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Social feedback enhances learning 
in Williams syndrome
Johan Lundin Kleberg 1,2*, Charlotte Willfors 3, Hanna Björlin Avdic 2, Deborah Riby 4, 
Martyna A. Galazka 5, Mona Guath 6, Ann Nordgren 2,7,8,9,11 & Claes Strannegård 2,10,11

Williams syndrome (WS) is a rare genetic condition characterized by high social interest and approach 
motivation as well as intellectual disability and anxiety. Despite the fact that social stimuli are 
believed to have an increased intrinsic reward value in WS, it is not known whether this translates 
to learning and decision making. Genes homozygously deleted in WS are linked to sociability in 
the general population, making it a potential model condition for understanding the social brain. 
Probabilistic reinforcement learning was studied with either social or non-social rewards for correct 
choices. Social feedback improved learning in individuals with Williams syndrome but not in typically 
developing controls or individuals with other intellectual disabilities. Computational modeling 
indicated that these effects on social feedback were mediated by a shift towards higher weight 
given to rewards relative to punishments and increased choice consistency. We conclude that reward 
learning in WS is characterized by high volatility and a tendency to learn how to avoid punishment 
rather than how to gain rewards. Social feedback can partly normalize this pattern and promote 
adaptive reward learning.

Williams syndrome (WS) is a rare genetic syndrome (prevalence 1:  75001) characterized by strikingly heightened 
social approach behaviors. Individuals with WS are typically described as “hypersocial”, with a strong social 
interest, friendliness, and attention to other’s2–6. Parallel to this, most individuals with the condition have an 
intellectual  disability7 and challenges with social  cognition8 as well as heightened risk of  anxiety9,10 and atypical 
face  perception11,12. The direct cause is a hemizygous deletion of 25–27 genes at 7q11.236. This locus includes 
genes implicated in the development of the oxytocin system and brain regions important for the social brain in 
humans such as the amygdala and the orbitofrontal cortex (OFC)13–15. The GTF2I and GTF2IRD1 genes typi-
cally deleted in WS have been linked to sociability in the general human  population13 and the social phenotype 
of WS, an effect that may be mediated by altered oxytocin (OT)  reactivity6,14,16.

Social motivation in Williams syndrome. Atypical social motivation is a common facet of neuropsy-
chiatric conditions including autism and depression and may act as a causal mechanism or treatment  target17,18. 
In contrast, WS is seemingly a rare example of a condition which leads to enhanced rather than reduced social 
 motivation8. Studies of WS may therefore contribute to our understanding of sociability and its’ consequences at 
the genetic, neural, and behavioral  level19. Importantly, the social phenotype of WS is complex and characterized 
by enhanced social motivation as well as multiple challenges in social domains, including difficulties with emo-
tion recognition and understanding of other’s mental  state8. Autistic symptoms are also  common6,20–22.

Social motivation and learning. Social motivation is hypothesized to influence learning by modulating 
the intrinsic reward value of social  stimuli17,23. In WS, enhanced social motivation has been described as a rela-
tive strength. At the same time, social motivation could lead individuals with WS to seek social contacts even 
if this exposes them to  risks24. The above theories rely on the assumption that the increased social motivation 
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commonly observed in WS is reflected by the way individuals with the condition learn from the environment. 
Surprisingly, research testing this assumption is extremely scarce. Preschoolers with WS were found to imitate 
actions more when performed by a socially engaging as compared to a neutral  model25. Anecdotal evidence sug-
gests that social feedback may improve classroom learning in  WS26.

Social reinforcement learning. One of the most important forms of learning consists of adapting one’s 
actions to maximize the probability of desired outcomes (rewards). For example, a child may learn through 
trial and error which behaviors in the playground are most likely to result in positive interactions. Probabilistic 
reward learning is successfully explained by reinforcement learning models, in which action values are updated 
by prediction errors, or the mismatch between expected and received outcome. Reinforcement learning strat-
egies of individuals or groups can be formalized using computational  modeling27,28. Reinforcement learning 
parameters are in turn linked to dissociable brain regions, supporting their feasibility as biomarkers. Striatal 
dopaminergic neurons signal prediction  errors29. Brain regions including the amygdala and medial prefron-
tal cortex seem to represent the subjective value of expected and received outcomes, and the balance between 
reward seeking and avoidance of aversive outcomes (losses)23,29. Prefrontal cortical regions are also implicated 
in regulation of approach related behaviors. Social rewards (such as positive facial expressions) modulate activ-
ity in regions involved in reinforcement learning such as the OFC and the  striatum29–31. In typically developing 
populations, social rewards drive reinforcement learning much in the same way as symbolic, appetitive (e.g., 
food) or monetary  rewards23,29,32 and with similar  effectiveness30,32,33 (but see Ref.34. However, social feedback 
may be more effective than non-social feedback in tasks where the stated goal is to understand other’s prefer-
ences or mental  state32,35,36.

Individuals with WS show structural and functional alterations in brain regions involved in reinforcement 
learning, including amygdala hypoactivation, structural changes in the amygdala and hippocampus, increased 
functional connectivity between the medial prefrontal cortex and visual cortical  regions6,15,19. In the absence of 
formalized modelling, it is difficult to examine whether these alterations correspond to specific atypicalities in 
reward learning. Here, we report results from the first study examining social feedback effects on probabilistic 
value learning in WS. We hypothesized that social as compared to non-social feedback, would lead to more opti-
mal learning in WS and that this facilitating effect would be stronger than in typically developing (TD) individu-
als and individuals with intellectual disability (ID) of other etiology. Cognitive modeling was used to characterize 
the computational mechanisms underlying reward learning under social as compared to non-social feedback.

Methods and materials
Participants. Williams syndrome. Participants were recruited from family and patient organizations and 
habilitation services in Sweden. Initially, 32 individuals expressed interest in participating and 29 attempted the 
task. Of these, 3 found the task too demanding and did not complete it and one was excluded due to an ongoing 
psychotic disorder, resulting in a final sample size of n = 25 (for age and gender proportion, see Table 1).

Twenty-two of the 25 individuals with WS completed a larger clinical assessment. Genetic testing showed a 
typical deletion in all of these participants. A clinical psychologist or psychiatrist conducted a diagnostic inter-
view for DSM-5 diagnoses with the individual and a caregiver using the Mini International Neuropsychiatric 
Interview (MINI)37 and rated the severity of anxiety symptoms using the Clinical Global Impression—Sever-
ity (CGI-S38), a seven-point scale ranging from “1 = normal, not at all ill” to “7 = among the most extremely 
ill patients”. For each participant, the highest CGI-S score for any anxiety diagnosis was used as a measure of 
anxiety severity. For details, see Ref.10. Co-occurring diagnoses were ADHD (n = 3) and autism (n = 4), TICS 
disorder (n = 1). In line with previous  studies9, 15/22 individuals interviewed with the MINI had an on-going 
anxiety disorder.

Intellectual disability. Inclusion criteria in the ID group was a diagnosis of a rare genetic condition associated 
with intellectual disability but not hypersociability. Initially, 29 participants expressed interest to participate and 
27 attempted the task, of which 3 found it too demanding and did not complete it. Hence, the final ID group 

Table 1.  Demographic characteristics. ¥ Mann–Whitney U; ‡Chi-square test; ±estimated with Vocabulary 
subtest from the Wechsler Intelligence Scale for Adults, 4th Edition (WAIS-IV). Based on n = 19; ±based on 
WAIS-IV (n = 13) or the Wechsler Intelligence Scale for Children, 5th Edition (WISC-5, n = 3).

WS (n = 25) ID (n = 24) TD (n = 56) Group difference

Age (M (SD) [range]) 24.12 (12.26) [7–51] 19.72 (12.51) [6–51] 27.82 (15.88) [6–50]
p = 0.160 (WS vs. ID); p = 0.57 
(WS vs. TD)
p = 0.069 (ID vs. TD)¥

Gender (F/M) 11/14 11/13 30/28 all p > 0.70‡

ABAS General adaptive func-
tioning (M (SD) [range]) 57.8 (15.41) [40–93] 66.91 (18.54) [40–104] – p = 0.215¥

ABAS Cognitive functioning 
(M (SD) [range]) 58.2 (16.42) [40–97] 66.55 (16.91) [40–97] – p = 0.220¥

ABAS Social functioning (M 
(SD) [range]) 68.15 (14.47) [50–94] 71.82 (18.64) [50–115] – p =  756¥

IQ (M (SD) [range]) 56.88 (10.54 [40–79])η 102.5 (10.49) [85–115]± p < 0.001***¥
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included 24 individuals (22q11 deletion syndrome, n = 6; Coffin-Siris  syndrome39 n = 10; Fragile X syndrome, 
n = 3, Sotos syndrome, n = 4). Co-occurring diagnoses were autism (n = 4), ADHD (n = 3), epilepsy (n = 1), spe-
cific language impairment (n = 2), and agenesis of the corpus callosum (n = 1). One adult individual who had a 
cerebellar tumor during early childhood was included, but exclusion of this participant did not change any of the 
results. Age and gender proportion are shown in Table 1.

Although the sample size was too small to allow statistical comparison between syndromes in the ID group, 
descriptive statistics are reported in the Supplementary materials (Table S1).

Typical controls (henceforth TD) were recruited through advertisements on university web pages, social 
media, and through addresses collected from the Swedish tax registry. Inclusion criteria were: no ongoing medica-
tion with known psychotropic effects, no psychiatric or neurological condition, and no diagnosed or suspected 
genetic condition. Initially, 65 individuals agreed to participate and completed the task. Of these, 9 participants 
older than 52 were excluded to create a comparison group within the age range of the WS and ID groups. The 
final sample size was n = 56 (age range 6–51) The overall majority of TD adults (n = 35) had completed a university 
education. Age and gender proportion are shown in Table 1.

Measures of adaptive and intellectual functioning. Parent ratings of adaptive behavior was col-
lected in the ID and WS groups using the Adaptive Behavior Assessment Scale (ABAS, second  edition40, n = 8, 
third edition, n =  2441), a normative sample mean of 100 (SD = 15). No significant group differences were found 
between the ID or WS groups in general adaptive functioning or in the cognitive or social functioning indices 
(Table 1). Full-scale IQ was assessed in 16 individuals with WS using the Wechsler intelligence scale for adults, 
4th Ed (WISC-IV42, n = 13) or Wechsler Intelligence Scale for Children, 5th Ed (WISC-V43, n = 3) depending on 
the participants’ age.

TD participants were invited to complete screening of cognitive ability using the Vocabulary subtest of the 
Wechsler Intelligence Scale for Adults, 4th Edition (WAIS-IV) which is highly correlated with full scale IQ 
(r > 0.90)42. Scaled scores were converted to standard scores (population mean of 100 and SD = 15) using the 
formula IQ = 100 + 5*(standard score − 10) and used as a proxy measure for IQ. TD participants screened for IQ 
(n = 19) received an average score of 102.5 (SD = 10.49) which is close to population average.

Demographic comparisons. As can be seen in Table 1, groups did not differ significantly in age or gender pro-
portion. The WS and ID group did not differ significantly in parent ratings of adaptive functioning whereas the 
TD group had higher cognitive ability than the WS group.

The Swedish Ethical Review Authority approved the study, which followed the tenets of the Declaration of 
Helsinki. Written informed consent was obtained from all participants, and from the parents of participants in 
the WS and ID groups.

Task and procedure. Participants completed two rounds of a probabilistic reward learning task (described 
in Fig. 1). Each round consisted of 75 trials where participants chose between two stimuli with a reward prob-
ability of 2/3 and 1/3, respectively. A correct choice is defined as selection of the stimulus with the highest reward 
probability. The 1/3 of trials on which the reward contingencies deviated from the overall pattern (i.e., a correct 
choice resulted in a loss and an incorrect choice in a gain) were predetermined in six unique reinforcement 
schedules, which were counterbalanced between participants and conditions.

Twelve participants (WS: n = 2, TD: n = 2, ID: n = 8) completed the task in a research facility, and the rest from 
home over the internet using a computer or tablet through Pavlovia, a validated system which allows stimulus 
presentation and reaction time measurement at millisecond  precision44 Feedback for correct choice was a writ-
ten message on the screen (“you won!”) and an animation of a smiling woman in the social condition or a pile 
of gold coins moving towards the participant in the non-social condition. Feedback for incorrect choice was 
always an animation of the letter X moving towards the participant together with the text “you lost!”. Condition 
order, reinforcement schedule, and the stimulus associated with the highest reward probability (right, left) was 
counterbalanced between participants. Animated facial stimuli were taken from the Amsterdam Dynamic Facial 
Expression Set (ADFES)45.

Individuals in the WS and ID groups were assisted by parents or habilitation service personnel who received 
the same written instructions about how to present the task. In this, they were told that they could assist the 
participant by reading and explaining the instructions and preparing the testing the environment, but that they 
should not give any help or advice on how to do the actual task. Instructions were also presented in written 
form at the screen. The instructions stated that the task was to collect points by choosing between two different 
balloons. Participants were informed that one of the balloons was better, and that they had to figure out which.

Directly following each round, participants rated their affective experience to winning a point, losing a point, 
and of seeing the model smile (e.g., the social feedback) and the pile of gold coins (e.g., the non-social feedback) 
(Fig. 1A,B) on an ascending seven grade Likert scale. All groups rated wins higher than losses, and rated both 
social and non-social feedback as positive (mean values > 3, see Table 1), indicating that the task was perceived 
as rewarding. Each round started with four practice trials. To validate the task, 10 participants (WS: n = 2, ID: 
n = 1, TD, n = 7) repeated the task in a research environment. The small sample size prevents meaningful statistical 
comparisons, but visualizations of the data indicated highly similar values for choice behavior and computational 
modeling parameters between measurements (see Supplementary materials).

Data rejection. Participants who did not explore both options of the task (> 90% choices of one stimulus, 
ID: n = 2, TD: n = 2, WS: n = 1) or whose behavior indicated random responses (TD: n = 3, WS: n = 1), were 
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excluded from that condition but included in the other condition. Finally, we excluded data from one TD partici-
pant in a condition in which more than 50% of reaction times were quicker than 150 MS, indicating inattention.

Computational modeling. Mathematical modeling allows identification of plausible computational 
mechanisms underlying observed choice behavior and learning. The method is increasingly used in clinical 
 populations28,48,49, but so far not in WS.

We compared model fit to the data of several reinforcement learning models and alternative, non-learning 
models (e.g., assuming that participants responded at random or switched between choice alternatives regardless 
of value feedback. Models were further validated through data simulations. Model comparison and parameter 
estimation were performed through maximum likelihood estimation using the fminbnd function in MATLAB. 
Following previous publications, data were analyzed in two  stages33. First, for each model, the parameter values 
which maximized the log likelihood estimate (LLE) of the observed data were selected. In stage two, this pro-
cedure was repeated with parameters restrained using Gaussian priors generated in stage one. Specifically, the 
prior was parametrised with the mean and covariance (joint accross all participants) of the parameters from step 
 133. This approach has been shown to increase model fit and reduce the risk of extreme parameter  values27,33,48. 
For a detailed description, see Supplementary materials.

Parameters of the winning model are described in Fig. 1C–E. In short, participants update the expected 
value of the chosen action V(c) at each trial t after seeing the outcome r according to the delta rule (e.g., Ref.28)

Figure 1.  (A,B) Overview of the experiment. Participants completed the social (A) and the non-social feedback 
condition in counterbalanced order. Each round consisted of 75 trials. Participants were instructed to collect 
points by choosing between two balloons, and told that one of the options was better. In both conditions, the 
reward probabilities of the stimuli were 2/3 and 1/3 respectively. Stimulus color and position of the better 
stimulus (left/right) were counterbalanced between participants and conditions. After selecting one of the 
two stimuli, participants received either social feedback (an animation of a smiling model, A), or non-social 
feedback (an animation of a pile of gold coins, B). (C–E) Effects of different values of reinforcement learning 
parameters. (C) Higher values of α increases the degree of updating of action values after each outcome, 
leading to increased choice volatility. (D) Higher values of β (exploitation/exploration balance) leads to more 
deterministic choices, so that participants prefer the stimulus (left, right) with higher action value. (D) The 
parameter d (loss/reward weight) determines the degree the relative subjective value of losses as compared to 
wins, so that an agent with d > 0.5 gives higher weight to losses, an agent with d < 0.5 gives higher weight to wins, 
and d = 0.5 means that equal weight is given to both outcomes.
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Here, (rt − V(c)t) represents the prediction error and α the learning rate. The expected value of the non-
chosen action (V(nc)) updated according to the same equation:

The fact that both actions are updated at each trial was theoretically motivated by the fact that participants 
were explicitly instructed to learn which of the actions was better, and also provided better fit to the data than 
models which updated only the chosen options (see Ref.50 for a similar model).

Following previous  studies33,51, the outcome value was determined by the free parameter d, so that r = 1 − d if 
the trial resulted in a win, and r = − d if the trial resulted in a loss. The parameter d therefore indices the relative 
subjective value of rewards and losses, so that the relative weight given to losses is increased at higher values 
(henceforth referred to as loss/reward balance). Both outcomes are given equal weight if d = 0.5, an agent with 
d = 1 learns from losses only, and an agent with d = 0 learns only from wins (see Fig. 1E).

Expected values are transformed into choice probabilities with via the softmax function:

where P(ct) is the probability of choosing stimulus c at trial t, V(ct) is the expected value of stimulus c, and V(nct) 
the expected value of the other stimulus at trial t. The parameter β ranging from 0 to infinity determines the 
degree of exploration (Fig. 1B).

Statistical analysis. Parametric statistics were used since skewness and kurtosis of all variables were within 
the ± 2 and ± 6 range respectively. Linear mixed effects models (LMM) with random intercepts for participant 
were used to test interaction effects between group and condition and main effects of group (three levels). 
Results from LMMs and ANOVAs are identical for a perfectly balanced data set but in contrast to ANOVAs, 
LMMs can handle unbalanced data (i.e., when a participant has valid data from only one condition) without list-
wise deletion. P-values were computed using chi square tests, where a model containing the effect of interest was 
compared to the most complex null model without  it46. Marginal f2 which represent the proportion of explained 
variance in the model as compared to the null is reported as effect  size47.

Significant interaction effects were followed up using t-tests with p-values corrected for multiple comparisons 
within each variable using the Bonferroni method. Following previous  studies48, we examined the following 
metrics: the probability of correct choices (p.correct), the probability to switch after wins (p.win-shift) and losses 
(p.lose-shift), and the overall proportion of repeated choices p.consistent). Average reaction time (lognormal 
mean) and reaction time variability (lognormal sigma) was calculated for each participant and condition.

Statistical analyses were conducted using R version 4.1.2 (R Core Team) with the level of statistical significance 
set to p = 0.05. The study had 80% power to detect medium to large effects (d > 0.4).

Results
Reaction times. Significant main effects of group were found on average reaction time and reaction time 
variability (p < 0.001). Follow-up tests showed that participants with WS and ID were slower and had more vari-
able reaction times than the TD group across conditions (all p < 0.001). No main effects of condition or group x 
condition interactions were found (all p > 0.10; see Supplementary Materials, Table S2).

Choice behavior. Omnibus models including main effects of group and condition (social, non-social) and 
group  ×  condition interactions were run for each dependent variable. Results are shown in Table  2. As can 
be seen, no significant main effects of condition were seen. Main effects of group were found on all choice 
behavior variables. Bonferroni-corrected pairwise comparisons showed that TD participants made more correct 
(p.correct) and consistent (p.consistent) choices and were less likely to switch after losses (p.lose-shift) than the 
WS and ID groups. TD participants were also less likely to switch after wins (p.win-shift) than WS participants, 
but did not differ from the ID group. No main effects of group were found in pairwise comparisons between WS 
and ID participants, indicating similar choice behavior when considered across conditions.

As predicted, significant group × condition effects were found on all choice behavior variables, indicating that 
the effects of condition differed between groups. Group × condition effects were followed up with Bonferroni 
corrected pairwise comparisons within each group separately to address the hypotheses. These are described 
in Table 3 and Fig. 2. As can be seen, in the social as compared to the non-social feedback condition, the WS 
group made more correct choices (p = 0.024, d = 0.58), and were more consistent (p = 0.003, d = 0.55), but did 
not show significant effects on p.win-shift or p.lose-shift. The ID and TD groups showed no significant effects 
of condition on any of the behavioral indices. For a visualization of the of p.correct over the course of the task, 
see Supplementary materials, Fig. S2.

Computational modeling parameters. Learning rate (α). There was no significant main effect of con-
dition (χ2 = 2.97, p = 0.226, f2 = 0.018), but a significant effect of group (χ2 = 20.71, p < 0.001, f2 = 0.001). The 
group × condition interaction was not significant (χ2 = 2.97, p = 0.226, f2 = 0.018). Pairwise follow-up compari-
sons showed that learning rate was higher in WS and ID than in TD across conditions, whereas no difference was 
found between the WS and ID groups (Table 4, Fig. 3).

V(c)t+1 = V(c)
t
+ α(rt − V(c)t).

V(nc)t+1 = V(nc)
t
+ α(1− rt − V(c)t).

P(ct) =
exp(βV(ct))

exp(βV(ct))+ exp(βV(nct))
,
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Exploitation/exploration balance (β). No significant main or interaction effects were found on β (Table  4, 
Fig. 3).

Loss/reward weight (d). No significant main effect of condition was found (χ2 = 0.01, p = 0.939, f2 = 0), but the 
main effect of group (χ2 = 23.62, p = 0, f2 = -0.004) and the group × condition interactions (χ2 = 10.85, p = 0.004, 
f2 = 0.031) were significant. Follow-up comparisons of the main effect showed that d was higher in the WS and 
ID groups than in TD across conditions, (all p < 0.01) whereas the WS and ID groups did not differ (Table 4, 
Fig. 3). Additional Bonferroni-corrected follow-up tests showed that the WS group had lower loss/reward weight 
in the social as compared to the non-social condition (t (44) = − 2.84, p = 0.027, d = − 0.44), indicating higher 
relative sensitivity to social rewards over losses. No significant effects of condition were found in the TD (t 

Table 2.  Results from linear mixed effects models (LMMs) of choice behavior variables. Significant values are 
in bold. WS Williams syndrome, ID intellectual disability, TD typically developed adults. *p < 0.05, **p < 0.01, 
***p < 0.001; ‡p-values are Bonferroni-corrected for multiple comparisons.

Variable Effect χ2 df p f2 Direction

p.correct

Condition 0.08 1 0.781 < 0.01

Group 11.5 2 0.003** 0.08

Group (WS vs. ID) 0.04 1 > 0.99‡ < 0.01

Group (WS vs. TD) 7.18 1 0.021*,‡ 0.06 WS < TD

Group (TD vs. ID) 6.32 1 0.036*,‡ 0.05 ID < TD

Group × condition 10.18 2 0.006** 0.03

p.consistent

Condition 0.49 1 0.482 < 0.01

Group 33.32 2 < 0.001*** 0.23

Group (WS vs. ID) 1.21 1 > 0.99‡ 0.02

Group (WS vs. TD) 26.66 1 < 0.001***,‡ 0.24 WS < TD

Group (TD vs. ID) 18.29 1 < 0.001***,‡ 0.17 ID < TD

Group × condition 21.97 2 < 0.001*** 0.03

p.switch-win

Condition 0.34 1 0.561 < 0.01

Group 7.45 2 0.024* 0.05

Group (WS vs. ID) 0.32 1 0.572‡ 0.01

Group (WS vs. TD) 6.41 1 0.033*,‡ 0.06 WS > TD

Group (TD vs. ID) 3.95 1 0.141‡ 0.04

Group × condition 13.59 2 0.001*** 0.03

p.switch-lose

Condition 0.18 1 0.671 < 0.01

Group 51.18 2 < 0.001*** 0.33

Group (WS vs. ID) 2.52 1 0.336‡ 0.04

Group (WS vs. TD) 38.57 1 < 0.001***,‡ 0.32 WS > TD

Group (TD vs. ID) 25.57 1 < 0.001***,‡ 0.22 ID > TD

Group × condition 7.08 2 0.029* 0.01

Table 3.  Within-groups comparisons for choice behavior measures. Significant values are in bold. WS 
Williams syndrome, ID intellectual disability, TD typically developed adults. p-values are corrected for multiple 
comparisons for each variable using the Bonferroni method. *p < 0.05, **p < 0.01, *** p < 0.001.

Measure Group Social (M, SD) Non-social (M, SD) t df P (Bonferroni) d

p.correct

WS 0.63 (0.09) 0.59 (0.06) 2.91 44 0.024* 0.58

ID 0.62 (0.08) 0.61 (0.08) 0.74 40 > 0.99 0.19

TD 0.66 (0.1) 0.68 (0.12) − 1.68 108 0.297 − 0.24

p.consistent

WS 0.45 (0.19) 0.34 (0.19) 3.99 44 0.003** 0.55

ID 0.47 (0.17) 0.44 (0.14) 1.19 40 0.741 0.19

TD 0.59 (0.14) 0.63 (0.14) − 2.27 108 0.081 − 0.27

p.win-shift

WS 0.32 (0.26) 0.44 (0.3) − 2.49 44 0.063 − 0.43

ID 0.32 (0.21) 0.36 (0.23) − 0.82 40 > 0.99 − 0.16

TD 0.27 (0.18) 0.23 (0.15) 1.92 108 0.183 0.25

% lose-shift

WS 0.82 (0.2) 0.89 (0.15) − 2.12 44 0.138 − 0.41

ID 0.76 (0.18) 0.79 (0.13) − 0.86 40 > 0.99 − 0.18

TD 0.58 (0.16) 0.55 (0.19) 1.37 108 0.534 0.17
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Figure 2.  Differences between the social and non-social conditions in choice behavior by group (Stars indicate 
significant differences from (paired samples t-test, Bonferroni-corrected) for multiple comparisons). Boxplots 
cover means and 25–75th percentile. *p < 0.05, **p < 0.01. Colored dots show individual participant values.

Table 4.  Results from linear mixed effects models (LMMs) of computational modeling parameters. *p < 0.05, 
**p < 0.01; *** p < 0.001; ‡ p-values are Bonferroni-corrected for multiple comparisons. Significant values are 
in bold.

Variable effect χ2 df p f2 Direction

α

Condition 0.02 1 0.892 < 0.01

Group 20.71 2 < 0.001*** 0.13

Group (WS vs. ID) 0.89 1 > 0.90‡ 0.01

Group (WS vs. TD) 15.01 1 0.001**,‡ 0.12 WS > TD

Group (TD vs. ID) 9.09 1 0.009**,‡ 0.08 ID > TD

Group × condition 2.97 2 0.226 0.01

β

Condition 0.15 1 0.697 < 0.01

Group 4.72 2 0.094 0.03

Group × condition 4.02 2 0.134 0.01

d

Condition 0.01 1 0.939 < 0.01

Group 23.62 2 < 0.001*** 0.16

Group (WS vs. ID) 0.71 1 0.400‡ 0.01

Group (WS vs. TD) 20.53 1 < 0.001***,‡ 0.18 WS > TD

Group (TD vs. ID) 11.46 1 0.003**,‡ 0.10 ID > TD

Group × condition 10.85 2 0.004** 0.02
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(108) = 1.72, p = 0.273, d = 0.25) or ID groups (t (40) = − 1.01, p = 0.969, d = − 0.13). For descriptive statistics see 
Fig. 3 and Supplementary materials, Table S3).

Linear relationships between loss/reward balance parameter values in the social and non-social conditions 
and CGI-S anxiety scores in the WS group were tested in a post hoc analysis. These relationships were non-
significant (all p > 0.30).

Relation between reinforcement learning parameters and task performance. Within the WS group, a strong nega-
tive correlation between p.correct choices and loss/reward weight in the social condition was found, rs = − 0.88, 
p < 0.001. This indicates that better task performance after social feedback in WS was mediated through a shift 
in the relative subjective value of rewards as compared to losses. A significant, although smaller, correlation was 
also found in the TD group, rs = − 0.40, p = 0.003, but not in the ID group, rs = − 0.31, p = 0.18.

Discussion
WS is a rare genetic condition with a striking behavioral phenotype characterized by high social motivation, 
intellectual disability, and high rates of anxiety. This study demonstrates for the first time that social affiliative 
cues promote optimal decision making (higher probability of correct choices) and modulates reinforcement 
learning strategies in WS. Social feedback also increased choice consistency in individuals with WS. Computa-
tional modeling indicated that this effect could be explained by a shift in the relative subjective values of rewards 
and punishment towards higher weights given to rewards. Furthermore, at the individual level, lower reward/
punishment weights in the social condition were strongly correlated with better task performance (proportion 
of correct choices) in the WS group.

Notably, the WS group was highly sensitive to losses in both conditions, reflected in reward-loss weights 
considerably above 0.5 and higher than the TD group (see Fig. 2). Together, these results suggest that in the 
absence of social feedback, probabilistic learning in WS is biased towards avoiding negative outcomes rather 
than gaining rewards. Positive social feedback may in turn partly normalize this bias. An interesting question 
for future longitudinal studies is whether this bias to learn primarily from negative outcomes in WS, is relatively 
independent of experience or emerges through interaction with the environment.

Social feedback affects loss/reward balance in WS. The WS group did not show an effect of social 
as compared to non-social feedback on learning rate or exploitation/exploration balance. Instead, social feed-
back affected the subjective balance between losses and rewards. That is, the beneficial effects of social feedback 
seem to operate by increasing the relative valuation or rewards versus losses rather than by updating of action 
values per se. This is in line with theories derived from autism research which suggests that the influence of 
social motivation on learning goes through an increase in salience of social  stimuli17,18. Our results are therefore 
consistent with the idea that social motivation is increased in WS. Highly volatile performance and fluctuating 
attention is common in WS. Our results indicate that social feedback may be feasible as a means of reducing 
these  difficulties52.

In contrast to WS, the ID group showed no clear effects of feedback type on behavioral measures or reinforce-
ment learning parameters, demonstrating that the effects seen in WS are not explained by ID per se. Notably, 
the effects of social feedback seen in WS were also absent in the TD group in line with previous  studies32,33,35. 
In this group, social as compared to non-social feedback reduced the likelihood of repeating a successful choice 
but did not affect the overall proportion of correct choices or reinforcement learning strategies. These findings 

Figure 3.  Differences between the social (S) and non-social (N) conditions computational modeling 
parameters by group. Stars indicate significant differences between conditions (paired samples t-test, 
Bonferroni-corrected for multiple comparisons). Boxplots cover means and 25–75th percentile. *p < 0.05. 
Colored dots show individual participant values.
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again suggest that social feedback has specific effects of reinforcement learning in WS, which are not seen in TD 
or ID. Previous research in TD has typically shown that social feedback enhances learning to a similar degree 
as symbolic non-social rewards, although results are somewhat  mixed30,35,36. For example, one study reported 
worse probabilistic learning following social than non-social  rewards30. Improved probabilistic learning fol-
lowing social feedback was reported in a number of studies where tasks were presented as being about learning 
others’ preferences or mental  states32,34,36. Since mental state attribution is challenging for many individuals 
with  WS53, an interesting area for future studies is whether facilitating effects of social feedback would extend 
to this type of task.

Altered reinforcement learning is commonly seen in anxiety disorders and may contribute to their etiology 
and symptom maintenance. Particularly, anxious populations were found to be more sensitive to losses than 
 controls52,53. Given the high prevalence of anxiety disorders in WS, we speculate that the increased loss sensitivity 
observed in WS may be a risk factor for the development of anxiety disorders. An interesting question for future 
studies is how social and non-social feedback for losses would affect reinforcement learning in WS.

Limitations. Some limitations should be mentioned. Sample size in the WS and ID groups was small. The 
study data were largely collected online. While our results suggests that this is feasible in populations with rare 
genetic conditions and ID, a limitation of the study is the lack of exact control over the settings in which partici-
pants completed the task. However, it should be noted that data collected online and in the lab was highly similar. 
An additional limitation is that the small sample size in the ID group did not allow formal statistical comparisons 
between the included conditions (22q11 deletion syndrome, Fragile X syndrome, Coffin-Siris syndrome, and 
Sotos syndrome). Despite these limitations, the current study contributes to our understanding of WS and the 
extent to which the previously described social approach motivation in the condition generalizes to learning.

Data availability
Anonymized data will be made available to researchers upon reasonable request.
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