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1 Introduction

Materials science is a field of study that investigates properties, behaviors, and applications of
materials. By studying the properties and behaviors of a material, we can create or improve
materials that can contribute to solutions to current and future societal challenges [1]. An
important reason for studying the properties of a material is, for example, in the case of
fracture. A primary example of fracture is when a solid rod breaks due to too heavy a
load that causes stress [2]. Instead of using only homogeneous materials such as metals and
ceramics, it can be advantageous in many cases to combine several different materials in order
to achieve desired properties. Creating a material by combining more than two constituent
materials is called a composite. The advantages of using composites are that they provide an
opportunity to create a material for a certain application [3].

Being able to construct composites in order to withstand fracture is likely an important part
of future materials. Composites are part of the emerging trend in materials science known as
"materials by design". This way of constructing materials provides the opportunity to create
materials with desired properties depending on the application. Despite well made composites
in many ways have improved mechanical properties, the construction of them can lead to a
challenging optimization problem. An effective design tool to optimize the distribution of
constituent materials is topology optimization. This design tool aims to find the optimal
distribution of the constituent materials, taking into account the desired application of the
composite [4].

This report will use a modified greedy algorithm in order to optimize two mechanical properties
for a composite, which is toughness and minimized stress in crack tip. The composite model
will consist of three materials with different Young´s modulus, one weak, one intermediate,
and one strong. In addition, the composite will be provided with an edge crack. In order
to optimize the mechanical property a objective function is needed, one for each mechanical
property. In other words, one objective function to optimize toughness and one to optimize
stress at the crack tip. The workflow of the algorithm is the same for both of the properties
to be optimized. Which is that the algorithm redistributes the constituent materials in order
to improve the mechanical properties mentioned [4].

1.1 Hypothesis

The hypothesis is that an algorithm can be used with purpose to redistribute the constituent
materials in a composite, in order to optimize a mechanical property. In this project are the
mechanical properties to be optimized toughness and minimized stress in crack tip.
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2 Theory

The mechanical properties to be optimized are toughness and minimized stress in the crack tip
and in order to accomplish this, the linear elasticity equations are to be solved. The variable
being solved for is u(x, y) where u is the displacement of the material in the domain. The
solution for u can be found by solving Navier´s equation as seen in equation 1, [5].

Navier´s equation reads

(λ+ µ)∇ · (∇u) + µ∇2u+ f = 0 (1)

Where λ and µ are the Lamé coefficients and f is the body force . The Lamé coefficients are
defined in equation 2 and in equation 3, [6].

λ =
E

2(1 + ν)
(2)

µ =
Eν

(1 + ν)(1− 2ν)
(3)

Where ν = 0.3 is the Poisson ratio and E is Young´s modulus.

The boundary conditions are defined as in equation 4.{
u(x⃗) = (offset, 0), if x⃗ ∈ RHS

u(x⃗) = (−offset, 0), if x⃗ ∈ LHS
(4)

Where the markers RHS and LHS reference to the right- and left hand sides of the domain
visualized in figure 1.

From the solved displacement variable u, both the stress and strain can be evaluated by the
following relations.

ϵ(u) =
1

2
(∇u+ (∇u)T ) (5)

σ(u) = λtr(ϵ(u))I + 2µϵ(u) (6)

Where equation 6 can be written more simple as equation 7.

σ(u) = λ(∇ · u)I + µ(∇u+ (∇u)T ) (7)
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2.1 Hyper elasticity

For elasticity problems with non infinitesimal deformations, the linear equations no longer
hold and therefore new ones have to be adopted. Another type of equations for describing
elasticity is the hyper elastic equations. Solving these equations equate to minimizing the
total potential energy of a material. It is much more mathematically intense than the linear
equations and to capture all the details could be its very own report. Both the linear- and
hyper elastic equations and their relevant mathematical details can be explored in further
detail in the book Computional Reality [7]. The practical implementation of these equations
in the FEniCS framework are thoroughly explained in the online documentation [8].

The hyper elastic equations are much more computationally intense than the linear ones but
also yield results closer to reality, particularly when the material deformations become large.

2.2 Toughness

The area under the stress-strain curve is known as toughness. This mechanical property can
be obtained by integrating stress with respect to strain, as seen in equation 8.

W =

∫ εf

0

σ dε (8)

The equation describes the energy W (J/m3), known as strain energy density, which is the
amount of energy needed to deform a material. The upper limit of integration, εf , is the strain
upper failure and σ is the stress [9].
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3 Method

3.1 The set up of the composite material

The composite material has a square shape and is equipped with a stationary pre-crack in the
middle, shown in figure 1. The domain is partitioned in a 40x40 symmetric grid, where each
grid point represent one of the tree constituent materials. The three constituent materials
have different Young’s modulus E, where the strong material has E = 1 ·1010 Pa, intermediate
has E = 1 · 108 Pa, and weak has E = 1 · 106 Pa.

(a) Meshing used for the
optimization process

(b) Meshing used for hyper
elastic verification simulation

Figure 1: Domain visualization with mesh included

The composite material is subjected to Dirichlet offset boundary conditions at both sides of
the pre-crack, shown in figure 2. The material is not subjected to any other load.

Figure 2: Composite material subjected to Dirichlet boundary conditions
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3.1.1 Implementation

The partial differential equations were solved using the Finite Element method implemented
in the Python library FEniCS. In order to generate the material model and the mesh, a
program called Salome was used, which is a open source platform for numerical calculations.
Further was the visualization of displacement, stress and strain in the material done by using
a software called Paraview.

3.2 Optimization algorithm

First, we will cut down the optimization problem by enforcing a symmetry around the crack.
It is assumed that the optimal solution would be symmetric around the crack, which is a fair
assumption since everything else, such as boundary conditions, also are. Enforcing this rule
will cut down the problem by half.

The algorithm used to optimize the mechanical properties uses two objective functions, one
for each mechanical property. In order to optimize both of the objective functions, a modified
greedy algorithm is implemented with stochastic elements, illustrated in the following step by
step process:

1. Initialize a grid

2. Search all possible changes in each the grid points and find the one which minimizes/maximizes
the objective function

3. Repeat 2 until a local optimum is found

4. Randomly change one grid point

5. Repeat 2

The reason operation four is implemented is to prevent the objective function to land on the
very frequent local optimum. Without this stochastic element it is common for the algorithm
to only change a few points on the grid and then not being able to find a single change of
grid which yields a higher value for the objective function. Operation four fixes this issue by
randomly changing one grid point when the algorithm gets stuck. If this change does not entail
any improvement, the algorithm can always go back to before the perturbation. This means
that the stochastic element is designed such that the objective function can only increase. The
greedy algorithm will go on until the user is satisfied with the solution or until a fixed number
of iterations has been met.

When an improved grid, meaning one that yields a larger objective function when using the
linear elasticity equations, has been found. It is then tested by simulating the grid using the
more realistic hyper elastic equations. It is assumed, for computational simplicity that a well
optimized solution with the linear equations will also be satisfactory for the more realistic
hyper elastic equations. In hindsight this is partly but not strictly true. However since the
greedy algorithm is not expected to find a global maximum anyways, this disparity is not so
important. The hyper elastic solution uses a much finer grid in order to improve accuracy.
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This fine grid was not used for the search of optimal solution in order to save computational
time.

The solution, meaning the optimized grid, is highly dependent on which objective function
is being optimized, it is not obvious which one to chose. Two objective functions have been
identified as useful, toughness in the domain and stress at the crack tip.

When the algorithm has optimized the grid for the chosen objective function, the grid qualities
is then verified using the more realistic hyper elastic equations. Rather than the linear elasticity
equations used for the optimization process.

3.3 Implementing objective functions

The goal of the algorithm is to redistribute the constituent materials in order to optimize a
mechanical property. In this report the mechanical properties to be optimized are stress at the
crack tip and toughness. In order to optimize the mechanical property a objective function for
each mechanical property is needed. Which means that one objective function for optimized
stress in the crack tip, and another for toughness.

3.3.1 The objective function for minimized stress at crack tip

This objective function is designed to minimize the stress in the crack tip and counteract
the crack from propagating. The setup for the optimization process of minimize the stress
in the crack tip is to applying a small constant Dirichlet offset boundary condition on the
sides of the domain and then measuring the absolute stress in the crack tip after solving the
linear elasticity equations 1. The domain only experiences mild deformations and is therefore
well adjusted to the linear elasticity equations which assume only small deformations to be
consistent with reality.

The value of the offset is chosen rather arbitrarily to be 0.05m, the important thing is that
it is a small deformation. Using the equation 7 one can pick out the stress at the crack tip.
This value is the objective function which is to be minimized.

3.3.2 The objective function for toughness

In order to optimize toughness, the linear elasticity equation, equation 1, needs to be solved.
Since it is the linear elasticity equation that is solved, it entails that the stress-strain curve
will be an arbitrary long line. Due to this fact, it is needed to define a cutoff point where
the material ceases to be linear. It is likely that the crack tip will be the first point in the
composite material that disturbs the linear solution. Therefore the stress in the crack tip will
determine how far the stress-strain curve will be. An illustration of when the stress-strain
curve is evaluated can be found in figure 2.

The simulation of toughness works by first running the linear elasticity equations with some
arbitrary Dirichlet BC on each sides of the domain. This is done in order to determine which
value of the boundary conditions yields some critical stress value at the crack tip. This is an
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easy task, since the stress in the crack tip is a linear function of the Dirichlet BC offset which
goes through the origin.. When this "critical" value of the boundary condition offset is found,
the linear elasticity equation is solved once again with the newly found boundary condition,
this time the average, integrated, stress and strain values are calculated. Since it is the linear
elasticity equation being solved, the stress strain curve can be expected to be linear and go
through the origin. Therefore only one point is needed to define the entire curve. Both the
stress and strain at a certain point can be evaluated using the equations described in 7 and
5. The stress- and strain values can now be integrated over the domain and then divided by
the area to get an overall stress strain value of the domain. The stress strain curve is then
defined and the objective function can be calculated as the area under the graph. This is the
value to be maximized. For every solve of a given grid, the linear elasticity equations need
two solves in order to obtain the objective function. This would not be the case if instead it
was the hyper elastic equations being solved, which would likely require more solves to find
the relevant intersection points.
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4 Result

The following optimized grids will be visualized without the crack and have the color coding
according to the the table as seen in table 1.

Table 1: Color coding of materials as visualized in the results

Color Type Young’s modulus [Pa]
Yellow Strong 1 · 1010
Green Intermediate 1 · 108
Purple Weak 1 · 106

4.1 The result for toughness

The following figures are the result of the simulation from the toughness objective function
with 200, 300 and 400 iterations using the stochastic greedy algorithm, the difference is the
grid initiation.

Figure 3 shows the result of the simulation with 400 iterations when the initial material
consisted of the strong material.

(a) Optimized grid (b) Objective function over iterations

Figure 3: Results for toughness objective functions over 400 iterations with stochastic greedy
algorithm with strong initiation
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Figure 4 shows the result of the simulation with 200 iterations when the initial material
consisted of the intermediate material.

(a) Optimized grid (b) Objective function over iterations

Figure 4: Results for toughness objective functions over 200 iterations with stochastic greedy
algorithm with medium initiation

Figure 5 shows the result of the simulation with 200 iterations when the initial material
consisted of the weak material.

(a) Optimized grid (b) Objective function over
iterations

Figure 5: Results for toughness objective functions over 200 iterations with stochastic greedy
algorithm with weak initiation
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Figure 6 shows the result of the simulation with 300 iterations when the initial material
consisted of a random initiation.

(a) Random initialized grid (b) Optimized grid

(c) Plot of objective function over
iterations

Figure 6: Results for toughness objective functions over 300 iterations with stochastic greedy
algorithm with random initiation
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4.2 The result for minimized stress at crack tip

The following figures are the result of the simulations from the stress based objective func-
tion with 200 iterations using the stochastic greedy algorithm, the only difference is the grid
initiation.

Figure 7 shows the result of the simulation when the initial material consisted of the strong
material.

(a) Optimized grid (b) Objective function over iterations

Figure 7: The optimized distribution of the constituent materials, when initial gird consisted
of strong material

Figure 8 shows the result of the simulation when the initial material consisted only of inter-
mediate material.

(a) Optimized grid (b) Objective function over
iterations

(c) Objective function over
iterations, zoomed

Figure 8: The optimized distribution of the constituent materials, when initial gird consisted
of intermediate material
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Figure 9 shows the result of the simulation when the initial material consisted only of the
strong material.

(a) Optimized grid (b) Objective function over iterations

(c) Objective function over iterations,
zoomed

Figure 9: The optimized distribution of the constituent materials, when initial gird consisted
of weak material
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Figure 10 shows the result of the simulation when the initial material consisted only of the
strong material.

(a) Randomly initialized grid (b) Optimized grid

(c) Objective function over iterations (d) Objective function over iterations,
zoomed

Figure 10: The optimized distribution of the constituent materials, when initial gird consisted
of a random initiation
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4.3 Visualization in Paraview

The best performing solutions of the two objective functions are visualized in a software called
ParaView. The two solutions are calculated using the hyper elastic equations and with the
Dirichlet offset value of 0.05 m.

(a) Map of absolute
displacement

(b) Map of strain (c) Map of stress

Figure 11: Visualization of stress, strain and displacement from the toughness objective func-
tion with strong initiation

(a) Map of absolute
displacement

(b) Map of strain (c) Map of stress

Figure 12: Visualization of stress, strain and displacement from the stress objective function
with intermediate initiation
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5 Discussion

The overarching limitations of all optimizations of this kind is that they are mostly only useful
for very specific domains, in this case meaning ones with a predefined crack. In reality cracks
can occur in other places difficult to predict in advance. Even if one has a good prediction
of where a crack might occur, the very optimization of the composite material to limit that
specific crack propagation might open up the possibility for other places in the material to
have increased chance of crack propagation. However even if the practically of the simulations
conducted in this report are questionable, they act as a proof of concept of the usefulness of
composite materials. They show how several materials combined can achieve qualities none
of them alone could. A counter intuitive example being found in figure 7, where the stress in
a critical place was severely reduced by inserting weaker materials into the design.

Both the objective functions consistently yields some sort of pattern around the crack whenever
a homogeneous initiation is given. Perhaps more so in the stress oriented objective function
where the patterns are very clear. However these patterns do not appear when the grid is
randomly initialized and the optimized grid looks completely random after the optimization.
This is likely because the random initiation is too far way from the optimal solution, i.e
the global maximum/minimum of the objective function. The greedy algorithm then has to
traverse a large portion of the input space where there is always the danger of the algorithm
landing, and getting stuck, on local extreme points. Ideally the optimization algorithm would
always converge to the same grid pattern each time the simulation is run, independent of the
grid initiation. This effect occurs with both of the objective functions. One option to solve
this problem is to employ a better optimization algorithm which is less likely to get stuck on
local extreme points. Another possible solution is so modify the objective function, perhaps
try to find a convex or a concave one, meaning a function that only has one extreme point.

5.1 Toughness

The objective function was in all cases greatly optimized relative to their respective initial
configurations. The resulting patterns in the optimized grids are not easy to interpret, however
some recurrent themes can be observed. That is the inclination for the algorithm to place the
stronger materials around the crack. Perhaps this is favorable when trying to minimize the
stress at the crack tip, which would make the stress strain curve be drawn longer and in turn
increase toughness which is defined as the area under the stress strain curve.

An interesting phenomena appears as the grid becomes greatly optimized. What seems to
happen as the objective function increases, is the break down of the linear equations. As seen
in the the graph of the objective function for the toughness objective function, in figures 3,
4, the steps start out as a slow continuous increase. This is expected since each iteration
only changes two points on the grid and a big change in the objection function is not to be
expected. However later on in the iterations it is clearly seen that the solutions becomes
unrealistic. Only two changes in the grid can sometimes change the toughness function with
several magnitudes. This is likely due to the overly large Dirichlet offsets on the sides of the
domain. Since this offset is determined by the stress in the crack tip, when the grid becomes
too optimized a very great offset is required to reach the critical stress value. These offsets go
against the precondition of the linear equations which assume very small deformations in the
material. Perhaps this problem could be solved by employing the more realistic hyper elastic
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equations instead, since these equations are more viable for large deformations. However this
non linearity would pose a much greater computational expense which would not be feasible
in the time frame of this report.

5.2 Stress in the crack tip

The optimization using the stress objective function did not experience the same effect as
in the toughness objective function where the objective functions were very sensitive to the
grid. This objective likely yields more realistic solutions since they obey the preconditions for
the linear elasticity equations more, with the material only experiencing small deformations.
The optimized grids generated patterns around the crack, however the specific patterns varied
depending on the grid initiation. It is also difficult to find an intuitive explanation for the
specific patterns.

The problem with using this objective function is that it does not represent any general physical
property of the material, unlike when optimizing using toughness. This objective function is
more a proof of concept of optimizing composite materials than something practically useful.

5.3 Future work

5.3.1 Using a Convolutional neural network

An attempt was made to train a convolutional neural network to map the grid to objective
function. This was done with a smaller 20x20 grid with 100 000 samples, the results were
however not very impressive. It is likely that the patterns between input and output are very
hard to capture and generalize. This is easily seen when inspecting the optimization graphs
for the toughness objective function. Where one change of grid can alter the objective function
value by several thousand times. Of course this would be difficult for the convolutional neural
network to capture. Either the objective function would have to be changed to one with a
more obvious relationship to the grid, or perhaps generating more training data could help
the generalization of the network

There is also the problem of optimizing the neural network. One method to optimize the inputs
for a wanted output is to use some gradient descent algorithm, similar to how the parameters
are trained, but instead apply them to the inputs. This is quite an easy implementation
in something like the TensorFlow framework. To evaluate the effectiveness of this kind of
optimization, we applied it to the MNIST handwritten digit dataset [10]. With a trained
network which had an unseen data accuracy of 95+% we tried going from a digit as input
and then optimize the input (image). The algorithm worked perfectly and an image which
was almost 100% identified with the supplied number was generated. However this image was
basically utter nonsense. It is likely that when going "backwards" in a neural network you
reach inputs which don’t reflect the actual input-output relationship but that the network is
still certain of. It is not certain if the same phenomena will occur in our problem since the
MNIST problem is fundamentally different, being a classification problem and not regression
as in our case. This was however enough for us to decide that a CNN implementation would
be uncertain enough in it’s performance that it was not worth putting the time into generating
more training data.
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A CNN fit of a similar, but much more complex problem, has been achieved by a team of
scientist from Korea Advanced Institute of Science Technology (KAIST). They were able to
map an input of an 11x11 grid of binary composite materials to their respective non-linear
stress strain curve. The solution also included crack propagation in the material [11]. This
report shows that a CNN fit is possible within the world of composite materials, however
worth noting is that the training data generation took several months.

5.3.2 Mechanical testing with 3D printed sample

In order to improve the algorithm in this project it would be very useful to do some mechanical
testing. One approach could be to create a composite with three constituent materials using a
3D-printer to evaluate the effectiveness and accuracy of the algorithm and elasticity equations.
This kind of verification testing was done by a team of scientists at MIT university with a
composite optimized by a similar technique as in this report[4].

5.4 Using nonlinear equations

In this report, linear equations were implemented to search for an optimal grid, due to compu-
tational limitations. If more time or more powerful computers were available, an optimization
using nonlinear equations would absolutely be feasible and yield much better results as dis-
cussed in 5.1.

5.5 Optimization algorithm

Perhaps one could guide the solution to help it converge to some expected pattern. Similar
to how symmetry was enforced in this report, one could enforce even more properties of the
grid. This could be for example enforcing some relationship between the different material
types, perhaps 20% weak and intermediate material and the rest strong. This would limit the
number of possible changes to make to the grid each iteration and significantly speed up the
optimization process. This could also help guide the algorithm closer to the global maximum
of the objective function. This type of guiding was done in a report by scientists from MIT
when they were working on a similar problem to ours [4].
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6 Conclusions

The purpose with this project was to construct an algorithm that can redistribute the con-
stituents material of a composite to improve certain mechanical properties. From the results
of this report it can be concluded that this purpose was fulfilled. Several materials were
constructed with the desired properties. However an optimal composite for the wished me-
chanical properties was not found. We theorize that with more appropriate equations for
solving the elasticity equations within the material, together with a more sophisticated search
algorithm - this could be achieved.
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7 Populärvetenskaplig sammanfattning

Materialvetenskap är läran om ett materials egenskaper, möljligheter och begränsningar. Att
förstå materialvetenskap har med stor sannolikhet en betydande roll i att lösa framtida
samhällsmässiga utmaningar. En växande trend inom materialvetenskap är "material genom
design", vilket innebär att material kan konstrueras med ett specifikt syfte. Detta sätt att
konstruera material öppnar för möjligheten att kombinera material med olika egenskaper i
syfte att skapa ett material med förbättrande egenskaper än delmaterialen. Ett material som
består av två eller fler delmaterial kallas för komposit.

Att finna en optimal fördelning av del material för en komposit är ofta ett svårt optimer-
ingsproblem. Av den anledningen behövs nya optimeringsmetoder studeras, med andra ord
metoder som på ett effektivt sett kan ge en optimerad fördelning av de bestående materialen.
Ett sätt att göra detta på är använda algoritmer, den algortim som används i denna rapport
är en modifierd "Greedy algorithm". Arbetsgången för algoritmen är att den först antar en
initial fördelning av material, och sedan omfördelar dessa delmaterial tills att en viss mekanisk
egenskap hos kompositen förbättras.

Det specifka fallet som denna rapport undersöker är en komposit bestående av tre material.
Dessa delmaterial är av olika styrka, ena är starkt, den andra är mittemellan och det tredje
är svagt. Geometrin är en kvadrat och dessutom försatt med en förspricka i ena kanten. De
mekaniska egenskaper som algoritmen strävar emot att förbättra är seghet samt minskad spän-
ning i sprick spetsen. Seghet kan betraktas som ett materials förmåga att mostå deformation.
Medan för den andra mekaniska egenskapen, minskad spänning i sprickspetsen, kan ses som
att minska den kraft som krävs för att deformera materialet.

Resultatet visar att algoritmen kan fördela om delmaterialen på ett sådant sätt att de ovan
nämnda mekaniska egenskaperna förbättras. Att algoritmer kan användas för att förbättra
och konstruera kompositer kan bidra till flertalet samhällsmässiga lösningar i framtiden. Ex-
empelvis kan det bidra till förbättra eller bidra till nya material inom nuvarande industrier.
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8 Reflektion kring arbetets hållbarhetsaspekt

Materialvetenskap är högst centralt inom området hållbarhet eftersom material samspelar
med bland annat hållbara städer, energi och innovation och industri. I FN:s hållbarhets mål
ingår bland annat dessa nämnda områden som material spelar en stor roll i [12]. Att skapa
algoritmer för att optimera kompositer kan bidra positivt till samtliga av dessa tre mål.

Optimering av kompositer berör målet "Hållbara städer", det eftersom kompositer kan använ-
das inom byggnadskontruktion. Kompositer ger en unik möjlighet att konstruera ett material
beroende på användningsområde. Vilket inom byggnadskonstruktion kan bli en utmärkt väg
att gå. Ett spännande sätt som detta projekt kan bidra till målet är exempelvis att hitta en
optimerad fördelning av material där fler parametrar tas i åtanke. Exempelvis kan parame-
trarna vara kostnad, livslängd och styrka, sedan ska algoritmen hitta en optimerad blandning
med dessa tre parametrar i åtanke. Fortsättningsvis berör även projketet området energi. Det
eftersom energislag är högst beroende av vilket material det är konstruerat av. Idag används
redan kompositer i exempelvis vindkraftverk och solceller. Att fortsätta utveckla kompositer
med hjälp av algoritmer kan sannolikt bidra till utvecklingen av hållbara energislag. Slutligen
kan projektet kopplas till innovation och industri. Som redan nämnts ger kompositer möj-
ligheten att skapa ett material beroende på tillämpning. Vilket inom industrin både kan få
positiva ekonomiska konsekvenser och hållbara konsekvenser. På liknande sätt kan en algo-
ritm som tar in fler parametrar användas, exempelvis kostnad och koldioxidutsläpp och sedan
konstruera en komposit baserat på dessa parametrar.
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