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Abstract Logics and Lindström’s Theorem

Niclas Bengtsson

Abstract

A definition of abstract logic is presented. This is used to explore and com-
pare some abstract logics, such as logics with generalised quantifiers and
infinitary logics, and their properties. Special focus is given to the proper-
ties of completeness, compactness, and the Löwenheim-Skolem property.
A method of comparing different logics is presented and the concept of
equivalent logics introduced. Lastly a proof is given for Lindström’s the-
orem, which provides a characterization of elementary logic, also known
as first-order logic, as the strongest logic for which both the compactness
property and the Löwenheim-Skolem property, holds.
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1 Introduction

During the 19th and 20th centuries, with the rise of formal logic as a field of
study, there also arose a want for some canonical system of logic [1]. Today,
much thanks to the completeness, compactness, and Löwenheim-Skolem theo-
rems, the common consensus is that this canonical logic is, or at least should be,
elementary logic, or as it is more commonly referred to as, first-order logic (for
historical reasons though, this paper will use the term elementary logic). While,
because of this, most modern day model theory is done in elementary logic, it
has not resulted in every logician and model theorist completely abandoning
every other logical system. In fact, while a lot of modern day mathematics can
be formalised in elementary logic, in practice most of it is done informally, but
in a way that often resembles second-order logic with statements like ”there
exists some function f” [1].
Furthermore, the study of different logics is central to the fields of finite model
theory and descriptive complexity theory. Finite model theory concerns ques-
tions about what logics are needed to formally express certain properties of
structures and is closely connected to descriptive complexity theory which tries
to characterize complexity classes by what logics are needed to express what
is captured by the complexity class. For example existential second-order logic
(that is second order logic where every second-order quantifier is existential)
characterizes the complexity class of NP on finite structures [2][3].
Thus there is still relevant research being done into logics that are not elemen-
tary logic. For example logics with expressive power that can be said to lie
between that of elementary logic and that of second-order logic, some of which
shall be explored here. We will look at some of the properties these logics have,
and try to compare their expressive powers. We will conclude by providing a
proof of Lindström’s theorem, a very illuminating result when looking at differ-
ent logics, which provides a classification of elementary logic as the strongest
logic (in an expressive sense), that has the property of compactness, and for
which there exists an analogue to the Löwenheim-Skolem theorem [1][4].

2 Model theory for Elementary Logic

Before going into abstract logics, which is the primary focus of this paper, we
need to recall some basic model theory, its concepts and results.

2.1 Basic concepts

We begin with some basic concepts and terminology. Note that, as the reader
is expected to already be somewhat familiar with model theory for elementary
logic, this list is mostly provided as reference for the reader to be able look up
concepts in, as they read the main part of the paper. All of these concepts and
results can be found in [5] and [6].
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An ordinal number is a set α which is well ordered by ∈, where every mem-
ber of α is also a subset of α. Finite ordinals are denoted by natural num-
bers, infinite ordinals are denoted as ωα + β where α and β are ordinals, with
ωα0

+β0 < ωα1
+β1 if α0 < α1, ωα+1 is the least ordinal, having ωα as a member,

for which there is no bijection between ωα and ωα+ 1, and ωα + β0 < ωα + β1
if β0 < β1.
A cardinal number is an ordinal α such that there does not exist a bijection
between α and any β ∈ α. ω0 (or just ω) is the least infinite cardinal, and ω1

the least uncountable cardinal. If there exists a bijection between a set A to a
cardinal α, we say that A has cardinality α denoted |A| = α.
A constant/relation/function symbol is, as the name suggests, a symbol repre-
senting a constant/relation/function. Each constant symbol, function symbol,
and argument place of a function symbol or relation symbol is equipped with a
sort symbol which is a symbol determining the sort of other symbols and thus
what can be done with them, for example when looking at a vector field as a
logical structure, one might want one sort symbol for vectors and another for
scalars. In one sorted cases i.e. when all symbols are of the same sort, the sort
symbol is dropped.
A term is any of the following: a variable, a constant symbol, or f(t0, ..., tn−1)
where f is an n-ary function symbol and t0, ..., tn−1 are terms. A term can only
be put in the argument place of a function or relation if the term and argument
place are equipped with the same sort symbol.
A Vocabulary V is a set consisting of sort, constant, relation, and function sym-
bols .
A V-structure consists of two things, a (non-empty) set S together with an in-
terpretation of V for said set, where an interpretation of V assigns each constant
symbol in V to an element in S, each n-ary relation symbol in V to a subset of
Sn, and each n-ary function symbol in V to a function from Sn to S.
The size of a structure M, denoted |M|, is the unique cardinal α for which there
exists a bijection between α and the underlying set of M.
The reduct of a V-structure M with underlying set S, to a vocabulary W ⊆ V
is the structure M ↾ W with underlying set S and interpretation the interpre-
tation of V in M restricted to W.
A (V-)sentence is any of the following: t0 = t1, R(t0, ..., tn−1), ¬φ, φ ∧ ψ, or
∃xφ, where t0, ..., tn−1 are terms, R is a relation symbol, and φ and ψ are sen-
tences.
A (V-)theory is a set of sentences.
A model M of a theory Γ is a V-structure such that Γ is satisfied by M i.e.
every sentence in Γ is true in M. Furthermore, any V-sentence φ is either true
in M, denoted M |= φ, or φ is false in M, denoted M ̸|= φ.
A renaming ϱ from a vocabulary V to vocabulary W is a bijective map that
maps any symbol to a symbol of the same kind, i.e. sort symbols to sort sym-
bols, relation symbols to relation symbols of the same arity, function symbols to
function symbols of the same arity, and constant symbols to constant symbols,
and such that the sort symbols that the constant symbols of W are equipped
with correspond via ϱ.
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The structure renaming of a V-structure M by a renaming ϱ : V → W is the
map from M to the structure ϱ[M] = N, with the same underlying set as M.
This is given by ϱ such that elements in the underlying set of M equipped with
the sort symbol s are mapped to the same element but instead equipped with
the sort symbol ϱ(s), and for any symbol x ∈ V, ϱ(xM) = ϱ(x)N.
Two structures M and N are elementarily equivalent, denoted M ≡ N, if they
model exactly the same sentences.
An isomorphism from a V-structure M to a V-structure N is a function that
is bijective and preserves every V-formula. If such a function exists M and
N are called isomorphic, denoted M ≃ N. If two structures are isomorphic,
they are elementary equivalent, and finite elementary equivalent structures are
isomorphic[6].
For an ordinal k, an Ehrenfeucht–Fräıssé game of length k between two V-
structures M and N, denoted Gk(M,N) works as follows. There are two play-
ers, Spoiler and Duplicator. First Spoiler picks either some element from the
underlying set of M, in which case we call this element m0, or some element
from the underlying set of N, in which case we will call this element n0. If
Spoiler picked m0, then Duplicator picks an element from N in which case this
becomes the element we call n0, and if Spoiler picked n0, Duplicator instead
picks an element from M to be called m0. This is then repeated with m1 and
n1, m2 and n2... and so on until both Spoiler and Duplicator have picked k
elements each (or until there are no more elements to pick) with the additional
rule that for i ̸= j, mi ̸= mj and ni ̸= nj . When this is done we will have two
sequences ⟨mi⟩i<k and ⟨ni⟩i<k. We say that Duplicator wins the game if there
is an isomorphism f from the substructure of M generated by ⟨mi⟩i<k to the
substructure of N generated by ⟨ni⟩i<k such that f(mi) = ni for all i < k and
we call f a k-partial isomorphism from M to N. If there does not exist such an
isomorphism we say that Spoiler wins. If there is a way for Duplicator to play
to be guaranteed to win the game Gκ(M,N), no matter how Spoiler plays, we
say that Duplicator has a winning strategy for the game Gκ(M,N).

2.2 Important results

We will now go through some of the most important results from model theory
for elementary logic.

2.2.1 Completeness theorem

The completeness theorem draws a connection between syntactic and semantic
consequence, i.e. between what can be proved using precisely defined proof rules
from a theory and what is necessarily a consequence of that theory. It states
that: For any theory Γ, and any sentence φ, there exists a formal proof showing
φ is a consequence of Γ, denoted Γ ⊢ φ, if and only if φ holds in every model of
Γ denoted Γ |= φ [6].
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2.2.2 Compactness theorem

In essence the compactness theorem describes how the satisfiability of an infi-
nite theory depends on its finite subtheories. More explicitly the compactness
theorem of elementary logic states that: For any theory Γ, Γ is satisfiable if and
only if every finite subtheory of Γ is satisfiable.
This might at first seem obvious, but when we consider the following finite the-
ory T = {φ,ψ,¬(φ ∧ ψ)}, where φ and ψ are sentences which can be true or
false independently of each other, we see that clearly T is not satisfiable, how-
ever every proper subtheory of T is satisfiable. The compactness theorem states
that for theories having infinite cardinality, a similar thing cannot happen [6].

2.2.3 Löwenheim-Skolem theorem

The Löwenheim-Skolem theorem is most often considered to be two separate
theorems, namely the Upward Löwenheim-Skolem theorem and the Downward
Löwenheim-Skolem theorem.
The Upward Löwenheim-Skolem (ULS) theorem states that: any theory having
an infinitely large model, has models of arbitrarily large infinite cardinality.
The Downward Löwenheim-Skolem (DLS) theorem states that: Let V be a
vocabulary and M a V-structure with SM as the underlying set. For any X ⊂
SM, there exists a V-structure N with the underlying set SN such that the
following holds:
(i) N is an elementary substructure of M,
(ii) X ⊆ SN

(iii) |N| ≤ max(|X|, |V|, ω).
[6]

2.3 Properties not satisfied by Elementary Logic

2.3.1 Cardinality Quantification

For any n ∈ ω we can define a formula φn such that any model of a theory
containing φn has cardinality n. For example φ2 = ∃x∃y∀z((x ̸= y) ∧ ((z =
x) ∨ (z = y))). This kind of quantification however, is only possible for finite
models since, if we try to construct a theory Γ such that all models of Γ have
cardinality λ, where λ ≥ ω, the Upward Löwenheim-Skolem theorem states that
there exists arbitrarily large (and hence strictly larger than λ) infinite models
of Γ. While the ULS theorem often can be a useful tool, the lack of infinite
cardinality quantification can lead to some problems, for example the lack of
any categorical theories with infinite models which we will discuss further below.
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2.3.2 Categoricity of theories with infinite models

A theory Γ is categorical if it has only one model up to isomorphism. In essence
Γ being categorical means that Γ uniquely defines some structure, which clearly
can be desirable when applying logic to other areas of mathematics. However as
for cardinality quantification this is made impossible by the Upward Löwenheim-
Skolem theorem when there exists an infinite model of Γ. Perhaps the most
notable example of this is that there exist uncountable (non-standard) models
of the first-order Peano axioms, which goes against our intuition that the natural
numbers should be countable.

3 Abstract Logics

Up until this point in the paper we have worked in Elementary Logic (EL),
or as it is more commonly referred to First-order Logic. The common name
might give a clue that there are higher order logics, and indeed this is the case.
Furthermore there exist logical systems apart from the ordered ones. We will
here use the definition of (abstract) logic from [5] to look at some of these logical
systems and their properties.

3.1 Defining a Logic

An Abstract Logic (AL), or sometimes just a Logic, is a pair (L, |=L) where L
is a mapping from vocabularies V to the class L[V] of objects called V-sentences
on those vocabularies, and |=L is a binary relation between V-structures and
V-sentences such that:

(i) (V ⊆ W) ⇒ (L[V] ⊆ L[W])
This expresses that how L behaves when applied to a subvocabulary V of W is
consistent with how L behaves when applied to all of W.

(ii) For all V-structures M, (M |=L φ) ⇒ (φ ∈ L[V]).
This expresses that anything that holds in M according to |=L must be express-
ible by L applied to V and thus lie in the class L[V].

(iii) For all V-structures M and N, (M |=L φ and M ≃ N) ⇒ N |=L φ.
This expresses that ifM ≃ N then anything that holds inMmust also hold inN.

(iv) For all W-structures M, (φ ∈ L[V] and V ⊆ W) ⇒ (M |=L φ iff M ↾
V |=L φ).
This expresses that the only sentences that hold in M but not in a reduct of
M to a smaller vocabulary, are the sentences not expressible by the smaller
vocabulary.
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(v) For any renaming ϱ : V → W, and any sentence φ ∈ L[V], ϱ(φ) ∈ L[W]
is such that for any V-structure M, M |=L φ iff ϱ[M] |=L ϱ(φ).
This expresses that a renaming applied to a structure does not affect logical
truth.

(iii)-(v) are often called the isomorphism property, the reduct property, and
the renaming property, respectively.

3.2 Properties of Abstract Logics

When working with ALs it is often easier to talk about properties rather than
analogues of theorems existing, for example rather than saying that for an AL L,
there exists an analogue to the compactness theorem, we talk about L having
the compactness property, similarly to how we talk about how EL does not
have the cardinality quantification property. Listed below are a few important
properties ALs can have and their definitions:

3.2.1 Completeness

An AL L is complete if there exists a set of non logical axioms and rules of
deduction for formal proofs for L such that for any vocabulary V, every theory
Γ ⊆ L[V], and any sentence φ: Γ ⊢ φ if and only if Γ |=L φ.

3.2.2 κ-compactness

For an infinite cardinal κ, an AL L is κ-compact if for any vocabulary V and all
theories Γ ⊆ L[V] such that |Γ| ≤ κ: if every finite subtheory of Γ has a model,
then Γ has a model.

3.2.3 Compactness

An AL L is compact if it is κ-compact for all infinite κ.

3.2.4 Löwenheim-Skolem property

An AL L has the Löwenheim-Skolem property if for any vocabulary V and every
theory Γ ⊆ L[V]: if Γ has a model, then Γ has a model M such that |M| ≤ ω0.

3.2.5 Löwenheim-Skolem property down to κ

For an infinite cardinal κ, an AL L has the Löwenheim-Skolem property down
to κ if for every theory Γ ⊆ L[V]: if Γ has a model, then Γ has a model M such
that |M| ≤ κ.
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3.2.6 Craig property

An AL L has the Craig property if for all vocabularies V and W: if φ0 ∈ L[V],
φ1 ∈ L[W], φ0 |=L φ1, and V ∩W contains at least one sort symbol, then there
exists a sentence, a so called interpolant, ψ ∈ L[V ∩W] such that φ0 |=L ψ and
ψ |=L φ1.

3.3 Examples of Abstract Logics

The number of abstract logics one can define from the rules in 3.1 is inexpressibly
large so for the sake of simplicity we will only concern ourselves with those ALs
that are extensions of EL, that is, logics L such that every EL-sentence is also
an L-sentence, and of those we will only look explicitly at a few.

3.3.1 Logics with cardinality quantifiers

Perhaps the simplest way to extend EL is to just add some new quantifiers,
also known as generalised quantifiers. One such kind of generalised quantifier
is the cardinality quantifier Qα. For any ordinal α, Qαx(φ(x)) expresses that
there are at least ωα many different values that x can take such that φ(x) holds.
With the quantifier Q1 for example, one can express whether or not something
is uncountable, so by adding the sentence ¬Q1x(x = x)) to the first-order
Peano axioms we get a theory which describes the natural numbers and does
not allow for the uncountable non standard models that EL does, hence we get
a theory for the natural numbers where every model is countable. Furthermore
L(Q1) is complete and has the Löwenheim-Skolem property down to ω1. For
completeness we would need to a set of axioms for formal proofs which can be
found in [7] together with a proof of completeness for L(Q1). Given a vocabulary
with uncountably many constant symbols (and some arbitrary enumeration of
these constant symbols), constructing the uncountable theory

Γ = {¬Q1x(x = x)} ∪ {¬cα = cβ |0 ≤ α < β < ω1}

gives us that L(Q1) is not ω1-compact since all finite subtheories of Γ has models
but there exists no model of Γ itself, though it is ω-compact so for any countable
theory compactness holds. Since the theory {Q1(x = x)} exists the Löwenheim-
Skolem property does not hold for L(Q1) and the Craig property is also not
satisfied by L(Q1).
One might now wonder why L(Q1) was the first example given here instead of
L(Q0) since the distinction between infinite and finite intuitively might seem
more basic than the distinction between uncountable and countable. The reason
for this is that L(Q0) is remarkably less well-behaved than L(Q1), not being
either complete, nor compact, and not satisfying the Craig property, so while it
is possible to study its properties, the lack of completeness makes it much more
of an endeavor [4] [5].
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3.3.2 Infinitary logics

Instead of extending EL by adding generalised quantifiers we could modify the
rules for constructing sentences and formulas to be a bit more liberal. The
logic Lκ,λ where κ, λ ≥ ω, denotes EL with the alteration that we allow for all
conjunctions and disjunctions with size strictly less than κ, and all homogeneous
strings of quantifiers of length strictly less than λ, i.e. if α < κ and if for every
β ≤ α, φβ is an Lκ,λ-formula, then

∧
β≤α φβ is an Lκ,λ-formula, and if γ < λ,

and ψ is an Lκ,λ-formula, then Qx0Qx1...Qxγ(ψ(x0, x1, ...xγ)) (where Q is a
quantifier), is an Lκ,λ-formula. Thus Lω,ω = EL. For any Lκ,λ with κ ≥ ω1

compactness fails, though a version of the Löwenheim-Skolem property, which
says that if T has a model then T has a model M such that |M| < max(κ, λ),
does hold for all Lκ,λ. In particular Lω1,ω has the Löwenheim-Skolem property
and is even complete and satisfies the Craig property. In Lω1,ω we can also
construct the sentence∧

n<ω

∃x0...xn(φ(x0) ∧ ... ∧ φ(xn) ∧ x0 ̸= x1 ∧ x0 ̸= x2... ∧ xn−1 ̸= xn)

thus we have a logic where we can express the meaning of Q0x(φ(x)) without
said logic losing completeness [4][8].

3.3.3 Second-order logic

One very early extension of EL, earlier than both L(Qα) and Lκ,λ, was L2 or
Second-order logic which sprung up from statements like ”there exists a function
f (on the natural numbers) such that f(x) > x”. Statements like this, referring
to arbitrary functions, relations, or sets, cannot be expressed in any of the
previous logics we have discussed. In L2 however, they can. This is achieved
by allowing quantifiers, not just over elements in the domain of a structure, but
also over subsets of the domain and over relations and functions on the domain.
Now since we can quantify over functions, by introducing set theory we can
say that for some set S, there exists a bijective function between S and some
cardinal α and that for every s ∈ S φ(s) holds, thus we can express the meaning
of any Qα in L2. The expressive power of L2 is immensely powerful, allowing for
concepts such as finiteness, countability, and well-ordering, and also giving us
the tools needed to categorically define both the natural and the real numbers.
To define formal proofs in L2 we need to add an axiom schema expressing that
if there exists a specific relation between two elements, then there exists some
relation between them. To use an example from the natural numbers: since
< (5, 7) (i.e. 5 < 7) we can deduce that ∃R(R(5, 7)). What we must sacrifice
for this expressive power however, are basically all of the useful properties we
have for EL such as completeness, compactness, and the Löwenheim-Skolem
property. Furthermore, in L2 the Craig property holds for only the one-sorted
case [4] [5].
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3.4 Comparing Logics

As we saw several times when looking at specific logics there is often an over-
lap of what can be expressed in different logics. In particular, all of the logics
mentioned here are extensions of EL, and thus every EL-sentence is also a sen-
tence in all of these logics. If we, instead of syntactic equality, regard semantic
equivalence, we get the relation called the strength of logics. We say that for
two logics L and L∗, L∗ is at least as strong as L if everything expressible in
L is expressible in L∗, that is, for every sentence φ ∈ L there exists a sentence
ψ ∈ L∗ such that φ and ψ have exactly the same models. L∗ being at least as
strong as L is denoted by L ≤ L∗. If L ≤ L∗ and L∗ ≤ L we say that L and
L∗ are equivalent and denote this by L ≡ L∗[5][9]. Furthermore it follows that
strength is a reflexive and transitive relation on logics, and that equivalence is a
reflexive, transitive and symmetric relation. Thus the strength forms a partial
order on the equivalence classes of equivalent logics.
While L∗ being an extension of L trivially means that L ≤ L∗, for L∗ to be
an extension of L, every L-sentence φ must also be a sentence in L∗, so the
converse, that if L∗ ≥ L implies that L∗ would be an extension of L, is not
necessarily true. The proof of this we have already showed since in Lω1,ω we
can express the meaning of Q0, so L(Q0) ≤ Lω1,ω, but Q0 itself is not a part of
Lω1,ω, so the sentence Q0x(x = x) is an L(Q0) sentence but not an
Lω1,ω-sentence. Thus Lω1,ω is not an extension of L(Q0).
Of the logics discussed in this paper the weakest is EL as L(Qα), Lκ,λ, and
L2 are all extensions of EL. L2 meanwhile is stronger than all L(Qα) since
any Qα can be expressed by introducing some set theory and quantifying over
α, ∀(x ∈ α)(φ(x)). L(Q1) is incomparable to both L(Q0) and Lω1,ω and to
show this we show that L(Q1) ̸≤ Lω1,ω and L(Q1) ̸≥ L(Q0). To show the first
of these statements, let V = ∅. Q1x(x = x) is a sentence in L(Q1)[V], so if
L(Q1) ≤ Lω1,ω then there is some sentence ψ ∈ Lω1,ω with exactly the same
models. Now since Lω1,ω has the Löwenheim-Skolem property this means that
there exists a countable model of ψ, but Q1x(x = x) has no countable model,
thus L(Q1) ̸≤ Lω1,ω. To show that L(Q1) ̸≥ L(Q0), let V be a vocabulary with
infinitely many constant symbols (with some arbitrary enumeration of these
constant symbols) and let Γ ⊂ L(Q0)[V] be the following theory

Γ = {¬Q0x(x = x)} ∪ {¬cα = cβ |α < β < ω}.

Assume L(Q1) ≥ L(Q0), then for every sentence in L(Q0) there exists a sen-
tence in L(Q1)[V] with exactly the same models. Let ζ be a mapping taking
sentences in L(Q0)[V] to sentences in L(Q1)[V] with exactly the same models.
Now construct the theory Γ∗ ⊂ L(Q1)[V]

Γ∗ = {ζ(¬Q0x(x = x))} ∪ {ζ(¬cα = cβ)|α < β < ω}.

Every finite subtheory of Γ∗ has a model, but Γ∗ has no model, thus L(Q1) is not
ω-compact, but this contradicts what we stated previously, thus L(Q1) ̸≥ L(Q0).
Lastly Lω1,ω and L2 are incomparable.
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To show that L2 ̸≤ Lω1,ω we simply need to consider that L(Q1) ≤ L2, thus
if L2 ≤ Lω1,ω, by transitivity of the strength of logics this would mean that
L(Q1) ≤ Lω1,ω thus contradicting our previous result that L(Q1) and Lω1,ω are
incomparable.
To show that Lω1,ω ̸≤ L2 is a little trickier. First let V = {R}, where R is a
binary relation symbol and let

φ = (∀x, yR(x, y) ∨R(y, x) ∨ (x = y)) ∧ (∀x¬(R(x, x)))

∧(∀x, y, z(R(x, y) ∧R(y, z) → R(x, z))) ∧ (∀x, y(R(x, y) → ¬R(y, x))).
Now consider the following sentences in Lω1,ω[V]:

ψ0 = φ ∧ (
∧
n<ω

∃x0...xn(R(x0, x1) ∧R(x0, x2) ∧ ... ∧R(x1, x2)

∧R(x1, x3) ∧ ... ∧R(xn−1, xn))),

ψ1 = φ ∧ (
∧
n<ω

∃y0, x0...xn(R(x0, x1) ∧R(x0, x2) ∧ ... ∧R(x1, x2)

∧R(x1, x3) ∧ ... ∧R(xn−1, xn) ∧R(x0, y0) ∧R(x1, y0) ∧ ... ∧R(xn, y0))),

ψ2 = φ ∧ (
∧
n<ω

∃y0, y1, x0...xn(R(x0, x1) ∧R(x0, x2)...R(x1, x2)

∧R(x1, x3)...R(xn−1, xn) ∧R(x0, y0) ∧R(x1, y0)... ∧R(xn, y0) ∧R(y0, y1))),
and so on. For any countable ordinal α, ψα describes an ordering of order
type at least α (for more on order types see [10]). This means that for α ̸= β,
ψα does not have the same models as ψβ , since if we assume, without loss
of generality, that α < β, ψα has a model with an ordering of order type of
exactly α which ψβ does not. Thus for every countable ordinal we can associate
a sentence in Lω1,ω[V] which is unique with regard to models and since there
are uncountably many countable ordinals, there are uncountably many distinct
sentences in Lω1,ω[V]. This however is not the case for L2[V] since any sentence
in L2 is finitely long so, since V is countable, there is only a countable number
of sentences in L2[V].

Now we can illustrate the strength of all explicit logics discussed here with
the following diagram:

L(Q0) Lω1,ω

EL

L(Q1) L2
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4 Lindström’s Theorem

4.1 The theorem

Lindström’s theorem provides a characterisation of elementary logic as the only
logic with both the Löwenheim-Skolem property, the compactness property, that
is at least as strong as EL.

Theorem (Lindström’s theorem). For any abstract logic L, if the following
three properties hold:
(i) EL ≤ L,
(ii) the Löwenheim-Skolem property holds for L,
(iii) L is ω-compact,
then L ≡ EL.

4.2 Proof

For the proof we will need the following proposition, the proof of which can be
found (slightly reformulated) in [5] as theorem 4.3.1:

Proposition. For countable structures M and N, if Duplicator has a winning
strategy for the Ehrenfeucht-Fräıssé game Gω(MN), then M ≃ N.

With this result we are now ready to prove Lindström’s theorem. The proof
closely resembles the one in [11] with a few alterations and some alternative
notation.

Proof. Assume L is an abstract logic such that (i), (ii), and (iii) holds but
L ̸≤ EL. Let V be a vocabulary and π be a renaming from V to V ′ such that
V ∩ V ′ = ∅. Now let Γ ⊂ L[V ∪ V ′] be the following set:

{∀x0...xn−1(R(x0...xn−1) ↔ π(R)(x0...xn−1))|1 ≤ n < ω,R ∈ V is n:ary}

∪{∀x0...xn−1(f(x0...xn−1) = π(f)(x0...xn−1)|1 ≤ n < ω, f ∈ V is n:ary}

∪{c = π(c)|c ∈ V}.

Furthermore, if ψ is a L[V]-sentence then Γ |=L (ψ ↔ π(ψ)). To show this,
consider what π does to ψ within the context of Γ. Any constant symbol c is
taken to the constant symbol π(c), but c = π(c) so the models of Γ ∪ {ψ} and
Γ∪ {πc(ψ)} (where πc(ψ) denotes π applied only to the constant symbols in ψ)
are exactly the same. For the rest of this proof, let x denote a tuple of variables,
such that if f is an n-ary function then f(x) = f(x0, ...xn−1). Any function f is
taken to π(f) but f(x) = π(f)(x), so again the models of Γ∪{ψ} and Γ∪{πf (ψ)}
(where πf (ψ) denotes π applied only to the function symbols in ψ) are exactly
the same. Lastly π takes any relation R to π(R), but R ↔ π(R)(x) so the
models of Γ∪{ψ} and Γ∪{πR(ψ)} (where πR(ψ) denotes π applied only to the
relation symbols in ψ) are exactly the same. Combining these three arguments
we get that the models of Γ ∪ {ψ} and of Γ ∪ {πR ◦ πf ◦ πc(ψ)} are exactly the
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same, now note that (at least in the one sorted case which we here limit ourselves
to) πR ◦ πf ◦ πc = π, thus any model of Γ∪ {ψ} and Γ∪ {π(ψ)} are exactly the
same and hence Γ |=L (ψ ↔ π(ψ)). Furthermore for every ψ ∈ L[V] there exists
a finite theory Γ0 such that Γ0 |=L ψ ↔ π(ψ), since if it did not exist such a
Γ0, then for every finite Γ1 ⊆ Γ, Γ1 ∪ {¬(ψ ↔ π(ψ))} would have a model, and
thus, by (iii) Γ ∪ {¬(ψ ↔ π(ψ))} would have a model which contradicts the
result that that Γ |=L (ψ ↔ π(ψ)). Let W be the set of symbols of V occurring
in Γ0, then, since Γ0 is finite and every sentence in Γ0 contains finitely many
symbols, W is finite, and for any V-structures M and N, if (M ↾ W) ≃ (N ↾ W)
then M |=L ψ iff N |=L ψ.
Thus we now have that

given ψ ∈ L[V], there exists W ⊂ V such that |W| < ω and
for any V-structures M and N

((M ↾ W) ≃ (N ↾ W)) =⇒ ((M |=L ψ) ⇔ (N |=L ψ)).
(1)

Now let ψ ∈ L[V] be a sentence not equivalent to any EL[V]-sentence, letW ⊂ V
be as in (1), and let (φi)i∈ω be a sequence of all EL[W]-sentences. For n ∈ ω we
inductively define ψ0 = φ0 and for n > 0 ψn = φn if φn ∧

∧
i<n ψi is satisfiable

and ψn = ¬φn otherwise. Define Ψ = {ψn|n ∈ ω}. It follows directly that seen
as a theory Ψ ⊆ EL[W] is consistent and complete and as a theory Ψ ⊆ L[W]
is consistent (but incomplete). Since neither of the sentences ψ and ¬ψ are
equivalent to EL-sentences, there is nothing in Ψ which can contradict either
ψ or ̸= ψ, thus for any finite subset Φ ⊆ Ψ both {ψ} ∪ Φ and {¬ψ} ∪ Φ have
models so by (iii) Ψ ∪ {ψ} and Ψ ∪ {ψ} have models. Thus by (ii) there exist
countable models M and N of Ψ ∪ {ψ} and Ψ ∪ {¬ψ} respectively. From this
we get that M ↾ W ≡ N ↾ W, and from (1) we get that M ↾ W ̸≃ N ↾ W.
Since elementarily equivalent finite structures are isomorphic, and M and N are
countable, we get that |M| = |N| = ω. Thus without loss of generality we can
assume that the underlying sets of M and N respectively are the same, we call
this set S.
Thus in addition to (1) we now have that

there exists V-structures M and N, with the same
underlying set S, such that

M |=L ψ, N |=L ¬ψ, and M ↾ W ≡ N ↾ W
(2)

We remind ourselves of the renaming π defined in the beginning of the proof
and construct the vocabulary V∗ = V ∪ V ′ ∪ {fn, gn|n ∈ ω} where fn and
gn are (2n + 1)-ary function symbols. For each n ∈ ω fix an enumeration
⟨χn,i(x0, ..., xn−1, x)|i ∈ ω⟩ of all EL[W]-formulas with free variables in
{x0, ..., xn−1, x}. Now we construct the theory ∆ ⊆ L[V∗]
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∆ = {ψ,¬π(ψ)} ∪ {φ↔ π(φ)| for each EL[W]-sentence φ}

∪{∀x∀y∀x(∃y(
r∧

i=0

(χn,i(x, x) ↔ π(χn,i)(y, y))) →

r∧
i=0

(χn,i(x, x) ↔ π(χn,i)(y, fn(x, y, x)))),

∀x∀y∀y(∃x(
r∧

i=0

(χn,i(x, x) ↔ π(χn,i)(y, y))) →

r∧
i=0

χn,i(x, gn(x, y, y)) ↔ π(χn,i)(y, y)))|n, r ∈ ω}.

We can see that the first row used here to construct ∆ is satisfiable since ψ
and ¬π(ψ) are not EL-sentences. The middle and last row might seem very
technical but looking closer at them one can see that all they do is dictate how
fn and gn should work, in a way as to not interfere with anything else in ∆.
Looking at the middle row for some r when n = 0 for example, we get the
sentence

∀x(∃y(
r∧

i=0

(χ0,i(x) ↔ π(χ0,i)(y))) → (

r∧
i=0

(χ0,i(x) ↔ π(χ0,i)(f0(x))))).

For any r ∈ ω this is satisfiable thus any finite set consisting of this sentence for
different values of r is satisfiable, furthermore we can see that for different values
of n these sentences are completely independent so any finite set of sentences
from the second row is satisfiable, the same argument can also be made for the
last row. Now note that any finite ∆0 ⊆ ∆ is satisfiable so by compactness
∆ itself has a model, and by the Löwenheim-Skolem property there exists a
countable model of ∆ which we will call L. Now L, L ↾ V and π−[L ↾ π(V)],
where π− is the structure renaming given by the inverse of π, all have the
underlying set S, furthermore L ↾ V |=L ψ, π

−[L ↾ π(V)] |=L ¬ψ, and (L ↾ V) ↾
W ≡ (π−[L ↾ π(V)]) ↾ W so L ↾ V and π−[L ↾ π(V)] satisfy all the assumptions
we have made about M and N respectively so we can let M = L ↾ V and
N = π−[L ↾ π(V)].
Now let ⟨si⟩i∈ω be an enumeration of S and set up the Ehrenfeucht–Fräıssé
game Gω(M ↾ W,N ↾ W). While the underlying sets of M ↾ W and N ↾ W
are the same, the element si ∈ S might not behave the same in both structures,
however fn and gn at least guarantee that there exists some element sj ∈ S
which does behave in N ↾ W as si does in M ↾ W or vice versa. By how fn and
gn works according to ∆ we can thus define two sequences ⟨νi⟩i∈ω and ⟨µi⟩i∈ω

inductively, in the following way, ν0 = f0(s0), νk = fk(⟨si⟩i<k, ⟨µi⟩i<k, sk), and
µk = gk+1(⟨si⟩i≤k, ⟨νi⟩i≤k, sk). By ∆ νi behaves in N ↾ W as si does in M ↾ W,
and µi behaves in M ↾ W as si does in N ↾ W for all i. Thus if Spoiler picks
sk from M ↾ W then Duplicator picks νk, and if Spoiler picks sk from N ↾ W
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then Duplicator picks µk. Using this strategy, after t steps in the game, by
mapping any sk in the resulting substructure of M ↾ W to µk, and for the
inverse mapping any sk in the resulting substructure of N ↾ W to νk we get a
t-partial isomorphism ft : M → N; the bijectivity is clear from the construction
of the mapping, and preservation of V-formulas follows from L being a model of
∆. Now note that ft ⊆ ft+1 for all t ∈ ω, so we get a countably infinite sequence
f0 ⊆ f1 ⊆ f2 ⊆ ... of partial isomorphisms from M to N. Now consider

⋃
i∈ω fi,

this is a ω-partial isomorphism from M to N. Thus picking νk when Spoiler
pick sk from M ↾ W and picking µk when Spoiler pick sk from N ↾ W is a
winning strategy for Duplicator, so since M ↾ W and N ↾ W are countable our
proposition gives us that M ↾ W ≃ N ↾ W. This however contradicts (1) since
M |=L ψ and N |=L ¬ψ which proves the theorem.
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