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Abstract 

Background: Stochastic optical reconstruction microscopy (STORM), a super-res-
olution microscopy technique based on single-molecule localizations, has become 
popular to characterize sub-diffraction limit targets. However, due to lengthy image 
acquisition, STORM recordings are prone to sample drift. Existing cross-correlation 
or fiducial marker-based algorithms allow correcting the drift within each channel, 
but misalignment between channels remains due to interchannel drift accumulat-
ing during sequential channel acquisition. This is a major drawback in multi-color 
STORM, a technique of utmost importance for the characterization of various biological 
interactions.

Results: We developed RegiSTORM, a software for reducing channel misalignment by 
accurately registering STORM channels utilizing fiducial markers in the sample. RegiS-
TORM identifies fiducials from the STORM localization data based on their non-blinking 
nature and uses them as landmarks for channel registration. We first demonstrated 
accurate registration on recordings of fiducials only, as evidenced by significantly 
reduced target registration error with all the tested channel combinations. Next, we 
validated the performance in a more practically relevant setup on cells multi-stained 
for tubulin. Finally, we showed that RegiSTORM successfully registers two-color STORM 
recordings of cargo-loaded lipid nanoparticles without fiducials, demonstrating the 
broader applicability of this software.

Conclusions: The developed RegiSTORM software was demonstrated to be able to 
accurately register multiple STORM channels and is freely available as open-source (MIT 
license) at https:// github. com/ oyste in676/ RegiS TORM. git and https:// doi. org/ 10. 5281/ 
zenodo. 55098 61 (archived), and runs as a standalone executable (Windows) or via 
Python (Mac OS, Linux).
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Background
Fluorescence microscopy is a widely utilized tool in cell and molecular biology, provid-
ing detailed structural information of specifically labeled target structures/molecules 
and their interactions. However, with conventional microscopic techniques the diffrac-
tion limit of light constrains the achievable resolution to roughly 200  nm. This major 
limitation has led to the development of super-resolution imaging methods such as Sto-
chastic Optical Reconstruction Microscopy (STORM) [1, 2]. In STORM the blinking 
of sample fluorophores is photophysically induced and chemically supported, followed 
by image recording over thousands of frames where each frame has a distinct subset of 
blinking events. The exact x,y coordinates of the blinks are then computationally deter-
mined at nanoscale resolution. Following this reconstruction process, pre-processed 
STORM data consists of sets of such datapoints indicating the locations of individual 
fluorophores. In the remainder of the paper, we refer to these datapoints as localizations. 
STORM data in the form of localizations can then be further analyzed as such, retaining 
the full resolution of the identified coordinates, or be used to generate super-resolved 
images.

Instead of visualizing only one target with fluorescence microscopy there is often a 
great interest in studying the interactions of multiple targets, necessitating multiple 
labels and multicolor imaging approaches. In diffraction-limited microscopy, this is 
straightforward as the image acquisition is quick, allowing multiple channels to be sim-
ply overlaid with no major (observable) error. In STORM, however, where the resolution 
is an order of magnitude higher than in diffraction-limited microscopy, various types 
of errors stemming from either the physics of light (e.g. chromatic aberration), image 
acquisition or image processing, are more frequently detected and need to be accounted 
for. Chromatic aberration and other imperfections in the optical imaging system are 
constant for a specific microscope setup and there are good tools available to easily cor-
rect these [3, 4]. Due to the lengthy image acquisition times in STORM (typically tens 
of minutes), sample drift is the main error source affecting image quality [5]. Drift is 
typically caused by mechanical movements in the hardware (e.g. sample stage, filter cube 
etc.) as well as temperature changes, which are stochastic and make the prediction or 
modeling of drift impossible. Within one channel the error caused by drift can be readily 
corrected using existing algorithms, which are often based on either fiducial markers or 
cross-correlation [5, 6]. However, in multi-color STORM imaging, especially when the 
channels are acquired in a sequential manner and there is a gap between the acquisitions 
due to filter change etc., tracking the drift becomes a problem.

To enable multi-color imaging without sequential channel acquisition, different 
approaches have been presented. In a spectral demixing approach a dichroic-based 
emission splitter is used to separate simultaneously and with the same wavelength 
excited fluorophores based on their different emission spectra [7–9]. Recently, a method 
called excitation-resolved STORM (ExR-STORM) was demonstrated to enable multi-
color imaging with negligible chromatic aberration by separating signals from dyes with 
the same emission wavelength but different excitation wavelengths based on differences 
in fluorescence intensities [10]. However, all these methods require complex and expen-
sive custom-built microscope hardware setups, making them not easily accessible for 
most of the users. Moreover, unlike in sequential STORM where the fluorescent probes 
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are spectrally well-separated, simultaneous acquisition of multiple channels often suffers 
from spectral crosstalk.

Despite being easily executable with minimal spectral crosstalk, sequential chan-
nel acquisition has the inherent challenge of proper channel registration, or alignment, 
which is highly crucial for the error-free evaluation of nanoscale interactions (e.g. pro-
tein–protein, protein-organelle etc.). In some cases it is possible to do the channel align-
ment manually based on the known biological interactions of the imaged targets (e.g. 
ring-center) [11]. However, in most of the cases the interactions are not known. In such 
cases fiducial markers, non-blinking fluorescent nanobeads visible in all the channels, 
can be introduced to the sample to serve as reference points for the channel registration 
[12, 13]. To minimize the fiducial marker interference with the sample signal, fiducial 
markers excitable with an infrared light emitting diode can be used, though this system 
requires adjustments in the hardware [14]. In general, the fiducial marker based STORM 
channel registration is mostly done manually, making it labor-intensive and error-prone. 
Of note, there are also conventional general purpose image registration algorithms avail-
able, such as ImageJ/Fiji and Elastix [15–18], but they are poorly suited for STORM, 
since they operate on images, that is, arrays of pixel values. In the case of STORM, it is 
preferable to perform analysis directly on localization data. This retains the full spatial 
resolution and avoids the unnecessary step of first synthesizing super-resolved images. 
Moreover, identifying fiducial markers from super-resolved images using image process-
ing approaches can be challenging if their morphology resembles that of the targets of 
interest, whereas identifying fiducials from localization data can be performed based on 
their lack of blinking.

Over the recent years multiple single-molecule localization microscopy (SMLM) data 
processing softwares, some of which are open-access and available for e.g. ImageJ or 
Matlab platforms, have been developed and thoroughly evaluated and cross-compared 
[19, 20]. Significant improvements have been achieved in e.g. localization accuracy, 
reconstruction speed and user-friendliness, and some of the softwares provide a real-
time reconstruction pipeline to better enable image quality evaluation already during the 
frame acquisition [21–27]. Even deep-learning with neural networks has been utilized 
for SMLM, drastically reducing the amount of image data needed to obtain high-quality 
reconstructions [28]. In addition to reconstruction of the SMLM images, softwares have 
also been developed for automated detection, classification and quantification of the 
various (cellular) structures from reconstructed SMLM images [29–31]. However, to the 
best of our knowledge, none of the available open-source SMLM softwares are able to 
identify the fiducial markers from the localization data and perform channel registration 
using the fiducials as reference points.

In this work we have developed an algorithm, which can identify fiducial markers in 
STORM data, and use them to accurately register multiple sequentially acquired chan-
nels. Importantly, the algorithm operates directly on localization data, and also outputs 
the corrected data in the form of localizations. Of note, chromatic aberration was cor-
rected separately prior to registration using the Detection of Molecules (DoM) plugin 
in Fiji [4], and therefore does not account for any of the drift seen in the data. This algo-
rithm has been implemented in RegiSTORM, a Windows application featuring a user-
friendly graphical user interface (GUI). Multicolor STORM image registration using 
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RegiSTORM has been successfully applied to samples consisting of fiducial markers only 
and cell samples of multi-labeled tubulin with fiducial markers introduced prior to imag-
ing. Moreover, we have included an additional fiducial marker independent function, 
called cluster mode, to the RegiSTORM software and illustrated its ability to succesfully 
register two-color STORM images of cargo-loaded lipid nanoparticles (LNPs). This fur-
ther demonstrates the applicability of RegiSTORM in versatile cases.

Results and discussion
In this work we have developed an algorithm that utilizes fiducial markers to register 
multiple channels in STORM imaging to compensate for drift between the channel 
acquisitions. We have demonstrated the performance of the algorithm with several sam-
ples, including fiducial markers alone, multi-labeled tubulin in fixed cells and, using the 
cluster mode of the algorithm, cargo-loaded LNPs with no fiducials. These results are 
discussed in detail below. A schematic illustration of the RegiSTORM algorithm as part 
of the STORM imaging process is depicted in Fig. 1.

Registration of 2‑ and 3‑color STORM images of fiducial markers only

To evaluate the performance of the algorithm we started from the simplest case, i.e. 
multi-color STORM images of fiducial markers alone, in the absence of any other signal 
which could complicate the detection of the fiducial markers. Using TetraSpeck™ fiducial 
markers we evaluated the following channel combinations: (1) 642 and 488 nm, (2) 642 

Fig. 1 Schematic illustration of the registration algorithm. Top, from left: The algorithm takes the 
reconstructed STORM data (in the form of fluorophore x, y localizations) and applies a rigid transformation to 
the fluorophore localizations to perform registration between channels, producing localizations corrected 
for drift. Bottom, from left: Initially, fiducial markers are identified from each channel using two detection 
criteria: (1) The mean number of localizations present within a local neighborhood over time exceeds a given 
threshold, and (2) The variance of the number of localizations within the neighborhood over time is below a 
given threshold. As a result, non-blinking constantly emitting sources corresponding to the fiducial markers 
are retained. The rigid transformation between the channels is then estimated to align the fiducial markers, 
using the Iterative Closest Point algorithm [32–34]. The ICP algorithm is used to align two-point sets by 
minimizing the distance between corresponding points. It iteratively updates the transformation between 
the two sets until convergence using point-to-point correspondences and estimates a rigid transformation 
combining rotation and translation through a root mean square distance minimization
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and 561 nm and (3) 642, 561 and 488 nm. As the reference channels, we used 642 nm, 
561 nm and 561 nm, respectively. Figure 2 shows representative STORM images of the 
fiducials imaged with these channel combinations as well as TRE plots, generated from 
localizations before and after the use of the algorithm. It is visually evident from the 
STORM visualizations that the algorithm markedly improves the overlay of the fiducial 
markers on the different channels. The TRE quantification, conducted for five separate 
samples, verified this observation. When combining the five samples (“total” in Fig. 2), 
there was a significant improvement (mean ± SD) from 1252 ± 806  nm to 60 ± 40  nm 
(n = 158, p = 1.1 ×  10–27) for combination 1, from 362 ± 256 nm to 60 ± 36 nm (n = 214, 
p = 4.0 ×  10–36) for combination 2, and from 496 ± 434  nm to 43 ± 24  nm & from 
204 ± 86 nm to 49 ± 32 nm (n = 352, p = 4.5 ×  10–57 & p = 1.4 ×  10–57) for combination 3. 

Fig. 2 Evaluation of the registration algorithm with multi-color STORM images of fiducial markers only. A 
Representative STORM images of fiducial markers before and after registration, imaged with 488 and 642 nm 
excitation. B Quantification of the Target Registration Error (TRE) for A. 1–5 represent different 256 × 256 pixel 
areas (images) of the same sample. All the fiducial markers detected in the five different areas are combined 
in total. In the graph the different areas are separated by dashed lines and the «before» box is always on 
the left and «after» on the right. n1 = 26, n2 = 30, n3 = 40, n4 = 33, n5 = 29,  ntotal = 158. C Representative 
STORM images of fiducial markers before and after registration, imaged with 561 and 642 nm excitation. 
D Quantification of the TRE for C. n1 = 46, n2 = 37, n3 = 49, n4 = 22, n5 = 60,  ntotal = 214. E Representative 
STORM images of fiducial markers before and after registration, imaged with 488, 561 and 642 nm excitation. 
F Quantification of the TRE for E. n1 = 92, n2 = 48, n3 = 67, n4 = 57, n5 = 88,  ntotal = 352. Two-sided Wilcoxon 
signed rank test *p < 0.05. Scale bars in A, C and E = 1 μm. In the box plots the box shows the data from 
lower to upper quartile, with median marked with a line, whereas the whiskers indicate the minimum and 
maximum
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These results demonstrate that the algorithm is capable of identifying the fiducials in the 
absence of other sample signals and successfully apply a rigid transformation to correct 
for the misalignment.

Registration of 2‑ and 3‑color STORM images of immunolabeled tubulin in cells

To demonstrate the algorithm’s functionality in a more complex and biologically rele-
vant setup, microtubules of human bone marrow-derived stromal cells (hBMSCs) were 
multi-labeled via immunostaining with a mixture of fluorophore-tagged secondary anti-
bodies. Therefore, in case of successful registration, the microtubules in the different 
channels will overlap in the final reconstruction, making it possible to evaluate the per-
formance of the algorithm under more realistic conditions. Importantly, the registration 
was still only based on the fiducials and not aided by the microtubule structures appear-
ing in both channels. The same channel combinations ((1) 642 and 488 nm, (2) 642 and 
561 nm, (3) 642, 561 and 488 nm) and reference channels (642 nm, 561 nm and 561 nm) 
were used as for the samples with fiducial markers only. Figure 3 shows representative 
tubulin STORM images imaged with these channel combinations as well as TRE plots, 
before and after the registration, calculated for manually annotated fiducial markers pre-
sent in the samples. The STORM visualizations show a clear improvement in the micro-
tubule overlay after the registration for all the channel combinations. This improvement 
was also quantified using the TRE for five different samples. Considering all five sam-
ples together, there was a significant improvement (mean ± SD) from 790 ± 565 nm to 
49 ± 27 nm (n = 51, p = 5.2 ×  10–10) for combination 1, from 593 ± 436 nm to 49 ± 32 nm 
(n = 65, p = 2.6 ×  10–12) for combination 2, and from 177 ± 239 nm to 47 ± 46 nm & from 
527 ± 181 nm to 65 ± 47 nm (n = 84, p = 4.7 ×  10–14 & p = 1.8 ×  10–15) for combination 
3. The quality of the registration was further evaluated with Normalized Cross-Correla-
tion (NCC), which also showed a clear overall improvement in the overlay as indicated 
by the increase in correlation coefficient values (Additional file  1: Table  S1). Normal-
ized Cross-Correlation (NCC) is a technique used in image registration that measures 
the similarity between two images by computing the correlation between their pixel 
intensities after normalization [35]. Due to competing secondary antibodies (i.e. steric 
hindrance on perfect nanoscale labeling) [36] and differing behavior of fluorophores 
under STORM acquisition, the absolute values of the coefficients in the NCC analysis 
remained relatively low even after successful registration. Overall, these results show 
that the algorithm is capable of identifying the fiducials and successfully applying a rigid 
transformation to correct for the channel misalignment also in the presence of sample 
fluorescence, demonstrating the feasibility of RegiSTORM in an experimentally relevant 
case.

Registration of 2‑color STORM images of cargo‑loaded LNPs using the cluster mode

In addition to the fiducial marker based STORM channel registration described above, 
an alternative STORM image registration mode based on detection of clusters of locali-
zation signals originating from targets labeled by multiple fluorophores instead of 
fiducial markers was developed and tested. This mode is ideal for small targets such 
as various types of (multi-labeled) nanoparticles which, depending on the labeling 
approach, may produce cluster-like signal signatures in STORM. We hypothesized that 
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these signal clusters could be used as landmarks for registration in the absence of fidu-
cial markers. Omitting fiducial markers from these types of samples can be beneficial 
for the STORM acquisition since matching the signal intensity from the relatively bright 
fiducial markers to that of structures within the samples, which often are much dimmer, 
can be challenging and easily hampers the image quality. To demonstrate the function-
ality of the cluster mode we imaged streptavidin-Alexa Fluor 647 loaded LNPs labeled 
with Alexa Fluor 488 lipid (Fig. 4). As evidenced by the STORM visualizations of Fig. 4A 
the cluster mode of the algorithm markedly improved the channel alignment. This 
result was also quantified by manually annotating the clusters using the ImageJ annota-
tion tool (see Methods) and calculating the mean TRE, demonstrating a total improve-
ment (mean ± SD) from 474 ± 285 nm to 79 ± 43 nm (n = 141, p = 7.4 ×  10–25) (Fig. 4B). 

Fig. 3 Evaluation of the registration algorithm with STORM images of cell samples with multi-labeled tubulin 
and fiducials. A Representative STORM images of dual-labeled tubulin before and after registration, imaged 
with 488 and 642 nm excitation. B Quantification of the Target Registration Error (TRE) of fiducial markers 
present in the samples in A. n1 = 11, n2 = 12, n3 = 13, n4 = 5, n5 = 10,  ntotal = 51. C Representative STORM 
images of dual-labeled tubulin before and after registration, imaged with 561 and 642 nm excitation. D 
Quantification of the TRE of fiducial markers present in the samples in C. n1 = 5, n2 = 11, n3 = 15, n4 = 15, 
n5 = 19,  ntotal = 65. E Representative STORM images of triple-labeled tubulin before and after registration, 
imaged with 488, 561 and 642 nm excitation. F Quantification of the TRE of fiducial markers present in 
the samples in E. n1 = 27, n2 = 10, n3 = 35, n4 = 6, n5 = 6,  ntotal = 84. Two-sided Wilcoxon signed rank test 
*p < 0.05. 1–5 represent different 256 × 256 pixel areas (images) of the same sample. All the fiducial markers 
detected in the five different areas are combined in total. In the graphs the different areas are separated by 
dashed lines and the «before» box is always on the left and «after» on the right. AF = Alexa Fluor. Scale bars in 
A, C and E = 2 μm. In the box plots the box shows the data from lower to upper quartile, with median marked 
with a line, whereas the whiskers indicate the minimum and maximum
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Moreover, there was also an improvement in the NCC with the mean values of correla-
tion coefficients increasing from 0.12 ± 0.14 to 0.50 ± 0.12 (Additional file 1: Table S2). 
The successful registration using the cluster mode demonstrates the versatility of the 
tool and broadens its applicability in the field of multicolor STORM imaging.

Parameter tuning

The algorithm uses two main tunable parameters when detecting the fiducials: mean tol-
erance (MT) and variance limit (VL). The MT helps to identify fiducial markers based 
on their stable emission across frames, while excluding isolated signals. However, when 
testing the algorithm on tubulin samples, we observed that the algorithm struggled to 
differentiate the fiducials from the microtubuli that also gave out frequent signals. There-
fore, we introduced the VL, which defines a maximum allowed value for the variance of 
the number of nearby localizations across frames for a fiducial candidate. In the tubu-
lin regions of the images we observed excessive blinking in the fluorescence signal, as 
expected, resulting in a high variance, whereas the fiducials are characterized by a con-
stant stable signal and thus had a low variance. Therefore, by combining the MT, which 
finds relevant regions, and the VL, which distinguishes fiducials from densely labeled 
sample regions, it is possible to identify the fiducial marker localizations from the 
STORM data. The effect of adjusting MT and VL on the registration quality of two-color 
tubulin STORM images, as determined by TRE and NCC, is depicted as heat maps  in 
Fig. 5A and B, respectively. Figure 5C shows representative STORM images of param-
eter-influence on the registration for selected MT/VL combinations. We found that an 
MT of 0.5 and a VL of 0.25 work generally well. Apart from evaluating the effect of these 
values on the registration quality using TRE and NCC, we also studied the sensitivity (% 
true fiducials identified out of true number of fiducials) and precision (% true fiducials 
identified out of total number of fiducials identified) of the algorithm in fiducial detec-
tion. The above mentioned MT and VL values resulted in sensitivities of 60–100% and 
a precision range of 63–100% for fiducial detection for the Alexa Fluor 488/647 dual-
colored tubulin samples (Additional file 1: Fig. S1A and B), indicating that the algorithm 
can detect the majority of the fiducial markers with a limited number of false positives. 

Fig. 4 Evaluation of the cluster mode of the algorithm with two-color STORM images of cargo-loaded LNPs. 
A Representative STORM images of cargo-loaded LNPs before and after registration, imaged with 488 and 
642 nm excitation. Scale bars = 1 μm. B Quantification of the Target Registration Error (TRE) of the LNP/cargo 
particles. n1 = 38, n2 = 29, n3 = 24, n4 = 50,  ntotal = 141. Two-sided Wilcoxon signed rank test *p < 0.05. 1–4 
represent different 256 × 256 pixel areas (images) of the same sample. All the LNP/cargo particles detected 
in the four different areas are combined in total. In the box plots the box shows the data from lower to upper 
quartile, with median marked with a line, whereas the whiskers indicate the minimum and maximum
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As illustrated in Additional file 1: Fig. S1C, the software has also the ability to remove 
the signal corresponding to the fiducial markers from the final image to yield a “cleaner” 
presentation.

To identify the fiducial markers from the STORM data the full frame set is processed 
by the algorithm by default. However, since we observed that there is some variation 
in the stability of the fiducial markers over the STORM acquisition (Additional file  1: 
Fig. S2), we wanted to test if reliable fiducial marker identification could be achieved with 
a smaller subset of acquired frames. We therefore investigated the effect of adjusting the 
number of frames analyzed on the identification of the fiducial markers and registration 
quality. In the case of Alexa Fluor 488/647 dual-colored tubulin samples we observed 
that the TRE decreased with an increasing number of analysed frames starting from 
frame 1 up until approximately 5000 frames for the 488 nm channel, and then slightly 
increased again at around 20,000 frames (Additional file  1: Fig.  S3A). The included 
frame range of the 642 nm channel did not affect the TRE score for this combination. 
In the case of Alexa Fluor 568/647 dual-colored tubulin samples the TRE decreased 
until approximately 5000 frames for the 642  nm channel and remained stable after 
that, whereas the frame range of the 561 nm channel had no effect on the TRE (Addi-
tional file  1: Fig.  S3B). These results suggest that it is possible to achieve high-quality 

Fig. 5 The effect of the registration parameters on the registration accuracy. A Normalized Cross-Correlation 
(NCC) as a function of variance limit and mean tolerance. B Target Registration Error (TRE) as a function 
of variance limit and mean tolerance. C Representative STORM images of dual-stained tubulin samples, 
registered with varying parameters. Scale bars = 1 μm. MT = mean tolerance, VL = variance limit, AF = Alexa 
Fluor



Page 10 of 18Øvrebø et al. BMC Bioinformatics          (2023) 24:237 

registration even with a smaller subset of frames included in the fiducial marker identi-
fication, which has the benefit of reducing the processing time. However, since different 
types of fiducial markers behave differently in the STORM acquisition conditions and 
there is also variation between the channels, optimal frame range for RegiSTORM thus 
needs to be determined on a case-by-case basis.

Limitations

In this work we used two metrics to evaluate the performance of the algorithm (i.e. the 
registration quality): TRE and NCC. Due to user-dependency and humane inaccuracies 
the manual annotation is somewhat error-prone, which is why the absolute TRE values 
calculated here likely have some inaccuracy. However, we were still able to see a signifi-
cant improvement in this metric, and our values (around 40–60 nm) are approaching the 
resolution limit of STORM microscopy (around 20 nm [1]). In terms of NCC, a key limi-
tation of this metric is that due to the staining approach and different blinking behaviour 
and intensities of different fluorophores in the STORM acquisition conditions, it is not 
possible to reach perfect pixel-wise correlation even in the case of successful registra-
tion. Therefore the calculated cross-correlation coefficients did not reach values close to 
1 despite good quality registration.

To achieve high-quality registration using fiducial markers, the density and distribu-
tion of the fiducials in the sample, as well as inherent properties of the fiducial markers 
such as brightness and stability, play critical roles. Too low total count and a concen-
trated distribution of the fiducials, as well as positions in different focus levels when 
compared to the sample signal, can limit the algorithm’s ability to identify them and cal-
culate an accurate transformation matrix, particularly when it comes to the rotational 
component. All this can negatively impact the registration quality. On the other hand, if 
the fiducial density is too high or the fiducials are much brighter than the sample signal, 
there is a risk of masking the signal coming from the targets of interest, which can result 
in poor overall image quality. Although extensive evaluation and optimization of fidu-
cial markers is beyond the scope of this work, these factors are good to keep in mind as 
potential error sources when conducting STORM channel registration utilizing fiducial 
markers.

Conclusions
In this work we have developed a registration algorithm for sequentially acquired 
multi-color STORM images. The algorithm is capable of directly processing fluoro-
phore localization data, as opposed to generated images, making it ideal for STORM. 
Its performance was initially demonstrated using only fiducial markers, illustrating that 
the algorithm can successfully identify the fiducials and apply a correcting transforma-
tion. Subsequently, the algorithm was shown to be functional in a more complex and 
experimentally relevant setup of multi-labeled microtubuli, suggesting the applicabil-
ity of this tool in a wide range of experimental conditions in sequential multi-channel 
STORM imaging. Lastly, using the cluster mode of the algorithm for alignment, two-
color STORM images of fluorescent cargo-loaded fluorescent LNPs were successfully 
registered in the absence of fiducial markers as references, which adds to the versatility 
of this tool. The algorithm is implemented in an open source software tool, RegiSTORM, 
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providing a user-friendly GUI for easy selection of files, tuning parameters, conduction 
of the registration and saving the results. The software has been compiled into a Win-
dows application so that users without experience in Python programming can easily 
use it. This tool has the potential to be instrumental in applying super-resolution micros-
copy to elucidate and accurately characterize a plethora of unknown nanoscale interac-
tions (e.g. protein–protein, protein-organelle) in cell biology and nanomedicine, such as 
extracellular vesicle composition and signaling, endosomal escape pathways, signaling 
pathways in general and localization of carrier and active molecules in drug delivery sys-
tems [37–42]. The interpretation of such nanoscale interactions will be heavily biased in 
the absence of proper and accurate alignment of the channels representing the interact-
ing targets.

Methods
Sample preparation for STORM imaging

To develop and test the RegiSTORM software three sample types were prepared and 
imaged using STORM: fiducial markers only, cells immunostained for tubulin with 
fiducial markers and fluorescent lipid nanoparticles (LNPs; composition depicted in 
Additional file 1: Table S3) loaded with a fluorescent cargo but no fiducial markers. For 
LNP size and fluorescence characterization see Additional file 1: Fig. S4. TetraSpeck™ 
microspheres (100 nm in diameter; Thermo Fisher Scientific, Waltham, MA, USA) were 
introduced to the samples right before the STORM imaging. Details of the sample prep-
aration can be found in Additional file 1.

STORM imaging and reconstruction

Image acquisition

Prior to imaging, the sample was soaked in imaging buffer with the following compo-
sition: Tris buffer (160  mM Tris, 40  mM NaCl, pH adjusted to 8.0), 10 wt% glucose, 
0.5  mg/mL glucose oxidase from Aspergillus niger (G7141), 47  µg/mL catalase from 
bovine liver (C1345) and 10 mM cysteamine (pH adjusted to 8.0). All the components of 
the buffer were purchased from Sigma Aldrich (Saint Louis, MO, US). The μ-plate was 
further sealed with parafilm to decrease oxygen entry.

STORM imaging was conducted with a Nikon Ti Eclipse inverted microscope (Nikon, 
Tokyo Japan), with cube filters (excitation: Chroma ZET405/488/561/640x, emission: 
Chroma ZET405/488/561/640m) and TIRF dichroic ZET405/488/561/640bs, and 
equipped with Cairn laser module (Cairn Research, Kent, UK) with 200 mW 488 nm, 
150 mW 561  nm and 140 mW 642  nm lasers. A CFI SR Apo TIRF 100X oil objec-
tive (N.A. 1.49) was used with a 1.5X Optovar lense, thus giving a final magnification 
of 150X. The camera (Andor iXON Ultra 888 EMCCD, Oxford Instruments, Belfast, 
UK) had a pixel size of 13 µm. The image acquisition was controlled with  MetaMorph® 
(Molecular Devices, San Jose, CA, US) and Micro-Manager open-source software [43]. 
The region of interest was set to 256 × 256 pixels. A diffraction-limited image was taken 
from each ROI for reference before starting the STORM acquisition. Around 30 000 
frames, with an exposure time of 30 ms/frame, 100% laser power and electron multiply-
ing gain of either 100 (642 & 561 lasers) or 300 (488 laser) were recorded for each image. 
Thus, each acquisition took around 15 min and was started once the photoswitching of 
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the fluorophores was at an optimal level as visually evaluated by the user. In multicol-
our STORM imaging of the fiducial markers only and tubulin-stained cells, the channels 
were recorded sequentially, moving on from higher to lower excitation wavelength to 
minimize the damage caused to the fluorophores in the other channels. However, in case 
of the LNPs, the acquisition was conducted in the opposite order (first 488 nm channel 
and then 642 nm channel) due to the lower signal intensity from the Alexa Fluor 488 
labeled LNP lipids when compared to the Alexa Fluor 647 labeled cargo. The recordings 
were stored in uncompressed TIFF format with a bit depth of 16 bits per channel.

Image reconstruction

The localization events and images from each channel were reconstructed with the 
ThunderSTORM plugin [44] in Fiji [15, 16], followed by drift correction using the 
plugin’s cross-correlation algorithm (see Supplementary information for reconstruction 
parameters). As a result, comma-separated values (csv) files with estimated x,y coor-
dinates for all the detected localizations were obtained. In the case of the LNP sample 
in the 642  nm channel, localizations with intensity lower than 2000 were omitted to 
remove background and noise for improved registration. Prior to registration, chromatic 
aberration was corrected using the Detection of Molecules (DoM) plugin [4] in Fiji, 
using a correction transformation estimated from diffraction-limited images of densely 
arranged fiducial markers only. The output  .csv files were used as the input for RegiS-
TORM. RegiSTORM saves the results in new.csv files, which can be re-imported to Fiji 
or processed using other software for visualization and further analysis. To visualize the 
data, the Normalized Gaussian method in ThunderSTORM was used, with a magnifica-
tion of 10 and an uncertainty value calculated on a per-image basis.

Manual annotation

Manual annotation of the fiducial markers in both the fiducials only and tubulin STORM 
images was conducted with the ImageJ annotation tool by a single expert (M.O.). Briefly, 
by using the in-built multi-point tool the corresponding fiducials were clicked in all the 
images aiming to hit the very center of each dot. Thereafter the x,y coordinates of these 
selections were saved as a  .txt file. Unclear targets or fiducial markers not observed in 
all the channels were omitted. In case of two-color tubulin samples the third channel 
(with signal only from the fiducial markers) was used to guide in the annotation process. 
Manual annotation with the same approach was also conducted for the two-color LNP 
STORM images by roughly estimating the middle point of the LNPs. Non-loaded LNPs 
and signals from free cargo were omitted from the annotation. To improve the accuracy 
of the manual annotation, for each annotated point, we identified the localization coor-
dinates in the STORM dataset closest to the manually annotated coordinates.

Multi‑channel registration

RegiSTORM works by first identifying the fiducial markers, based on their non-blinking 
behaviour, in a reference channel and in one or more moving channel(s). After identify-
ing the fiducials, it performs a rigid transformation to match the fiducial coordinates of 
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the moving channel(s) to those of the reference channel. A detailed description of the 
registration algorithm is provided in the following subsections.

Fiducial detection

In the first part of the algorithm the fiducial markers in each channel are identified as 
follows:

1. Import STORM data (.csv format) reconstructed from the original image frames 
with a reconstruction software (e.g. ThunderSTORM [44]).

2. Identify the frame with the highest number of localizations. All these localizations 
are initially considered as potential fiducials.

3. Go through the remaining frames and search for localizations that are within a toler-
ance r equaling the fiducial diameter (100 nm) from the coordinates of each potential 
fiducial. This is conducted using a KD-tree for quick nearest-neighbor lookup [45].

4. For each candidate fiducial c, apply two inclusion criteria, mean tolerance (MT, Eq. 1) 
and variance limit (VL, Eq. 2) calculated over all frames f = 1, …, n, to refine the list 
of identified fiducials.

where Nf (Eq. 3) is the set of localizations xf in frame f within an Euclidean distance d 
smaller than the tolerance r from the candidate fiducial c:

 Unless otherwise specified we used a minimum acceptable MT of 0.5 and a 
maximum acceptable VL of 0.25 in our analyses, selected based on a parameter grid 
search (see Fig. 5). Only candidate fiducials fulfilling these two criteria are included. 
This retains the emitters which are in a stable emitting state over time.

5. Transferring the coordinates of the identified fiducials to the transformation section.

RegiSTORM additionally allows the user to constrain the fiducial detection to rely 
on a subset of the captured frames in order to exclude frames with decreased fluo-
rescence emission. In our analyses only the 10 000 first frames of the 488 nm chan-
nel were used for this step, since very little signal was detected from the fiducials in 
this channel in the remaining frames. In the 642 nm and 561 nm channels the fidu-
cial markers were more stable for the full length of the acquisition. The stability of 
the TetraSpeck™ fiducial markers in different channels over the course of the image 
acquisition is illustrated in Additional file 1: Fig. S2.
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Estimation of transformations

After identifying the fiducial markers the registration is performed according to the 
following steps:

1. Define the reference channel and the moving channel(s), i.e. the channels being 
transformed.

2. Apply the Iterative Closest Point (ICP) algorithm [33, 34] to each of the moving 
channels to align the sets of fiducials with those of the reference channel. In the ICP 
algorithm, a filter is applied when finding the nearest-neighbor for each point across 
the channels. By considering all the distances to the nearest-neighbors between the 
two sets, the mean distance and standard deviation is calculated. Point pairs with 
distance more than one standard deviation larger than the mean distance are con-
sidered outliers. This process was repeated until convergence, which was determined 
by the change in mean distance being less than 1 nm between two consecutive itera-
tions.

3. Apply the best-fit rigid transformations (final transformations from the iteration step 
above) estimated for the identified fiducials to all the localizations in the channels 
being corrected. A rigid transformation has a rotational and a translational compo-
nent [32].

4. Output the corrected localization lists as .csv-files.

Removing fiducials

RegiSTORM has also an optional feature to remove the fiducial markers from the data-
set for fiducial-free visualization and image analysis. This is accomplished by removing 
all the localizations within a distance of one fiducial diameter around the coordinates 
of the identified fiducials. The performance of this functionality is illustrated for Alexa 
Fluor 488/647 dual-colored tubulin samples in Additional file 1: Fig. S1.

Cluster mode

In addition to the fiducial marker based image registration RegiSTORM has an alterna-
tive mode where clusters of signals are identified instead of fiducials. In the cluster mode 
the algorithm works similarly to the fiducial marker identification, with the exception 
that the MT and VL criteria are not applied. Instead, for each localization representing 
a potential cluster centre, the number of neighbouring localizations within an Euclid-
ean distance rc specified by the user is computed across all frames. The 25 localizations 
with the largest number of neighbours are retained as the identified clusters and used as 
landmarks for registration. The rigid alignment matrix transformation step remains the 
same. To demonstrate its feasibility we have used the cluster mode to register two-color 
STORM images of fluorescent cargo loaded labeled LNPs (Fig. 4). LNPs and the cargo 
therefore serve as “landmark clusters” with high expectancy of co-localization. A dis-
tance rc of 750 nm was used for these images.
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Quantification of results and statistical analysis

Two metrics were used for the quantification of image registration accuracy: (1) Target 
Registration Error (TRE, Eq. 4) which measures the deviation of landmark points from 
their expected locations in terms of Euclidean distance in the detection channels. We 
calculated TRE for the manually annotated fiducials/LNPs between the different chan-
nels before and after applying registration to the localization data; (2) NCC analysis 
(Eq. 5), which measures pixel-wise similarity of two images, one per channel, in terms of 
correlation between the intensities of corresponding pixels [35]. We calculated NCC for 
images reconstructed from the tubulin and LNP datasets.

For the TRE  Xi is the coordinate of the fiducial in the moving channel and  Xj is the 
corresponding fiducial in the reference channel. For the NCC, N and M is the number of 
pixels in each dimension. I is the intensity at pixel i,j where i ∈ {1, . . . ,N }, j ∈ {1, . . . ,M} , 
and 1 and 2 refers to the moving and reference channel respectively.  Im refers to the 
mean intensity and σ is the standard deviation of the intensity for the given image.

A two-sided Wilcoxon signed rank test was used to evaluate statistical significance of 
differences in TRE before and after registration. A significance level of 0.05 was used. In 
the box plot visualizations of the quantitative data the box shows the data from lower 
to upper quartile, with median marked with a line, whereas the whiskers indicate the 
minimum and maximum. Automatically identified outliers are not shown in the plots. 
The number of fiducial markers/LNPs used for the TRE calculations is provided in Addi-
tional file 1: Table S4. Additional file 1: Table S5 shows the p values for the TRE calcula-
tions in the different datasets.

Software implementation

RegiSTORM was developed using Python 3.8 and can be used either in a Python inter-
preter or as a Windows executable application. Dependencies include: Joblib, SciPy, 
SkLearn, OS, Pandas and Numpy. The GUI was implemented using the PySimpleGUI 
library, and the software was compiled into a Windows executable file using PyInstaller. 
The build was then compiled into an installable file using Inno Setup (JrSoftware) allow-
ing the installation of the software on Windows computers.

In the GUI, the user can build up a list of jobs, where each job is one set of registra-
tions. When the user has defined all the required jobs and clicks ‘run’, the software will 
sequentially apply the algorithm to all the jobs in the task list (see documentation for the 
Github file).

Abbreviations
AF  Alexa Fluor
GUI  Graphical user interface
hBMSC  Human bone marrow-derived stromal cells
ICP  Iterative closest point

(4)TRE = Xi − Xj

(5)NCC =

∑N
i=0

∑M
j=0 [(I1,ji−I1,m)∗(I2,ij−I2,m)]

N∗M∗σ1∗σ2
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LNP  Lipid nanoparticle
MT  Mean tolerance
NCC  Normalized cross-correlation
SD  Standard deviation
STORM  Stochastic optical reconstruction microscopy
TRE  Target registration error
VL  Variance limit
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