

Master’s Programme in Industrial Analytics

Uppsala University logotype

IT 23 048

Degree project 30 credits
June 2023

Anomaly Detection in Financial
Transaction Time Series Data

Leyla Abdul Kader
Master’s Programme in Industrial Analytics

Faculty of Science and Technology

Uppsala University, Place of publication Uppsala

Supervisor: Simon Österberg Subject reader: Elisabeth Larsson

Examiner: Mats Daniels

Uppsala University logotype

Anomaly Detection in Financial Transaction Time Series Data

Leyla Abdul Kader

Abstract
This master thesis investigates two methods of anomaly detection on financial time series data.
It aims to determine an optimal method for anomaly detection with the purpose of flagging
anomalous transactions within foreign exchange trading data. It also aims to determine whether
the data points flagged as anomalies have any commonalities. This was achieved by first
looking into a statistical technique that predicts future transactions based on historical records
and subsequently using that to create a threshold for anomaly detection and later with the use
of unsupervised machine learning in the form of an autoencoder. The results show that the
autoencoder outperformed the statistical technique and was successful at pointing out possible
anomalous data points showing a number of common features.

Faculty of Science and Technology, Uppsala University. Place of publication Uppsala. Supervisor: Simon Österberg, Subject reader: Elisabeth Larsson, Examiner: Mats Daniels

Acknowledgements

I would like to thank my thesis supervisor at SEB Simon Österberg for
taking me on as a thesis student and his support throughout the project.
In particular, I would like to thank him for taking the time to teach me
the many dealings of his team at SEB and explain the financial theories I
was unfamiliar with. I also thank him for making this both a memorable
and fun experience. I would also like to thank my subject reviewer at Upp-
sala University Elisabeth Larsson for her constant feedback and improvement
suggestions. Lastly, I want to thank my parnter Artem for his unwavering
support throughout the last two years.

This one is for you Grossvati.

Uppsala University

Contents

1 Introduction 1
1.1 Setting . 1
1.2 Foreign Exchange Market . 1
1.3 Project Purpose and Goal . 1

2 Background 4
2.1 Anomaly . 4
2.2 Time Series . 4
2.3 Financial Data . 5
2.4 Problem Statement . 6

3 Related Work 8
3.1 Anomaly Detection by Forecasting 8
3.2 Anomaly Detection by Neural Networks 8

4 Supervised Machine Learning with ARIMA 10
4.1 Data Preparation . 10

4.1.1 Data Annotation . 11
4.2 Data Analysis . 12

4.2.1 Determining Data Stationarity 12
4.3 Evaluation Metrics . 14
4.4 Model 1: ARIMA . 15

4.4.1 Methodology . 16
4.4.2 Model Parameters . 16
4.4.3 AIC as a Measure . 17
4.4.4 Static Threshold . 18
4.4.5 Dynamic Threshold . 19

5 Unsupervised Machine Learning with an Autoencoder 22
5.1 Data Preparation . 22

5.1.1 Integer Encoding . 23
5.1.2 Binary Encoding . 24
5.1.3 One-Hot Encoding . 24
5.1.4 Train, Validate, Test 25

5.2 Model 2: Autoencoder . 26
5.2.1 Neural Networks . 26

5.2.2 Autoencoders . 27
5.2.3 Model Parameters . 28

6 Results 33
6.1 ARIMA . 33

6.1.1 Static Threshold . 34
6.1.2 Dynamic Threshold . 36

6.2 Autoencoder . 38
6.2.1 Testing the Autoencoder 38
6.2.2 Adjusted Threshold . 39
6.2.3 Analysing Anomalies 40

7 Discussion 42

8 Further Work 45

Uppsala University

1 Introduction

1.1 Setting

The thesis was carried out at Skandinaviska Enskilda Banken AB (SEB)
in Stockholm. SEB is a Swedish bank, providing a wide range of financial
services to private, corporate and institutional clients. More specifically, this
work was carried out within the FX Trading department [1].

1.2 Foreign Exchange Market

The foreign exchange market is a market where currencies are bought and
sold, or in short, exchanged. The foreign exchange market is frequently also
referred to as foreign exchange trading or simply FX [9]. In its simplest form,
trading foreign exchange is done when a currency is bought in exchange for
another currency that is sold. The exchange is affected by the exchange
rate which is ever changing, and closely related to supply and demand. The
FX market plays an important role in the global financial system and the
economy, and is by far the largest of all financial markets [17].

While in the past, trades have been carried out manually over the phone,
nowadays the process is mostly electronic and automated, with the exception
of significantly high in volume or specifically complex trades [17], which are
to this day handled manually be experienced traders. There exist a number
of financial instruments; monetary assets which can be traded. Namely,
spots, outrights, swaps and options, each of which is characterized by specific
features such as the time of execution, the type of return and their goal.

This thesis however, will focus solely on spot and outright trades [8],
which will be explained in the following sections. Spot and outrights rep-
resent transactions which are straightforward, and only differ in the time of
delivery.

1.3 Project Purpose and Goal

Within the FX Trading department, currently, there exists no automated
alert system that could warn of possible anomalous transactions. The pur-
pose of this project, is to create an input-output model, that will successfully
classify data points as being anomalous or not. Non-anomalous data will be
referred to as nominal. The models investigated are to leverage machine

1

Uppsala University

learning and statistical techniques for anomaly detection. A single model
will at the end be chosen, based on different performance metrics, to repre-
sent the data and be used in the detection of possibly anomalous trades.

The data used, once filtered down to spot and outright transactions only,
is highly volatile. This volatility will be of importance when applying differ-
ent machine learning and statistical models, and analysing their efficiency as
well as precision.

The dataset that is being used is one that has previously been procured
internally at SEB. Initially the data is collected from different sources and
stored in a central database. Then, the data is procured into the desired
business objects. The aim with this project is to implement a method for
anomaly detection, which flags questionable transactions within the already
procured dataset for further review by a specialist in the field. In other
words, the model is to identify transactions that show behaviour significantly
different from the norm based on different input variables.

As there are no clear-cut thresholds that specify a trade as nominal or
anomalous as would be the case within for example, a manufacturing en-
vironment, the aim is to discover what rules are capable of pointing out
anomalies and subsequently, which trades to be further investigated. Within
a manufacturing environment, a specific part will have set thresholds so as to
fulfill a specific criteria and purpose e.g. a bolt fitting on a screw. By nature,
transactional data can fluctuate immensely between different time frames,
making it difficult to find overall trends and to identify if a data point is in
fact anomalous or just an unusual transaction. Transactional data therefore
needs more complex and flexible rules to identify anomalies than other types
of data. Assuming the model tasked with this has detected one or more data
points as anomalies, a second goal of this thesis is to understand why it did
so in more detail. Do the data points classified as anomalies have a common
input feature? Is there a correlation between an anomaly and the size of a
transaction? Or the type of transaction?

To achieve this, a number of different models for anomaly detection are
tested on the same dataset and their performance measured. Both a statis-
tical model and a machine learning model are investigated to achieve this.
Firstly, the Auto Regressive Integrated Moving Average (ARIMA) is tested,
using an anomaly detection technique based on forecasting future values and
using this to set a threshold by which anomalies are found. Two different
threshold techniques will be investigated for this method. Secondly, and
under the assumption that the statistical model will not perform to a sat-

2

Uppsala University

isfactory level due to the volatile nature of the dataset and its simplicity, a
neural network in the form of an autoencoder is used. An autoencoder uti-
lizes an unsupervised approach and learns the data representation by training
the model to ignore noise.

The overarching goal therefore is to first build and select an automated
input-output model to identify anomalous data points, and then to under-
stand these models.

3

Uppsala University

2 Background

So as to be able to delve into anomaly detection within the financial sector,
a few concepts and terms need to be identified and explained.

2.1 Anomaly

An anomaly can be defined as any data point that deviates significantly
from the expected. According to [22], anomaly detection is a method of
understanding whether or not a system is behaving in an expected manner
or if there are unusual behaviours that should be investigated further by an
expert in the field.

As previously mentioned, within FX trading, it is difficult to define a
transaction as anomalous or not. There exist no clear guidelines as to what
an anomaly looks like within that concept. A transaction may be anomalous
if the traded volume is significantly larger than expected, or if the time the
trade occurred is outside of trading hours. There are many scenarios in which
a transaction could be seen as anomalous, but there is no single guideline or
threshold which classifies transactions as such.

Statistical techniques and/or domain expertise will therefore be leveraged
to evaluate whether data points classified as anomalous, are in fact anoma-
lous.

2.2 Time Series

The type of data that is dealt with throughout this thesis is that of a multi-
variate time series. A time series describes a dataset that is measured over a
period of time, most often in the form of an ordered sequence that is uniformly
spaced in time. A multivariate time series, is a series with multiple input
features. In this case, the trading data is collected continuously and in real
time, and is timestamped in the dataset. The data is aggregated per trading
day or per input features selected for the different models. The dataset used
spans over several years and will be the same for both models. Time series
data enables the visualization and analysis of trends within the dataset. The
dataset is curated and processed further for each method applied, so as to
meet the required input structure for each model. A time series can be sta-
tionary or non-stationary, determining whether or not the data shows any

4

Uppsala University

trends and/or seasonality. This is of particular importance when using the
ARIMA model, and will thus be investigated further in section 4.2.1.

As previously described, the time series used for this analysis is that of
a multivariate one. For the statistical method used however, only a single
variable will be used, namely, that of volume. Therefore, for the ARIMA
model, the time series will consist of days (time) on the x-axis and volume
(monetary) on the y-axis. A partial representation of this can be observed
in figure 1.

Figure 1: Example of time series

The x and y axes are omitted from view in figure 1, and will be throughout
this report to comply with data privacy restrictions.

2.3 Financial Data

The dataset worked with is one that contains detailed information about
individual trades. A single trade has the following properties associated with
it:

• time and day of trade

• currency pair

• volume (monetary value)

• financial instrument

• customer

5

Uppsala University

This thesis will focus solely on the financial instruments of spot and out-
right trades [8] as mentioned previously. A spot trade is the exchange of
a currency pair at a rate which was agreed at the trade time. A spot is
typically delivered within one to two business days [17]. Outrights, on the
other hand, belong to the FX forwards market. An outright trade is one
where a currency pair is exchanged at an agreed upon rate but the delivery
takes place on a specified date in the future. All financial instruments other
than the two mentioned previously will thus, for the purpose of this thesis,
be excluded from the data and its analysis.

2.4 Problem Statement

Within the field of finance, there exists a vast quantity of structured data
that, in addition to describing the current market state, also describe the
transaction events committed to in said market. A transactional event is
described as a ”transaction”; exchange in monetary form carried out by a
customer through the bank, in this case SEB. The thesis will focus on the
foreign exchange department at SEB and its data. This data is stored in a
central database. To transform transactional data to business objects, the
data needs to be curated and put into context. The aim of this thesis is to,
by means of anomaly detection, identify situations where the data deviates
from the norm. This could, in part, be due to the procure process failing,
which would create output that would differ in character from what is to
be expected based on the input data. Alternatively, it could also just be an
anomalous trade. The data worked with will be in the form of an already
procured dataset.

As a first step, a data model for the input data (curated data) needs to
be created. This is done by investigating a number of different statistical
and machine learning algorithms, testing them with the transactional time
series data, and analyzing their performance. Due to the nature of transac-
tional data, high volatility and random peaks can become an obstacle. The
algorithms explored are the ARIMA model, with both a static and dynamic
threshold, as well as a neural network in the form of an autoencoder that
aims to reconstruct the input to identify anomalous data (which cannot be
reconstructed well). With ARIMA, using a supervised approach, the out-
put will be in the form of a binary label, which classifies each trading day
(aggregated) as anomalous or nominal based on its one dimensional input
(volume). This also means that to use the ARIMA model, the dataset first

6

Uppsala University

needs to be labelled based on an agreed upon criteria or threshold, making
this a two step process. Using the autoencoder takes a slightly different ap-
proach, namely, that of unsupervised machine learning. The neural network
will have as input multiple variables such as volume, currency pair and media
type used, and will then attempt to identify possible anomalies.

A secondary step and an extension to what was described above will be to
understand detected anomalies and identify whether any of the input features
show a pattern by which anomalies arise. The aim in this step is to identify
where an anomaly comes from and to be able to isolate it and understand
why it was classified as an anomaly. It is also valuable to analyse the various
input features in the case of the autoencoder, to catch a possible trend.

7

Uppsala University

3 Related Work

The use of statistical and machine learning models for anomaly detection is a
common field, utilized in many different industries. This section will discuss
a number of related works within fields outside the financial industry and
discuss their approaches and similarities with this project.

3.1 Anomaly Detection by Forecasting

One method for finding anomalies within time series data is to predict future
values based on a historical dataset, calculate the difference between these
predictions and the historical data (ground truth), and create a new threshold
parameter based on which data points will be classified as anomalous or
not [2]. This is the flow the Auto Regressive Integrated Moving Average
(ARIMA) model uses in machine learning. In fact, ARIMA is one of the most
widely used time series models [25]. While traditionally used as a statistical
forecasting technique, ARIMA has more recently, also been used as a means
of anomaly detection.

One example where the model has been used to detect anomalies outside
the financial industry is within network management systems e.g. within the
operation of IP networks. In [18], the ARIMA model was used for the charac-
terisation of traffic within a network segment and the detection of anomalies
based on volume. The model was used to measure network traffic and predict
possible future values and the differences between predicted values and the
real data was used to detect deviations which could be indicative of anoma-
lous data. The study concluded that ARIMA was successful at classifying
network traffic as anomalies and highlighted its strength in not requiring
previous knowledge about anomalies to successfully detect them [18].

Similar to this, an ARIMA model will be tested on a single dimensional
input in a time series format. The data used will initially be labelled as
anomalous or nominal, and therefore will follow a supervised machine learn-
ing path.

3.2 Anomaly Detection by Neural Networks

The second method that will be explored in this project is the use of a neural
network model to detect anomalies. Specifically, we will look at the use of
an autoencoder that aims to detect anomalies by setting a reconstruction

8

Uppsala University

threshold during training. The idea of an autoencoder is that the model
deconstructs the input with an encoder and then subsequently attempts to
reconstruct it with a decoder (output). If an error arises during reconstruc-
tion; the reconstructed value differs from the input data, this is measured and
used to select a threshold. Then, if a data point is tested and has a recon-
struction error above the threshold, it will be labelled an anomaly, otherwise
it is considered a nominal data point.

In [12], the use of a variational auto-encoder was investigated for anomaly
detection of a multi-dimensional time series [12]. A variational autoencoder
differs slightly from a traditional autoencoder in that it is regularised dur-
ing training to avoid overfitting. The focus in [12] was on creating a robust
model, not influenced by noise. As the model is trained on data that contains
anomalies, a variational smoothness regularizer was used to improve robust-
ness by penalizing output that was ’non-smooth’. The study concluded that
the variational auto encoder performed very well, in additional to several
variations of the autoencoder.

Another example where an autoencoder was used to detect anomalies is
in a study entitled Anomaly detection of defects on concrete structures with
the convolutional autoencoder [4]. In this study, the input the model was
trained on was in the form of defect free images of concrete. The autoencoder
therefore learned to detect faults within concrete surfaces based on images.
The encoder is able to extracts features from the input images, while the
decoder reconstructs the input from those features.

As with the examples mentioned throughout this section, this thesis aims
to train an autoencoder to detect anomalies. The input will be in the form
of a multi-dimensional time series, and an unsupervised machine learning
approach will be followed.

9

Uppsala University

4 Supervised Machine Learning with ARIMA

The dataset used in this thesis is originally unlabelled. This means that
within the data, there exists no variable that indicates the state of a trading
day (single trade) as being either nominal or anomalous. To turn the dataset
into a supervised one, domain expertise is leveraged. A point threshold
technique is applied to classify the dataset. The method is explored, and
discussed in more detail in section 4.1.1.

Supervised machine learning refers to the training of, in this case a clas-
sifier, based on labelled historical data. Due to this, a model’s accuracy and
other metrics can be measured as it learns over time [6]. The supervised
dataset will be used for the ARIMA model and will thus have labelled inputs
in the time series data to work with.

4.1 Data Preparation

The dataset used is made up of millions of rows of financial trade data,
spanning over several years. For the ARIMA model, only the traded amount
(volume) will be used, creating a one-dimensional input. The exact details of
the data will remain undisclosed throughout to comply with privacy measures
and for competition purposes. The data is readily available for use and no
data collection was required for the purpose of this thesis.

To use the data however, data pre-processing had to be performed. It
was also filtered to exclusively include the deal types spot and outright as
explained previously. The data pre-processing steps followed, are explained
below:

1. Aggregation by day: The dataset was modified to sum up trade volumes
and aggregate them on a daily level.

2. Log-normal transformation: Transformation was used to reduce the
skewness of the dataset [24]. Most models will require the data to be
either standardized or normalised so as to be deemed a good input.
Transactional data spans over a number of magnitudes and follows the
so called power law, indicating that most transactions are rather low,
but then there are a few very large transactions as well in the dataset.
By using the transformation, the difference between these is reduced.
To perform transformation on the data, the logarithm is applied to

10

Uppsala University

each data point as in the example in equation ((1)). Assuming the
data points 105 and 106, and using the logarithmic equations:

log 10n = n log 10 (1)

The data points are transformed and the difference 106 − 105 is scaled
down to 6− 5.

3. Absolute volume: In the dataset, volumes can be positive or negative,
representing the inflow and outflow of monetary transactions respec-
tively. For ease of use and visualization however, the trading volumes
were calculated as absolute values.

4. Classification of the dataset: Classification creates labels that mark the
transactions as anomalous or non-anomalous (nominal). These labels
will then be used as the ground truth on which the algorithms will be
run. This enables the use of supervised machine learning techniques.
The method used to label the dataset entails the use of a static point
threshold, based on a statistical value that will act as a limit and any
point above that is classified an anomaly. The process is explained
further in the section that follows.

4.1.1 Data Annotation

Point Threshold

As mentioned previously, the dataset dealt with is an unclassified one.
Namely, nothing within the data indicates whether or not a data point is an
anomaly as the data is not labelled. To work with the models, and also to
be able to compare the results of the anomaly detection algorithm, a point
threshold was applied to the dataset. More specifically, the Turkey
threshold technique was implemented: Given a time series t, with data
points T1, T2, T3, ...Tn, the data is separated into four quartiles Q1...Q4,
based on increasing volume. Then, an upper threshold to identify anomalies
is set to Q3 + 3 ∗ IQR, and the lower threshold is similarly set to
Q1 − 3 ∗ IQR. Where IQR stands for the inter quartile range; |Q3 −Q1|.
All observations that fall above the upper, or below the lower threshold, are
then labelled an anomaly [22]. Once this was applied, the dataset labelled a
number of data points as anomalies which from now will represent the true
anomalies.

11

Uppsala University

4.2 Data Analysis

As an initial step, the dataset worked with had to be analysed. In this
step, the data was investigated for being stationary. A stationary dataset or
time series is one where the mean, standard deviation and other properties
do not depend on the time at which the data is recorded. Instead, these
properties remain relatively equal throughout, thus not leading to specific
data trends or seasonality. This is of importance when using the ARIMA
model as there is a differencing parameter that needs to be applied to the
data in case it is non-stationary for the algorithm to work successfully. To
determine whether the time series used was stationary, two methods were
used: Firstly, a visual inspection of the data’s auto correlation was observed.
Secondly, the Augmented Dickey-Fuller (ADF) test was applied [10].

4.2.1 Determining Data Stationarity

Autocorrelation Function and Partial Autocorrelation Function

Through the visual inspection of the time series’ autocorrelation functions,
it is possible to draw conclusions on the state of stationarity. Correlation is
how strongly two data points relate to one another. Autocorrelation follows
the same principle, but is compared between variables and themselves. To
determine whether the time series is stationary, and thus constant over time
we therefore compare a data point with a lagged or delayed version of itself.

The mathematical formula to calculate autocorrelation is as follows:

ck =
ΣN

t=k+1(yt − ȳ)(yt−k − ȳ)

ΣN
t=1(yt − ȳ)2

(2)

where for time series y, N is the number of data points in the time series
(length) and k the lag. Hence, if the time series has a lag of 1, yt−1 and yt will
be one, indicating they are identical. Thus indicating that the time series is
stationary. In addition to the autocorrelation function (ACF), a partial auto
correlation function (PACF) can also be calculated. PACF, as opposed to
ACF, at lag k represents the autocorrelation between ytt and yt−k.

12

Uppsala University

Figure 2: ACF plot of time series

Figure 2, visualized the autocorrelation of the time series. It can be
observed that the correlation starts at 1 as lag is 0, and then moves towards
zero with increasing lag values, indicating a stationary dataset.

Figure 3: PACF plot of time series

13

Uppsala University

Similarly, in figure 3 PACF is shown to also move towards zero indicating
stationarity. Both visualizations helped in the assessment that no trends or
seasonality can be observed. To further strengthen the argument that the
data is stationary, an ADF test was carried out.

Augmented Dickey-Fuller Test

The ADF test is a unit root test for stationarity [21]. This test investigates
the coefficients associated with the first lag in a time series. If it is one,
then a unit root exists and the time series is stochastic i.e. non-stationary.
The test aims to measure whether the coefficient in question is equal to one
or not. ADF was calculated using the pandas and statsmodels python
libraries and the results displayed as shown in figure 4.

Figure 4: ADF Results

It can be observed that the p-value of 0.000000 is far less than the
significance level of 0.05 leading us to reject the null hypothesis of the
coefficient being equal to one [16], thus the time series is stationary. As
both looking at the auto correlation functions and the augmented
Dickey-Fuller test indicate that the time series is stationary, the ARIMA
model will thus have a differencing term d of 0.

4.3 Evaluation Metrics

To evaluate the models and their variations, a number of metrics are to be
calculated. Precision, recall, and F-score are all the metrics by which the
models were evaluated.

The precision of a model, is defined as the ratio of True Positives (TP)
over the sum of TP and False Positives (FP) as shown in equation (3).

Precision =
TP

TP + FP
(3)

14

Uppsala University

Recall on the other hand, is defined as the ratio of TP over the sum of
TP and False Negatives (FN) as shown in equation (4).

Recall =
TP

TP + FN
(4)

Finally, the F-score is defined as the harmonic mean between precision
and recall, which represents a balance between the two aforementioned met-
rics and can be calculated as shown in equation (5).

F − score =
2× Precision×Recall

Precision+Recall
(5)

All these metrics were applied to the dataset comparing the true values
i.e our original dataset and the final predicted data points. If an anomaly
in the original dataset was classified the same using the model, then this
would represent a TP point. Similarly, a data point labelled as normal in the
original dataset would be counted as TN if it was classified the same with
the model. An FP is when the model classifies a point as an anomaly, while
it is in fact a nominal point in the original dataset. The same logic applies
to FN.

4.4 Model 1: ARIMA

The Auto Regressive Integrated Moving Average (ARIMA) model, is classi-
fied as a atheoretical linear forecasting algorithm; it is oblivious to underlying
structures and theories, with the exception of those that cause repeated pat-
terns or trends [19]. As it is linear in nature, this translates to the model
capturing the linear dependency of future (to be predicted) values, based
on the available, historic data. The model is composed of three parameters
namely, p, d and q, which represent the Auto Regression (AR) component,
the order of integration (I) and the Moving Average (MA) component respec-
tively. The aim is to use the ARIMA model to predict data points, and see
if they differ from what is expected. Then, the errors between the real and
predicted values will be calculated and used to define a threshold for anoma-
lies. This section will investigate both a static and a dynamic threshold and
compare how well these work in classifying anomalies in the time series.

15

Uppsala University

4.4.1 Methodology

ARIMA combines autoregression with a moving average methodology. To
start off, the autoregression part can be mathematically modelled as seen in
equation (6). The auto regression part of the model, follows the principle of
regression for a time series Y, making use of historical values. The parameter
p which relates to the autoregression, determines how much lag is to be used
within a model. An AR(3), and assuming all other parameters are zero, would
result in an ARIMA(3,0,0) order [5].

Yt = c+ ϕ1yt−1 + ϕ2yt−2 + etϕ3yt−3 + et (6)

where ϕ indicate model parameters. In a broader sense, autoregression is
a statistical technique in which linear predictions are made based upon the
linear combination of previous values, a common analysis method within
signal processing [14].

Moving average on the other hand, is a method that enables the tracking
of trends within a time series and it is an established method, celebrated
for its robustness and objectiveness [11]. In ARIMA, the moving average
is used as a measure of error. The parameter q therefore, determines how
many terms to include in the model, in combination with previous error
terms et. Following a similar mathematical reasoning as above, MA(q) can
be represented as in (7) [5].

Yt = c+ α1et−1 + α2et−2 + α3et−3 + ..+ αqet−q + et (7)

The final part of the ARIMA model is for the data to be integrated I(d),
where the parameter d represents the degree of differencing. Differencing
simply means that we subtract the current data point from a previous one d
times. Similar to standardization, differencing helps stabilize the data when
it is non-stationary. As this data is deemed stationary, the expected best
parameter value is zero. The model assumes a non-seasonal time series.

4.4.2 Model Parameters

As mentioned above, ARIMA works with three parameters p, d and q. These
in turn, determine the AR, differencing and MA components of the model
respectively. How to set these parameters to best fit a data series, is one of
the challenges of ARIMA [7]. There are no real limitations on what value
the parameters can take, other than that they should be positive integers.

16

Uppsala University

Parameter d is expected to be zero, but to find the optimal parameter values
for all three parameters an optimization grid search is used. To do this, the
auto arima function from pmdarima’s python library is used. This performs
a grid search for the parameters p and q. The maximum values of the positive
integers tested are 5, 2 and 5 respectively. Each parameter was set in a range
between 0 to its maximum, then the algorithm runs through a loop, trying
all possible combinations, and calculating a metric called Akaike information
criterion Aic. The combination of parameters with the lowest Aic value is
the preferred one. To find all possible combinations for the three parameters,
and by the law of multiplication, the time it takes for the model to execute
increases polynomically. In this case however, limiting the values to integers
larger than 0 and smaller than the maximum values of 5, 2 and 5 respectively,
is a simple way to find the parameter values that show the best Aic value.
Since this only needs to be performed once, the grid search optimization has
little effect on the overall complexity of the method. The parameters once
chosen, are recorded in the format ARIMA(p, d, q).

4.4.3 AIC as a Measure

The Akaike Information Criteria (Aic) is a common statistic used to measure
the goodness of fit of a model. While it can be used to compare different
models, here it was used to find the best possible parameter combination.
The lowest aic is considered to be closer to the actual data, and thus preferred
[15]. Calculating the Aic does not affect model complexity to a significant
extent. As the optimization of parameters is carried out prior to the appli-
cation of a static or dynamic threshold, the Aic value will be constant for
both threshold methods. Aic is calculated from the maximum log-likelihood
of the model as well as its parameters (k). The log-likelihood equation as
well as the subsequent Aic calculation can be observed in equations (8) and
(9) respectively.

L(θ) = Πn
i=1fi(yi|θ) (8)

Aic = −2L(θ) + 2k (9)

17

Uppsala University

4.4.4 Static Threshold

After the ARIMA model was run and the optimal value for parameters p, d
and q were found based on their combined Aic score, the next step is to use
the predicted values generated by the model and calculate a new threshold
value based on the prediction errors that occurred. One approach to this
is to calculate a static upper and lower threshold value, which will remain
constant throughout the time series. This follows a similar approach to what
was presented in section 4.1.1, where using the Turkey point threshold, we
defined a threshold value. First, the prediction error was calculated for each
point, being the difference between the actual value and the predicted value.
The mean value of the prediction errors was then calculated as shown in (10).

µ =
1

N
∗ Σ(ŷ − y) (10)

Where N denotes the number of data points, ŷ denotes the predicted values
and y the actual values.

The standard deviation was calculated in a similar manner as shown in
equation (11).

σ =

√
1

N
∗ Σ(y − ŷ)2 (11)

Once the mean and standard deviation of the prediction errors were cal-
culated, the upper and lower thresholds were formulated as in equations (12)
and (13) respectively.

Threshold Upper = µ+ 3× σ (12)

Threshold Lower = µ− 3× σ (13)

As the threshold values are static in this approach, they will be used
across the entirety of the time series, and any value that falls above the
upper threshold, or below the lower threshold will be flagged as a possible
anomaly.

18

Uppsala University

4.4.5 Dynamic Threshold

As a second method, a dynamic threshold was applied. The difference be-
tween a dynamic and a static threshold, is that the dynamic threshold takes
into account n data points, and re-calculates the threshold throughout the
time series based on a specified number of data points. The number of data
points considered, are based on a parameter named window size, which de-
termines n. The prediction errors were calculated in the same manner as
they were calculated for the static threshold as ŷ− y. Instead of using those
prediction errors in equations (12) and (13), and obtaining two threshold
values that are used throughout the entire time series, a more complex ap-
proach is used. Firstly, a window size had to be chosen. To do so, the data
was investigated for time sensitivity. As the model needs to be sensitive to
detect anomalies, a small window size means a higher responsiveness to data
changes. Additionally, as the data entails rapid changes, a small window
size is better fit to capture these dynamics. After trial-and-error, the most
suitable window size was found to be 9. Therefore at each step, 9 data points
will be taken into consideration while performing calculations. If the data
points within our time series are represented as

X = x1, x2...xn

where xi represents the value at time i for all n data points. Then, the mean
value µ for each window of size t is shown by equation (14) below.

µi =
1

t
∗ (xi + xi−1 + ...+ xi−t+1), ∀ i ϵ {t, t+ 1, ..n} (14)

The standard deviation for each window is calculated using equation (15)
below. Here, the standard deviation is computed within each window, using
only the data points that fall inside that window. The standard deviation is
in this case therefore a measure of variability for a subset of the time series.
Additionally, it can be observed that the standard deviation here takes into
account the mean value of the window t and recalculates it at every iteration.

σi =

√
1

t
∗ Σ(xi − µi)2 (15)

19

Uppsala University

Once the mean and standard deviation of the prediction errors were cal-
culated, the upper and lower thresholds were formulated as in equations (16)
and (17) respectively. It is important to keep in mind that as opposed to
the static threshold where one threshold value was generated for each of the
upper and lower thresholds, the dynamic approach sees threshold values for
each data point.

Threshold Upperi = µ+ 2× σ (16)

Threshold Loweri = µ− 2× σ (17)

As we obtain a series of threshold values, that change over time in accor-
dance to the data at that point in time, each data point is compared to the
threshold value at the same point in time, to determine whether or not it is
anomalous. A difference between the two thresholds is that while the static
threshold was calculated using 3σ, this was too high a value for the dynamic
threshold and therefore it was lowered to 2σ.

To visualize the difference between a static and dynamic threshold based
on the prediction values as incurred by the ARIMA model, figure 5 shows an
example.

Figure 5: Static vs. Dynamic Threshold

The static threshold as shown in figure 5 in green, is constant throughout
the duration of the time series. The dynamic threshold (red) however, con-

20

Uppsala University

stantly changes in correspondence to both the mean and standard deviation
having been recalculated for each window.

21

Uppsala University

5 Unsupervised Machine Learning with an

Autoencoder

As opposed to supervised machine learning and the anomaly detection ap-
proach discussed in the previous section, we now look at a method that falls
under unsupervised machine learning. That is, the dataset used will be the
original, without initials labels (anomaly/nominal). It is named ’unsuper-
vised’ because the algorithms learn patterns from the data without human
interaction [6]. With the use of a neural network, and more specifically an
autoencoder, the model is trained using the same dataset as before (unla-
belled), but with additional input features. Here, we use not only volume as
the input variable, but also the currency pair traded, the deal type, and the
media type used. Using a multi-dimensional input also means that the data
had to be prepared accordingly. Categorical features were encoded to fit the
structure required to feed it into a neural network.

5.1 Data Preparation

As before, the dataset used represents millions of rows of financial trade
data, spanning over a number of years. The now multi-dimensional dataset
is readily available through the central database and only needs to be mined
so as to be used. As before, the input variable volume was transformed to
log normal using equation (1).

The second input variable is the currency pair for which a trade was
carried out. This is reported in the form USD/SEK, where the leftmost
currency represents the base currency and the rightmost currency represent
the so called quote currency. When a trade is to be carried out, the quoted
price determines how much of the quote currency is to be exchanged for a
single unit of the base currency. So as to use this as an input variable to
the autoencoder, the data was grouped into the three major currency groups
and integer encoding was applied as discussed in section 5.1.1.

The third input variable is deal type, referring to the types of trades that
were carried out. Similar to the first approach, the dataset was filtered to
include only spot and outright trades. The data was binary encoded as in
section 5.1.2.

The last input is the media type. This refers to what sort of system/
channel or simply medium was used to carry out the trade. The exact names

22

Uppsala University

and details of such will remain undisclosed as they are internal to SEB. For
this variable, one-hot encoding was used as discussed in 5.1.3.

So as to train the neural network properly, validate it and test is on
different subsets, the data was split into a train, validate and test set after
data preparation but before it was used with the model. Section 5.1.4 goes
into more details about this process, how large each dataset was and how the
data was subsequently used.

5.1.1 Integer Encoding

Integer encoding is a fairly simple process in which categorical values can
be converted to integers. Each category is assigned a unique integer that is
kept constant throughout the whole dataset. A major drawback for using
this method however, is that it can lead to the model assuming a relationship
between the different categories.

As a first step however, the currency pairs were grouped into three cate-
gories. Namely, Scandies, Majors and EM which represent the three major
currency pairs. The Scandies represent the Scandinavian currency crosses
which include SEK, NOK, or DKK. Majors on the other hand represent the
major pairs of the most developed and largest economic countries. EUR,
AUD, CHF, GBP, JPY, NZD, CAD and USD make up the majors category.
The last category EM stands for ”Emerging Market” and represents the up-
and-coming currencies of developing countries. This includes the currencies
CNH, CNY, CZK, HKD, HRK, HUF, IDR, INR, KRW, MXN, PLN, RUB,
SGD, THB, TRY, TWD as well as ZAR.

One thing to note about integer encoding is that it retains ordinal re-
lationships, meaning that if the categories ”Basketball”, ”Ice Hockey” and
”American Football” are encoded as 1, 2, 3 respectively, the model assumes
that ”Basketball” is closer to ”Ice Hockey” than it is to ”American Football”.
This in turn, can lead the model to make biased estimates and lead to poor
performance in machine learning. It is also referred to as ordinal encoding.

In this case however, as there does exist a natural relationship between
the three currency groups, it was used nonetheless. The encoding was done
by simply mapping all ”Scandies” trades with integer value 0, Majors with
value 1 and EM with value 2 as shown in table 1.

23

Uppsala University

Day CCY Pair Majors Integer Encoding
01.01.2023 USD/SEK Scandies 0
01.01.2023 EUR/CHF Majors 1
01.01.2023 ZAR/SGD EM 2

Table 1: Integer Encoding Example

The grouping is based on a hierarchy; if either of the currencies in the
currency pair belong to Scandies, Majors or EM (in that order) they will be
grouped accordingly. As seen in table 1, the pair ”USD/SEK” was grouped
into Scandies due to the presence of ”SEK” which is a Scandie currency.

5.1.2 Binary Encoding

Similar to integer encoding, binary encoding works by translating categories
into unique integers. The obvious difference being that with binary encoding,
the only integers that can be assumed are 0 and 1. As we have filtered the deal
type to include only spot and outright trades, we can use binary encoding
for this. All spot trades assume value 0 and outrights take on 1. Keeping the
encoding to single digits means only one column to pass through the model,
which reduces the memory required to run it. Table 2 shows an example of
this.

Day Deal Type Encoded Deal Type
01.01.2023 Spot 0
01.01.2023 Spot 0
01.01.2023 Outright 1

Table 2: Binary Encoding Example

5.1.3 One-Hot Encoding

The dataset used, has up to 147 different media types. Different subsets
of the data have different media types and thus different numbers of media
types used for trades. To feed this into the autoencoder, one-hot encoding is
performed on the data that holds the media type value. One-hot encoding,
converts categorical data into integers of binary value 0 or 1. If a feature is
present in a column, then to be represented by that column it receives value
1 which serves as the index, otherwise it gets assigned 0. To illustrate this,

24

Uppsala University

an example is shown in table 5.1.3. Assuming the category ”Cat Name” and
two entries ”Enzo” and ”Dobby”, then the one-hot encoded values will look
like this.

Enzo Dobby
1 0
0 1

Table 3: One-Hot Encoding Example

For each entry/category, a new column is added which is indexed by the
value of 1, and the remaining cells filled in with 0s. As there are dozens of
different media types, this increased the size of our input model substantially.
To deal with the size of the dataset, generators and best practices were put
into use as a memory problem arose whilst running it. This is however,
discussed in more detail in section 5.2 that lays out the methodology and
exact process used.

5.1.4 Train, Validate, Test

As is standard practice for most machine learning models, the data used was
split into three sections. Train, validate and test serving the purpose of train-
ing the model and fine tuning model parameters, validating the previously
trained model on new data, assessing its performance, and testing the model
on new and unseen data respectively. The data was split in an 85%, 10% and
5% way making up the train, validate and test sets respectively as shown in
figure 6.

Figure 6: Data Split Proportions

25

Uppsala University

The end result is three separate datasets, stored using panda’s dataframes
that consist of hundreds of thousands of rows of data, as well as 128 columns
which represent the input variables discussed in this section, now all in integer
form.

5.2 Model 2: Autoencoder

5.2.1 Neural Networks

A neural network, is a machine learning algorithm that computationally
learns a solution to a problem from a set of inputs, that represent examples
[3]. Mathematically, neural networks can be looked at as non-linear functions
that transform a set of inputs into a set of outputs. This transformation is
overseen by a set of parameters or weights that are learned during model
training. The training part is the most computationally exhaustive, as the
parameters are mapped and calculated. Training is usually accompanied by
a learning function (loss function) that will decide which weights are most
optimal. The ideology of neural networks was taken from human biology
and the nervous system. In particular, the way all the neurons in the brain
function together to understand inputs acquired by human senses.

A neural network typically consists of an input layer, one or more hidden
layers and an output layer. A model with a single hidden layer, can be
represented as in figure 7. Here, x represents the input, h is the activation
function which transforms inputs, w and b are the weights and bias associated
with the neuron respectively. Furthermore, q represents the transformed
inputs which are now input for the hidden layer, again associated with weights
and bias. Finally, f represents the model output.

Figure 7: Neural Network with 1 hidden layer

The network structure for this model showing the three layers, input
hidden (one) and output can be visualized as in figure 8.

26

Uppsala University

Figure 8: Neural Network structure [13]

The accompanying mathematical expressions for each of q and the func-
tion output f are shown in equations (18), and (19) respectively.

q = h(W 1x+ b1) (18)

f(x; θ) = (w2)T q + b2 (19)

Once a neural network is trained using the training dataset, it is usually
validated by running it with new data and assessing its performance (valida-
tion dataset). This is done by observing a loss function and how it behaves
as the model runs, in comparison to the metric value from the training set.
Based on this, further adjustments are made to the model. Only once the
model is fully trained, is it exposed to the test dataset which contains data
the model has not yet seen. This will be discussed more thoroughly in section
6, discussing the outcomes.

5.2.2 Autoencoders

For the purpose of anomaly detection, a neural network by the name of au-
toencoder will be tested. Autoencoders are a form of feed-forward neural
networks. Feed-forward in the context of neural networks means that the
information within the network only travels in one direction, namely from
input to output. Data can pass multiple hidden layers, but never create a

27

Uppsala University

cycle. These networks are also called non-recurrent networks. The idea be-
hind autoencoders, is that they can deal with highly dimensional inputs and
discover low-dimensional representation of those. An autoencoder is made
up of two main parts, an encoder which performs dimensionality reduction
on a high-dimensional input and transforms it into low dimensionality. It
also consists of a decoder, which then turns the now low-dimensional data
into high-dimensional data, i.e reconstructs it. This process is visualized in
figure 9.

Figure 9: Autoencoder structure [23]

In this case, an autoencoder is used to detect anomalies. The input data,
is assumed to be made up of almost exclusively non-anomalous data. This
means that the autoencoder is trained on and learns to recognize normal or
nominal behaviour. Since the autoencoder now is capable of reconstructing
normal data, whenever an outlier is seen by the model, it will struggle to
reconstruct it. Due to this, the reconstruction error will be high and the
reconstruction will not resemble the input. Subsequently, a threshold for the
reconstruction error can be set, and used to define anomalies within the data.

5.2.3 Model Parameters

The modeling of the autoencoder was done using the Keras library from
Tensorflow. First, a function was established to create time steps from the
training and validation data, to feed into the sequential autoencoder. The
time step size was set to 20. By doing so, the input shape was transformed
to (x, 20, 128) for the training data and a similar structure for validation.
Then, a convolutional reconstruction autoencoder is built using the aforemen-
tioned library. The input shape is in the form (batch size, sequence length,

28

Uppsala University

num features), and since it’s an autoencoder, the output will assume the
same shape [20]. This translates to sequence length being equal to 20 and
num features to 128. This builds a model with 37,953 trainable parame-
ters. The exact model specifications, showing the layers used and with what
shapes, can be observed in figure 10.

Figure 10: Autoencoder parameters

29

Uppsala University

The model was built using ’ReLu’ as the activation function and ’MSE’
or the mean square error as the loss function. Within a neural network, the
activation function transforms the inputs of a node, introduces non-linearity
and outputs the input as is if it is positive, or as zero otherwise. ReLu stands
for Rectified Linear Unit and can be represented as in equation (20).

f(x) = max(0, x) (20)

Equation (20) can be written as equation (21) to show the outputs de-
pending on the input values.

f(x) =

{
0, if x < 0

x, if x ≥ 0
(21)

While ReLu is nowadays one of the most widely used activation functions,
one obvious drawback to it however, is that any negative input values will be
output as zero. As the input is all positive integers in this case, this does not
create an obstacle and can be ignored. ’MSE’ stands for mean squared error,
and was chosen to be the loss function for this model. This is a measure
which calculates the mean of the squares of errors. Errors here, refer to the
difference in value between the predicted and actual values. The loss function
helps train the model and subsequently updates the neurons’ weights and
biases and is used to assess model performance. MSE is calculated as shown
in equation (22).

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (22)

Lastly the optimizer ’SGD’, stochastic gradient descent, was chosen, which
is the default optimizer and works by randomly selecting instances from the
training data and estimating the gradient of that.

As the data worked with was significantly large, so as not to run into
memory problems and enable the running of the model, a number of gen-
erators were used. This generator was used to yield batches of size 300
to feed as input to the autoencoder. Next, validation steps, epochs and

30

Uppsala University

steps per epoch needed to be set. Validation steps sets the number of batches
that are to be drawn before the validation is stopped at the end of every
epoch. Steps per epoch, is how many times a new batch can get trained
within a single epoch. As the generator yielding training data can yield 1400
batches of data, and we set epochs to 40, steps per epoch is calculated as
num gen train/epochs, resulting in 14 steps per epoch.

The model was then trained using the same data as both the input as
well as the output, since the aim is reconstruction. To evaluate the model,
and determine its performance the model’s learning curve for both MSE and
accuracy are looked at. To determine whether the model fit the data well, or
if it overfit or underfit the data, we look at figures 11 and 12. Underfitting
the data, would mean the model is incapable of learning the data well, while
overfitting means that the model learned the data too well, and is unable to
distinguish between real data and noise.

Figure 11: Autoencoder MSE

A learning curve investigating a loss, is referred to as an optimization
learning curve. A well-fit learning curve, indicates that the model is able to
learn from the data, but does neither overfit nor underfit. A good fit is ob-
served when training and validation loss decrease along epochs, but converge
at a point of stability without a complete overlap. In other words, there
should remain some minimal gap between them, also called a generalization

31

Uppsala University

gap. From figure 11, it is clear that training loss decreases to a point of
stability after around 75 epochs, and validation decreases to the same point,
leaving a small generalization gap. Therefore, we assume that the model
achieved a good fit and did neither under- nor overfit the data.

Figure 12: Autoencoder Accuracy

On the other hand, a learning curve looking at accuracy is referred to as a
performance learning curve as in figure 12. Training and validation accuracy
are near identical, indicating a well fit model.

32

Uppsala University

6 Results

This section will discuss the results and analysis of the models applied.
Note: the axes and concrete values of all figures will be omitted through-

out the report, due to the sensitive nature of the dataset and to comply with
SEB’s confidentiality agreement.

6.1 ARIMA

The ARIMA model parameters were optimized by utilizing a grid search that
found the best combination of parameters p,d and q. The lowest Aic value
was found with the parameter combination (1,0,4) as observed in table 4.

ARIMA(p, d, q) Aic
(1, 0, 4) 9643.587
(1, 0, 2) 9646.198
(2, 0, 1) 9646.345
(2, 0, 3) 9646.395
(1, 0, 1) 9647.005
(1, 0, 3) 9647.204
(4, 0, 1) 9648.021
(3, 0, 1) 9649.842
(2, 0, 2) 9650.988
(4, 0, 0) 9770.430
(3, 0, 0) 9829.038
(2, 0, 0) 9864.501
(1, 0, 0) 10015.186
(0, 0, 5) 10118.371
(0, 0, 4) 10192.834
(0, 0, 3) 10255.521
(0, 0, 2) 10364.213
(0, 0, 1) 10627.877
(0, 0, 0) 11064.429

Table 4: Optimal Parameters ARIMA

Therefore the ARIMA parameter order followed for the preceding steps for
threshold selection is in the form ARIMA(1,0,4). The fact that the parameter

33

Uppsala University

for differencing d is 0, is reasonable given it was determined that the time
series is stationary in previous sections. With these parameters, an ARIMA
model was trained and used to obtain prediction values.

Figure 13: ARIMA model True Values vs. Predictions. In figure (13), the
volume of all currency pairs is plotted as a time series. The ’ground truth’
data points are shown in blue. Based on the ARIMA(1,0,4) model applied,
the predicted values are shown in red.

As can be observed in figure (13 above, the predictions (red) generated by
the ARIMA model fail to capture the true nature of the time series exactly.
The model is unable to adjust to sudden peaks in the series and while the
model is capable of following the overall the trend, it is unable to match it.
As expected, this resulted in high prediction errors for both the static and
dynamic approach, the results of which will be discussed in more detail in
the next section.

6.1.1 Static Threshold

After the application of a static threshold, the threshold values were set at:

Upper Prediction Error Threshold: 17588.585
Lower Prediction Error Threshold: −17706.833

Table 5: Static Threshold Values

34

Uppsala University

One obvious drawback from using a static threshold with an upper and a
lower value, is that since the threshold does not reflect changes in the data,
leading to high errors for some data points, generally the spikes. This can
be observed in figure 14 below.

Figure 14: ARIMA model with Static Threshold Results.

Figure 14 shows the final outcome of the ARIMA model, after it was
used to create a new, static threshold for anomaly detection. As before,
blue indicates ’ground truth’. Red flags point anomalies and green signifies
strong or serious anomalies as identified by ARIMA. From figure 14, it can be
observed that those data points with the highest volumes, have been classified
a serious anomaly. This is a feasible outcome, given the only input values to
the model were based on the day of trade and its respective sum of trading
volumes. Therefore, the static model was able to capture all abnormally
large volumes traded in a day and flag them as anomalies, while also flagging
those with slightly higher than average volumes as possible anomalies.

Several metrics were applied to the model, so as to measure it’s perfor-
mance. The resulting values can be observed in table 6.

35

Uppsala University

Metric Value
Precision 0.727
Recall 0.375
F-Score 0.415

Table 6: Static Threshold Metrics

The precision value is quite high, but the remaining metrics including
recall and F-score are substantially low. As discussed in equation (4), recall
relates to the models ability to detect true positives. As the recall value is
low, there are a number of positives that were not caught. On the other
hand, precision as in 3 is related to how certain or credible the model output
is. Since precision is high, the model is to be believed. It can be said that the
model finds it unlikely for a point to be an anomaly, but when it flags one,
it does so with high reasoning. As can be seen in figure 14, the model does
catch the extreme outliers (shown in green) on both ends of the threshold
well based on the provided time step.

6.1.2 Dynamic Threshold

The calculation of a dynamic threshold based on a rolling window methodol-
ogy, resulted in an array of upper threshold values, as well as an array with
lower threshold values, a partial representation of which can be seen in figure
15.

Figure 15: Dynamic Threshold Values

36

Uppsala University

The threshold values (red) for the dynamic threshold with a rolling win-
dow change constantly. Figure 15 shows this together with the prediction
error (blue). A window size of 9 with a standard deviation of 2 was used.
A total of 1847 threshold values were recorded, in line with the shape of the
complete dataset.

As the time series evaluated is volatile in nature, the values of the thresh-
old range vary greatly as can be observed in figure 15. While the use of a
static threshold resulted in clear anomaly detection based on the absolute
volume alone, the dynamic threshold paints a very different picture. While
roughly the same data points were flagged as possible anomalies, with the
dynamic threshold method, most serious anomalies were found to be within
the centre of figure 16 below. This is due to the threshold being calculated
on a rolling basis.

Figure 16: ARIMA model with Dynamic Threshold Results.

Figure 16 shows the final outcome of the ARIMA model, after it was
used to create new, dynamic threshold values for anomaly detection. As
before, blue indicates ’ground truth’. Red flags point anomalies and green
signifies strong or serious anomalies as identified by ARIMA. As the dynamic
threshold is indicative on previous time steps, and takes into account the
trends followed throughout the time series, the results are feasible. Similar
to the static threshold, a number of metrics were calculated to evaluate the
method as seen in table 7.

37

Uppsala University

Metric Value
Precision 0.130
Recall 0.141
F-Score 0.138

Table 7: Dynamic Threshold Metrics

Similarly as observed in the static threshold method, the recall metric
scores very poorly. With a dynamic threshold however, precision also scores
low. This indicates that not only are the majority of anomalies (positives)
not caught, but the model is also unreliable in its certainty of when it does
catch an anomaly.

In conclusion, the ARIMA model with a static threshold, is able to cap-
ture some of the data points that were labelled an anomaly and does so with
high precision. The ARIMA model with a dynamic threshold however, fails
to classify most data points as anomalies that should be, and even then, does
so with low precision. While the static threshold model performed much bet-
ter, it still is not a good and feasible method to use within FX trading to
detect anomalies. Due to this, the more complex method of using a neural
network; namely an autoencoder to detect anomalies was employed. The
results of which can be observed in the following section.

6.2 Autoencoder

As the autoencoder was successfully trained, the next step was focused on
testing the model on a new and unseen dataset, determining whether it is
a suitable method for anomaly detection. This section discusses the results
obtained by using the autoencoder to detect possible anomalies on a test set.

6.2.1 Testing the Autoencoder

The main idea behind using an autoencoder to detect anomalies, is to estab-
lish a threshold based on the reconstruction error that will identify anomalous
data. If the model has trouble reconstructing a data point, that means that
not only has it not been seen by the model before, but its pattern is signif-
icantly different from others and the model is unable to reconstruct it to a
satisfactory level. This threshold was determined using the training data,
and the MSE that occurred during training as seen in table 8.

38

Uppsala University

Min Train MSE loss 0.003
Max Train MSE loss 4.804

Reconstruction Error Threshold 4.804

Table 8: Autoencoder threshold

Table 8 shows the reconstruction error values based on MSE that oc-
curred during training. The method applied to select the threshold value
that will determine whether a data point is an anomaly or not going for-
ward is to take the maximum error threshold value observed during training.
Therefore, when feeding new and unseen data to the model, if a data point’s
reconstruction error is higher than 4.804, then it will be classified as an
anomaly. The average reconstruction error of the train dataset was 0.022.
The test data was split from the original dataset as explained in section 5.1.4
and was fed as input to the autoencoder. With this threshold, and the test
dataset, no points were labelled as anomalies, as none of them had a recon-
struction error above the 4.804 threshold. This result is very plausible, given
we assume to have trained the autoencoder on almost exclusively nominal
data, and now have tested it with a dataset that spans over a few months. To
investigate the results of the model had it classified any data as anomalies,
the threshold is lowered as discussed in the following section.

6.2.2 Adjusted Threshold

Using the maximum value of the reconstruction error as the threshold value
is only one of many possible ways to set the threshold. Another method, can
be to use the maximum threshold as a starting point, and then lowering it
to analyse what happens with a lower threshold and the difference it makes.
Therefore, for the sake of analysis, the threshold was lowered to 4.3, and
any data point with a reconstruction error above that value was flagged an
anomaly. With the threshold lowered, there are 6 data points that were
flagged. As there is a multi-dimensional input to the model, visualizing it all
is not possible. Therefore, and to compare it with the ARIMA method, figure
17 shows only the input variable volume plotted on a time series. From the
figure, it is observed that the data points in blue are those that were used
to train and validate the model, while the data points in green represent
those from the test dataset. We can observe that the data point (green) that
showed the highest volume in the test data, was flagged an anomaly. For
visualization, the data was aggregated per day, but really the 6 points that

39

Uppsala University

were labelled an anomaly, all occurred on the same date, which is why only
1 point is flagged in the visualization in figure 17.

Figure 17: Autoencoder Results

6.2.3 Analysing Anomalies

Having identified a number of anomalous data points using an adjusted
threshold value, the next step is to analyse these points and determine
whether or not there exist any trends or commonalities between them. While
the autoencoder was successful in providing a reconstruction threshold and
classifying data points as anomalous or nominal, it is important to further
analyse these data points to determine whether a specific input feature com-
monly contributes to a data point being classified an anomaly. If for example,
a certain currency pair is flagged as an anomaly recurringly, or a specific type
of media, then this could be used to monitor these types of transactions more
closely.

The anomalies classified with the adjusted threshold therefore, were anal-
ysed based on the different input variables. As can be seen in table 9, all
anomalies detected fall on the same date. The date is kept fictitious to pre-
serve data privacy. Looking at the input variable volume, its observed that
anomaly # 6 is vastly greater in transaction volume than the remaining data
points. This makes it difficult to draw a conclusion based on the volume
alone. The feature currency pair on the other hand, shows a unanimous
result. All anomalies detected, are part of the Majors currency group. A

40

Uppsala University

similar result can be observed for the deal type feature, all but one data
points classified anomalies, are of type outright. The media used for these
transactions on the other hand, seems to be sporadic as no two anomalies
used the same media.

Anomaly # Date Volume CCY Pair Media type Deal type
1 01.01.2023 0.0035 Majors Media 1 Spot
2 01.01.2023 0.0047 Majors Media 2 Outright
3 01.01.2023 0.0039 Majors Media 3 Outright
4 01.01.2023 0.0022 Majors Media 4 Outright
5 01.01.2023 0.0015 Majors Media 5 Outright
6 01.01.2023 40.37 Majors Media 6 Outright

Table 9: Detected anomalies (The date and volume values are masked)

Returning to the research questions asked in section 1.3, it’s observed that
there is a possible correlation between data points flagged as anomalies and
the currency pair involved in a transaction. Similarly, there exists a possible
correlation between anomalies and the deal type. The size of a transaction
does not seem to be correlated. To truly draw conclusions based on the
input variables however, numerous test sets would need to be carried out
and then explored further to determine for example whether the deal type
outright remains near unanimous, or whether all currency pairs still are of
group Majors.

41

Uppsala University

7 Discussion

This work investigated two separate approaches to anomaly detection. The
first, using the ARIMA model and the theory of using predicted or forecast
data points, generated by a model based on historical data, which in turn,
was used to calculate a threshold value based on the difference between the
prediction and real values. This method, was then approached in two ways.
Firstly, with a static threshold which was a constant value used throughout
the time series and secondly, with a dynamic threshold which compared each
data point to a threshold calculated by a pre-set window size. The second
approach explored was based on the methodology of neural networks, and
saw an autoencoder trained and tested, which attempts to encode data and
later on decode it back to its original input shape. The threshold value for
the autoecoder stems from the reconstruction error recorded.

The ARIMA model, with data transformed to follow a log-normal distri-
bution, was able to predict values rather closely to their actual values, despite
the data’s high volatility as was seen in figure 13. The actual anomaly pre-
diction results however, differed rather greatly between using a static and a
dynamic threshold. The ARIMA model with a static threshold performed
well in detecting anomalies as visualized in figure 14. The precision using this
model and threshold was at 0.727 and recall at 0.375. The model therefore
has a 70% accuracy in identifying true positives (when compared to the orig-
inal labelled dataset). The recall value is rather low, but precision and recall
are often a trade-off and precision was used as the main metric to compare
the two models. The static threshold worked well with the highly volatile
data. Volatility means that the time series exerted significant fluctuations
throughout, without a specific trend or direction. One reason for why the
static threshold did so well, is that as the static threshold remains constant, it
is not affected thus providing stability. With a static threshold, simplicity is
an advantage. Not only is the threshold easy to compute, and requires little
computational power, but once the threshold is set, a domain expert is able
to analyse and adjust it without much complication. On the other hand, the
ARIMA model with a dynamic threshold, performed significantly worse. The
dynamic threshold model only achieved a precision value of 0.13 and a recall
value of 0.141. This marks a decrease in precision from the static threshold
of 82%. The dynamic threshold in turn, is affected by the fluctuations in the
data, as it is recalculated numerous times throughout the time series. As
the anomaly prediction results for this type of threshold show in figure 16,

42

Uppsala University

most of the data points classified as anomalies were within the middle of the
time series, rather than at one of the extreme ends. As we are investigating
a one-dimensional time series with the ARIMA model, where volume is the
only input variable, extreme volumes should have been caught. This result
however, was to be expected. The data’s volatility, made it difficult for the
dynamic threshold to capture the data’s underlying patterns correctly. One
reason for this could be the threshold’s inability to catch up with sudden
shifts in the dataset. To conclude the ARIMA model, this work has shown
that using the model with a static threshold produces satisfactory results as
the model is capable of fitting the data well, and the anomalies detected are
focused on the extremely high and low values within the time series. The
dynamic threshold however, should not be used for anomaly detection with
this type of time series.

The second model investigated was that of an autoencoder. For this, the
data input was changed from a one-dimensional input solely using volume,
to that of a multi-dimensional input using the volume, currency pair, deal
type and media type of the transactions as inputs. A second difference to
the ARIMA model, was that this approach was unsupervised. The data used
was not labelled as anomaly or nominal as was the case with the ARIMA
model. To train the model to learn a compressed representation of the data
with an encoder, and subsequently reconstruct it using a decoder, the dataset
was split as in figure 6. The rest of the data was used to validate and test
the model instead. The construction error chosen by the model initially,
did not identify any anomalies. Assuming that the autoencoder should be
trained on exclusively nominal data, this is a satisfactory result. To be able
to use the autoencoder however, the data should always be pre-processed
to remove any possible anomalies; this could be done using the ARIMA
model or just a static threshold, and then bootstrapped to be used in the
autoencoder. This will ensure that the autoencoder is not trained on data
that could hold an anomaly, and will make it able to capture an anomaly
once faced with one as the reconstruction error would be higher than that
seen in model training. As the autoencoder results are difficult to visualize
due to it’s multi-dimensional input, and so as to compare it to the ARIMA
model, the volume was plotted against the time series in figure 17. With an
adjusted threshold as discussed in section 6.2.2, the model detected several
anomalies. Based on a visual inspection of the autoencoder results from the
aforementioned figure as well as the breakdown of input variables in table 9,
the conclusion was drawn that the model identified a number of anomalies

43

Uppsala University

on the same date. As table 9 shows, the conclusions drawn from this result
are that other than occurring on the same date, all anomalies detected were
for transactions between Majors (currency pairs) and most of them were of
the deal type outrights. From the visual in figure 17 it can be observed that
the anomaly (aggregated per day) detected within the test dataset, was that
with the highest overall volume. The autoencoder performs well on the test
set, even when confronted with synthetic data, it is able to catch anomalies.

While the ARIMA model required domain expertise to set a point thresh-
old so as to label the data prior to using it, the autoencoder requires no initial
input, which is an advantage. Both the ARIMA model with a static thresh-
old and the autoencoder performed well and successfully caught possible
anomalies, albeit comparing the models is difficult. This is because while
the ARIMA model only used the volume variable, the autoencoder was able
to include more input variables, making the model more complex and able
to draw patterns that ARIMA cannot. The autoencoder for anomaly detec-
tion, due to its ability to work with multi-dimensional and complex features,
outperforms the ARIMA model and is the model worth investing in moving
forward.

44

Uppsala University

8 Further Work

As the autoencoder was chosen as the most suitable method for anomaly
detection within FX Trading, it’s possible to develop the method further for
it to serve as a anomaly detection alert system within the department. This
work, only targeted spot and outright trades, which are two of the more
simplistic types of FX trades as they consist of a single transaction (leg). So
as to further this work however, both swaps and options should be included
though this requires a more in depth knowledge of the financial aspects of
the dataset. These are more complex as they consist of multiple legs and can
vary greatly from one transaction to the other.

It would also be interesting to investigate the different input variables
further. While a number of them were chosen for this autoencoder, there
exists in reality many more variables that could be used for input and that
may or may not capture underlying trends in the data better than the current
variables. It is not always clear which variables interact with one another,
or which variables should be used as input, but domain knowledge and an
understanding of the financial instruments lead to the choosing of suitable
input variables.

From a programming perspective it would also be interesting to see this
model implemented within the already existing database system, to use it in
a way which triggers an alert on a recurring basis, would a transaction be
flagged as an anomaly. In addition, it would be interesting to try out several
other autoencoder structures such as a contractive autoencoder or a deep
autoencoder and see how the results differ from the autoencoder investigated
in this work.

45

References

[1] SEB about us. https://sebgroup.com/about-us/our-history/.
Accessed: 19/02/2023.

[2] Wassim Berriche and Francoise Sailhan. Predictive Anomaly
Detection. In 18th International Conference on Information Assurance
and Security, KLE, India, December 2022.

[3] Chris M. Bishop. Neural networks and their applications. Review of
Scientific Instruments, 65(6):1803–1832, 06 1994.

[4] J.K. Chow, Z. Su, J. Wu, P.S. Tan, X. Mao, and Y.H. Wang. Anomaly
detection of defects on concrete structures with the convolutional
autoencoder. Advanced Engineering Informatics, 45:101105, 2020.

[5] Ruslana Dalinina. Introduction to forecasting with arima in r.
Accessed: 01/03/2023.

[6] Julianna Delua. Supervised vs. unsupervised learning: What’s the
difference?, Mar 2021.

[7] Rob J. Hyndman and Yeasmin Khandakar. Automatic time series
forecasting: The forecast package for r. Journal of Statistical Software,
27(3), 2008.

[8] Corporate Finance Institute. Financial instrument.
https://corporatefinanceinstitute.com/resources/wealth-

management/financial-instrument/, 2023. Accessed: 15/02/2023.

[9] Anna-Louise Jackson. Forbes a basic guide to forex trading. https:
//www.forbes.com/advisor/investing/what-is-forex-trading/,
2023. Accessed: 19/02/2023.

[10] Abdul Jalil and Nasir Hamid Rao. Chapter 8 - time series analysis
(stationarity, cointegration, and causality). In Burcu Özcan and Ilhan
Öztürk, editors, Environmental Kuznets Curve (EKC), pages 85–99.
Academic Press, 2019.

[11] Roger Koenker and Zhijie Xiao. Quantile autoregression. Journal of
the American Statistical Association, 101(475):980–990, September
2006.

https://sebgroup.com/about-us/our-history/
https://corporatefinanceinstitute.com/resources/wealth-management/financial-instrument/
https://corporatefinanceinstitute.com/resources/wealth-management/financial-instrument/
https://www.forbes.com/advisor/investing/what-is-forex-trading/
https://www.forbes.com/advisor/investing/what-is-forex-trading/

Uppsala University

[12] Longyuan Li, Junchi Yan, Haiyang Wang, and Yaohui Jin. Anomaly
detection of time series with smoothness-inducing sequential
variational auto-encoder. CoRR, abs/2102.01331, 2021.

[13] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and
Thomas B. Schön. Machine Learning - A First Course for Engineers
and Scientists. Cambridge University Press, 2022.

[14] Dalibor Mitrovic, Matthias Zeppelzauer, and Christian Breiteneder.
Features for content-based audio retrieval. In Advances in Computers
Volume 78 Improving the Web, pages 71–150. Elsevier, 2010.

[15] Prapanna Mondal, Labani Shit, and Saptarsi Goswami. Study of
effectiveness of time series modeling ARIMA in forecasting stock
prices. International Journal of Computer Science, Engineering and
Applications, 4:13–29, 2014.

[16] Raoof Naushad. Interpreting results of Dicky Fuller test for time series
analysis., Feb 2020. Accessed: 06/05/2023.

[17] Amanda Nordström. Understanding the foreign exchange market.
https://www.riksbank.se/globalassets/media/rapporter/pov/

artiklar/svenska/2022/220314/2022_1-understanding-the-

foreign-exchange-market_sv, 2022. Accessed: 18/02/2023.

[18] Eduardo H. M. Pena, Marcos V. O. de Assis, and Mario Lemes
Proença. Anomaly detection using forecasting methods ARIMA and
HWDS. In 2013 32nd International Conference of the Chilean
Computer Science Society (SCCC), pages 63–66, 2013.

[19] S. Stevenson. A comparison of the forecasting ability of ARIMA
models. In Journal of Property Investment & Finance, volume 25,
pages 223–240, 2007.

[20] Keras Team. Keras documentation: Timeseries anomaly detection
using an autoencoder, May 2020.

[21] Virenhal. Dickey Fuller test of stationarity.
https://spureconomics.com/dickey-fuller-test-

ofstationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%

https://www.riksbank.se/globalassets/media/rapporter/pov/artiklar/svenska/2022/220314/2022_1-understanding-the-foreign-exchange-market_sv
https://www.riksbank.se/globalassets/media/rapporter/pov/artiklar/svenska/2022/220314/2022_1-understanding-the-foreign-exchange-market_sv
https://www.riksbank.se/globalassets/media/rapporter/pov/artiklar/svenska/2022/220314/2022_1-understanding-the-foreign-exchange-market_sv
https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary
https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary
https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary

Uppsala University

20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%

20is%20non-stationary, Jan 2023. Accessed: 07/05/2023.

[22] Chengwei Wang, Krishnamurthy Viswanathan, Choudur K.
Lakshminarayan, Vanish Talwar, Wade Satterfield, and Karsten
Schwan. Statistical techniques for online anomaly detection in data
centers. 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2011) and Workshops, pages 385–392, 2011.

[23] Lilian Weng. From autoencoder to beta-vae. lilianweng.github.io, 2018.

[24] Robert M West. Best practice in statistics: The use of log
transformation. Annals of Clinical Biochemistry, 59(3):162–165, 2022.
PMID: 34666549.

[25] Asrul H. Yaacob, Ian K.T. Tan, Su Fong Chien, and Hon Khi Tan.
Arima based network anomaly detection. In 2nd International
Conference on Communication Software and Networks, ICCSN 2010,
pages 205–209, 2010. Copyright: Copyright 2010 Elsevier B.V., All
rights reserved.; International Conference on Communication Software
and Networks 2010, ICCSN 2010 ; Conference date: 26-02-2010
Through 28-02-2010.

https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary
https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary
https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary
https://spureconomics.com/dickey-fuller-test-of stationarity/#:~:text=The%20Dickey%20Fuller%20Test%20is%20a%20unit%20root,to%20a%20Random%20Walk%20model%20which%20is%20non-stationary

