goblet cell differentiation in the epithelium, 
but possibly also to an impaired mucus release. 

Experimentally, it can be problematic to measure mucus secretion 
and thickness, owning to the direct impact of tissue handling on mucus 

turnover, that staining methods affect mucus height, and difficulty in 
separating mucus from intraluminal contents (REF). Easier is to indi-
rectly study mucus effects by monitoring the amount of goblet cells in 
the intestinal epithelium. The fraction of mucus-filled goblet cells is also 
a common measurement, as the mucus depleted ones will not contribute 
to a normal mucus homeostasis. 

A summary of mucus and goblet cell studies are presented in Table 4. 
It includes eight rat and seven mouse studies. These studies are evenly 
distributed between 5-fluorouracil, methotrexate and irinotecan, as well 
as one study with doxorubicin and one with a combination of 5-fluoro-
uracil, leucovorin, and oxaliplatin. 

The majority of the preclinical studies report mucus-associated al-
terations at about 2–5 days after cytotoxic treatment. For instance, 12 
separate studies describe a reduced goblet cell count (per villi or area). 
The reduced goblet cell abundance is described to originate from the 

Table 3 
Summary of experimental rat and mouse in vivo studies investigating the effect of chemotherapeutics on intestinal permeability of inert permeability probes based on 
plasma apperance or urine excretionafter oral dosing, or single-pass intestinal perfusion (SPIP), at different time points. Permeability probes: Fluorescein 
isothiocyanate-dextran 4000 = FD-4, Lactulose = L, Mannitol = M, Diethylenetriamine pentaacetate = DTPA, 51Cr-labelled ethylenediaminetetraacetic acid - 51Cr- 
EDTA.  

Cytostatic 
drug 

Dose, duration and route Permeability model and 
probe 

Time after dosing Permeability effect Ref. 

Rat 
5-fluorouracil 30 mg/kg, orally, 3 or 4 

days 
Closed intestinal loop, FD-4, 
plasma 

72–96 h Exposure increased from 25 to 150 µg/mL×min on day 4, no 
effect on day 3 

[97] 

150 mg/kg, IP Excretion, iohexol 48 h Increased from 0.47% to 1.55% [63] 
200 mg/kg, IP SPIP, Mannitol 72 h 2.5 fold increase compared to control [64] 
75 mg/kg, IP Excretion, L/M 72 h 60% increase in ratio [98] 
75 mg/kg, IP Excretion, L/M 72 h No change [99] 

Oxaliplatin 15 mg/kg, IP Excretion, iohexol 48 h Increased from 0.47% to 2.61% [63] 
Etoposide 100 mg/kg, IV Closed intestinal loop,51Cr- 

EDTA 
4, 24 and 48 h No change at 4 and 24 h, but a 20% higher permeability at 48 h [100] 

Doxorubicin 10 mg/kg, IP SPIP, Mannitol 72 h 50% reduction compared to control [64] 
20 mg/kg, IP SPIP, Albumin 2 h 2-fold increase in permeability [101] 

Irinotecan 200 mg/kg, IP Excretion, iohexol 48 h Increased from 0.47% to 8.07% [63] 
200 mg/kg, IP SPIP, Mannitol 72 h 1.3 fold increase compared to control [64] 

Methotrexate 20 mg/kg, IP Closed intestinal loop,51Cr- 
EDTA 

72 h Increased in jejunum from 0.1 to 0.25 mL/min/100 g [102] 

2.5 mg/kg, SC, 3 days Excretion, L/M 48 h L/M ratio increased from 0.7 to 16.6 [103] 
15 mg/kg, oral, 5 days Everted sac, FD-4 3, 4 and 5 days Increase from 0.13 to 0.24 (4 days) and 0.29 (5 days) µL/min/cm. 

No effect day 3. 
[59] 

2.5 mg/kg/8 days, 3 
doses 

Excretion, Iodixanol 12 and 21 days 2 fold increase between day 12 and 21 [104] 

2.5 mg/kg/day, 3 days Excretion,51Cr-EDTA 1–5 days after 
last dose 

Increase from 3.3 to 16.4 (day 4) and 19.6 (day 5) [105] 

2.5 mg/kg/day, 3 days Excretion, L/M 72 h Increase in small intestine from 0.014 to 0.09 [106] 
2.5 mg/kg/day, 3 days Excretion, L/M 24 h after last 

dose 
L/M increased 15-fold [107] 

20 mg/kg, IV Everted sac, FD-4 24, 48, and 72 h No effect at 24 and 72 h, 40% increase at 48 h. [108] 
Melphalan 5 mg/kg, IV Plasma, FD-4 4, 7, and 10 days No increase [109] 
Mice 
5-fluorouracil 300 mg/kg, IP Excretion, DTPA 72 h Increase from 0.019% to 0.13% [110] 

200 mg/kg, IP Plasma, DTPA 72 h 4 fold increase [111] 
300 mg/kg, IP Plasma, DTPA 72 h 0.012–0.029% of oral dose [71] 
300 mg/kg, IP Plasma, DTPA 72 h 0.02–0.08% of oral dose [112] 
300 mg/kg, IP Plasma, DTPA 24 and 72 h Increase 0.02–0.04% (72 h), no at 24 h [58] 
300 mg/kg, IP Plasma, DTPA 72 h Increase from 0.01% to 0.022% [113] 
450 mg/kg, IP Excretion, L/M 72 h Ratio increased from 0.52 to 1.38 [114] 
200 mg/kg, IP Plasma, DTPA 72 h 2 fold increase [115] 
400 mg/kg, IP Plasma, FD-4 6 days 2 fold increase [116] 
30 mg/kg/day, 4 days Plasma, FD-4 24 h after last 

dose 
3-fold increase [117] 

Pemetrexed 75 mg/kg, 10 days, IP Plasma, FD-4 24 h after last 
dose 

No effect [118] 

Doxorubicin 100,g/kg, IP Plasma, DTPA 72 h 3 fold increase [119] 
Cyclophosphamide 25/50/100 mg/kg/day, 

IP, 5 days 
Plasma, FD-4 7 days Dose dependent small increase (40% and 60%) in permeability for 

the 50 and 100 mg/kg doses 
[120] 

100 mg/kg, IP Plasma, FD-4 48 h 3 fold increase [121] 
Irinotecan 75 mg/kg/day, 3 days, 

IP 
Plasma, DTPA 72 h 4 fold increase [122] 

270 mg/kg, IP Plasma, FD-4 6–96 h Substantial increase at 24, 48 and 72 h. [57] 
75 mg/kg, 3 days, IP Plasma, FD-4 48 h after last 

dose 
3-fold increase [123]  
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crypts, likely as an effect of the chemotherapy-induced stem cell 
apoptosis and associated cell differentiation. Interestingly, the goblet 
cells that were already present in the epithelium seems to be spared to 
some extent in the normal epithelial cell shedding process, which is 
manifested as an increased concentration at the tip of the villi. 

To what extent these spared goblet cells are able to uphold a suffi-
cient high mucus production and secretion is still uncertain, as these 
effects are less readily quantified. For instance, one 5-fluorouracil study 
report a reduced mucus layer thickness after treatment [70], while 
another study suggests that the mucus layer area is higher in control rats 
[71]. This highlight one problem with using goblet cell count in quan-
tifying mucus effects, as this cell type can be either mucus filled or 
empty; the empty population does not contribute to mucus health or 
homeostasis. It is also surprising that MUC2 deficient mice had the same 
degree of CIM as control animals [72], which further obscures the exact 
contribution of the mucus layer in CIM and in bacterial translocation. 

7. Effects of chemotherapeutics on bacterial translocation 

Bacterial translocation is defined as the transport of viable luminal 
GI bacteria across the intestinal barrier to the mesenteric lymph nodes 
and other extraintestinal compartments, such as the spleen, liver, peri-
toneal cavity, and blood [73]. Translocation of commensal bacteria 
normally occurs at a low rate also in healthy individuals. This is typically 
not associated with any adverse reactions as they are rapidly neutralized 
in the lamina propria, lymph ducts, and mesenteric lymph nodes by the 
immune system. Consequently, bacteria is seldom observed in these 
tissues in humans and animals with a functional mucosal barrier and 
immune system. 

However, promotion of bacterial translocation is associated with 
three different mechanisms, as identified by Berg, 1999 [73]: (i) over-
growth of intestinal microbiota, (ii) immunodeficiency disorders, (iii) 
and increased intestinal permeability. Generally, the severity of these 
mechanisms grade from overgrowth, where bacteria typically increases 
in the mesenteric lymph nodes, where they are taken care of by the 
immune system. The next level is a compromised immune system where 
bacteria spread from the mesenteric lymph nodes to neighboring organs 
such as the liver and spleen, and potentially further depending on the 
level of immune incompetence. Even more serious are injuries to the 
epithelial barrier, where the overwhelming influx of bacteria may lead 
to appearance in the peritoneal cavity and central circulation. The final 
stage where sepsis, multiple organ failure, or even death can occur, is 

Table 4 
Summary of experimental rat and mouse in vivo studies investigating the effect 
of chemotherapeutics on intestinal mucus and goblet cells.  

Cytostatic Dose and 
route 

Species Time 
after 
dosing 

Goblet cell and 
mucus effect 

Ref 

5-fluorouracil 150 mg/ 
kg, IP 

Rat 72 h Goblet cells/ villi 
and crypt 
reduced in 
jejunum, no 
effect colon 

[124] 

450 mg/ 
kg, IP 

Mice 72 h Goblet cells per 
area reduced 
from 14 to 7 in 
duodenum 

[125] 

30 mg/kg, 
IP, 5 days 

Rat 24 h after 
last dose 

Mucus layer 
thickness in 
ileum reduced 
from 550 to 
200 µm 

[70] 

300 mg/ 
kg, IP 

Mice 72 h Mucus layer area 
in the small 
intestine larger 
in treated mice 

[71] 

35 mg/ 
kg/day, 
IP, 4 days 

Mice 24 h 
afterlast 
dose 

3 fold reduction 
in goblet cells 
and mucus in the 
small intestine 

[126] 

5-fluorouracil 
leucovorin 
oxaliplatin 

30 mg/ 
kg/day 5 
days 
10 mg/ 
kg/day 5 
days 
1 mg/kg 
day 1 

Mice 24 h after 
last dose 

Mucin-filled 
goblet cell 
number/villi 
reduced from 
18.20 to 3.45 

[127] 

Doxorubicin 10 and 
6 mg/kg, 
day 1 and 
2, IV 

Mice 1–2 days Goblet cell- 
specific gene 
expression of 
trefoil factor 
family 3 reduced 
50% 

[128] 

Methotrexate 50 mg/kg 
day 1, 
25 mg/kg 
day 2, IP 

Mice 2–7 days Muc2 deficiency 
no effect on CIM 

[72] 

20 mg/kg 
day 1, 
10 mg/kg 
day 2, IV 

Rat 1–4 days Goblet cells 
reduced in villus 
tip and base in 
jejunum day 1–4, 
but spared at the 
tip on day 4. No 
effect in colon. 

[129] 

20 mg/kg 
day 1, 
10 mg/kg 
day 2, IV 

Rat 1–4 days Goblet cells 
reduced in villus 
tip and base in 
jejunum day 1–2, 
depletion in 
lower regions on 
day 4. Goblet 
cells spared at 
the tip day 4. 

[130] 

2.5 mg/ 
kg/day, 3 
days, SC 

Rat 1–7 days Goblet cell 
count/mm2 
jejunum 
reduced, with a 
minimum at day 
5, normal at day 
7 

[131] 

Irinotecan 75 mg/ 
kg/day, 3 
days, IP 

Rat 72 h Goblet cells per 
surface area, 
jejunum, 6 fold 
reduction 

[122] 

45 mg/ 
kg/day, 5 
days 

Mice 5 days Goblet cells/ 
villus reduced 
from 20 to 5 

[132]  

Table 4 (continued ) 

Cytostatic Dose and 
route 

Species Time 
after 
dosing 

Goblet cell and 
mucus effect 

Ref 

200 mg/ 
kg, IP 

Rat 72 h Small decrease in 
goblet cells/villi 
or crypt in 
jejunum and 
colon. 

[133] 

200 mg/ 
kg 

Rat 1–7 days No effect on 
goblet cells or 
mucins over 
144 h in 
jejunum. Small 
decrease in colon 
at 96 h. 

[134] 

75 mg/ 
kg/day, 3 
days, IP 

Mice 72 h Goblet cells per 
area reduced 
from 0.85 to 0.15 
in jejunum 

[122] 

175 mg/ 
kg 

Rat 6–120 h Goblet cells 
reduced 50% in 
colon after 72 h. 
No change in 
colon. 

[135]  
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often associated with a combination of the three mechanisms. 
Chemotherapy can have an effect on all three intestinal mechanisms, 

as it leads to mucosal barrier injury and increased permeability [74], an 
altered luminal microbial ecology [75], and neutropenia [76]. Accord-
ingly, 5-fluorouracil effects on white blood cell count, bacterial trans-
location, plasma endotoxin levels, and epithelial injury coincide [77]. 
One study suggest that intestinal mucositis defined as a plasma citrulline 
level < 10 μmol/L is a better predictor of bacteremia than neutropenia 
[78]. However, it is generally difficult to conclude which of the mech-
anisms that is primarily responsible for the occurrence of bacteria in the 
underlying tissue and systemic circulation. 

Furthermore, the exact role of commensal luminal bacteria for the 
development and progression of CIM is not readily defined, as a wide 
range of physiological and pathophysiological parameters are influ-
enced following chemotherapy, as outlined by van Vliet et al., 2010 
[79]. For instance, bacteria (or components of bacteria) interact with 
pattern recognition receptors, such as the toll-like receptors expressed 
on the epithelial cells [80], or with immune cells in the lamina propria 
following selective uptake by M cells [17]. These interactions can lead to 
both an increase and suppression of the mucosal inflammatory response 
as well as production and release of immune effector molecules as a 
means of microbial auto-regulation. The intestinal mucus layer and the 
epithelial barrier and its repair are also maintained and regulated by gut 
bacteria. All the above effects contribute to the observations that a 
greater level of CIM is observed in germ-free mice compared to wild type 
ones [81], as well as with mice lacking certain toll-like receptors [82]. 
Outside of the scope of this paper, it should also be mentioned that 
several recent studies have reported the importance of luminal bacteria 
also on the pharmacological effects of chemotherapeutics (e.g. 5-fluoro-
uracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, metho-
trexate) [83]. 

A summary of papers determining bacterial translocation after 
chemotherapy is presented in Table 5. It does not include papers 
measuring blood endotoxins and/or bacteremia, as it is not always 
possible to validate the bacterial origin (intestines vs. mouth/skin/ 
urine) of these. The summary includes 12 rat and 14 mouse studies. 
These studies primarily covers 5-fluorouracil, methotrexate, and cyclo-
phosphamide, but also irinotecan, doxorubicin, cytarabine, leucovorin, 
and oxaliplatin. 

Of the 26 rodent studies, all but three reported bacteria in the 
mesenteric lymph nodes, spleen and/or liver after chemotherapy. There 
is thus no doubt that there is a clear relationship between cytotoxic 
drugs and transport of bacteria across the epithelial barrier. Trans-
location was observed for all types of chemotherapeutics, at a wide dose 
range, and unrelated to dosage regime. However, there is still some 
uncertainty to what extent the bacteremia is caused by a compromised 
barrier or neutropenia, a condition in which patients with abnormally 
low numbers of neutrophils. One way to investigate this would be to 
locally treat the intestine with chemotherapy while sparing the immune 
system, and quantify degree of bacteremia after this. 

8. Future outlook 

Currently, there are no approved medical treatments of a compro-
mised epithelial barrier, or any effective supportive therapies for CIM. 
This is not because of a lack of potential targets, given the range of 
clinical manifestations and related mechanisms associated with 
chemotherapy. When examining the literature you find hundreds of 
preclinical, and tens of clinical, investigations of intervention and sup-
portive therapies. The only strong alternative today is to reduce the 
dose, and/or abstain from treatment, where both are suboptimal options 
from a cancer treatment perspective. One may ask why none of the 
evaluated treatments have succeeded in transforming the treatment of 
cancer patients with CIM. We believe that it is related to the multitude of 
effect of chemotherapy on the intestine as well as the high fraction of the 
immunological system that are locally very active. As such, supportive 

Table 5 
Summary of studies that have investigated the effect of chemotherapy on bac-
terial translocation based on determination of bacteria contents in the mesen-
teric lymph nodes (MLN), spleen or liver.  

Cytostatic Dose and route Species Bacterial 
translocation effect 

Ref. 

5-fluorouracil 50 mg/kg/day, 
IV, 6 days 

Rats Increased 
facultative bacteria 
(gram negative 
rods) in mesenteric 
lymph of treated 
rats 

[136] 

338–800 mg/ 
kg, IV, IP, SC, 
PO 

Mice Bacterial infection 
in liver and spleen 
from day 7, 
unaffected by dose, 
route, and strain 

[137] 

300 mg/kg Mice E-coli translocation 
to spleen, MLN and 
liver at 72 h 

[58] 

50 mg/kg/day, 
5 days, IV 

Rats Bacterial 
translocation to 
MLN, spleen, and 
liver 

[138] 

5–400 mg/kg, 
IP 

Mice Bacterial 
translocation to 
MLN, spleen or 
liver on day 7, from 
25 mg/kg. 

[139] 

100 mg/kg/ 
day, IP, 4 days 

Rats Bacteria in MLN 
from 3 days after 
last dose. 

[77] 

30 mg/kg/day, 
IP, 5 days 

Mice No bacterial 
translocation on 
day 5 

[140] 

20 mg/kg/day, 
IV, 5 days 

Rat Bacteral 
translocation to 
MLN in 50% on day 
5 

[141] 

30 mg/kg/day, 
IP, 5 days 

Mice No spleen or liver 
bacterial 
translocation on 
day 5 

[142] 

75 mg/kg, IP Rat Bacteria in MLN in 
60% of rats 

[98] 

75 mg/kg, IP Rat No change [99] 
5-fluorouracil, 

leucovorin, 
oxaliplatin 

30 and 10 mg/ 
kg/day 5 days, 
1 mg/kg day 1. 

Mice Bacterial 
translocation to 
30% of animals in 
spleen, MLN and 
liver at 48 h 

[127] 

Methotrexate 20 mg/kg, IP Rats Increase in 
mesenteric lymph 
node bacteria from 
0 to Log 3.5 CFU. 

[102] 

2.5 mg/kg/day, 
SC, 3 days 

Rats Gram-negative 
bacteria in MSL of 
all rats day 3 after 
last dose 

[143] 

3.5 mg/kg/day, 
3 days, SC 

Rat 50–70% of the rats 
had MLN, liver, or 
spleen bacteria 2 
days after last dose 

[144] 

1–250 mg/kg, 
IP 

Mice Bacterial 
translocation to 
MLN, spleen or 
liver on day 7, from 
10 mg/kg. 

[139] 

3.5 mg/kg/day, 
3 days, SC 

Rat 30–60% of the rats 
had MLN, liver, or 
spleen E coli 1 days 
after last dose 

[107] 

Irinotecan 250 mg/kg/ 
day, 2 days, IP 

Rats bacterial 
translocation to 
MLN or spleen in 
80% of treated rats 

[145] 

(continued on next page) 
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treatment should therefore target several of these at the same time. This 
could constitute a single drug with several targets and effects, but most 
likely for success would be some sort of combination treatment. Po-
tential drugs/treatments in such a combination product could include 
two or more of the following: prophylactic treatments with antibiotics or 
probiotics, apoptosis inhibitors, anti-inflammatory and anti-oxidative 
drugs, mucosal barrier regulators, and proliferative agents. 

In this review it is evident from both clinical studies and animal 
models that systemic chemotherapy causes bacterial translocation and 
bacteraemia. To elucidate if this is primarily an effect of a compromised 
physical mucosal barrier, or to neutropenia, we propose that bacterial 
translocation, solute permeability and neutropenia should all be moni-
tored in animals that have been exposed to both systemic and luminal 
chemotherapy. We expect the latter to impact the physical intestinal 
barrier, but to a lesser extent the immunological oneCurrently, there are 
no approved medical treatments of a compromised epithelial barrier, or 
any effective supportive therapies for CIM. This is not because of a lack 
of potential targets, given the range of clinical manifestations and 
related mechanisms associated with chemotherapy. When examining 
the literature you find hundreds of preclinical, and tens of clinical, in-
vestigations of intervention and supportive therapies. The only strong 
alternative today is to reduce the dose, and/or abstain from treatment, 
where both are suboptimal options from a cancer treatment perspective. 
One may ask why none of the evaluated treatments have succeeded in 
transforming the treatment of cancer patients with CIM. We believe that 
it is related to the multitude of effect of chemotherapy on the intestine as 
well as the high fraction of the immunological system that are locally 
very active. As such, supportive treatment should therefore target 
several of these at the same time. This could constitute a single drug with 
several targets and effects, but most likely for success would be some 

sort of combination treatment. Potential drugs/treatments in such a 
combination product could include two or more of the following: pro-
phylactic treatments with antibiotics or probiotics, apoptosis inhibitors, 
anti-inflammatory and anti-oxidative drugs, mucosal barrier regulators, 
and proliferative agents. 

In this review it is evident from both clinical studies and animal 
models that systemic chemotherapy causes bacterial translocation and 
bacteraemia. To elucidate if this is primarily an effect of a compromised 
physical mucosal barrier, or to neutropenia, we propose that bacterial 
translocation, solute permeability and neutropenia should all be moni-
tored in animals that have been exposed to both systemic and luminal 
chemotherapy. We expect the latter to impact the physical intestinal 
barrier, but to a lesser extent the immunological one. 

9. Conclusions 

This review discusses the role of intestinal permeability, the mucus 
barrier, and bacterial translocation after chemotherapy, and it has 
summarized all available in vivo reports on the subject. We conclude 
that there is overwhelming evidence that chemotherapy increases bac-
terial translocation, and it affects the mucosal barrier by rendering the 
mucosa more permeable to large permeability probes. Chemotherapy 
also seems to impede the intestinal mucus barrier, even though this has 
been less clearly evaluated from a functional standpoint. Combined, it is 
however difficult to outline a clear temporal or succession between the 
different gastrointestinal events, especially as chemotherapy-induced 
neutropenia is also involved in intestinal immunological homeostasis 
and in bacterial translocation. A thorough characterization of this would 
need to include a time dependent development of neutropenia, intestinal 
permeability, and bacterial translocation, ideally after a range of che-
motherapeutics and dosing regimens. For instance, spatiotemporal 
multi-omics methods are expected to improve knowledge into in situ 
intestinal tissue cellular heterogeneity and how different cell types along 
the villus axis interact and behave within their complex and highly 
dynamic microenvironments. Such an approach would make it feasible 
to identify region-specific metabolic perturbations associated with the 
intestinal mucositis, caused by chemotherapeutics and presence of 
bacteria, and subsequently monitor the recovery and effect of various 
supportive treatments on a molecular mechanistic level. 
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