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Abstract

Hypothesis testing has long been a formal and standardized process. Hypothesis generation,

on the other hand, remains largely informal. This thesis assess whether eXplainable AI (XAI)

can aid in the standardization of hypothesis generation through its utilization as a hypothesis

generating tool for medical research. We produce XAI heat maps for a Convolutional Neural

Network (CNN) trained to classify Microsatellite Instability (MSI) in colon and gastric cancer

with four different XAI methods: Guided Backpropagation, VarGrad, Grad-CAM and Sobol

Attribution. We then compare these heat maps with pathology annotations in order to look

for differences to turn into new hypotheses. Our CNN successfully generates non-random

XAI heat maps whilst achieving a validation accuracy of 85% and a validation AUC of 93%

– as compared to others who achieve a AUC of 87%. Our results conclude that Guided

Backpropagation and VarGrad are better at explaining high-level image features whereas

Grad-CAM and Sobol Attribution are better at explaining low-level ones. This makes the

two groups of XAI methods good complements to each other. Images of Microsatellite Insta-

bility (MSI) with high differentiation are more difficult to analyse regardless of which XAI is

used, probably due to exhibiting less regularity. Regardless of this drawback, our assessment

is that XAI can be used as a useful hypotheses generating tool for research in medicine. Our

results indicate that our CNN utilizes the same features as our basic pathology annotations

when classifying MSI – with some additional features of basic pathology missing – features

which we successfully are able to generate new hypotheses with.

Keywords: black box, eXplainable AI (XAI), Convolutional Neural Network (CNN), Mi-

crosatellite Instability (MSI), colon cancer, gastric cancer, hypotheses generating, hypotheses

generating tool, medical research
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1 Introduction

Along with the rise of information technology has come a sophistication in medical data for-

mats – such as the 1985 development of the Digital Imaging and Communications in Medicine

(DICOM) standard of communication, DICOM (2023). Since then, a mounting supply of

data has been made available for use with Artificial Intelligence (AI): The Cancer Imaging

Archive (TCIA) and The Cancer Genome Atlas (TCGA) as two prominent examples, Koh

et al. (2022); Dlamini et al. (2020). A use which has taken its expression in the automa-

tion of the diagnosis of diseases in many medical fields, dermatology and mammography just

to name two, Esteva et al. (2017). Together with the increasing demand of AI comes an

mounting appeal for more transparent AI models – in contrast to the ”black-box” systems

that take inputs to generate outputs, with the in-between veiled by a black box. Users press

AI designers for more than answers through predictions and now require inference as well

– the difference between prediction and inference, akin to the difference between ’a weather

forecast’ and ’an explanation for cloud formation and how variations in air pressure affect

precipitation’. The drawback of AI as compared to a physician is that it lacks the ability to

provide explanations for its reasoning whereas a physician can refer to medical theory or job

experience. In order to provide users with inference, one must learn to open the AI’s black

box. Opening an AI’s black box is possible, but requires certain tools.

The foremost toolbox for explaining AI is called eXplainable AI (XAI) and contains many

methods, all specialising in different angles of explanation. The current demand for XAI

mainly comes from healthcare, law and science. Healthcare often utilize AI-generated decision

trees to better convey and motivate why a patient is recommended a specific treatment. Law

requires similar explainability tools to ensure that algorithm generated credit scores do not

break the law by declining loans to borrowers on basis of sex or ethnicity, Hickling et al. (2023).

Lastly, the area which could stand to benefit the most from an increase in explainability – is

science. XAI has the potential to aid scientists in better understanding their scientific models.

Something which could aid them in improving them further, furthering our understanding of

our world, Lindskog and Ljung (1994); Arain et al. (2012); Ma et al. (2023); Greydanus et al.

(2019); He and Yang (2020); Forssell and Lindskog (1997).

This thesis will consider XAI’s application in medical science. Hypothesis testing has long

been a formal and standardized process. Hypothesis generation, on the other hand, remains
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largely informal. The purpose of this thesis is to assess whether XAI can formalise and

standardize this process in order to make medical research more efficient and accessible for

digital pathologists and statisticians alike. In order to further exemplify what we mean with

”hypothesis generating tool”, we bring up an example from Ludwig and Mullainathan (2023).

In their working paper, titled Machine Learning as a Tool for Hypothesis Generation, they

illustrate a procedure where they utilize a hypothesis generation tool for generating hypothesis

for what could be the reason for a judge’s decisions about who to jail. Interestingly they are

able to generate hypothesis that the defendant’s face matters surprisingly much for the judge’s

decision – but not due to demographics nor existing psychology research, hence the difference

necessary for generating new hypothesis.

Hickling et al. (2023) find it difficult to draw conclusions about which XAI methods are

best for medical applications – as they only came across one such application. Their study

recommends further research into the medical field by applying some of the XAI methods

described in their paper. This thesis will follow their recommendation by utilizing XAI to

explore an AI’s focus areas in images of Microsatellite Instability (MSI). Identifying MSI in

cancer patients is important since it determines their response towards immunotherapy. We

will compare the XAI heat maps to our own annotations for visual features important in

basic pathology related to MSI. Finally, we compare how the two identification models - the

XAI and basic pathology - differ in their predictions and discuss hypothetical reasons as to

why. The purpose of this thesis is to try to generate hypotheses from from these unexplained

differences for future medical research to explore. This thesis attempts to answer the following

question: “Is eXplainable AI suitable as a hypotheses generating tool for medical

research?”

The thesis is organised as follows: In Section 2 we go over details for our data set, alongside

our motivations for selecting it. In Section 3 we go over how the thesis applies eXplainable AI

and basic pathology in a way necessary for us to investigate the thesis question. In Section

4 we create, train and evaluating our Convolutional Neural Network (CNN) for classifying

Microsatellite Instability. In Section 5, we present the result of a model parameter random-

ization test as well as the result of our Basic Pathology Annotation (BPA) and eXplainable

AI comparison – divided into one subsection for each of our four selected XAI instruments.

In Section 6 we discuss the result in Section 5. Lastly, in Section 7, we conclude the findings

of our thesis – alongside recommendations for future studies.
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2 Data

This thesis utilizes a data set downloaded from Kaggle (2019). The data set is based on a

data set from Zenodo authored by Kather (2019). It contains 192 312 unique image patches

derived from histological images of colorectal and gastric cancer patients. Schirris et al.

(2022) state that the Kather data set has been collected from 360 patients (The Cancer

Genome Atlas - Colorectal Carcinoma). These image patches have then been divided into

the following two classes: ’MSS’ (Microsatellite Stable or ”healthy” image patches) and

’MSIMUT’ (Microsatellite Instable or highly Mutated, ”sick” image patches). Microsatellite

Instability is a harmful condition which can occur in a number of places within the body.

Due to our data being of colon and gastric cancer only, we will limit or thesis to the study of

MSI in these places. Out of the 192 312 unique images available in the Kather data set, we

utilize 150 078.

The focus of this thesis is on the analysis of medical image data derived from Formalin-

Fixed Paraffin-Embedded (FFPE) slides. FFPE slides are the standard for diagnostic medicine

and generated by fixing a specimen in formaldehyde and then inserting it into a paraffin wax

block for cutting – giving it a well preserved appearance suitable for computational analysis.

Most of The Cancer Genome Atlas images are of frozen specimens and thus not suitable for

computational analysis. Flash frozen samples frequently damages the tissue. Since we utilize

images derived from FFPE slides, we should not experience this problem. The FFPE slides

which lie as the basis of our image patches have the following preprocessing applied to them:

automatic detection of tumor, resizing to 224 px x 224 px at a resolution of 0.5 µm/px, color

normalization with the Macenko method – Macenko et al. (2009) – and assignment of pa-

tients to either ’MSS’ or ’MSIMUT’. Matek et al. (2021) utilizes eXplainable AI in their paper

exploring differentiation of bone marrow cell morphologies. They present XAI heat maps of

a 224 px x 224 px resolution. Judging by these heat maps fuzzy, low defined apperance, we

would caution against basic pathology interpretations of images below this resolution.

It is important that the digital pathology images are of high enough resolution in order

to make the resulting eXplainable AI heat maps interpretable. If the image patches sampled

from the slides are too narrow in scope and size, the AI will be left with an area too minor

for developing an understanding of where in the colon or gastrointestinal tract the tissue

was sampled from. If the image patches sampled from the slides are too broad in scope and
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size, the AI will be left with relatively fewer image patches to train on – thus increasing the

risk that the AI fails to reach an accuracy that is satisfactory. In a way, the patch size is

a balancing act between under- and over-fitting our AI model, a problem much akin to the

variance-bias trade-off. Ideally, we would want somewhat higher of a resolution than the 224

px x 224 px resolution available to us via our selected data set.

Schirris et al. (2022) use the same dataset as us. Although they also write about MSI

prediction for colorectal and gastric cancer, their paper focuses on feature extraction and

modelling tumor heterogeneity. They do not focus on eXplainable AI as a hypotheses gen-

erating tool for medical research, but instead write about a Deep learning-based weak label

learning method for analyzing Whole Slide Images (WSIs). They also utilize WSIs whereas

we utilize WSIs divided into patches.

3 Theory

This section is divided into four sections. In Section 3.1, we go over how eXplainable AI can

aid medical research. In Section 3.2, we continue with our motivation for selecting our four

XAI instruments, along with how each of these function. In Section 3.3, we briefly explain

Microsatellite Instability. Lastly, in Section 3.4, we motivate our selection of visual features

for our basic pathology annotation.

3.1 eXplainable AI

As was explained in the introduction of this thesis, users now require inference from their AI

and not only predictions. The underlying factors motivating this demand differs depending on

the end user. In the context of a patient, inference could be in the shape of an explanation

motivating their recommended treatment – making them feel safer due to the increase in

trust recommendations, with the arguments attached, have on a patient. In the context of a

medical researcher – as is the scenario in this thesis – inference could take the shape of an

explanation of which features an AI deem most important whilst arriving at its conclusion.

The difference between an AI prediction and inference can be exemplified by the difference

between receiving a prediction that a patient is infected with a particular virus, and receiving

an explanation of how this virus causes harm to the patient – information important for the

development of a vaccine.
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Although the prospect of increased AI inference seem positive, it is not without its poten-

tial drawbacks. There is currently a debate over whether an AI models degree of explainability

compromises the models precision and effectiveness. One side of the debate emphasise the

value gained from simplifying models in order to make them easier to interpret – an argu-

ment in line with the scientific principle of parsimony. The other side of the debate instead

emphasise the value gained from added abstraction – stemming from preserving the AI mod-

els complexity. Their side argues that it is impossible to keep an optimized accuracy and

precision whilst also keeping the model understandable, Ghassemi et al. (2021). Regardless

of which side one supports, the liveliness of the debate indicates the continued importance of

inference and explainability in the context of AI models.

Adebayo et al. (2018) suggest utilizing a test in order to test whether our XAI is suc-

ceeding in visualizing the inner workings of the model or the data generating process – thus

providing us with more information of which side of the debate our particular AI model leans

toward. One of these tests is the model parameter randomization test. The model param-

eter randomization test compares the eXplainable AI output from the AI model before it

is trained with the output after it is trained. This in order to investigate whether the XAI

method is sensitive to the properties of the AI model or not. If the XAI method is sensitive

to the learned parameters, we should expect the XAI output from the untrained and trained

AI to differ substantially. If the XAI outputs are very similar, we probably have an indication

that the XAI method does not capture the AI models underlying procedure. The result of

this test is presented in Section 5 of this thesis. In the case of our thesis, it is performed by

a test comparing the XAI output of the complete 25 epoch trained AI model with the XAI

output of a 1 epoch trained AI model.

Savage provide one example of a eXplainable AI medical research application, Nature

(2022). In the early days of the COVID-19 pandemic, when radiographs of COVID-19 infected

people were scarce, the scarcity of radiographs led scientists to complement their data sets

with radiographs of healthy people from the US National Institutes of Health (NIH). These

radiographs contained systematic differences – unrelated to the disease – from the COVID-19

radiographs. Radiographs usually label a person’s right side with the letter ’R’ in the top

corner of each X-ray. With most of the images of healthy people stemming from a single

source, some of the AI systems based their diagnoses on the style and placement of the letter

’R’, rather than on the outward state of the lungs – see Figure 1.
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Figure 1: The part of the X-ray that AI were using to diagnose COVID-19 (red pixels)
included the letters that marked patients’ right sides, Bustos et al. (2020).

What made XAI useful was its ability to visualise this flaw in the AI’s classification model

so that scientists could calibrate their AI to better capture the data it was really meant to

model. This example proves how insight into AI’s inner workings can be valuable in a medical

research context, since it helps scientists locate flaws in their models – with the added bonus

that it could visualise patterns scientists did not previously know about, Nature (2022). It

is the discovery of unknown patterns in medical image data that this thesis attempts to

generate, so as to create new hypotheses for medical research.

In this thesis we will train a Convolutional Neural Network on a data set of histological

images for Microsatellite Instability identification in gastrointestinal cancer. A Convolutional

Neural Network (CNN) is a type of Artificial Intelligence designed to analyse images. It is

composed of several stacks of layers – beginning with an input layer and ending in an output

layer – which form a mathematical construct capable of identifying information from images

it has been trained to recognize. It trains on labeled data – through supervised learning

– and fine tunes its weights every time it gets the label wrong, until it arrives at a high

enough prediction accuracy for it to end its training. A CNN identifies the hidden label of an

image by extracting features from the image – features the CNN extracts via its utilization of

convolutional, pooling and fully connected layers – which it then uses to make its prediction.

In clinical practice, not every patient is tested for MSI. Good diagnosis require additional

genetic or immunohistochemical tests. This additional process for diagnosis takes valuable

time from patients, potentially post-poning their treatment. Great sensitivity to visual image

identification of MSI therfore has the potential to save valuable time and money. We therefore

believe visual diagnosis of MSI to be a valuable medical research area to use as our testing

ground for the eXplainable AI hypotheses generating method assessed by this thesis.
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3.2 eXplainable AI instrument selection

The eXplainable AI toolbox contains many instruments. It is useful to know which instru-

ments best fit which kind of situation. Vilone and Longo (2021) divide XAI into five general

categories based on the XAIs explanation format output. The five categories are: numeric,

rule based, textual, visual and mixed explanation. They further state four factors to consider

whilst selecting a suitable XAI instrument for ones application. The four factors are: methods

for explainability, field of application, types of users, and lastly purposes of explanation. We

will analyze how these four factors relate to the purposes of our AI and assess which of the

five categories of XAI we should utilize.

First, since we are using image data, it makes sense to utilize an image based instrument.

This in order to keep the interpretation of the output as intuitive as possible. Second, our

field of application is a rather narrow field of academia, so universal interpretability will not

be as important. Third, our intended users are digital pathologists and medical researchers,

so we want a method that provides inference into our AI’s inner workings. Instilling trust

in our users is thus secondary to obtaining good inference. Fourth, since pathologists and

medical researchers might lack knowledge about AI, it is important that we utilize an XAI

method that is as intuitive as possible – thus allowing for our medical specialist to apply their

knowledge without obstruction. Fifth, the purpose of the explanation is knowledge discovery

via the generation of new hypotheses for medical research.

It is important to consider the pros and cons of each of the five categories of XAI methods

before deciding on one to utilize. Numeric XAI output is flexible but not as intuitive, rule

based schematic output is structured but difficult to scale, text based output is intuitive but

long and drawn out, image based output is informative but dependent on outside information

like legends and captions to be correctly interpreted, lastly mixed output is a compromise

well suited for groups with varying end users – yet complex and confusing if sizeable enough.

Keeping the pros and cons of each category in mind, we decide upon selecting the image

category for our XAI. Partly due to Savage’s previous example, Nature (2022).

Proceeding with an image-based XAI, one attempts to suggest diseases which are possible

to identify thorugh images – in contrast to diseases only identifiable through blood samples

or immunohistochemical tests. When considering different diseases to identify, one might

reason that some diseases are better captured by images than others. A sick body part with
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a large three-dimensional volume, like a pair of lungs or a brain, might be less consistent

with a two-dimensional image than say a birthmark – which is relatively flat. That said, we

do find papers with XAI implementations for the three dimensional organs of the body. For

example, for brain related diseases such as Alzheimer, Parkinson’s and Schizophrenia, Bloch

and Friedrich (2022). Despite this, we believe it best to stick to our analysis of relatively

”two dimensional” biopsy slide image data.

Our thesis utilizes the Xplique library for applying XAI, Xplique (2023a). The code for

implementing the XAI is based on example code from the same library, Xplique (2023b). The

different XAI methods we utilize are all image based, with heat maps as their output format.

Heat maps visualise the most important areas for image identification in an input image

– with important areas painted in ”warmer” colours (reds) and unimportant areas painted

in ”colder” colours (blues). The library contains the following feature attribution methods

for generating heat maps: Saliency, Gradient Input, Guided Backprop, Integrated Gradients,

Smooth Grad, Square Grad, VarGrad, Grad-CAM, Occlusion, Rise and Sobol Attribution.

Due to time limitations, not making the thesis too lengthy, and due to the fact that many of

the different methods produce very similar results – we decided upon selecting only four of

these methods for analysis in our thesis. We tried all of these methods on a random sample

from our data set to see how each respective method’s heat map differed. The four methods

that differed most, whilst also remaining interpretable, and which we ended up in our thesis,

are: Guided Backpropgation, VarGrad, Grad-CAM and the Sobol Attribution method. These

XAI methods are presented and explained in Section 3.2.1, Section 3.2.2, Section 3.2.3 and

Section 3.2.4 respectively. What makes these methods differ from each other is the way in

which they arrive at this heat map.

3.2.1 Guided Backpropagation

Guided backpropagation generates its XAI heat map by combining a backpropagation function

with a backward ’deconvnet’ function, Springenberg et al. (2015). Backpropagation is an

algorithm for updating weights used to calibrate a Neural Network’s decision making. The

function applies an input vector to the network and then propagates forward from the input

layer to the output layer. An error value is calculated by taking the desired output minus the

actual output for each of the network output neurons. The error value is propagated backward

as a function of the contribution of the error when accounting for the network weights. This
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organizes the network such that the hidden layer recognizes features in the input space.

The output layer is then able to use the hidden layer features to arrive at a solution, IBM

(2017). The backward ’deconvnet’ function refers to the backward ’deconvolutional neural

network’ function. It uses deconvolutional layers to upsample the image so that it can generate

feature visualizations. The function applies deconvolutional layers in reverse, during the

backpropagation phase of the neural network. It visualises concepts learned in the high-level

layers of the CNN by using a high-level feature map and inverting the CNN’s data flow –

going from neuron activation’s in the given layer down to an image. Typically, a single neuron

is left non-zero in the high level feature map. Then, the resulting reconstructed image shows

the part of the input image that is most strongly activating this neuron, Springenberg et al.

(2015).

Guided backpropgation combines the backpropagataion and backward ’deconvnet’ function

to visualize the activation of high layer neurons. Given an input image, it performs the

forward pass to the layer we are interested in. It then sets to zero all activation’s except for

one, and propagates back to the image to obtain a reconstruction. The formula for guided

backpropagation is,

(f l
i > 0)× (Rl+1

i > 0)×Rl+1
i = Rl

i

where (f l
i > 0) is the backpropagation part with the network activation’s and (Rl+1

i > 0)

is the backward ’deconvnet’ part with the network gradients. The gradients quantify how

much a change in each input dimension change the predictions around the input. f0
i is the

input image before the forward pass, fL
i is the input image after the forward pass, R0

i is

the reconstructed image after the backward pass and RL
i is the reconstructed image before

the backward pass. Guided backpropagation aims to zero out negative gradients during

computation of ‘intermediate representations’ obtained during the backward pass. It does

this by only keeping the positive activation’s and gradients. It is important to note that the

’deconvnet’ approach and guided backpropagation do not compute a true gradient but an

imputed one, Springenberg et al. (2015).

3.2.2 VarGrad

VarGrad generates its XAI heat map through a variance analog of SmoothGrad. SmoothGrad

averages over explanations of noisy copies of an input by drawing noise vectors gi ∼ N(0, σ2)

i.i.d. from a normal distribution, Adebayo et al. (2018). VarGrad is independent of the
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gradient and is able to capture higher order partial derivatives. The formula for VarGrad is,

Evg(x) = V (E(x+ gi)),

where V corresponds to the variance. VarGrad is an estimator of the gradient of the Kullback-

Leibler divergence. The Kullback-Leibler divergence is a statistical distance and a measure

of how one probability distribution is different from a reference probability distribution. It

is interpreted as the average difference of the number of bits required for encoding samples

of one probability distribution utilizing a code optimized for a reference probability distribu-

tion, Saltelli (1951). VarGrad is an ubiased estimator of the gradient of this divergence and

based on Reinforce with leave-one-out control variables. It utilizes a score function method

as an estimator for Variational Inference. The goal of Variational Inference is to approximate

the posterior distribution of a model. Variational Inference accomplishes this by utilizing a

parameterised family of distributions, finding the parameters by minimising the Kullback-

Leibler divergence. This estimator is then connected to the log-variance loss which is defined

as the variance of the log ratio – which has the property of reproducing the gradients of the

Kullback-Leibler divergence under certain conditions.

Since the Kullback-Leibler divergence is intractable, Variational Inference can cast the

inference problem as an optimisation problem – a problem which can be solved with stochastic

optimisation tools. In particular, Variational Inference forms a Monte Carlo estimator of

the gradient of the Evidence Lower Bound (ELBO). VarGrad can be implemented via an

algorithm structured in the following way. First, we sample from the approximate posterior.

Second, we detach the samples from the computational graph. Third, we get an estimate of

the negative ELBO and the log-variance loss. Finally, we differentiate through the loss with

respect to our variational parameter of choice, Richter et al. (2020).

3.2.3 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) generates its XAI heat map by

utilizing the gradient information in the last convolutional layers of the CNN. It does this in

order to compromise between high-level semantics and detailed spatial information. Grad-

CAM assigns importance values to each neuron for a particular decision of interest in order

to explain activation’s in any selected layer of a neural network. In order to obtain the

class-discriminitative localization map for any class, it first computes the gradient score for

our selected class with respect to feature map activation’s of a convolutional layer. These
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gradients are then global-average-pooled to obtain the neuron weights (αc
k), Selvaraju et al.

(2019). The neuron weights (αc
k) are defined as,

αc
k =

1

Z

∑
i

∑
j

× ∂yc

∂Ak
ij

.

where (αc
k) represents a partial linearization of the deep network, downstream from Ak which

are the feature map activations of a convolutional layer, and captures the ‘importance’ of fea-

ture map k for target class c. We then perform a weighted combination of forward activation

maps, and follow it by a ReLU activation function to calculate,

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k).

The result is a coarse heat map of the same size as the convolutional feature map. The reason

why we apply a ReLU to the linear combination of maps is because we are interested in the

features that have a positive influence on the class of interest. Negative pixels likely belong

to other categories than those we are interested in, Selvaraju et al. (2019).

3.2.4 Sobol Attribution

Sobol Attribution generates its XAI heat map by taking the variance between the input

and output of a CNN to produce prediction scores for the selected layers. The individual

pixel importance scores used to paint the heat map are calculated by sampling masks from a

Quasi-Monte Carlo sequence. After these masks have been sampled, they are applied to the

input image through a perturbation function – a function which modifies input in order to

observe the change in output. This forms stochastic random perturbed inputs that then are

forwarded into the CNN we want to obtain prediction scores for, FEL et al. (2021). Lastly,

the prediction scores are calculated by adapting Sobol-based sensitivity analysis (also referred

to as Variance-based sensitivity analysis).

Sobol-based sensitivity analysis is a form of global sensitivity analysis – sensitivity anal-

ysis being the study of how the uncertainty in the output of a model can be attributed to

different sources of uncertainty in the input. Global sensitivity analysis is simply a category

of sensitivity analysis which measures sensitivity across the whole input space (i.e. global).

The analysis decomposes the variance of the output of the model into fractions which can

be attributed to inputs. These percentages are directly interpreted as measures of sensitiv-

ity. Variance-based measures of sensitivity are useful because they can deal with nonlinear
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responses and measure the effect of interactions in non-additive systems, Saltelli and Annoni

(2010).

3.3 Basic Pathology

Pathology is defined as the study of the cause and effect of disease or injury. It is a complex

field of medicine which consider visual features of specimen in order to identify disease.

To narrow the scope of this thesis, we will only make use of basic visual features when

attempting to identify Microsatellite Instability. For this thesis, we will limit our scope to

the annotation of MSI occurring within gastrointestinal cancer – that is colrectal and gastric

cancer. Gastrointestinal cancer tumors commonly express MSI. That being said, MSI is

prevalent in many different cancers. Knowledge of the prevalence of MSI is important since

it can affect treatment options and prognosis of patients.

Microsatellite Instability is a genetic disease which occurs when an individual accumulates

mutations in DNA regions known as microsatellites – microsatellites being regions of repeated

DNA that show instability. MSI mainly occurs due to one of two reasons. It either occurs

due to Replication Errors (RER) or it occurs due to chromosomal instability (CIN). RER

occurs due to faults with the mismatch repair (MMR) system, whereas CIN occurs due to

a broader instability involving larger segments of DNA, as well as chromosomes. MMR is a

system for recognizing and repairing incorrect incorporation of bases, and can arise during

DNA replication and recombination. The most important genes for a functioning mismatch

repair system are, in order of importance: MSH2, MLH1, MSH6 and PMS2, YouTube (2020).

Due to the genetic nature of MSI, pathology currently relies on genetic or immunohis-

tochemical tests to identify those affected. One need to stain the specimen with pigments

to determine whether the four genes (MSH2, MLH1, MSH6 and PMS2) in the tumors are

functioning. That is, if the tumor cells turn brown (positive) or blue (negative) – with brown

(positive) being an indication of active MSI – when stained, YouTube (2020). If one could

discover new visual patterns for classifying MSI, a lot of time and effort spent on genetic

and immunohistochemcial tests could be spared. In this thesis, we hope to generate new

hypotheses related to new visual features for MSI.
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3.4 Basic Pathology Annotation selection

Currently known visual features indicative of MSI include, but are not limited to: Tumor

Infiltrating Lymfocytes (TILs), Chron’s like reaction, poor differentiation and lastly mucinous

or signet ring cell morphology. The reason why we have decided on considering these par-

ticular features is that these are the subset of the set of features visual during microscopy

which also do not require any additional information on where in the body the specimen has

been sampled from – information which we can not easily implement to our CNN, YouTube

(2020). It are these basic visual features which we will consider and annotate for the images

we have selected to analyse in Section 5. Section 3.4.1, Section 3.4.2, Section 3.4.3 and Section

3.4.4 each describe one of our four selected visual features and their respective appearance in

microscopy imaging. Note, that these images are high resolution examples to illustrate the

pathological features we are considering, and thus not images from our data set – which has

a much lower 224 px x 224 px image resolution. Before we describe these four visual features

in more detail, we provide an example of our annotation process. We do this by utilizing an

image sampled from our data set. Figure 2 presents an example of our annotation process

for Image 4 from Section 5.

Image 4 Basic Pat. 4 (BPA4)

Figure 2: Annotation example for Image 4. 224 px x 224 px resolution.

In Figure 2, we first see a raw image as it is stored in our data set (left image). To

annotate the image (Image 4), we copy it and begin to circle features from our list of visual

signs of MSI. We do not circle every example of each feature – one example per feature present

is enough. The visual basic pathology visual features are annotated as: Tumor Infiltrating

13



Lymfocytes (TILs) [Annotated with a red ’A’], Chron’s like reaction [Annotated with a blue

’B’], poor differentiation [Annotated with a yellow ’C’] and lastly mucinous or signet ring

cell morphlogy [Annotated with an orange ’D’]. We provide an excerpt from the Appendix

with the Basic Pathology Annotation (BPA) for Image 4 to further exemplify the results of

(BPA4) – that is the second image in Figure 2 (right image).

1. Image 4 – Basic Pathology Annotation 4 (BPA4):

(a) Tumor Infiltrating Lymfocytes

Image 4 seem to contain a few more immune cells compared to what we saw in

the MSS-class images (Image 1-3 ). These are annotated in red with an ’A’ next

to them. The relatively high quantity of TILs could be indicative of the image

belonging to the MSIMUT-class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [No, the cells and glands appear

different in shape and colour.] The height of the cell: cylinder, cuboids, slice etc?

[No, the cells and glands appear to differ in height.] Nucleus shape and colour?

[The resolution of the image is low, but from what is discernible there seems to

be different sized nuclei, indicative of nuclear atypia or pleomorphism. These are

annotated in yellow with a ’C1’ next to them.] Chromatin packing or density?

[The resolution of the image is low, but from what is discernible there seems to be

no signs of abnormal chromatin packing.] Nucleus position in cell and in relation

to other cells? [Different cells have different nucleus position, so what is normal

for one type of cell can be abnormal for another. This makes our image difficult

to interpret. The resolution of the image is low, but from what is discernible

the visible nuclei seems to have somewhat differently positioned nuclei. Compare

nuclei annotated yellow and with a ’C1’ next to them with those annotated with

a ’C2’ next to them.] Quantity of mitosis? [The resolution of the image is low,

only two possible mitosis is discernible. See top yellow ’C1’ ring annotation and

bottom yellow ’C3’ annotation.] All things considered, Image 4 appears to have a

rather high differentiation, thus indicating that it belongs to the ’MSIMUT’ class.

(d) Mucinous or signet ring cell morphology



Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 4 seem to possibly exhibit some signs of mucinous or

signet ring cell morphology, although it is somewhat difficult to tell due to the low

resolution and image patch scope – regardless of this, the possible mucinous or

signet ring cell morphology is indicative of the image belonging to the ’MSIMUT’

class. See orange annotated with ’D’ next to them for examples.

In order to not bias our basic pathology annotation, we annotate the six randomly selected

images presented in Section 5 before we look at the XAI heat maps – this in order to insure

that our CNN’s areas of importance do not influence our basic pathology annotation. The

file names of the six images alongside the un-annotated images are presented in Table 3

in Section 10.1 of the Appendix. Due to space limitations, we will only include the Basic

Pathology Annotations (BPA) – for the six images analyzes in Section 5 – in Section 10.3 of

the Appendix. We now continue to describe the four visual features indicative of MSI which

we have selected to annotate for our six images in Section 5. We do so in Section 3.4.1,

Section 3.4.2, Section 3.4.3 and Section 3.4.4.

3.4.1 Tumor Infiltrating Lymfocytes

Observations of Tumor Infiltrating Lymfocytes (TILs) is our first visual indication of MSI.

TILs are suggestive of Microsatellite Instability and may be seen in Lynch syndrome. The

most important genes for a functioning mismatch repair system are, in order of importance:

MSH2, MLH1, MSH6 and PMS2, YouTube (2020). These genes are called the ’Lynch syn-

drome genes’ after the syndrome that appears in an individual when the genes are not working

properly, CDC (2018).
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Figure 3: Micrograph with Hematoxylin and Eosin stain (H&E stain) showing tumor-
infiltrating lymphocytes in colorectal carcinoma, Wikipedia (2013).

Figure 3 presents an image of TILs in colorectal carcinoma. The tumor glands in Figure 3

are annotated with red. The nuclei that exhibit a retraction artefact are T-cells and annotated

with yellow. These T-cells are called Tumor Infiltrating Lymfocytes since they lie in-between

the tumor glands and thus infiltrate them. When we believe that we have found TILs in our

image, we annotate these by encircling them in a red ellipsoid, placing the letter ’A’ adjescent

to our obsevation.

3.4.2 Chron’s like reaction

Observations of Chron’s like reaction is our second visual indication of MSI. Chron’s like

reaction is difficult to evaluate since the images in our data set only provides us with a small

window of the colon or gastric tissue. We do not have information on whether the images are

of colon or gastric samples so we can not determine whether our images exhibit Chron’s like

reaction or not. Because of these limitations, we will not be able to use Chron’s like reaction

as a visual criteria for MSI. If we would have been able to include Chron’s like reaction as a

visual indication of MSI, it would have been annotated by encircling observations in a blue

ellipsoid, placing the letter ’B’ adjescent to our obsevation.

3.4.3 Poor differentiation

Observations of poor differentiation is our third visual indication of MSI. Differentiation

describes the processes by which immature cells become mature cells and how similar the

tumor tissue looks like the normal tissue it originated from. Well-differentiated cancer cells
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look more like normal cells and tend to grow and spread more slowly than poorly differentiated

cancer cells. Differentiation is used in tumor grading systems and are different for each

cancer NIH (2023).

Figure 4: Visualisation example of poorly differentiated tissues. (a) Representative examples
of tortuous glands, (b) a branching gland, (c) anastomosing glands, (d) a distended gland,
(e) spiky glands, (f) and glandular outgrowth in very well-differentiated adenocarcinoma of
intestinal type, Ushiku et al. (2013).

Figure 4 demonstrates poorly differentiated cancerous gastric tissues in various locations

of the intestine. When assessing the level of differentiation of our image, we will also look

for features with answers the following questions: Does the cell look like surrounding cells?,

What is the height of the cell, is it cylindrical or cuboid or slice like?, What is the nucleus

shape and colour?, Is there any signs of chromatin packing?, What is the nucleus position in

the cells in relation to other cells? and lastly What is the quantity of mitosis?

When we believe that we have found indications of poor differentiation in our image, we

annotate these by encircling them in a yellow ellipsoid, placing the letter ’C’ adjescent to our

obsevation.

3.4.4 Mucinous or signet ring cell morphology

Observations of Mucinous or signet ring cell morphology is our fourth and last visual indi-

cation of MSI. Signet ring cell carcinoma (SRCC) and mucinous adenocarcinoma (MCC) are
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histologic subtypes of colon adenocarcinoma. Signet ring cell cancers are most commonly

seen in the stomach (95%) and occasionally found in colon, rectum, ovary, peritoneum and

gallbladder. It is characterized by specific morphologic appearance of abundant intracyto-

plasmic mucin pushing nucleus to the periphery giving it a signet ring cell appearance, Thota

et al. (2013).

Figure 5: (a) poorly differentiated conventional gastric adenocarcinoma, Commons (2005).
(b) gastric signet adenocarcinoma, Commons (2017).

Figure 6: (a) High-grade mucinous adenocarcinoma with signet ring cells composed of mixed
mucinous (right half of image) and signet ring cell components. (b) High-grade mucinous
adenocarcinoma with signet ring cells composed predominantly of neoplastic signet ring cells
associated with copious extracellular mucin, Davison et al. (2014).

Figure 5 and Figure 6 both demonstrate mucinous or signet ring cell morphology. The

areas annotated in yellow are the signet ring cells. When we believe that we have found

indications of mucinous or signet ring cell morphology in our image, we annotate these by

encircling them in a orange ellipsoid, placing the letter ’D’ adjescent to our obsevation.
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4 Method

This section is divided into three parts. In Section 4.1, we create our CNN. In Section 4.2,

we train our CNN. Lastly, in Section 4.3, we evaluate our CNN.

4.1 Creating the Convolutional Neural Network

We utilize Python 3.9 for programming. Python is the main programming language for

machine learning with Keras – an Application Programming Interface (API) for Tensorflow

which makes programming AI more user-friendly. The CNN is based on code by Keras (2022)

and built as an un-optimized version of the Xception network architecture. Xception is a deep

Convolutional Neural Network architecture that involves Depthwise Separable Convolutions,

introduced by Francois Chollet – the creator of Keras, IQ (2023). A simplified summary of

the architecture of the CNN is presented in Table 1 below.

Layer type Output Shape Param #

InputLayer None, 224, 224, 3 0

Rescaling None, 224, 224, 3 0

Conv2D None, 112, 112, 12, 8 3584

BatchNormalization None, 112, 112, 12, 8 512

Activation None, 112, 112, 12, 8 0

Activation + SeparableConv2D + Batch-
Normalization + Activation + Separable-
Conv2D + BatchNormalization + Max-
Pooling2D + Conv2D + Add

Input shape: None, 112, 112, 12, 8
Output shape: None, 56, 56, 256

Input params: 0 Output params: 0

Activation + SeparableConv2D + Batch-
Normalization + Activation + Separable-
Conv2D + BatchNormalization + Max-
Pooling2D + Conv2D + Add

Input shape: None, 56, 56, 256 Out-
put shape: None, 28, 28, 512

Input params: 0 Output params: 0

Activation + SeparableConv2D + Batch-
Normalization + Activation + Separable-
Conv2D + BatchNormalization + Max-
Pooling2D + Conv2D + Add

Input shape: None, 28, 28, 512 Out-
put shape: None, 14, 14, 728

Input params: 0 Output params: 0

SeparableConv2D None, 14, 14, 1024 753048

BatchNormalization None, 14, 14, 1024 4096

Activation None, 14, 14, 1024 0

GlobalAveragePooling2D None, 1024 0

Dropout None, 1024 0

Dropout None, 1024 0

Dense None, 1 1025

Table 1: Summary of the Convolutional Neural Network architecture.

The CNN architecture is composed of a total of 2 731 065 parameters, where 2 722 777

are trainable and 8 288 non-trainable. Each row in Table 1 represents one layer type, or

one group of layer types. The layers are sorted in their ”chronological” order, with the first

layer at row one, and the last layer at the last row as a layer of type ”Dense”. The ”Output

Shape” column holds information on the shape of the output of the layer, with the first
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layer ”InputLayer” having an input 224 px high and 224 px wide, with a three channel RGB

colour depth. The last column ”Param #” counts the number of parameters for each layer,

or group of layers. For a more in depth view of the CNN architecture, see Section 10.2 in the

Appendix.

4.2 Training the Convolutional Neural Network

The CNN is trained for 25 epochs, with batches of 16 images each. We use a subset of 150 078

images for utilization by the CNN. This data is then divided into training and validation-data,

with a 0.2 validation split for each of the two partitions. Out of 150 078 images belonging to

two classes, o model utilizes 120 063 images for training and 30 015 images for validation. To

increase the out-of-sample accuracy of the CNN we incorporate two regularization methods –

methods used to simplify and balance the complexity of a model. First, we incorporate data

augmentation by randomly flipping our images horizontally and vertically, as well as rotating

them. Then, we also incorporate several dropout layers.

4.3 Evaluating the Convolutional Neural Network

The metrics for the CNN, after having been trained for 25 epochs, are presented in Table

2. We chose to end the training process after 25 epochs in order to decrease the risk of

over-fitting the CNN model. We also ended training at 25 epochs in order to save time, this

since 25 epochs took 16 hours. The training loss and validation loss are presented in Figure

7. The loss of the CNN is a summation of the errors made from each sample in training or

validation sets. The goal of the training process is to minimize the loss. Lower loss generally

means a better performing model. We arrived at a validation loss of 0.4012 for our CNN – see

Table 2. The accuracy and validation accuracy are also presented in Figure 7. The accuracy

of the CNN is also a metric of model performance. It is the the count of predictions where

the predicted value is equal to the true value. We arrived at a validation accuracy of 0.8544

for our CNN - see Table 2.

Train loss Train accuracy Binary train accuracy Train AUC
0.1730 0.9289 0.9289 0.9816

Validation loss Validation accuracy Binary validation accuracy Validation AUC
0.4012 0.8544 0.8544 0.9369

Table 2: CNN model evaluation metrics.
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Figure 7: Metrics for each epoch – (Model loss to the left, Model accuracy to the right).

The high validation accuracy of ca 85% has been achieved in previous studies – Schirris

et al. (2022) achieve an AUC of 87% whereas we achieve an AUC of 93% – but remains

surprisingly good considering that pathology currently relies on a set of additional tests

to identify MSI patients. To really know whether a patient has MSI, one need to stain

the specimen with pigments revealing whether the four genes MSH2, MLH1, MSH6 and

PMS2 are working or not. Our data set is not stained for these genes and is thus at a

disadvantage in comparison to genetic and immunohistological tests, Kather (2019). Despite

these obstacles, we succeed in achieving a high validation accuracy of 85% – something which

is rather surprising.

In a medical context, it is often of high importance to understand the difference between

sensitivity and specificity. This due to the high stakes of medical decisions since they can

mean the difference between unnecessary prolonged suffering and potential death or relief

from ones disease. Sensitivity refers to a tests capability to identify a positive observation

as positive whereas specificity refers to a tests capability to identify a negative observation

as negative. The Area Under the Curve (AUC) is a metric that measures the CNN models

ability to correctly identify positive observations as positive, and negative observations as

negative. The theoretically highest possible AUC score is 1, and means that all observations

where correctly identified. Since we achieve a validation AUC of 0.9369 – which is very close

to 1 – this is a very good result.
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5 Results

This section is divided into two parts. In Section 5.1, we present the results of our model

parameter randomization test – this in order to see if our XAI really functions the way

we wish. In Section 5.2, we present the result of the comparison between Basic Pathology

Annotation (BPA) and eXplainable AI.

5.1 Result of model parameter randomization test

This section is divided into four sections – Section 5.1.1, Section 5.1.2, Section 5.1.3 and Sec-

tion 5.1.4 – with each section being associated with one of our four selected XAI instruments.

The top row of each figure, Figure 8-11, represents Image 1-3 – that is the ’MSS’-true classes

(as in ”healthy”). The bottom row of each figure, Figure 8-11, represents Image 4-6 – that is

the ’MSIMUT’-true classes (as in ”sick”). All images present in Figure 8-11 are of XAI heat

map output for our CNN, fixed for training in only one epoch – as opposed to 25 epochs,

which is the setting for our fully trained CNN (the results of which are presented in Section

5.2).

Judging by the result of the model parameter randomization test – as indicated by Figure

8, Figure 9, Figure 10 and Figure 11 – it seems like our four selected XAI methods do

capture the AI’s underlying identification process, Adebayo et al. (2018). This based on

the observation that our XAI heat maps – as presented in Section 5.2 – exhibit much more

structure relative to the heat maps presented in this section, Section 5.1. We note that

’Grad-CAM 2’ in Figure 11, Section 5.1.3, failed to render.
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5.1.1 Test-results for Guided Backpropagation

Guided Backprop. 1 Guided Backprop. 2 Guided Backprop. 3

Guided Backprop. 4 Guided Backprop. 5 Guided Backprop. 6

Figure 8: Test results, Row 1-2: ’MSS’ = TRUE ; Test results, Row 3-4: ’MSIMUT’
= TRUE

5.1.2 Test-results for VarGrad

VarGrad 1 VarGrad 2 VarGrad. 3

VarGrad 4 VarGrad 5 VarGrad. 6

Figure 9: Test results, Row 1-2: ’MSS’ = TRUE ; Test results, Row 3-4: ’MSIMUT’
= TRUE
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5.1.3 Test-results for Grad-CAM

Grad-CAM 1 Grad-CAM 2 Grad-CAM 3

Sobol Attr. 1 Sobol Attr. 2 Sobol Attr. 3
Grad-CAM 4 Grad-CAM 5 Grad-CAM 6

Figure 10: Test results, Row 1-2: ’MSS’ = TRUE ; Test results, Row 3-4: ’MSIMUT’
= TRUE

5.1.4 Test-results for Sobol Attribution

Sobol Attr. 4 Sobol Attr. 5 Sobol Attr. 6

Figure 11: Test results, Row 1-2: ’MSS’ = TRUE ; Test results, Row 3-4: ’MSIMUT’
= TRUE
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5.2 Result of comparison between Basic Pathology Annotation (BPA) and
eXplainable AI

This section is divided into four sections – Section 5.2.1, Section 5.2.2, Section 5.2.3 and Sec-

tion 5.2.4 – with each section being associated with one of our four selected XAI instruments.

The top two rows of each figure, Figure 12-15, represents Image 1-3 – that is the ’MSS’-true

classes (as in ”healthy”). The bottom two rows of each figure, Figure 12-15, represents Image

4-6 – that is the ’MSIMUT’-true classes (as in ”sick”). All images present in Figure 12-15 are

of XAI heat map output for our CNN, fixed for our fully trained CNN – the one trained for

25 epochs – as opposed to the one epoch setting of our model parameter randomization test

in Section 5.1. For detailed notes of Basic Pathology Annotation and XAI output comparison

– on an image by image basis – see Section 10.4 in the Appendix.
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5.2.1 Comparison between BPA and Guided Backpropagation

Basic Pat. 1 (BPA1) Basic Pat. 2 (BPA2) Basic Pat. 3 (BPA3)

Guided Backprop. 1 (GB1) Guided Backprop. 2 (GB2) Guided Backprop. 3 (GB3)

Basic Pat. 4 (BPA4) Basic Pat. 5 (BPA5) Basic Pat. 6 (BPA6)

Guided Backprop. 4 (GB4) Guided Backprop. 5 (GB5) Guided Backprop. 6 (GB6)

Figure 12: Row 1-2: ’MSS’ = TRUE ; Row 3-4: ’MSIMUT’ = TRUE

Guided Backpropagation (GB1-6) did not mark every Infiltrating Lymfocyte that the basic

pathology annotation did – but marked other ILs instead. Guided Backpropagation was gen-

erally better at agreeing with basic pathology when taking ’MSIMUT’-class images as input,

as compared to ’MSS’-class images. Guided Backpropagation marked most of the ’C’s (signs

of poor differentiation) when taking ’MSS’-class images as input. Guided Backpropagation

searched for cell nuclei and signs of mitosis. It also searched for furrows, wrinkles and grooves.

Guided Backpropagation seems to engage in differentiation feature detection.
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5.2.2 Comparison between BPA and VarGrad

Basic Pat. 1 (BPA1) Basic Pat. 2 (BPA2) Basic Pat. 3 (BPA3)

VarGrad 1 (VG1) VarGrad 2 (VG2) VarGrad. 3 (VG3)

Basic Pat. 4 (BPA4) Basic Pat. 5 (BPA5) Basic Pat. 6 (BPA6)

VarGrad 4 (VG4) VarGrad 5 (VG5) VarGrad. 6 (VG6)

Figure 13: Row 1-2: ’MSS’ = TRUE ; Row 3-4: ’MSIMUT’ = TRUE

VarGrad (VG1-6) emphasized the white inside of the glandular architecture. VarGrad was

somewhat less spread out in its focus areas in comparison to the other three XAI instruments.

VarGrad mainly focused on the faded, hard to spot, blurred ring cells when considering images

of ’MSIMUT’-class. VarGrad images were sometimes difficult to interpret. VarGrad images

seem somewhat confused by large areas of white, perhaps wrongly mistaking white areas for

’MSIMUT’ ring cells.
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5.2.3 Comparison between BPA and Grad-CAM

Basic Pat. 1 (BPA1) Basic Pat. 2 (BPA2) Basic Pat. 3 (BPA3)

Grad-CAM 1 (GC1) Grad-CAM 2 (GC2) Grad-CAM 3 (GC3)

Basic Pat. 4 (BPA4) Basic Pat. 5 (BPA5) Basic Pat. 6 (BPA6)

Grad-CAM 4 (GC4) Grad-CAM 5 (GC5) Grad-CAM 6 (GC6)

Figure 14: Row 1-2: ’MSS’ = TRUE ; Row 3-4: ’MSIMUT’ = TRUE

Grad-CAM (GC1-6) - emphasised the glands themselves, and their contribution to the overall

architecture of the larger glandular tissue. It emphasised how they curved and formed. Grad-

CAM seems to engage in differentiation feature detection, but struggles more in forming inter-

pretable patterns of tissue architecture than Guided Backpropagation and VarGrad. Grad-

CAM images are sometimes difficult to interpret – especialy so when taking ’MSIMUT’-class

images as input. Possibly because of the lessened level of regularity present in ’MSIMUT’-class

images which often have poor differentiation. Grad-CAM images seem somewhat confused
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by large areas of white, perhaps wrongly mistaking white areas for ’MSIMUT’ ring cells.

Grad-CAM seem to focus on ”wrinkles” and ”grooves” in the whitish tissue, perhaps to find

regularity. Grad-CAM considers areas with LIs.

5.2.4 Comparison between BPA and Sobol Attribution

Basic Pat. 1 (BPA1) Basic Pat. 2 (BPA2) Basic Pat. 3 (BPA3)

Sobol Attr. 1 (SA1) Sobol Attr. 2 (SA2) Sobol Attr. 3 (SA3)

Basic Pat. 4 (BPA4) Basic Pat. 5 (BPA5) Basic Pat. 6 (BPA6)

Sobol Attr. 4 (SA4) Sobol Attr. 5 (SA5) Sobol Attr. 6 (SA6)

Figure 15: Row 1-2: ’MSS’ = TRUE ; Row 3-4: ’MSIMUT’ = TRUE

Sobol Attribution (SA1-6) - highlighted areas rather than details or features. The Sobol

Attribution images were all difficult to interpret. Sobol Attribution seem to consider ILs and

cell nuclei. Lastly, Sobol Attribution focused on erythrocytes (red blood cells) in SA2 – an

area interestingly left out from BPA2.
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6 Discussion

Through comparison between our Basic Pathology Annotations (BPA) and our XAI heat

maps, we arrive at the following differences between the two:

Guided Backpropagation and VarGrad are generally better at explaining high-level fea-

tures such as cell placement, components and structure of singular cells. Grad-CAM and

Sobol Attribution are generally better at explaining low-level features such as tissue architec-

ture and level of differentiation. We are unsure as to why these two groups of XAI instruments

differ in their output, but we believe that it might have something to do with the instruments

differing mathematical and technical construction. Regardless of why these XAI instruments

differ, their differing abilities make them good complements.

Guided Backpropagation successfully considered Infiltrating Lymfocytes – but oftentimes

other ILs than those initially annotated in our Basic Pathology Annotation. Guided Back-

propagation also corresponded more with our Basic Pathology Annotation when the input

image was of the ’MSIMUT’-class – as opposed to the ’MSS’-class. Guided Backpropagation

marked more ’C’s (signs of poor differentiation) when the input image was of the ’MSS’-

class – as opposed to the ’MSIMUT’-class. Guided Backpropagation produced the most

interpretable XAI heat maps. It is possible that Guided Backpropgation was less reliant on

regularity in its image input – as opposed to the remaining three instruments – when at-

tempting to visualize differentiation patterns in poorly differentiated tissue. We hypothesise

that high-level features require higher resolution and image scope in order to be visualised

correctly. Especially so for the ’MSIMUT’-class images, given their usually poor level of

differentiation.

VarGrad and Grad-CAM both emphasized the whiter parts of the image. Both XAI

instruments tended to focus more on faded, hard to spot ring cells – when the input image

belonged to the ’MSIMUT’-class – than more well defined ring cells. Both instruments seemed

potentially confused by images containing large amounts of white. Possibly due to wrongly

mistaking these areas for ’MSIMUT’ ring cells.

All four XAI methods seemed to consider ILs, cell nuclei and signs of mitosis. Guided

Backpropagation and Grad-CAM also seemed to search for regularity through ”furrows”,

”wrinkles” and ”grooves” in addition to that. Lastly, Sobol Attribution is interesting since it
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seems to focus on erythrocytes (red blood cells) in SA2 – an area interestingly left out from

BPA2.

7 Conclusion

This thesis assess whether eXplainable AI can generate hypotheses for future medical re-

search. It does so by creating AI generated heat maps to compare basic pathology annotation

with. The purpose of this comparison is to look for differences between the AI’s identification

for a disease and the basic pathology theory of identification for that same disease. Differ-

ences which we attempt to generate hypotheses from – hypotheses which hopefully will be

interesting for future medical research.

This thesis produces XAI heat maps for a Convolutional Neural Network trained to classify

Microsatellite Instability in colon and gastric cancer. It produces these utilizing four different

XAI instruments: Guided Backpropagation, VarGrad, Grad-CAM and Sobol Attribution. Our

CNN successfully passes the model parameter randomization test and sucessfully generates

non-random XAI heat maps. It does so whilst achieving a validation accuracy of 85% and a

validation AUC of 93% – as compared to Schirris et al. (2022) who achieve a AUC of 87%.

Out of the many observed differences between our basic pathology annotation and the

XAI results, we are able to generate a multitude of hypotheses. For example: Why did our

CNN find blood vessels in SA2 important for classifying the tissue as ’MSS’ (healthy)?, Why

did the XAI seem to find blurred ring cells more indicative of ’MSIMUT’ (sick) than less

morphed ring cells?, Why did the XAI put greater emphasis on signs of poor differentiation

than Tumor Infiltrating Lymfocytes?. Since these hypotheses all seem worthy of investigation,

we conclude that eXplainable AI can be successfully utilized as a hypotheses generating tool

for generating hypotheses for medical research.

That said, there are some limitations to our study; mainly our lack of expert pathology

annotations and low resolution image data set. Future studies should therefore use images

of a higher resolution and scope in order to unlock the ability to analyse visual indications

of MSI coupled to Chron’s like reaction, irregular tumor borders, infiltrative growth pattern

and tumor necrosis – all features which our low-resolution image patches could not support.

One suggestion for circumventing difficulties surrounding layman pathology assessment of

low resolution medical image data is to utilize a numerical XAI method and numerical image
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data which are not associated with the same problems of low resolution. We also recommend

that future studies keep track of were in the body each image is sourced in order to further

make use of additional visual indicators of MSI specific for these locations: gastric, colon,

rectal and left or right side of the intestine.

It would be very interesting to do a follow up study in addition to this thesis where we

utilize feature visualisation maps – as a complement to the feature attribution method results

of this thesis – to develop a much deeper understanding for the basic pathology features most

important for our Convolutional Neural Network’s classification of MSI. We recommend that

a meta study be made of research which has utilized hypotheses generated from the study

of XAI heat maps. It would be interesting to look into the results of those papers to further

assess whether our method of generating hypotheses generally leads to significant results or

not.
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10 Appendix

10.1 Images selected for analysis in Section 5

In order to not bias our basic pathology annotation, we annotate the six randomly selected

images analyzed in the results of Section 5 before we look at the XAI heat maps – this in

order to insure that our CNN’s areas of importance do not influence our basic pathology an-

notation. The file names of the six images alongside the un-annotated images are presented

in Table 3. These same images are presented visually in Figure 16.

’MSS’=TRUE ’MSIMUT’=TRUE

Jpg. 1 (No. 209): blk-ACITVQNHAYKC-TCGA-AA-3818-01Z-00-DX1 Jpg. 4 (No. 72 070): blk-YFLKLYWGMPHE-TCGA-AA-3811-01Z-00-DX1

Jpg. 2 (No. 38 661): blk-NAGCCGNAWYKC-TCGA-CA-5256-01Z-00-DX1 Jpg. 5 (No. 7 765): blk-DCCDNGAKKVSA-TCGA-AA-3811-01Z-00-DX1

Jpg. 3 (No. 21 014): blk-GYFFVKVWWPHP-TCGA-CM-5864-01Z-00-DX1 Jpg. 6 (No. 44 457): blk-NVPATDVKDPTR-TCGA-CK-5913-01Z-00-DX1

Table 3: Randomly selected images to be analyzed in Section 5.
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Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Figure 16: Non-annotated images (see Table 3) selected for analysis in Section 5.

10.2 Architecture of Convolutional Neural Network

A more detailed presentation of the architecture of our Convolutional Neural Network is pre-

sented in Table 4 and Figure 17. Table 4 and 17 hold the same information, the difference

being that Figure 17 presents the information in Table 4 in a diagram format instead of in a

table format.



Layer name Layer type Output Shape Param # Connected to

input 1 (InputLayer) [(None, 224, 224, 3)] 0 []

rescaling 1 (Rescaling) (None, 224, 224, 3) 0 [’input 1[0][0]’]

conv2d (Conv2D) (None, 112, 112, 12, 8) 3584 [’rescaling[0][0]’]

batch normalization (BatchNormalization) (None, 112, 112, 12, 8) 512 [’conv2d[0][0]’]

activation (Activation) (None, 112, 112, 12, 8) 0 [’batch normalization[0][0]’]

activation 1 (Activation) (None, 112, 112, 12, 8) 0 [’activation[0][0]’]

separable conv2d (SeparableConv2D) (None, 112, 112, 25, 6) 34176 [’activation 1[0][0]’]

batch normalization 1 (BatchNormalization) (None, 112, 112, 25, 6) 1024 [’separable conv2d[0][0]’]

activation 2 (Activation) (None, 112, 112, 25, 6) 0 [’batch normalization 1[0][0]’]

separable conv2d 1 (SeparableConv2D) (None, 112, 112, 25, 6) 68096 [’activation 2[0][0]’]

batch normalization 2 (BatchNormalization) (None, 112, 112, 25, 6) 1024 [’separable conv2d 1[0][0]’]

max pooling2d (MaxPooling2D) (None, 56, 56, 256) 0 [’batch normalization 2[0][0]’]

conv2d 1 (Conv2D) (None, 56, 56, 256) 33024 [’activation[0][0]’]

add (Add) (None, 56, 56, 256) 0 [’max pooling2d[0][0]’,’conv2d 1[0][0]’]

activation 3 (Activation) (None, 56, 56, 256) 0 [’add[0][0]’]

separable conv2d 2 (SeparableConv2D) (None, 56, 56, 512) 133888 [’activation 3[0][0]’]

batch normalization 3 (BatchNormalization) (None, 56, 56, 512) 2048 [’separable conv2d 2[0][0]’]

activation 4 (Activation) (None, 56, 56, 512) 0 [’batch normalization 3[0][0]’]

separable conv2d 3 (SeparableConv2D) (None, 56, 56, 512) 267264 [’activation 4[0][0]’]

batch normalization 4 (BatchNormalization) (None, 56, 56, 512) 2048 [’separable conv2d 3[0][0]’]

max pooling2d 1 (MaxPooling2D) (None, 28, 28, 512) 0 [’batch normalization 4[0][0]’]

conv2d 2 (Conv2D) (None, 28, 28, 512) 131584 [’add[0][0]’]

add 1 (Add) (None, 28, 28, 512) 0 [’max pooling2d 1[0][0]’,’conv2d 2[0][0]’]

activation 5 (Activation) (None, 28, 28, 512) 0 [’add 1[0][0]’]

separable conv2d 4 (SeparableConv2D) (None, 28, 28, 728) 378072 [’activation 5[0][0]’]

batch normalization 5 (BatchNormalization) (None, 28, 28, 728) 2912 [’separable conv2d 4[0][0]’]

activation 6 (Activation) (None, 28, 28, 728) 0 [’batch normalization 5[0][0]’]

separable conv2d 5 (SeparableConv2D) (None, 28, 28, 728) 537264 [’activation 6[0][0]’]

batch normalization 6 (BatchNormalization) (None, 28, 28, 728) 2912 [’separable conv2d 5[0][0]’]

max pooling2d 2 (MaxPooling2D) (None, 14, 14, 728) 0 [’batch normalization 6[0][0]’]

conv2d 3 (Conv2D) (None, 14, 14, 728) 373464 [’add 1[0][0]’]

add 2 (Add) (None, 14, 14, 728) 0 [’max pooling2d 2[0][0]’,’conv2d 3[0][0]’]

separable conv2d 6 (SeparableConv2D) (None, 14, 14, 1024) 753048 [’add 2[0][0]’]

batch normalization 7 (BatchNormalization) (None, 14, 14, 1024) 4096 [’separable conv2d 6[0][0]’]

activation 7 (Activation) (None, 14, 14, 1024) 0 [’batch normalization 7[0][0]’]

global average pooling2d (GlobalAveragePooling2D) (None, 1024) 0 [’activation 7[0][0]’]

dropout (Dropout) (None, 1024) 0 [’activation 7[0][0]’]

dropout (Dropout) (None, 1024) 0 [’global average pooling2d[0][0]’]

dense (Dense) (None, 1) 1025 [’dropout[0][0]’]

Table 4: Complete table of Convolutional Neural Network (CNN) architecture.



Figure 17: Diagram of Convolutional Neural Network (CNN) architecture.



10.3 Results of Basic Pathology Annotation

In this section we present the basic pathology annotations which we arrived at after having

analyzed the images in Figure 16 (image file names are presented in Table 3).

1. Image 1 – Basic Pathology Annotation 1 (BPA1)

(a) Tumor Infiltrating Lymfocytes

It is normal to have some Infiltrating Lymfocytes (ILs) in the epithelium, although

not in too great of a quantity. There are many bacteria and other irritants in the

gastric intestinal tract so it is special grounds for the training of the immune

system. Image 1 seems to contain some immune cells, but not too many. Possible

ILs are annotated in red with an ’A’ next to them. The low qunatity of ILs is

indicative of the image belonging to the MSS-class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [Yes, the cells and glands appear

similar to each other in shape and colour.] The height of the cell: cylinder, cuboids,

slice etc? [Yes, the cells and glands appear to be of normal height.] Nucleus shape

and colour? [The resolution of the image is low, but from what is discernible there

seems to be no signs of nuclear atypia or pleomorphism.] Chromatin packing or

density? [The resolution of the image is low, but from what is discernible there

seems to be no signs of abnormal chromatin packing.] Nucleus position in cell

and in relation to other cells? [Different cells have different nucleus position, so

what is normal for one type of cell can be abnormal for another. This makes

our image difficult to interpret. The resolution of the image is low, but from

what is discernible all visible nuclei seem to exhibit paracentral or periphic nuceli

position. Possible nuclei are annotated in yellow with a ’C’ next to them. This

could indicate that the cells are secreting cells, cells that one could find in both

colon and gastric tissues.] Quantity of mitosis? [The resolution of the image is

low and no mitosis is discernible.] All things considered, Image 1 appears rather

normal, thus indicating that it belongs to the MSS class.

(d) Mucinous or signet ring cell morphology



Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 1 seem to exhibit no signs of mucinous or signet ring

cell morphology, this is thus indicative of the image belonging to the MSS-class.

2. Image 2 – Basic Pathology Annotation 2 (BPA2):

(a) Tumor Infiltrating Lymfocytes

Image 2 seem to contain some immune cells, but not too many. The possible ILs

in the image are annotated red with an ’A’ next to them. The low quantity of ILs

is indicative of the image belonging to the MSS-class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [No, the cells and glands appear

somewhat different to each other in shape and colour. An example of this is

annotated yellow with a ’C1’ next to it. That said, a general coherent structure

still remains.] The height of the cell: cylinder, cuboids, slice etc? [No, the cells

and glands appear to differ somewhat in height.] Nucleus shape and colour? [The

resolution of the image is low, but from what is discernible there seems to be no

signs of nuclear atypia or pleomorphism.] Chromatin packing or density? [The

resolution of the image is low, but from what is discernible there seems to be no

signs of abnormal chromatin packing.] Nucleus position in cell and in relation

to other cells? [Different cells have different nucleus position, so what is normal

for one type of cell can be abnormal for another. This makes our image difficult

to interpret. The resolution of the image is low, but from what is discernible

all visible nuclei seems to exhibit central nuclei position. Examples of these are

annotated yellow with ’C2’ next to them. This could indicate that the cells are

muscle cells or epithelial cells, cells that one could find in both colon and gastric

tissues.] Quantity of mitosis? [The resolution of the image is low, only one possible

mitosis is discernible.] All things considered, Image 2 appears to be more or less

normal, thus indicating that it might belong to the MSS class.

(d) Mucinous or signet ring cell morphology

Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 2 seem to exhibit no signs of mucinous or signet ring

cell morphology, this is thus indicative of the image belonging to the MSS-class.



3. Image 3 – Basic Pathology Annotation 3 (BPA3):

(a) Tumor Infiltrating Lymfocytes

Image 3 seem to contain some immune cells, but not too many. These are anno-

tated with red and with an ’A’ next to them. The low qunatity of ILs is indicative

of the image belonging to the MSS-class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [Yes, the cells and glands appear

more or less similar to each other in shape and colour. An example of this is

annotated yellow with a ’C1/C2’ next to it.] The height of the cell: cylinder,

cuboids, slice etc? [No, the cells and glands appear to differ somewhat in height.

An example of this is annotated yellow with a ’C1/C2’ next to it.] Nucleus shape

and colour? [The resolution of the image is low, but from what is discernible there

seems to be no signs of nuclear atypia or pleomorphism.] Chromatin packing or

density? [The resolution of the image is low, but from what is discernible there

seems to be no signs of abnormal chromatin packing.] Nucleus position in cell

and in relation to other cells? [Different cells have different nucleus position, so

what is normal for one type of cell can be abnormal for another. This makes our

image difficult to interpret. The resolution of the image is low, but from what is

discernible all visible nuclei seems to exhibit central nuclei position. An example

of this is annotated yellow with a ’C3’ next to it. This could indicate that the

cells are muscle cells or epithelial cells, cells that one could find in both colon

and gastric tissues.] Quantity of mitosis? [The resolution of the image is low, no

mitosis are discernible.] All things considered, ’Normal Image 1’ appears rather

normal, thus indicating that it belongs to the MSS class.

(d) Mucinous or signet ring cell morphology

Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 3 seem to exhibit no signs of mucinous or signet ring

cell morphology, this is thus indicative of the image belonging to the MSS-class.

1. Image 4 – Basic Pathology Annotation 4 (BPA4):

(a) Tumor Infiltrating Lymfocytes



Image 4 seem to contain a few more immune cells compared to what we saw in

the MSS-class images (Image 1-3 ). These are annotated in red with an ’A’ next

to them. The relatively high quantity of TILs could be indicative of the image

belonging to the MSIMUT-class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [No, the cells and glands appear

different in shape and colour.] The height of the cell: cylinder, cuboids, slice etc?

[No, the cells and glands appear to differ in height.] Nucleus shape and colour?

[The resolution of the image is low, but from what is discernible there seems to

be different sized nuclei, indicative of nuclear atypia or pleomorphism. These are

annotated in yellow with a ’C1’ next to them.] Chromatin packing or density?

[The resolution of the image is low, but from what is discernible there seems to be

no signs of abnormal chromatin packing.] Nucleus position in cell and in relation

to other cells? [Different cells have different nucleus position, so what is normal

for one type of cell can be abnormal for another. This makes our image difficult

to interpret. The resolution of the image is low, but from what is discernible

the visible nuclei seems to have somewhat differently positioned nuclei. Compare

nuclei annotated yellow and with a ’C1’ next to them with those annotated with

a ’C2’ next to them.] Quantity of mitosis? [The resolution of the image is low,

only two possible mitosis is discernible. See top yellow ’C1’ ring annotation and

bottom yellow ’C3’ annotation.] All things considered, Image 4 appears to have a

rather high differentiation, thus indicating that it belongs to the ’MSIMUT’ class.

(d) Mucinous or signet ring cell morphology

Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 4 seem to possibly exhibit some signs of mucinous or

signet ring cell morphology, although it is somewhat difficult to tell due to the low

resolution and image patch scope – regardless of this, the possible mucinous or

signet ring cell morphology is indicative of the image belonging to the ’MSIMUT’

class. See orange annotated with ’D’ next to them for examples.

2. Image 5 – Basic Pathology Annotation 5 (BPA5):

(a) Tumor Infiltrating Lymfocytes



Image 5 seem to contain many immune cells compared to what we saw in the

MSS-class images (Image 1-3 ). See areas annotated in red with an ’A’ next to

them for examples. The relativley high qunatity of TILs could be indicative of the

image belonging to the MSIMUT-class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [No, the cells and glands appear

different in shape and colour.] The height of the cell: cylinder, cuboids, slice etc?

[No, the cells and glands appear to differ in height.] Nucleus shape and colour?

[The resolution of the image is low, but from what is discernible it is possible

that there are different sized nuclei, indicative of nuclear atypia or pleomorphism.

See areas annotated in yellow with ’C1’ next to them for examples.] Chromatin

packing or density? [The resolution of the image is too low to tell.] Nucleus

position in cell and in relation to other cells? [Different cells have different nuclei

position, so what is normal for one type of cell can be abnormal for another. This

makes our image difficult to interpret. The resolution of the image is to low to

discern anything.] Quantity of mitosis? [The resolution of the image is too low to

discern any possible mitosis.] All things considered, Image 5 appears to have a

rather high differentiation, thus indicating that it belongs to the ’MSIMUT’ class.

(d) Mucinous or signet ring cell morphology

Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 5 seems to possibly exhibit some signs of mucinous

or signet ring cell morphology, although it is somewhat difficult to tell due to the

low resolution and image patch scope – regardless of this, the possible mucinous or

signet ring cell morphology is indicative of the image belonging to the ’MSIMUT’

class. Examples of these are annotated in orange with a ’D’ next to them.

3. Image 6 – Basic Pathology Annotation 6 (BPA6):

(a) Tumor Infiltrating Lymfocytes

Image 6 – in its interesting Manhattan like appearance – seem to contain relatively

more immune cells compared to what we saw in the ’MSS’ class images (Image

1-3 ). These are annotated in red with an ’A’ next to them. The relatively high

quantity of TILs could be indicative of the image belonging to the ’MSIMUT’



class.

(b) Chron’s like reaction

(c) Poor differentiation

Does all of the cell look like surrounding cells? [No, the cells and glands appear

somewhat different in shape and colour.] The height of the cell: cylinder, cuboids,

slice etc? [No, the cells and glands appear to differ somewhat in height.] Nu-

cleus shape and colour? [The resolution of the image is low, but from what is

discernible there seems to be different sized nuclei, indicative of nuclear atypia or

pleomorphism. These are annotated in yellow with a ’C1’ next to them.] Chro-

matin packing or density? [The resolution of the image is too low to tell.] Nucleus

position in cell and in relation to other cells? [Different cells have different nuclei

position, so what is normal for one type of cell can be abnormal for another. This

makes our image difficult to interpret. The resolution is low, but the position of

the nuclei in the cells seem to differ somewhat from each other, although most

are central.] Quantity of mitosis? [The resolution of the image is too low to dis-

cern any possible mitosis but two. These ones are annotated in yellow with a

’C2’ next to them.] All things considered, Image 6 appears to have a rather high

differentiation, thus indicating that it belongs to the ’MSIMUT’ class.

(d) Mucinous or signet ring cell morphology

Mucinous or signet ring cell morphology is only visible in very aggressive types

and stages of cancer. Image 6 seem to exhibit no signs of mucinous or signet ring

cell morphology, this is thus indicative of the image belonging to the ’MSS’ class.



10.4 Detailed results of comparison between Basic Pathology Annotation
and eXplainable AI

In this section we present our notes on the differences between our basic pathology annotation

and out XAI heat maps, as we noted them during visual comparison.

1. Image 1 – (BPA1) vs (GB1, VG1, GC1, SA1):

(a) Guided Backpropagation

Gudied Backprop. 1 (GB1) differed from Basic Pat. Annot. 1 (BPA1) by not

marking two of the presumed ILs, and was similar by marking the third lowest

located IL. GB1 also put emphasis on the white inside of the glandular architecture,

something which BPA1 ignored except for when judging the overall architecture

and low differentiation of the image. GB1 was similar in the way it also marked

all ’Cs’ present in BPA1. Lastly, GB1 marked two interesting darker spots in the

middle of the image, somewhat resembling an ongoing mitosis.

(b) VarGrad

VarGrad 1 (VG1) somewhat continued the pattern of GB1, but being less spread

out and emphasizing the whites inside of the glandular architecture.

(c) Grad-CAM

Grad-CAM 1 (GC1) interestingly put a lot of emphasis on the glands themselves

and how they curved when forming the larger coherent architecture of the tissue

present in the image. This is something akin to looking for features indicative of

low differentiation in BPA1. GC1 interestingly focused on the area to the top left,

an area that BPA1 largely ignored. It is difficult to judge why the CNN found

this area important. Perhaps due to the somewhat abnormally elongated gland

located in the center of the ”hottest” part of the heat map?

(d) Sobol Attribution

Sobol Attr. 1 (SA1) focused on a possible IL at the top middle of the image. These

is a feature that BPA1 also would have found important. What is less interpret-

able is the hot spot at the bottom of SA1. Perhaps the CNN found the somewhat

jagged white area of some importance since it somewhat resembles signet ring cell

carcinoma?

2. Image 2 – (BPA2) vs (GB2, VG2, GC2, SA2):



(a) Guided Backpropagation

Gudied Backprop. 2 (GB2) differed from Basic Pat. Annot. 2 (BPA2) by not

emphasising the presumed ILs marked in red with an ’A’ in the bottom left corner

of the image. Instead it spotted possible ILs which were not spotted in BPA2 in

the epithelial glandular tissue in the middle and bottom right of the picture. GB2

did however find the areas marked in yellow with a ’C1’ and ’C2’ next to them in

BPA2 somewhat important – perhaps indicating that features of visible possible

nuclei as important for classification. One last interesting note is BPA2s emphasis

on the somewhat odd ”inlet” at the top left of the image.

(b) VarGrad

VarGrad 2 (VG2) somewhat continued the pattern of GB2, but being less spread

out and emphasizing the epithelial glandular tissue and the size colour and shape of

its gland in two foci in the top and bottom left of the image. VG2 also interestingly

emphasised the visible nuclei annotated as the lowest positioned ’C2’ in BPA2.

(c) Grad-CAM

Grad-CAM 2 (GC2) interestingly put a lot of emphasis on the glands themselves

and how they curved when forming the larger coherent architecture of the tissue

present in the image. This is something akin to looking for features indicative of

low differentiation in BPA2. GC2 interestingly focused on the area containing a

possible LI in the middle of the image.

(d) Sobol Attribution

Sobol Attr. 2 (SA2) interestingly only focused on the bright pink cells below

the eptihelial glandular layer of the tissue, at the middle right part of the image.

This was an area that was largely ignored in BPA2, except for when judging the

images overall architecture and relatively low differentiation. These cells seem to

be erythrocytes – red blood cells – indicating that this might be a section of a

blood vessel, possibly a vein or artery.

3. Image 3 – (BPA3) vs (GB3, VG3, GC3, SA3):

(a) Guided Backpropagation

Gudied Backprop. 3 (GB3) differed from Basic Pat. Annot. 3 (BPA3) by ignoring

the possible IL annotated red with an ’A’ next to it at the right side of the image.

GB3 also seemed to ignore BPA3s top ’C3’ annotations, instead focusing of the



area in-between the two yellow annotations. The bottom ’C3’ was also somewhat

de-prioritized, with the area above the bottom ’C3’ prioritized instead. Lastly,

’C1/C2’ failed to capture much of GB3s areas of importance. It seems like GB3

focused a lot on sudden changes in the glandular architecture and on differentiation

as a whole. GB3 also succeeded in spotting some potential ILs in the top left corner

which were not annotated, although mentioned as important features, in BPA3.

Both GB3 and BPA3 found the possible mitosis in the top ’A’ as feature worth

noting.

(b) VarGrad

VarGrad 3 (VG3) somewhat continued the pattern of GB3, but being less spread

out and emphasizing the bottom part of the image instead of the top like in

GB3. VG3 especially focused on the area in ’C1/C2’ in BPA3 in-between the two

glandular formed ”walls” in a brighter colour. It is difficult to say what makes

this area important for the CNN. Perhaps it has to do with the general regularity

of the area, exposing signs of low-differentiation associated with class prediction

in BPA3?

(c) Grad-CAM

Grad-CAM 3 (GC3) seems to try to establish the overall structure of the sample

present in the image, but seems to struggle somewhat to do so, perhaps indicating

signs of higher differentiation than what was proposed in BPA3. A sign that this

hypotheses might be reasonable is the heat map quarter circle following the quarter

circle of glands in the bottom left corner.

(d) Sobol Attribution

Sobol Attr. 3 (SA3) interestingly focuses on the bottom ’C3’ area as annotated in

BPA3. Other than that, only the large area of ’C1/C2’ capture any of SA3s areas

of importance. SA3 also recognizes a visible possible nuclei in the middle of the

image missed in BPA3, but a feature that BPA3 found important.

1. Image 4 – (BPA4) vs (GB4, VG4, GC4, SA4):

(a) Guided Backpropagation

Gudied Backprop. 4 (GB4) differed from Basic Pat. Annot. 4 (BPA4) by ignoring

most of the BPA4 possible ILs, annotated in red with an ’A’ next to them, and



instead highlighting other potential ILs which BPA4 missed. GB4 also seemed to

ignore most of BPA4s yellow ’C1’ and ’C2’ annotations. What BPA4 did notice

however, was ’C3’ and its interesting chromatin packing or nuclei split. GB4 also

noticed all of BPA4s ’D’ annotations, yet put more emphasis on other examples of

the feature than in BPA4. GB4 put especially large focus on the signet ring cells

in the top right and bottom left of the image.

(b) VarGrad

VarGrad 4 (VG4) differed from (GB4) by focusing on larger details/features in

the image than in VG4 which tended to trace the walls of each signet ring cell.

VG4 focused much more in the middle than GB4. From top to down, VG4 focused

on a interesting splitting signet cell in the top right. On a faded out, hard to spot,

signet cell just above ’C2’. Another faded signet ring cell to the upper left of the

bottom ’D’.

(c) Grad-CAM

Grad-CAM 4 (GC4) differed by focusing on larger features still, and only high-

lighting areas of importance instead of any details. GC4 is difficult to interpret,

but it seems that it is looking for ILs and glands.

(d) Sobol Attribution

Sobol Attr. 4 (SA4) was similar to GC4 in that it focused on larger areas rather

than detailed features. SA4 seems to have captured a more interpretable pattern

as compared to the ”pattern” produced by GC4. At closer inspection, even this

SA4 pattern is difficult to interpret, although it seems to focus on areas with

relatively low ”density” of contrast.

2. Image 5 – (BPA5) vs (GB5, VG5, GC5, SA5):

(a) Guided Backpropagation

Gudied Backprop. 5 (GB5) seemed to agree with most of the areas in Basic Pat.

Annot. 5 (BPA5) – except for the top ’A’ and the ’C1’s. GB5 also shows how

the CNN finds more blurred and bled out signet ring cells to be of particular

importance, take ’D’ and the ”ribbon” of signet ring cell to the top right of the

image as two examples. Except for this, GB5 also seemd to look for possible

mitosis and LIs as seen in the area above the top ’C1’, the area below the top ’D’

and in the bottom left of the image.



(b) VarGrad

VarGrad 5 (VG5) focused mostly om blurred, cloudy segments of signet ring cells.

(c) Grad-CAM

Grad-CAM 5 (GC5) is difficult to interpret but seems to look for ILs.

(d) Sobol Attribution

Sobol Attr. 5 (SA5) is difficult to interpret, but seems to look at a lot of different

things – the most highlighted one being a patch of high contrast material in the

muscle tissue between the image’s two main glandular areas.

3. Image 6 – (BPA6) vs (GB6, VG6, GC6, SA6):

(a) Guided Backpropagation

Gudied Backprop. 6 (GB6) seemed to agree with most of the areas in Basic Pat.

Annot. 6 (BPA6). It seems to be searching for high contrast areas indicative of

ILs and cell nuclei.

(b) VarGrad

VarGrad 6 (VG6) is difficult to interpret. It seems to possibly be somewhat con-

fused by the large amount of white areas in the image, possibly miss-interpreting

parts of this as white ring cells.

(c) Grad-CAM

Grad-CAM 6 (GC6) continues to be, like VG6, difficult to interpret. GC6, like

VG6, focuses on the white areas of the image – possible confusing these areas for

white ring cells. It particularly seems to mark ”wrinkles” and ”grooves” in the

whitish tissue.

(d) Sobol Attribution

Sobol Attr. 6 (SA6) is difficult to interpret. SA6 marks bigger areas rather than

detailed features.


	Introduction
	Data
	Theory
	eXplainable AI
	eXplainable AI instrument selection
	Guided Backpropagation
	VarGrad
	Grad-CAM
	Sobol Attribution

	Basic Pathology
	Basic Pathology Annotation selection
	Tumor Infiltrating Lymfocytes
	Chron's like reaction
	Poor differentiation
	Mucinous or signet ring cell morphology


	Method
	Creating the Convolutional Neural Network
	Training the Convolutional Neural Network
	Evaluating the Convolutional Neural Network

	Results
	Result of model parameter randomization test
	Test-results for Guided Backpropagation
	Test-results for VarGrad
	Test-results for Grad-CAM
	Test-results for Sobol Attribution

	Result of comparison between Basic Pathology Annotation (BPA) and eXplainable AI
	Comparison between BPA and Guided Backpropagation
	Comparison between BPA and VarGrad
	Comparison between BPA and Grad-CAM
	Comparison between BPA and Sobol Attribution


	Discussion
	Conclusion
	Acknowledgements
	Remarks
	Appendix
	Images selected for analysis in Section 5
	Architecture of Convolutional Neural Network
	Results of Basic Pathology Annotation
	Detailed results of comparison between Basic Pathology Annotation and eXplainable AI


