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Development and evaluation 
of deep learning algorithms 
for assessment of acute burns 
and the need for surgery
Constance Boissin 1,2*, Lucie Laflamme 1,3, Jian Fransén 4,5, Mikael Lundin 6, Fredrik Huss 4,5, 
Lee Wallis 7,8, Nikki Allorto 9 & Johan Lundin 1,6

Assessment of burn extent and depth are critical and require very specialized diagnosis. Automated 
image-based algorithms could assist in performing wound detection and classification. We aimed 
to develop two deep-learning algorithms that respectively identify burns, and classify whether they 
require surgery. An additional aim assessed the performances in different Fitzpatrick skin types. 
Annotated burn (n = 1105) and background (n = 536) images were collected. Using a commercially 
available platform for deep learning algorithms, two models were trained and validated on 70% 
of the images and tested on the remaining 30%. Accuracy was measured for each image using the 
percentage of wound area correctly identified and F1 scores for the wound identifier; and area under 
the receiver operating characteristic (AUC) curve, sensitivity, and specificity for the wound classifier. 
The wound identifier algorithm detected an average of 87.2% of the wound areas accurately in the 
test set. For the wound classifier algorithm, the AUC was 0.885. The wound identifier algorithm was 
more accurate in patients with darker skin types; the wound classifier was more accurate in patients 
with lighter skin types. To conclude, image-based algorithms can support the assessment of acute 
burns with relatively good accuracy although larger and different datasets are needed.

Burns are defined as the destruction of tissues (skin or other organs) due to energy transfer caused by heat, fric-
tion, cold, radiation, electricity or  chemicals1. They are a common injury of daily life globally with an estimated 
number of 153,000 deaths annually  globally2, and a much larger number of non-fatal cases. Not only are they 
common, they also often affect the most vulnerable parts of populations such as children, elderly, those with poor 
living conditions, low income or immigrant status  residence3. Correctly assessing the extent and depth of an acute 
burn is difficult and misdiagnosis has large consequences for both the patients and the burn  centres4,5. Indeed, 
there is evidence that visual assessment of burn depth at bedside by front line  clinicians6,7 and  surgeons7,8 can be 
 inaccurate6 with errors occurring as often as in 25–39% of cases. Distinguishing early those burns that will heal 
spontaneously and can be managed conservatively (often at a lower level of care) from those that require surgical 
intervention (e.g. excision and skin grafts) is critical not only to reduce the risk of over- and undertreatment of 
the patient, but also to not overwhelm scarce specialized  resources9.

The most equipped burns centres have access to technologies like laser doppler or optical coherence tomog-
raphy to enhance their performances in order to diagnose depth and estimate the need for  surgery10. Such 
equipment is however very expensive and uncommon in both high-income11 and low-income  settings12. Besides 
being ill equipped, burns centres in low-income settings struggle also with high caseloads and under-resourced 
emergency care  services13,14. Indeed, in those settings it is not only the equipment that is lacking, it is also the 
number of specialists who can provide accurate diagnosis for all those who need  it15.
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For front line clinicians at the point of care it is critical that they receive timely diagnostic assistance from 
burns experts in order to improve patient outcome and perform triage. Remote consultation through mobile 
health (mHealth) applications which are now deployed in many clinical environments is a potential  solution16. 
Studies reveal that they both provide front-line clinicians with accurate diagnosis for burn  depth17 and  extent18 
and that they receive acceptance at both ends, i.e. from front-line clinicians and burns  specialists19.

A step further from remote image-based diagnostic assistance given by burns experts is through automated 
processes, as was suggested in recent  studies20. Several automated procedures for burn depth estimation have 
been suggested with different levels of technological  sophistication21–33. At an early stage, hand-crafted image 
features from a small number of images were used with the aim to segment the burn with the help of the user, 
and then classify the burn depth into three or four  categories24,25. More recent approaches take advantage of 
deep-learning methods such as convolutional neural networks (CNNs) with transfer learning to differentiate 
burn areas from either normal  skin21–23 or other types of  wounds26,27. Regarding burn depth classification, the 
reported deep-learning algorithms resulted in accuracies between 81 and 95% when classifying depth, including 
healthy  skin28,30. These studies however often use images collected through online searches and lack appropriate 
burn  diagnosis30–33. Indeed, through a systematic review, we have identified that despite the increased accuracy 
in burn automated diagnosis, especially for burn segmentation, there are currently large risks of bias in stud-
ies at hand, and improved results are  needed20. Another limitation is the fact that most studies were based on 
images from fair types of skin. This has implications severe for training of algorithms which will likely not be 
representative of all populations. It is also a big limitation from a clinical perspective as most cases occur in the 
most vulnerable populations, including in South-East Asia and Sub-Saharan Africa, who could benefit the most 
from this types of  technologies34. In fact, only one study has included burns from Caucasian and African patients 
and demonstrated the complexity of training an algorithm in a mixed skin types  environment21.

Given the current evidence for the development of automated burn diagnosis, but the lack of appropriate 
training material, especially including patients with different skin types, this study was embarked with an aim 
that was three-fold: to develop and assess image-based deep-learning algorithms that identify burn wounds, 
classify them based on their depth whether they need surgery (such as skin grafting) or not, and assess accuracy 
of the algorithms among several skin types.

Methods
Hereafter we will present the methods used for database generation, annotation, model development and sta-
tistical analyses.

Image database and annotations. A database of images has been assembled and is composed of two 
separate datasets in order to represent patients with different skin colour (also known as Fitzpatrick skin  types35). 
There are six Fitzpatrick skin prototypes, which are a constitutional characteristic of the patient from birth, 
and which characterize the colour of the skin as well as its reaction to ultraviolet radiation  exposure35. Our two 
datasets consist of one collected in Sweden and including mostly patients of North-Germanic origin with lighter 
skin types (Fitzpatrick skin types 1–2). The second was collected in South Africa and includes mostly patients of 
South African origins with mixed and darker skin types (Fitzpatrick skin types 3–6).

The Swedish cases were all collected at the burn centre at Uppsala University Hospital between 2006 and 
2019. Pictures were taken as part of routine care from arrival to discharge of the patient in order to follow up 
on wound progression. Patients were then contacted in 2018 to obtain informed consent of these images for the 
current study.

The South African cases were collected from 2016 to 2018 at one of three burns centres in the country: 
Tygerberg Hospital and Red Cross Children’s War Memorial Hospital in Cape Town, Western Cape Province, 
and Edendale Hospital in Pietermaritzburg in Kwa-Zulu Natal. Referrals to these burns centres through the burn 
section of an image-based local mHealth App: Vula Mobile (www. vulam obile. com) submitted between 2017 and 
2018 were also included. Consent was obtained at point of care as part of routine care.

All images and associated information were pseudonymized and stored on a secure server (ownCloud, own-
Cloud Inc, Lexington, MA) managed by Karolinska Institutet and located in Stockholm, Sweden. Patient infor-
mation included age group (children and adults) and sex, injury information included body part involved, burn 
mechanism, and burn depth. Burn depth was assessed by a burn expert as part of the routine clinical evaluation, 
either at bedside on arrival of the patient to the respective burns centre, or by a burn expert remotely when giving 
an image-based remote diagnosis based on images through the Vula Mobile  app17

In order to be included, images had to present acute burns (photographed within 48 h post injury, which is 
defined as the period of  shock36). In order to mimic most appropriately the clinical settings where only clean, 
scrubbed wounds are accepted for remote consultation, wounds included had to be undressed, cleaned and 
scrubbed (all blisters removed) prior to the picture being taken. All pictures not fulfilling those criteria were 
excluded.

The final database comprised of 391 (35%) images collected in Sweden and 714 (65%) of images collected 
in South Africa. A total of 387 patients were included, of which 198 (51%) were children. This resulted in 1105 
images representing various body parts of which 339 (31%) required surgery.

To improve the discrimination between the burn wound, normal skin and background such as clothes, bed 
sheets and various objects in the surrounding, a number of background images were obtained from two publicly 
available online  datasets37,38. Images were specifically selected to contain some human body parts with skin 
present, and with a diversity of skin types.

To mimic “real-life” setting, no standardization protocols were provided for image capture. Indeed, it is 
believed that if there were to be such protocols in some settings, point-of-care clinicians would not provide 

http://www.vulamobile.com
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images for remote consultation. Images were therefore collected with varying background, devices used, distance 
from the wound, orientation, flash use, or size. Using previously defined anthropomorphic  measurements39,40, 
the pixel size of all images was approximated and set individually on the algorithm training platform (Aiforia 
Hub, Aiforia Technologies, Helsinki, Finland) in order to adjust the scale of the photographed body parts and 
the variable range of age groups.

All images were individually and manually annotated to segment the burn wound from normal skin (or back-
ground) on a pixel-by-pixel level using binary masks created with an image annotation software (ImageJ, NIH, 
Bethesda, MD), or directly on the algorithm training platform (Aiforia Create, Aiforia Technologies, Helsinki, 
Finland). Annotations done using ImageJ were programmatically imported to the training platform. Annota-
tions were performed by trained nurses and medical students familiar with burn injuries under the supervision 
of CB (South Africa) and JF (Sweden). Several images were annotated by at least two annotators and verified 
through close collaboration with burn experts. Regarding the surgical classification annotations which requires 
extreme levels of competences in the field, these were made on an image-level based on the burn’s expert depth 
diagnosis which is considered gold standard. Previous work using some thirty images also included in this study 
has shown acceptable agreement in over two thirds of the  images17.

Training of the deep learning algorithms. Considering the latest development of research in the field, 
as well as the complexity of the wound patterns to be classified, we assumed that a probabilistic model would 
be the best approach, we therefore decided to train CNNs using a commercially available software (Aiforia Cre-
ate, Aiforia Technologies, Helsinki, Finland). Two independent and separate models were developed. The first 
algorithm identified and segmented the burn wounds from the background (everything in the image that is not 
a burn wound). The second algorithm classified each burn area based on their depth into one of two categories: 
surgical burns which require surgical intervention, for example for skin grafting, because they are of deep-partial 
or full thickness; or non-surgical burns which are superficial and superficial partial thickness burns and are 
manageable with conservative treatment possibly at lower levels of care. Keeping in proportions of images from 
each skin type and for each severity status, the images were split into two sets: one training and validation dataset 
consisting 70% (n = 773) of all the images, and a set-aside test set with the remaining 30% (n = 332 images) (see 
Fig. S1).

For the wound identification algorithm, the training area included the whole image and the burn was the area 
to be segmented. The 536 background images were only added for training (none of the images were included in 
the test set) and had no annotations. These images were not used with the aim of specifically recognizing other 
objects, but rather with the only aim to improve the algorithm for burn segmentation. The hypothesis behind 
this aim is that this type of algorithm would only be used in the context of an acute burn, rather than for other 
purposes. For the second algorithm of wound classification, only the wound areas were used in the training, 
separated into two categories based on the burn depth, either surgery needed or no surgery needed. For both 
algorithms, the training was performed three times using a random selection of 70% of the images directly by 
the software, and the remaining 30% was used as a validation set for evaluation of the results obtained as well as 
for hyperparameter selection. After the verification that all three trainings obtained similar results, a last training 
was performed using the same settings and 100% of the training set prior to be predicted on the set-aside test set.

In addition to the training and testing performed on the complete dataset, separate trainings with the same 
settings (see Table 1) and subsequent testing were performed on the datasets separated according to skin type 
(Fitzpatrick skin types 1–2 vs 3–6).

For all algorithms, hyperparameters are presented in Table 1. Feature size was predefined at 125 units for 
the wound detection algorithms, and 190 units for the surgery classification algorithms. A unit corresponds 
to an approximated pixel size following manual adjustment according to anthropomorphic measurements as 
described above.

Table 1.  Parameter settings of trained algorithms.

Hyperparameter/augmentation parameter Setting

Iterations 30,000

Weight decay 0.0001

Mini-batch size 20

Mini-batch per iteration 20

Iterations without progress 750

Initial learning rate 0.15

Scale variation ± 40%

Aspect ratio ± 30%

Shear distortion ± 30%

Luminance ± 40%

Contrast ± 40%

White balance ± 5%

Image compression quality 40–60%

Rotation 0°–360°
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Statistical analyses. Statistical analyses were all performed using Stata for Mac version 15. Average meas-
ures with standard deviations were calculated for the results of all three folds of training and validation sets. 
Wound identification was measured on a pixel-by-pixel level for each image and aggregated measures for all 
images were used. This assessment was made using sensitivity (percentage of pixels identified as burn areas out 
of the whole burn area), precision (percentage of pixels of burnt area out of all those identified as a burn by the 
algorithm), and F1 score (the harmonic mean of the sensitivity and the precision). For background images, the 
percentage of images in which a burn area was identified was recorded as well as the number of images in which 
the identified burn area represented more than 5% of the image itself. Analyses for the two stratified trainings 
and testing by skin type of the patients were performed and statistical difference in sensitivity was measured 
using a non-parametric Mann–Whitney U-test.

For burn surgical classification, while the outcome is binary (surgical burns of deep-partial or full thickness 
and non-surgical burns of superficial and superficial-partial thickness) the algorithm defines for each image an 
area in pixels that would require surgery or not. Receiver Operating Characteristic (ROC) curve as well as area 
under the ROC curve (AUC) were measured. Images were then classified as a surgical burn when ≥ 1% of the 
wound’s pixels were identified as such. The success rate was the number of images correctly classified over the 
total number of images in a given set. Sensitivity represents the percentage of images which had ≥ 1% of pixels 
identified as surgical burn out of all images that required surgery. Specificity was measured as the number of 
images which had < 1% of identified surgical burn pixels out of all images that did not require surgery. This was 
measured first for all training and validation sets, and then in the set-aside test set overall; and for the set strati-
fied by skin type of the patients. Sensitivity and specificity are presented with 95% confidence intervals (C.I.) 
measured using the Clopper–Pearson (exact) estimation.

Ethical approval. Ethical approval was granted by the Regional Ethics Board in Uppsala (Dnr 2016/279) 
for the Swedish part of the study, and by both the Stellenbosch Health Research Ethics Committee (N13/02/024) 
and the University of Kwa-Zulu Natal Biomedical Research Ethics Committee (BCA106/14) for the South Afri-
can part of the study. All methods were carried out in accordance with relevant guidelines and regulations.

Results
The following section will present the results obtained for both algorithms: first that of burn area identification, 
and secondly of burn severity classification.

Burn area identification and segmentation. In the three-fold trainings (where three training and vali-
dation runs were performed using a random 70% vs 30% of the images), a burn area was identified in 13.1% of 
the images which did not contain any burns in the training set, whereas 0.5% of images with a burn were not 
identified as such. In the non-burn images, the area identified was larger than 5% of the images’ total pixels in 
only 6 out of 1147 images. In the validation set, a burn area was identified in 20.0% of the non-burn images, 
however this area was larger than 5% of the images’ pixels in only 6 out of the 464 background images. Table 2 
presents the results in terms of sensitivity and specificity for the number of images in which a burn area was 
identified for both burn and non-burn images.

Figure S3 presents the results for each of the training and validation sets in the three-fold training. Table 3 
presents the accuracy measures for the pooled three-fold training and validation sets as well as for the final 
training and test datasets. The burn identification algorithm could identify 92.5% and 85.1% of the burn area 
across all three-fold training and testing sets respectively. In the final training, the sensitivity was of 93.2% while 
in the test set it was of 86.9%. Figure S2 illustrates graphically the results of the burn identification algorithm.

When the results were split by skin types of the patients, the average sensitivity was higher in cases with a 
darker skin type than in those with a lighter skin type (Mann–Whitney U test; P < 0.001; Table 4).

Classification of burn depth according to the need of surgery. Across the three training folds, 
almost all the burns requiring skin grafting were identified as such, with a sensitivity of 98%. The specificity was 
also high with 88%, overall. In the validation sets, the sensitivity was 96% and the specificity was 71%. In the 
last training, sensitivity was of 99.6% and specificity was of 93.4%. The ROC curves for the set-aside test set as a 
whole as well as for the two separate skin types are presented in Fig. 1. The areas under the curves were of 0.885, 
0.863 and 0.875 in the complete set, and in the images of lighter and darker skin types respectively.

Table 5 presents the summary accuracy statistics for the surgery classification algorithms. The success rate 
overall was 64.7%, and 78.0% and 66.8% respectively in patients of lighter and darker skin types. The overall 

Table 2.  Success rate, sensitivity and specificity of the number of images where a burn area was identified 
with burn and non-burn images (as defined as ≥ 1%) in the three-fold training and validation sets. a Sample size 
included images (both burn and non-burn) present in all three-fold trainings and is therefore bigger than the 
number of images.

Sample  sizea Success rate (%) Sensitivity (%) Specificity (%)

Training set 2751 94.3 99.5 86.9

Validation set 1180 91.4 98.9 80.0
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Table 3.  Average and standard deviation (SD) sensitivity, precision, and F1 score (in percentage) of the burn 
area identification algorithm across all three-fold trainings and validation sets as well as for the final training 
and for the independent set-aside test set using the full dataset. SD Standard deviation. a Average across all 
threefold training and validation sets; only burn images included.

Number of images

Sensitivity (%) Precision (%) F1 score (%)

Mean (95% CI) SD Mean (95% CI) SD Mean (95% CI) SD

Training  setsa 1604 92.5 (91.9;93.1) 12.7 89.6 (89.1;90.1) 10.4 90.6 (90.1;91.2) 11.5

Validation  setsa 715 85.1 (83.7;86.5) 18.9 82.4 (81.0;83.8) 19.2 81.9 (80.6;83.3) 18.4

Final training set 773 93.2 (92.4;94.0) 11.5 88.0 (87.2;88.8) 11.5 90.2 (89.4;91.0) 11.3

Set-aside test set 332 86.9 (84.9;89.0) 19.1 83.4 (81.5;85.2) 17.3 82.9 (80.9;84.9) 18.7

Table 4.  Sensitivity, precision, F1 score, and Mann–Whitney U-test for images in the test set which was 
trained by skin type. SD Standard deviation.

Skin types of the 
patients

Number of 
images

Sensitivity (%) Precision (%) F1 score (%) Mann–Whitney 
U-testMean (95% CI) SD Mean (95% CI) SD Mean (95% CI) SD

Lighter skin (skin 
types 1–2) 118 78.6 (74.0;83.1) 24.9 81.0 (77.4;84.7) 20.0 76.9 (72.9;80.9) 21.9

P < .001
Darker skin (skin 
types 3–6) 214 89.3 (87.2;91.5) 16.0 88.1 (86.2;89.9) 13.7 87.8 (85.8;89.7) 14.8
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Figure 1.  Receiver Operating Characteristic Curve. Wound classifier algorithm (surgery needed versus no 
surgery needed). (a) Combined model. (b) Model with training and testing only on lighter skin types. (c) Model 
with training and testing only on darker skin types.

Table 5.  Results obtained on an image level from the classifying algorithm as compared to the expert’s 
diagnosis. Average success rate, sensitivity, and specificity (in percentages with 95% confidence intervals), and 
area under the receiver operating characteristic curve (AUC) for the set-aside test set with all images, and the 
separate test sets by skin types. AUC  Area under the receiver operating characteristic curve.

True positive True negative False positive False negative Success rate Sensitivity Specificity

AUC n (%) n (%) n (%) n (%) % % (95% CI) % (95% CI)

Set-aside test 
set (n = 332) 86 (26) 128 (39) 111 (33) 7 (2) 64.5 92.5 (89.1; 

95.1)
53.6 (48.1; 
59.1) 0.885

Lighter skin 
types (n = 118) 15 (13) 77 (65) 21 (18) 5 (4) 78.0 75.0 (66.2; 

82.5)
78.6 (70.1; 
85.6) 0.863

Darker skin 
types (n = 214) 71 (33) 72 (34) 69 (32) 2 (1) 66.8 97.3 (94.1; 

99.0)
51.1 (44.2; 
58.0) 0.875
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sensitivity was 92.5% and the specificity was 53.8%. Indeed, out of the 93 burns which required surgery, only 7 
were misdiagnosed. On the other hand, 128 out of 238 burns which did not require surgery were diagnosed as 
such by the algorithm.

Discussion
This study, designed as a proof-of-concept to assist in the diagnosis of extremely complex real-world medical 
images, evaluates a deep-learning approach for burn wound identification and classification in patients with a full 
range of skin types. Our results indicate that burns can be identified and segmented with a reasonable accuracy 
in highly variable pictures captured in real-life settings, whereas classification according to the need of surgery is 
more challenging. While the burn identification algorithm showed better performance for patients with darker 
Fitzpatrick skin types, the algorithm for the classification of surgery was less accurate for those patients compared 
to patients of lighter skin types. We believe the differences in results obtained between skin types and algorithms 
could be explained by the fact that the difference in colour between burn and normal skin is probably larger for 
patients of darker-skin types and therefore the wound identifier algorithm performing better in that dataset. On 
the contrary, the wound classifier performed better in the lighter skin-types which could partly be explained by 
a higher quality of the images and less diverse image capture settings.

The aggregated results of the accuracy of the wound identification are in line with previous deep-learning 
studies, as reflected in an F1 score of 83.0%22,23,41. Requesting the front-line user to indicate where the burn is 
prior to segmentation, as it has been done in the  past24,25 might improve the results; yet, it is doubtful that this 
procedure would be viable in real life settings.

Including images without burns in the data revealed a propensity for the algorithm to identify small burn 
areas where there were none in as much as a fifth of the images in the validation set. A slightly larger propor-
tion of false positives was also reported in a previous deep-learning  study23. Although images without any burn 
wounds are unlikely to be submitted by a front-line healthcare professional for diagnostic assistance, false posi-
tives could later on have consequences if the algorithm is used in sequence with a wound classifier algorithm 
in a fully automated approach. This could be the focus of future studies whereby training and testing with non-
burn images is an integral part of the research question, and with the hypothesis that non-burn images could be 
provided to such a model by a clinician. In fact, previous studies have already studied the distinction between 
burn and other types of skin  wounds26,27. Focus of further research could also include replicating the obtained 
results using an open-source software.

With regards to burn severity classification, most of the algorithms published did not apply CNNs but rather, 
handcrafted features were used to train mathematical or Support Vector Machine (SVM)  models24,25,29. Using 
those methods, two studies also discriminated between the need for surgery or not, and classified accurately 
about 80% of the  images24,29. These results are comparable to ours for patients of North-Germanic origin which 
had similar (lighter) skin types as in those previous studies, but higher than what we obtained with all cases 
aggregated. Nonetheless, there has been more recent CNN models that have classified burn depth in several 
categories including normal skin, with promising results between 80 and 95%28,30,31,42. Given the differences in 
category definition, these results are difficult to compare to the ones we have obtained.

The algorithm was trained using a commercially available software which did not permit to describe the actual 
architecture of the CNN models. Nonetheless, we believe that with the parameter information provided in this 
publication it should be possible to replicate the experiment. If a researcher requires access to the exact same 
algorithm, the corresponding author can be contacted for inquiries. Further, this study did not investigate other 
types of approaches to analyse the data such as SVM or decision trees. Differences in performances between 
approaches was not the aim of the study, and our choice of CNNs was based on previous literature where deep-
learning algorithms outperformed other cited methods for image segmentation and  classification43.

The depth of the burn correlates with the time to healing and scarring (and need for surgical intervention) 
and has therefore consequences on the clinical protocol. However, as indicated earlier, clinical evaluation of the 
depth is a challenging task. Our results suggest we could reduce this error to one in four cases among the lighter 
skin types but likely not among the darker ones. Image-based assessment of whether surgery is indicated or not 
has been tested on physicians of a range of competences, including referring physicians with a higher specificity 
(76.2%) but a much lower sensitivity than our algorithm (39.9% versus 92.5% respectively)44. It is also of note 
that in order to give an appropriate diagnosis, burn wounds should be cleaned and undressed. This is the case 
not only for clinical bed-side evaluations, but also for remote consultation. Therefore, we have only included 
such type of wound images in our dataset. It is possible that in the future less stringent criteria can be applied, 
and for an algorithm to be trained on uncleaned wounds, nonetheless, this will require some more complex data 
collection, annotation and model training.

Contrary to what was suggested previously by Abubakar and colleagues who also investigated two skin types, 
performing separate model trainings did not improve the results compared to the hybrid algorithm with regards 
to the AUC 26. They however suggested that providing skin-type information as input to the algorithms would 
improve the results, which might also be the case in our algorithm since we find differences in results between 
skin types. It is also possible that all datasets collected to date are too small for this type of complexity level. It is 
nonetheless important to include patients of various skin types, and especially those of darker skin types as they 
are those where burn injuries are most  prevalent2 and where care is the least  available15.

The main strength of this study is that it is based on a large dataset with patient images diversified as regards 
type of skin, setting (with several centres from South Africa and Sweden), injured population (adults versus 
children), injured body parts, and burn mechanisms. An additional quality of the dataset is that it consists of 
images from real-life settings, acquired using various cameras and smartphones, in the same way they would be 
sent to a specialist for assessment.
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A drawback of the dataset is that the classification as to whether surgery was needed or not was image-based 
rather than on specific areas of the images. The training was therefore weakly supervised, a procedure that will 
introduce noise in the labels and thereafter a loss in accuracy as the algorithm returns a value for each pixel. It is 
however also a strength in that it is a better representation of how a real-life remote consultation would proceed 
with a burn specialist. Both algorithms were analysed and presented separately in this study, it is however pos-
sible to envision that in the future they will form part of a single assessment, with the regions identified would 
then be fed for severity classification. Yet, this would require detailed pixel-level annotation even for the severity 
classification algorithm.

An additional issue is the differences between the material collected from both settings. The images from 
South Africa surpassed in number the ones from Sweden and contained most of the cases requiring surgery. 
Furthermore, their origin and quality were more heterogeneous as several burns centres and their referrals were 
included. These differences may have resulted in a slight overtraining towards the dark-skinned cases. However, 
the results of the wound classifier algorithm with much higher accuracy for images captured in Sweden shows 
this is probably not the case.

Among the annotations, whether surgery was required or not was established by a burn expert, a method 
that can lead to discrepancies between  physicians8, but which was measured previously on a similar dataset with 
acceptable  results17. Given the high number of images and the retrospective use of clinical diagnosis, difference 
between annotators could unfortunately not be measured in this study. A potential alternative would have been 
to wait for 21 days for wound closure, which would be particularly relevant given the dynamic nature of the 
burn wound in the first hours following a burn. This is however not feasible in settings where hospital beds are 
extremely limited and risk of infection is  high9. Furthermore, additional variables such as the mechanism of the 
injury, or physical parameters such as blanching or capillary refill might have improved the surgical classifica-
tion algorithm’s performances. On a similar note, in the first few days following the injury, the borders of the 
superficial burn areas can be difficult to define. Training of the annotators as well as close collaboration with 
the burn experts were intended to reduce the error in area definitions, nonetheless annotation errors cannot be 
excluded. However, given the high number of pixels included in a burn image and the fact that the majority of 
the pixels within the drawn polygon are likely to represent the true burn wound, this should not have affected 
the results in a significant manner.

Results in other disciplines such as dermatology, or ophthalmology have highlighted the potential added value 
of deep learning algorithms for improved  diagnosis45,46. This study is a first step towards the development of such 
a system in burns care where, globally, the number of cases far exceeds the number of specialists available for 
assistance. To augment the accuracy of the algorithms, there might be a need for training in more homogene-
ous and refined subsets of data. However, these subsets might come short of being a good reflection in real-life 
settings. Additional challenges ahead would relate to the acceptance and trust of procedures of the like among 
all users , their seamless integration into health care  services47, and the full respect of crucial ethical principles 
like patient autonomy and  safety48.

From the front-line clinicians’ perspective, the accuracy results obtained are comparable to bedside levels of 
assessment, thus the algorithm could assist with their management of burns patients, relieving most of the stress 
usually observed. From the burns specialist’s perspective, a high sensitivity would minimize the risk of missing a 
burn that would require surgery, enhancing the probability of a good outcome for the patient as it would provide 
an accurate diagnosis while still reducing the number of referrals to a burns specialist who cannot attend all cases.

Conclusion
This article provides evidence that two steps critical to burn assessment can be supported by image-based deep-
learning algorithms among various skin types with high levels of accuracy for wound identification but also 
for wound classification with respect to the need for surgery, especially in lighter skin types. For an automated 
diagnosis to become a viable option to be used by frontline clinicians at point-of-care, the performance of deep 
learning algorithms must be re-trained and assessed on extended datasets representing even more variable clini-
cal settings. Training using pixel-level annotations, identification and segmentation of burn depths could also be 
beneficial from a clinical standpoint in order to have a more precise diagnosis. Furthermore, for such systems 
to be implemented, acceptability and usability issues will have to be looked into.

Data availability
The data that support the findings of this study were used under a license for the current study, and some restric-
tions apply to their availability. The data are available from the authors upon reasonable request.
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