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Abstract 

Glaucoma is a chronic progressive disease that causes loss of retinal 
ganglion cells, which impairs the visual field. In optic coherence 
tomography (OCT) image, the retinal ganglion cell (RGC) axons in the optic 
nerve head (ONH) can be quantified as the minimal thickness from the ONH 
Pigmental epithelium Central Limit (OPCL) to the Inner limit of the Retina 
Closest Point (IRCP). Alternatively, the minimal cross-sectional surface area 
can be measured. In peripapillary atrophy, the morphometry of the retinal 
pigmental epithelium is affected. 

Purpose: To design and test a new computational algorithm for estimation of 
Pigment epithelium to Inner limit of the Retina Minimal Area (PIMA) and 
evaluate a new method to estimate the Pigment epithelium to Inner limit of 
the Retina Minimal Distance (PIMD). OPCL can be detected and annotated 
by a deep learning algorithm in individuals with peripapillary atrophy. 

Methods: A deep learning algorithm has been trained to automatically detect 
OPCL, IRCP and calculate PIMD. A new computational algorithm was 
developed to estimate PIMA in OCT images of young adults. The mean 
between the first and second version of estimating PIMD was evaluated. The 
difference of distance between the ONH center-OPCL and ONH center-
atrophic edge was estimated in eyes with peripapillary atrophy. 

Results: A 95% confidence interval for PIMA-2π was estimated to 1.97 ± 
0.19 mm2 (df = 15). A confidence interval for the difference between 
PIMDv1-2π and PIMDv2-2π was 0 ± 1 μm (df = 15). A 95 % confidence 
interval for the mean difference between ONH-OPCL and ONH-atrophic 
edge was estimated to 692 ± 192 µm (df = 5). 

Conclusions: The computational algorithm for estimation of PIMA was 
developed and applied. An initial analysis indicated the capacity of the deep 
learning algorithm to detect OPCL in subjects with PPA. 

Keywords: deep learning, optic nerve head, ONH, retinal pigmental 
epithelium, RPE, PIMD, PIMD-2π, minimal distance, PIMA, PIMA-2π, 
minimal area, peripapillary atrophy, PPA, optic coherence tomography, 
OCT, glaucoma, quantification, retinal ganglion cell axons 
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Abbreviations 

AI  Artificial Intelligence 
ANN  Artificial Neural Network 
BMO  Bruch’s Membrane Opening 
BMO-MRA  Bruch’s Membrane Opening-Minimal Rim 

Width 
BMO-MRW  Bruch’s Membrane Opening Minimal Rim Area 
CNN  Convolutional Neural Network 
CNS  Central Nervous System 
fCNN  fully Convolutional Neural Network 
FD-OCT  Fourier Domain Optical Coherence 

Tomography 
ILM  Internal Limiting Membrane 
IOP  Intra Ocular Pressure 
IRCP  Inner limit of the Retina Closest Point 
IRCP''  Inner limit of the Retina Closest Point after 

vector transformation 
KTH  Kungliga Tekniska Högskolan 
LC  Lamina Cribrosa 
MCB  Minimum Circumpapillary Band 
OCT  Optical Coherence Tomography 
ONH  Optic Nerve Head 
ONH-atrophic edge Optic Nerve Head to atrophic edge 
ONH-OPCL  Optic Nerve Head to OPCL 
OPCL  ONH Pigment epithelium Central Limit 
OPCL''  ONH Pigment epithelium Central Limit after 

vector transformation 
PIMA  Pigment epithelium central limit to Inner limit 

of the retina Minimal Area 
PIMA-2π  Pigment epithelium central limit to Inner limit 

of the retina Minimal Area averaged over 2π 
radians 

PIMD  Pigment epithelium central limit to Inner limit 
of the retina Minimal Distance 



PIMD-2π  Pigment epithelium central limit to Inner limit 
of the retina Minimal Distance averaged over 2π 
radians 

POAG  Primary Open angle Glaucoma 
PPA  Peri Papillary Atrophy 
PPA-α  Peri Papillary Atrophy-alpha 
PPA-β  Peri Papillary Atrophy-beta 
PPA-γ  Peri Papillary Atrophy-gamma 
RGC  Retinal Ganglion Cells 
RNFL  Retinal Nerve Fiber Layer 
RPE  Retinal Pigmental Epithelium 
SD-OCT Spectral Domain Optical Coherence 

Tomography 
SITA  Swedish Interactive Threshold Algorithm 
SS-OCT  Swept Source Optical Coherence Tomography 
TD-OCT  Time Domain Optical Coherence Tomography 
UI  User Interface 
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Introduction 

Anatomy of the retina 

Retinal nerve fiber layer 
The retinal nerve fiber layer (RNFL) is the innermost layer of the retina, 
situated beneath the inner limiting membrane (ILM). Histologically, the 
RNFL is composed of retinal ganglion cell (RGC) axons, supportive glial cells 
such as astrocytes and Müller cells, and blood vessels 1–5. The RNFL is 
thickest in the superior and inferior poles of the retina 6. 

Retinal ganglion cells  
The retinal ganglion cells (RGCs) receive information from photoreceptors 
through intermediate excitatory signals from bipolar cells and inhibitory 
signals from amacrine cells. The axons of the RGC travel and converge at the 
optic nerve head, forming the optic nerve, which then synapses at the lateral 
geniculate nucleus in the thalamus.  

Estimations of the number of RGC in the human eye vary from 0.7 to 1.5 
million 1,7 where half of the total number of RGCs are distributed near the 
fovea , and the rest disperse with decreasing density peripherally 1. The fiber 
diameter of RGC axons in an individual ONH varies 8,9. 

The axons of RGCs follow an organized path through the ONH and the 
optic canal. Axons from RGC somas in the periphery travel deeper in the 
neuroretina and also distribute peripherally in the ONH. Axons from RGC 
somas situated peripherally run more superficial 4. The angle of axon cables 
at the ONH turn perpendicularly, from running in parallel with the 
neuroretina, to a sharp dive through lamina cribrosa. 

Retinal pigmental epithelium 
The retinal pigmental epithelium (RPE) is the last and outermost layer of the 
retina. The RPE has a high reflectivity due to a high presence of melanin and 
lipofuscin. Both melanin and lipofuscin have high absorption and scattering 
properties. For this reason, RPE was proposed as a reference layer for 
morphometrical assessments during early development of optical coherence 
tomography 10–12. 
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Bruch’s membrane 
Bruch's membrane is situated between the retinal pigment epithelium (RPE) 
and the choroid. Bruch’s membrane opening (BMO) 13 is widely accepted as 
the central limit of Bruch’s membrane at the papilla, or optic disc. 
Histologically assessed, it is approximately 2-4 µm thick 14,15. Bruch’s 
membrane is divided into five layers, of which the first and innermost layer is 
the basement membrane of the retinal pigmental epithelium 16–18. 
Distinguishing Bruch’s membrane from the RPE is a challenge in healthy eyes 
due to limited spatial resolution of commercially available optical coherence 
tomography machines 13,19, but can in some cases be distinguished in 
individuals with macular pathologies, 20,21 such as RPE detachment 21. 

Anatomy of the optic nerve head  
The optic nerve head (ONH), is the anatomical site in the posterior pole of 

the eye, where retinal ganglion cell axons (RGCs) bundle up and exit the eye 
as the optic nerve (cranial nerve II). The glial content in the ONH is lower 
compared to the RNFL due to an absence of Müller processes 22. 
 In frontal images of the fundus, the ONH presents as the papilla. A healthy 
papilla is characterized by an optic cup centrally, white-yellow in color, 
framed by a darker red-pink neuroretinal rim around the cup, containing the 
bundled axons of the RGC right before they exit through lamina cribrosa. In 
humans, the ONH is approximately 1.5 to 2 mm in diameter with significant 
individual 23 and ethnic 24 variation. The average ONH, or disc size is between 
1.5 to 1.9 mm in diameter 23. The area of the optic disc varies greatly from 
0.65 to 5.35 mm2. The average area ranges between 1.86 to 2.69 mm2 

independent of progressing technologies 23–27. Seen frontally, the shape of the 
optic disc has substantial individual variation. Individuals with oblique rather 
than round optic discs are considered to have an optic disc tilt. This correlates 
to the angle at which the RGC axons enter the optic cup, with larger degrees 
of tilt correlating to a larger insertion angle 23. 

The ONH is comprised of prelaminar tissue, lamina cribrosa (LC), and 
tissue in the retrolaminar region.  

Prelaminar tissue 
In the prelaminar tissue, RGC axons start to converge, lose their glial sheath 
and become more tightly packed. Histologically, the prelaminar tissue is 
distinct from but contiguous with RNFL, which is considered to be a part of 
the retina. While both the RNFL and prelaminar tissue contains unmyelinated 
RGC axons, the prelaminar tissue consists of unmyelinated RGC axons, 
astrocytes, microglial cells, blood vessels, and extracellular matrix. The 



 

 13 

prelaminar tissue is a transition zone where axons from RGC begin to 
converge prior to entering the lamina cribrosa, and serves in regulation of 
ONH homeostasis and structural integrity 28–30. 

Lamina Cribrosa 
The lamina cribrosa (LC) is situated at the level of the sclera. It resembles a 
mesh, with perforations as pores which allow the passage of RGC axons. The 
mesh itself is made up of connective tissue trabeculae. All RGC axons from 
the RNFL pass through the pores of the LC at the level of the sclera 31. 
Biomechanically, LC maintains the structural integrity of the ONH while 
withstanding intraocular pressure (IOP) 32. 

Retrolaminar region 
Considered to be a part of the optic nerve but within the orbit, the retrolaminar 
region lies posterior to the LC. In this area, oligodendrocytes myelinate RGC 
axons, efficiently improving transmission speed. 

OCT imaging 
Optical coherence tomography (OCT) is an imaging method comparable to 
ultrasound devices. Instead of sound, OCT devices apply low coherent 
broadband radiation to visualize anatomical structures. Coherence length 
measures the spatial extent over which light waves maintain a consistent phase 
relationship. The basic principle of OCT is based on Michelson interferometry 
(Figure 1). In the OCT, a light source is directed at tissue. Prior to reaching 
the sample, the beam is split by an interferometer into a sample arm and a 
reference arm. When light from the sample arm reaches tissue, light is 
scattered by different tissue structures. The light in the reference arm is 
reflected on a reference mirror. The backscattered light in the sample arm and 
the light in the reference arm eventually interfere. The intensity at the point of 
interference mirrors the scattering intensity in the sample arm for equivalent 
time of flight for the light in the sample and reference arm. can be analyzed 
for depth-resolved structure information (Figure 1).  
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Figure 1. Schematic drawing of the OCT system. 

 
Scans along the axial direction, A-scans, provide a single depth profile of 

the sample. Multiple A-scans from varying lateral positions comprise the two-
dimensional B-scan. Together, they form a two-dimensional cross-sectional 
image of the sample. Several parallel B-scans can be assembled into a three-
dimensional image of the tissue 10,33. 

Time-domain OCT 
The first OCT was invented in 1991 10. Sampling at various depths with 
narrow band incoherent light was achieved by varying the time of flight by 
moving the reference mirror, Time Domain (TD-) OCT. The dependency of 
moving a reference arm results in time-consuming A-scan sampling. In order 
to assemble A-scans into a two-dimensional image and several B-scans into a 
three-dimensional image all A-scans must be sampled before the eye has 
moved. This limited TD-OCT to low-resolution two-dimensional images. 

Fourier-domain OCT (SD-OCT) 
It was realized that by using broadband incoherent light , the short wavelength 
fraction has a longer time of flight in tissue than the long wavelength fraction 
due to dispersion. 34–36 Then, at the interference point for the reference light 
and the sample light, scattering intensity from different depths in the sample 
are encoded at different wavelengths without moving the reference mirror. By 
adding a spectrometer when detecting the light at the interference point, 
scattering form different depths can be separated as intensities at different 
wavelengths. Wavelength is finally re-coded into depth by Fourier 
transformation, Fourier or Spectral Domain OCT (FD-OCT or SD-OCT). 
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Thus, FD-OCT, substantially in-creased the A-scan time allowing higher 
spatial resolution. The dynamic range (depth of the A-scan) of the FD-OCT 
system is limited by the band width of the light. 

The limited dynamic range in FD-OCT was later overcome by using a 
narrow band light sources that can be swept, tuned, over a broad wavelength 
region at very high speed, swept source OCT (SS-OCT) 37, Thus information 
from different depths is encoded as interference intensities at different 
wavelengths with a fixed reference mirror. A very high wavelength tuning 
speed allows very high A-scan sampling speed. Since only one wavelength is 
sampled at the time the interference intensity can be measured with a fast 
photodetector without spectrometer. 

The increased A-scan sampling speed with FD-OCT and SS-OCT 
compared to TD-OCT allows higher resolution in B-scans and assembling B-
scans into three dimensional volumes. 
Interestingly, SD-OCT may have a better ability than SS-OCT to detect 
thinning of the ganglion RGC layer in the outer temporal area of the macula 
38. 

Quantifying retinal nerve fiber layer tissue 
Using OCT to quantify the RNFL thickness to reflect the amount of ganglion 
cell axons was described already in in 1995 39. In 2007, Považay et al proposed 
quantifying the amount of ganglion cell axons as the minimal distance 
between the central limit of the RPE and the ILM, where the parameter was 
called the minimal circumpapillary band (MCB) 40. Shortly afterwards, the 
same concept was introduced as minimal distance band (MDB) 41. Later, 
Bruch’s Membrane Opening – Minimal Rim width (BMO-MRW) 42 and 
Bruch’s Membrane Opening – Minimal Rim Area (BMO-MRA) 43 has been 
widely used. In the original paper by Považay, it was suggested that if the 
minimal distance is consequently measured around the ONH, there is no need 
for a reference plane centered on the ONH. The advantage is thus evasion of 
the effect of tilt on the image during capture. Also, BMO stays stable over 
time in healthy eyes 44. 
Today, several manufacturers of OCT device offer RNFL, BMO-MRW or 
both parameters for clinical use. A summary of commonly available OCT 
parameters can be seen in Table 1. 

 
Table 1. Common OCT devices with integrated quantification of nerve fiber layer tissue  
Manufacturer RNFL BMO-MRW BMO-MRA OCT models 
Heidelberg Engineering Yes Yes Yes Spectralis 
Carl Zeiss Meditec Yes Yes No Cirrus HD-OCT 
Topcon Yes No No Triton, OCT 2000  
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Manual corrections of BMO-MRW and BMO-MRA parameters are can be 
necessary before evaluation 45,46. 

PIMD and PIMA 
The axial resolution of clinically available OCT is not enough to distinguish 
Bruch’s Membrane from RPE. Therefore, other names and abbreviations for 
the MCB parameter were suggested 47. The outer limit is defined as the ONH 
Pigment epithelium Central Limit (OPCL). The Inner limit of the Retina 
Closest Point (IRCP) is defined as the inner limit. Then, the shortest distance 
between the outer and inner limit is the Pigment Epithelium – Inner limit of 
the retina Minimal Distance (PIMD). The average minimal distance around 
the circumference of the ONH is PIMD-2π. Similarly, we propose Pigment 
Epithelium – Inner limit of the retina Minimal Area (PIMA) and PIMA-2π as 
a descriptor of cross-sectional surface area of the RGC axons around the 
circumference of the ONH. PIMD and PIMA, respectively, corresponds to 
BMO-MRW and BMO-MRA, respectively. The minimal thickness of the 
nerve fiber layer around the ONH can geometrically and visually be conceived 
as the waist of the ONH. PIMD-2π reflects the typical superior and inferior 
thickness peaks seen in RNFL measurements 48. 

Artificial Intelligence 
Artificial Intelligence (AI) is the theory and development of computer systems 
that display human intelligence during task performance. The theoretical idea 
of a machine with human intelligence was first proposed by Alan Turing 
in1936 49. In 1950, Turing suggested using a natural language test to evaluate 
whether a machine could be distinguished from a human during conversation 
50. The use of the Turing test 50 to decide if a machine has achieved 
equivalency to human intelligence is a historical benchmark and likewise 
questioned, with common objections being that assessment of intelligence is 
subjective 51, the conflict between measuring an imitation of intelligence 
rather than true possession, and the spectrum of human cognitive skills is too 
broad to be judged with the Turing test only 52. The term AI was first proposed 
at Dartmouth College in 1956 53, during a workshop which marked the start of 
AI as an academic discipline. Through collective research efforts, 
technological progress, and ambitions to encompass different aspects of 
human cognitive intelligence, the continuous development of AI is today 
divided into specific domains that commonly overlap. Among these are 
natural language processing, speech recognition, computer vision, machine 
learning and deep learning. 
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Deep learning 
Machine learning enables computers to learn without being explicitly 
programmed. In deep learning, concepts from machine learning are applied to 
logical network structures modelled after human neurons 54–56 with the 
purpose of learning and performing a specific task. The basic network is the 
Artificial Neural Network (ANN) shown in Figure 1.  
 

 
Figure 2. Schematic image describing the structural analogy of the CNS 
and deep learning neural networks. Image shows a basic Artificial Neural 
Network (ANN). Blue nodes receive data input in, a weight wn is applied 
before the hidden layer. All functions are summed in the output layer. 

 
Data is provided to the input nodes. A weight is added before data enters the 
hidden layer, where data is transformed by weighted summation, bias 
addition, and an activation function. This facilitates subsequent tasks in the 
output layer, such as classification or regression. The specific transformations 
are determined by the network's task and its training data. Training of deep 
learning algorithms equals adjustment of the weights to minimize the 
difference between prediction and actual outcome 56 (“ground truth”). 
Separate data must be used for training and testing, a common division is 80% 
and 20%, respectively. When an algorithm performs poorly during testing, it’s 
considered as overfitting of data. 
Minimizing bias during data collection for training an AI system is essential 
to avoid overly specific generalizations. 

Deep learning is a common AI domain in medical image analysis. There 
are several artificial neural networks suitable for medical image analysis. 
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Convolutional Neural Networks 
The Convolutional Neural Network (CNN)57 is specifically suitable for 
images but accepts any grid-based data as input. There are 2D and 3D CNNs. 
Different aspects of the image, such as color, are processed by various filters 
in one convolutional layer. During processing, feature maps are created for 
each feature being analyzed in the image. Each feature map is then passed 
through an activation function in convolutional layer, adding non-linearity to 
the model enabling it to learn complex patterns in the data that are not limited 
to linear relationships. A CNN has the advantageous ability to fine-tune filters 
during training, but it requires large sample sizes, at least 10,000, to avoid 
overfitting. 

A Fully Convolutional Neural Network (fCNN) 58 is specialized on 
analyzing individual pixels and maintaining the image size throughout the 
whole pipeline. 

The U-net 59 is a type of CNN adapted for segmentation of highly resolved 
biomedical images. Here, the original structure is preserved by transforming 
the initial image vector, which is transformed back to an image. This allows 
for very precise segmentation of biological morphological structures.  

Glaucoma 
In glaucoma, retinal ganglion cells gradually undergo degeneration and finally 
apoptosis. The process is irreversible and is the second leading cause of 
blindness worldwide 60. Early detection and medical intervention are essential 
to prolonging the time to severe loss of vision as there currently is no cure. 
The global prevalence in the ages 40-80 has been estimated to 3.54% globally 
and 2.51% in Europe 61. By 2020, estimated number of cases is 69 million 
globally 62 rising to 118 million in 2040 61. 

Diagnosis and follow-up 
Most cases of glaucoma are found during routine eye examinations, where an 
increased ocular pressure (IOP) is noted. Further tests are then involved, such 
as structural assessment with ophthalmoscopic inspection of the optic nerve 
head, functional assessment with visual field perimetry and measurement of 
the retinal nerve fiber layer with OCT.  

There is no dingle globally accepted standard for classification of 
glaucoma. In early-stage disease most patients will not be aware of structural 
RGC and resulting functional visual field loss, since visual field loss appear 
subtly and peripherally. Previous work suggests that in fact 25-50% of RGCs 
may be lost before visual field loss can be detected with perimetry 63,64. This 
has recently been questioned 65,66. There is individual variation whether RGCs 
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or visual field loss is affected first at early-stage glaucoma. Therefore, the 
structure-function relationship of glaucoma still is actively debated 66. 
Regardless, follow-up of glaucoma patients is essential to track progression. 
Assessment of disease progression with functional loss is based on routine 
visits where perimetry is regularly performed and complemented with IOP 
measurements, ophthalmoscopic inspection, and evaluation of quantified 
nerve tissue with OCT (Table 1). Today, automated perimetry with the 
Humphrey Visual Field Analyzer (ref) together with the Swedish Interactive 
Threshold Algorithm (SITA) 67 is considered gold standard. The SITA and 
SITA Fast algorithms have considerably improved accuracy and testing times 
in clinical settings. Yet, perimetry may still be cumbersome for older patients, 
with age-related decreased sensitivity 68. Furthermore, there are test learning 
effects 69. There is also significant variability involved, where a low sensitivity 
relates to high variability 70. Finally, visual field measurement suffers from 
long testing times. 

Pathophysiology 
The exact pathophysiology of glaucoma is yet to be resolved. Several 
pathophysiological aspects of glaucoma have been described. 

An imbalance between the secretion and outflow of aqueous humor results 
in an increased intraocular pressure, which causes mechanical stress on lamina 
cribrosa 71 and the adjacent RGC axons 72. In primary open angle glaucoma 
(POAG) the outflow is hindered by decreased functionality of the trabecular 
meshwork, or a physical partial blockage. In closed-angle glaucoma, the iris 
completely blocks outflow through the trabecular meshwork. Normal-tension 
glaucoma presents without an increased intraocular pressure, but fulfils the 
criteria of glaucoma considering loss of visual field, and clinical evaluation. 

Formation of free radicals has been considered as a cause of RGC damage 
73. Increased IOP with mechanically induced blockage of neuron transport 74 
and vascular insufficiencies 75 as two distinct oxidative stress pathways that 
have been proposed. 

Glaucomatous loss of RGC axons is reflected in thinning of the 
neuroretinal rim and RNFL thickness. Typically, loss first occurs in the 
superior and inferior parts of the ONH 76,77. In early stages of glaucoma, these 
changes are nearly impossible to detect by visually inspecting the optic disc. 
A floor effect for RNFL loss has been described in advanced glaucoma, where 
the loss rate slows down as less RGC remain 78.  

Peripapillary atrophy 
Peripapillary atrophy (PPA) can be observed in healthy and pathological eyes 
during ophthalmoscopic examination. PPA is characterized by decreased 
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choroidocapillary circulation, parapapillary halo and peripapillary atrophy. 
Centrally, PPA is delimited by the outer limit of the ONH, the Elschnig ring. 
PPA may be further divided into a hyper- and hypo pigmented zone, PPA-α, 
and occasionally a central choroidoretinal atrophy, PPA-β 79. PPA-α is 
characterized by structural irregularities of the RPE. PPA-α and PPA-β have 
been described histologically 80. The PPA-β zone presents with atrophy of the 
RPE and choriocapillaris. Within PPA-β zones, the RPE is assumed to 
disappear completely 80–83, while Bruch’s membrane remains. In the vicinity 
of the ONH, PPA has further been divided into PPA-γ and PPA-δ zones 81. 
Both PPA-γ and PPA-δ is characterized by absence of RPE and Bruch’s 
membrane.  

There is currently no global standard of grading the severity of PPA. 
PPA-β has a stronger association with glaucomatous damage 80,84 while 

PPA-γ seems to be unique to myopic, non-glaucomatous eyes 85,86. An 
increase in PPA area size has been associated with glaucoma progression 87,88. 

There are structural changes associated with PPA that can be seen with 
OCT. In normal eyes, Lee et. al found configurations that only appeared in 
normal eyes with PPA, such as RPE sloping and laddering 26. The 
characteristic was confirmed in a study of PPA eyes of glaucomatous and non-
glaucomatous individuals 89. In PPA- β of normal eyes Bruch’s membrane was 
absent, while the RPE had the typical downward slope in eyes of subjects with 
POAG 90. Further investigations concluded that PPA-γ was visible in OCT 
images 91. 

There are currently no deep learning systems with the purpose of 
annotating PPA in OCT images. However, there are several studies proposing 
deep learning methods to segment PPA zones in optic disc photographs 92–94. 



 

 21 

Aims 

The overall aim is to establish PIMD as a clinically useful morphometric 
measurement of glaucoma. 
 

• To design and test a new computational algorithm for estimation of 
PIMA (Paper I) and evaluate a new method to estimate PIMD.  

 
• To investigate whether the central limit of the RPE can be detected 

and annotated as OPCL points by AutoPimd in individuals with 
peripapillary atrophy (Paper II). 
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Materials and Methods 

Subjects 

Paper I 
Data from young adults with healthy eyes was collected prospectively with 
ethical approval. Written consent was obtained from all subjects. Subjects 
were recruited in a non-clinical setting. The final cohort consisted of a total of 
16 young adults without self-reported eye disease, aged [20;30] years with 
equal gender distribution and a spherical equivalent refractive error within [-
5; +5] D. 

Paper II 
After ethical approval, subjects were recruited prospectively in a clinical 
setting during routine visits to the ophthalmological clinic at Uppsala 
University Hospital in Uppsala, Sweden. Patients received a full 
ophthalmological exam by an experienced senior ophthalmologist. If slit-lamp 
assessment detected peripapillary atrophy, subjects were asked for interest in 
participation and if so, oral and written consent was obtained. The inclusion 
criteria were detection of peripapillary atrophy in slit-lamp microscopy and 
no condition that hinders OCT imaging such as severe cataract or participation 
difficulties. 

Procedure and equipment 

OCT capture procedure 
The OCT imaging protocol was identical for both studies (Paper I, II). Prior 
to OCT capture, examined eyes were dilated with tropicamide 5 mg/ml, either 
due to study participation (Paper I) or as part of common clinical examination 
routine (Paper II). The eye not to be examined was covered, and the light in 
the room was dimmed. Three volumes of each eye (Paper I), or the eye 
affected with PPA (Paper II) was imaged. The subjects were instructed to rise 
and reposition between each sequential capture. 
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All OCT volumes used in the study were captured with an SS-OCT (Topcon 
Triton, Topcon, Japan) in a low-level light environment. The volume captured 
is, according to the manufacturer, 2.6 mm resolved in 992 px along the sagittal 
axis, 6 mm resolved in 512 px along the frontal axis, and 6 mm resolved in 
256 px along the longitudinal axes. This provides a digital resolution of 3 μm 
along the sagittal axis, 12 μm along the frontal axis, and 23 μm along the 
longitudinal axis. The optical resolution is 8 μm deep along the sagittal axis. 
Three volumes of each eye were captured. 

AutoPimd 
The deep learning algorithm was developed in collaboration with the KTH 
Royal Institute of Technology in Stockholm 95,96. Compared to a similar 
method used by Miri et al 97, AutoPimd uses deep learning with two separate 
2D U-nets. One net detects OPCL. The other segments the ILM. Then, the 
shortest distance from the OPCL to a point on the segmented ILM is found. 
This represents PIMD. The product of the total pipeline is thus estimation of 
PIMD in each of 500 segments (Figure 3) 

 

 
Figure 3. Schematic view of the OPCL annotation. Blue: ILM 
segmentation. Green: OPCL point annotation. Red: IRCP point 
corresponding to shortest distance from OPCL to segmented ILM.  

 
Before segmentation, the thee-dimensional OCT image is exported from 

OCT Triton in the Amira Mesh (.am) format. The image volume is uploaded 
into a user interface (UI) custom-built for AutoPimd. On a frontal projection 
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of the OCT image volume, the user manually selects the center of the ONH 
(Figure 3) prior to starting the automatic annotation. 

OPCL network 
This network has been designed to estimate the central limit of the RPE as 
OPCL points. Training data consist of semi-manual annotations from 
glaucomatous and non-glaucomatous eyes. The table below summarizes the 
amount of data used for training the OPCL algorithm. 
 

Table 2. Total number of segmentations made for training 
Subject  
characteristics 

Subjects 
(n) 

Volumes 
(n) 

Occasions 
(n) 

Angular 
segments 
(n) 

Total  
Images for 
training (n) 

Glaucoma 29 1 2 500 29 000 
Non-glaucoma, 
young adults 10 2* 1 500  10 000 
*One volume from each eye 

 
Annotations are performed in the polar domain. Detection of OPCL points is 
made in each of 500 angular segments around the manually chosen center of 
the ONH. The coordinates are transformed from polar to Cartesian before 
estimation of PIMD in each angular segment. 

ILM segmentation network 
This network was trained to automatically segment the ILM. Before training 
the 2D U-Net, a handful of image samples were processed with a pixel-based 
image segmentation method, since there were no manual segmentations of 
ILM available. The pixel-based method expands a segmentation around 
selected key points of an image. Neighboring pixels are automatically added 
around the key points if they are similar to certain criterion, such as color, or 
in this case, the contrast between the low-signaling area of the vitreous body 
and the ILM. The pixel-based segmentation process continues until no more 
pixels can be added to the region. Samples segmented with this method were 
used to train the ILM network. 

Computational algorithm 
The computational algorithm was written in MATLAB (Natick, 
Massachusetts: The MathWorks Inc.). Cartesian coordinates of OPCL and 
IRCP coordinates were imported and transformed mathematically in [x, y, z] 
space according to the following steps: 

 
1. OPCL coordinates are least-square fitted to a plane. 
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2. The OPCL plane, including the OPCL and IRCP coordinates, is 
transformed so that the OPCL plane is parallel with the x- and y-
axis. The transformed OPCL and IRCP coordinates are denoted as 
OPCL' and IRCP'. 

3.  The best-fit circle to the OPCL' coordinates is established and the 
origin of the circle is found.  
4. The origin of the circle and OPCL' and IRCP' coordinates are 
transformed by translating the origin and the OPCL' and IRCP' 
coordinates so that the origin is (0,0) The transformed OPCL' and 
IRCP' points are denoted as OPCL'' and IRCP''. 
 

Different strategies of estimating PIMD 
In the three-dimensional space, several OPCL coordinates may correspond to 
the same IRCP when PIMD is estimated (Figure 4). This leads to a potential 
overestimation of PIMD. 
 

 
Figure 4. Image shows several lines (black) drawn from one 
individual IRCP point at the top circumference, to several OPCL 
points at the bottom circumference. 

 
In the original method of estimating PIMD, PIMDv1 48, disregards the 
overestimation. The method for estimating PIMDv2 assumes a radial plane 
cutting through an OPCL'' point of interest. The interpolated IRCP'' point of 
interest in the radial plane is used for estimation of PIMDv2 (Paper I, Figure 
4b). 

Angular resolution 
Limited resolution in OCT imaging introduces digital noise that does not 
contribute to accurate representation of anatomical structures. When plotting 
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the OPCL'' vector as a function of angle in radians (Paper I, Figure 5a, red 
line) noise becomes apparent. The discontinuity of the OPCL'' vector is higher 
than anticipated for the real anatomy of the ONH. Analysis of the signal was 
made with Fourier transformation. Most of the high-frequency content was 
found above 40 cycles/2π, which is approximately 1/40 radians, slightly more 
than one quarter of a clock hour, or 18 minutes. This corresponds to the 
maximum angular resolution that can be achieved from the current image data. 

 

Low-pass filtering 
OPCL'' and IRCP'' coordinates vary around center of the ONH. The Coastline 
Paradox states that with increasing resolution, coastline length increases 
indefinitely. To account for this in the OCT image data, a low-pass filter was 
applied to each [x, y, z] coordinate of OPCL'' and IRCP''. By plotting the effect 
of different filter sizes on PIMA-2π, it was concluded that a filtering window 
of 11 pixels for each [x, y, z] coordinate is suitable to avoid noise. Filter sizes 
under 10 results in a steep decline of PIMA-2π, indicating that noise is 
included (Paper I, Figure 6). Filtering size of 11 pixels was thus applied on 
OPCL'' and IRCP'' vectors at the last step before data analysis to avoid 
oversampling while retaining relevant anatomical structures (Paper I, Figure 
5b, black line). 

Identifying PPA zones with AutoPimd 
In the AutoPimd UI, the widest part of the atrophic area was identified in a 
frontal projection of the optic disc. Then, the crosshair cursor was placed at 
the: 

 
• Center of the optic disc 
• The edge at the widest part of the atrophic zone 

 
Their respective [x, y, z] coordinates are visible in the UI. The same center 
coordinates were used for automatic annotation (Paper II, Figure 2). Depth is 
irrelevant for distance measurement in a 2D image, thus, [x, y] coordinates 
were recorded. Coordinates for the center of the optic disc, all OPCLs, and the 
edge of the widest part of the atrophic zone were recorded. 
The distance between the center of the optic disc to the atrophic edge (ONH 
center-atrophic edge) was estimated (Figure 5).  
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Figure 5. Schematic drawing of measured distances. 

 
Then, the distance between the center of the optic disc to the automatically 
annotated OPCL (ONH center-OPCL), along the same radius, was estimated. 
If no OPCL point was found on the ONH center-atrophic edge line, two 
adjacent OPCLs were interpolated. 

Statistical Parameters 

Paper I 
Sample size was chosen based on available data for the specific age range. 
Considering the sample size, the significance level was set to α = 0.05 and the 
confidence coefficient to 0.95. The average PIMD-2π and PIMA-2π, 
respectively, of three volumes for each subject was calculated.  
 

Paper II 
Assumption on an effective sample size was calculated based on expected 
relevant difference using an estimate of the standard deviation based on a 
preliminary experiment. The number of required samples was n = < 10. 
The confidence coefficient and significance level were set to 0.95 and 0.05, 
respectively. 
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Results 

Paper I: Cross-sectional waist area 
Individual PIMA elements represented in a three-dimensional plot can be seen 
in Figure 6. The cross-sectional waist area appeared to be undulating around 
the ONH. 
 

 
Figure 6. Visual 3D representation of the cross-section of the waist of the 
nerve fiber layer in the optic nerve head. The green surface is a radial plane 
perpendicular to the best fitting plane of the OPCL locations in space (red) 
transecting an OPCL location of interest. 

 
A 95% confidence interval for PIMA-2π was estimated to 1.97 ± 0.19 mm2 
(df = 15). 
Peaks in the inferior and superonasal regions were visible for estimations of 
angularly resolved surface elements. (Figure 2). 
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Figure 7. PIMA-2π resolved into angular segments. Each bar 
represents the total surface area of 10 consecutive angles (0.13 
radians) in one subject 

Paper I: Improved estimation of PIMD 
A 95% confidence interval for PIMDv1-2π and PIMDv2-2π, respectively was 
estimated to 364 ± 36 μm (df = 15) and 365 ± 37 μm (df = 15). A confidence 
interval for the difference between PIMDv1-2π and PIMDv2-2π was 0 ± 1 μm 
(df = 15). 
When resolving PIMDv2 into angular segments, the peak patterns of PIMA-
2π in superonasal and inferior regions were maintained. (Paper I, Fig. 8). 

 

 
Figure 8. PIMDv2-2π resolved into angular segments. 

Paper II 
A total of six subjects were included. The age range was [53;86] years with a 
gender distribution of four females and two males. 

A 95 % confidence interval for the mean difference between ONH-OPCL 
and ONH-atrophic edge was estimated to 692 ± 192 µm (df = 5). 
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The 95% confidence interval for mean ONH-OPCL center and ONH-
atrophic edge distance was estimated to 1050 ± 160 µm and 1740 ± 180, µm 
respectively. 

In all eyes examined PPA was found. PPA-α was found in three subjects. 
Measurements correlating to the fundus image can be seen in Figure 9. 
 

 
Figure 9. Left: OCT image of the ONH. Right: En face view of the ONH. 
Automatic annotations of the OPCLs (green) and manually annotated 
extreme atophic edge (purple cross). Right: Distance calculation of 
automatically annotated OPCLs and manually annotated extreme atrophic 
edge. 
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Discussion 

AutoPimd was developed with the intention to automatically annotate points 
that correspond to the minimal distance measurement originally proposed by 
Považay 40 without the need for corrections. The aim of Paper I and II was to 
investigate whether annotations made by AutoPimd could be used to compute 
minimal cross-sectional area, potentially correct for overestimations of PIMD 
and whether detection of OPCL was possible in individuals with PPA. 

Mean PIMA-2π was of the same magnitude but slightly higher than similar 
estimates of the cross-sectional area of the waist of the nerve fiber layer 
expressed as BMO-MRA 40,43,98–100. Several explanations could be possible. 

First, In the Heidelberg Spectralis OCT, BMO-MRA is estimated as the 
sum of 48 trapezoidal surfaces 43 with the base centered on BMO. The 
construction is based on 24 radial B-scans. The method potentially 
underestimates the real minimum waist cross-sectional area. PIMA-2π is 
constructed from annotations in 500 radial slices which potentially allows for 
higher resolution. 

Second, the difference between PIMA-2π and BMO-MRA measurements 
could be due to differing calibration of the OCT-devices used. 

The question whether minimal thickness or minimal area is more sensitive 
occurs. On the assumption that the relative number of RGC axons in humans 
are the same in smaller and larger ONHs in healthy eyes, a wider diameter of 
the optic cup represents rearrangement of the axons around a larger 
circumference. A non-glaucomatous enlargement of the ONH is not expected 
to alter PIMA measurements but will reduce PIMD in the same individual. In 
this case, PIMA might be a more stable parameter. 

 If the distribution of PIMD measurements in a number of individuals is 
Gaussian, natural variation would result in a larger variability for PIMD 
measurements, making the parameter less sensitive for detecting pathological 
changes. 

Studies on the sensitivity and specificity of ONH waist thickness and area 
measurements in glaucoma have yielded inconclusive results 100,101. When no 
adjustment for ONH sizes is made, BMO-MRA appears to be the more 
efficient measurement 101. This aligns with the hypothesis that PIMA might be 
a more stable measurement for changes in the number of ganglion cell axons. 

The comparative analysis between PIMDv1 and PIMDv2 in Paper I did not 
directly reveal a methodical advantage of PIMDv2. In the current study, the 



 

 32 

thickness of the nerve fiber layer could presumably be sufficient to mitigate 
the influence of the slanting PIMDv1 measurements (Figure 4). However, the 
angle between PIMD and the sagittal axis is, on average, very small. The 
difference could become significant in glaucoma patients, where the minimum 
thickness is smaller.  

Studies have shown that quantifying the minimal distance between the 
central limit of the RPE and ILM might be a better parameter compared to 
RNFL in glaucomatous individuals 46,102–104, and may even precede altered 
RNFL and visual field changes 105. 

Experimental work on deep learning for ophthalmological imaging is 
increasingly implemented. AI methods may contribute with faster and more 
objective evaluation of pathologies such glaucoma, considering the expected 
future increase in prevalence of glaucoma. 

Peripapillary RNFL thickness and BMO-MRW measurements can be 
combined in one AI system. This was done in a study where a combination of 
RNFL and BMO-MRW performed better in all sectors except the 
inferotemporal sectors than each quantity alone. 106. When minimal distance 
of the nerve fiber is quantified, 24 radial segments for annotations of BMO-
MRW appears to be accepted in deep learning training 103,106,107. Detection of 
OPCL in 500 angular segments may be considered as oversampling. Whether 
the number of B-scan images or the number of unique subjects contribute to 
the most robust training remains to be investigated. 

Occasionally, a surface element in an angular segment of PIMA-2π is 
unrealistically large. This is usually caused by erroneous automatic 
annotations of ILM. Upon inspection, this either occurs when vessel walls are 
annotated as OPCL, or when segmentation of ILM extends to structures in the 
vitreous body, for example, the hyaloid canal. Upon inspection of IPCL 
coordinates from various angles around the ONH, after cross-correlating them 
to ILM segmentation, it becomes apparent that this is a common error in some 
OCT image volumes. ILM segmentations in AutoPimd was not trained on 
manual annotations. Correction of ILM segmentation by an annotator with the 
purpose of retraining ILM segmentation is essential in the future. 

Subjects 
In Paper I, AutoPimd was applied to subjects without glaucoma. The purpose 
of using non-glaucomatous eyes and healthy eyes from young adults in Paper 
I was to design the computational algorithm based on normal anatomy. 
Subjects with refractive errors outside ± 5 diopters were not included in the 
original study since refractive errors impacts on morphometric OCT 
measurements 108. 

Subject inclusion in Paper II is not completed. 
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AutoPimd 
The sample size used for training AutoPimd is small compared to other studies 
107. On the other hand, the number of radial images is larger. 

Considering the large variation of ONH anatomy among individuals, more 
training data would improve the AutoPimd model. Use of several annotators 
that agree on annotation criteria is preferred. 

Erroneous automatic annotations of the central limit of RPE due to 
obstructing blood vessels is a common problem 45,46. In the training data used 
for AutoPimd, manual placement of an OPCL point in a particular angular 
segment was neglected in the presence of a blood vessel close to the central 
limit of RPE 47, and instead mathematically interpolated. Considering that 
AutoPimd was trained with images evading vessels, the question remains if 
larger sample sizes will be enough to generalize evasion of vessels, or if more 
manual annotations must be added as ground truth. 

Annotation in the absence of RPE 
In Paper II, the expectation was that AutoPimd would detect OPCL at the 

atrophic border rather than centrally, since annotation of OPCL requires the 
high signal of RPE. Surprisingly, the results detected a significant distance 
difference between ONH center-OPCL and ONH-atrophic edge. The wide 
ONH-atrophic edge confidence interval could reflect a substantial variation in 
severity of PPA in the study population. In Paper II, AutoPimd was applied 
on subjects with PPA. Manually annotated images from glaucomatous 
subjects with PPA were used in the training of AutoPimd. This might have 
contributed to correct automatic annotations of OPCL in individuals with 
PPA. 
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Conclusions 

 
• An algorithm for estimation of PIMA was developed and applied. 

Further, a new algorithm for estimating PIMD was developed and 
compared to the original. 
 

• An initial analysis indicated the capacity of the automatic algorithm 
to detect OPCL in subjects with PPA. 
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