
Journal of Power Sources 579 (2023) 233273

A
0

•
•
•
•

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

A surrogate-assisted uncertainty quantification and sensitivity analysis on a
coupled electrochemical–thermal battery aging model
Mohammad Alipour a,∗, Litao Yin a, Shiva Sander Tavallaey b,c, Anna Mikaela Andersson b,
Daniel Brandell a

a Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
b ABB AB Corporate Research, Forskargränd 7, SE-721 78 Västerås, Sweden
c Department of Mechanics, School of Science KTH, SE-100 44 Stockholm, Sweden

H I G H L I G H T S

A surrogate-based uncertainty quantification on a battery aging model was performed.
A surrogate model was used to address the coupled model’s high computational cost.
Sensitivity analysis was performed to identify the most influential parameters.
A practical method for developing a reliable, high-fidelity battery aging model.
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A B S T R A C T

High-fidelity physics-based models are required to comprehend battery behavior at various operating condi-
tions. This paper proposes an uncertainty quantification analysis on a coupled electrochemical–thermal aging
model to improve the reliability of a battery model, while also investigating the impact of parametric model
uncertainties on battery voltage, temperature, and aging. The coupled model’s high computing cost, however,
is a significant barrier to perform uncertainty quantification (UQ) and sensitivity analysis (SA). To address this
problem, a surrogate model – i.e, by simulating the outcome of a quantity of interest that cannot be easily
computed or measured – based on the Gaussian process regression (GPR) theory and principle component
analysis (PCA) is built, using a small collection of finite element simulation results as synthetic training data. In
total, 43 variable electrochemical–thermal parameters as well as 13 variable aging parameters are studied and
estimated. Moreover, the trained surrogate model is also used in the parameterization of the electrochemical
and thermal models. The results show that the uncertainties in the input parameters significantly affect the
estimations of battery voltage, temperature, and aging. Based on this sensitivity analysis, the most influential
parameters affecting the above mentioned battery outputs are reported. This approach is thereby helpful for
developing robust and reliable high-fidelity battery aging models with potential applications in digital twins
as well as for synthetic data generation.
1. Introduction

Because of their high energy density and safety, lithium-ion bat-
teries (LIBs) are extensively used for energy storage, not least in the
electromobility sector. In light of their growing use in automotive ap-
plications, much attention has been paid to developing effective battery
management systems (BMS) capable of estimating battery lifetime and
state-of-health (SOH). Advanced BMSs offer smarter and more effective
battery management as well as longer battery lifetimes as a result of
recent advancements in modeling tools, diagnostics, and knowledge of
how batteries degrade [1].

∗ Corresponding author.
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Computer simulations are becoming increasingly popular in the
design of complex BMSs that can take the varying battery working
conditions into account. These simulations are developed using models
that describe the physics of the real battery system mathematically, as
well as on some numerical techniques that enable the transformation
of a set of governing partial differential equations into algebraic equa-
tions [2]. Due to the complexity of real-world battery systems, taking
every detail into account while developing the model would increase
the model complexity and thereby the simulation computational cost;
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Nomenclature

𝐴 Sandwich area of the cell
𝑎𝑠 Specific surface area of electrode
𝑏 Bruggeman coefficient
𝑐 Ion concentration
𝐶𝑝 Heat capacity
𝐷 Diffusion coefficient
𝐸𝑎 Activation energy
𝐹 Faraday constant
𝑓∓ Average molar activity coefficient
ℎ𝑐𝑜𝑛𝑣 Convective heat transfer coefficient
𝑖 Current density
𝐼𝑎𝑝𝑝 Applied current of the cell
𝑖0 Exchange current density of intercalation
𝑗 Local current density
𝑘0 Reaction rate constant
𝑘𝑇 Thermal conductivity
𝐿 Thickness of micro cell
𝑀 Molecular weight
𝑛 Number of Li ions
𝑄 Capacity of the cell
𝑞𝑟𝑒𝑣 Reversible heat generation rate
𝑞𝑖𝑟𝑟 Irreversible heat generation rate
𝑞𝑜ℎ𝑚 Ohmic heat generation rate
𝑟 Coordinate along the radius of electrode

particle
𝑅 Universal gas constant
𝑅𝑓𝑖𝑙𝑚 Film resistance
𝑅𝑠 Radius of spherical electrode particle
𝑡 Time
𝑇 Cell temperature
𝑡+0 Transference number
𝑇∞ Ambient temperature
𝑈𝑒𝑞 Equilibrium potential
𝑉 Cell voltage
𝑉𝑒 Molar volume of electrolyte
𝑥 Stoichiometric number in anode
𝑦 Stoichiometric number in cathode

Greek symbols

𝛼 Transfer coefficient for an electrode reac-
tion

𝛿 Thickness
𝜀 Volume fraction of a porous medium
𝜂 Overpotential
𝜅 Ionic conductivity of electrolyte
𝜌 Density
𝜎𝑠 Solid phase conductivity
𝛷 Potential

Subscripts/Superscripts

0 Initial state
𝑖 Index
𝑖𝑛𝑡 Li ion intercalation
𝑖𝑠𝑜 Isolation
𝑙 Liquid phase
𝑙𝑝𝑙 Lithium plating
𝑚𝑎𝑥 Maximum
2

𝑚𝑖𝑛 Minimum
𝑛 Negative electrode
𝑝 Positive electrode
𝑟𝑒𝑓 Reference
𝑠 Solid phase
𝑆𝐸𝐼 Solid electrolyte interphase

thus, simplifications and assumptions must be made during the model-
building process. However, the model’s predictions become uncertain
as a result of each simplification and assumption. Furthermore, the
model uncertainty is influenced by the fact that many model parame-
ters are empirical constants obtained from limited experimental results,
and one single parameter is often used to describe complex and variable
properties. Additionally, the initial and boundary conditions of the
simulation are inherently uncertain because they are the outcome of
experimental measurements. In this context, modelers and scientists
have debated the topic of model indeterminacy widely. Generally, most
modelers believe that a model cannot be validated in the sense of being
proven true; instead, it is more acceptable to say that the model has
been extensively corroborated, meaning that it has passed a series of
tests [3].

Computational models can be divided into three categories: physics-
driven models, data-driven models, and hybrid models that combine
the two categories. The physics-driven models integrate acknowledged
laws of physics that have been connected with it in an attempt to
predict the battery system’s behavior. The data-driven method, on the
other hand, aims to consider the battery system as a ‘‘black box’’
and statistically infer its features. Data-driven models can quite well
capture the behavior of a system; nevertheless, they usually lack phys-
ical meaning and require large amounts of test data for training.
Physics-based models, on the other hand, are often over-parameterized,
but have a great potential to explain the battery system also under
previously unobserved situations [4,5]. As a result, major attempts
have been made to integrate data-driven models with physics-based
models. One notable effort across many scientific and engineering areas
is the use of surrogate models to mimic and capture the functional
properties of the usually computationally expensive simulation models.
For instance, Sinai et al. [6] used neural networks as an approximation
in their numerical method for partial differential equations (PDEs).
Mckay et al. [7] used a Deep Neural Network-based surrogate model
to predict the dynamics of LIBs. They trained the surrogate model
using synthetic data generated by the single particle model (SPM). Zhou
et al. [8] used a surrogate-assisted teaching–learning optimization tech-
nique to effectively parameterize the electrochemical battery model.
Zheng et al. [9] used surrogate models to perform uncertainty quan-
tification (UQ) analysis to assess the impact of various design factors
on the performance of the structured Si anode system. Here, we build
upon these previous efforts by extending the application of surrogate-
assisted model approach to a coupled electrochemical–thermal model
for battery aging. The surrogate model is trained through a machine-
learning type of approach using synthetic data from the battery aging
model.

A surrogate-based approach is used in this paper to improve the
quality of a high fidelity battery aging model via an uncertainty quan-
tification study followed by parameter optimization of the
electrochemical–thermal model. To that end, the design of experiment
(DoE) method known as Latin hypercube sampling (LHS) is used to
generate input for the parametric sweep study, utilizing a high fidelity
battery model based on finite element methods (FEM). To emulate the
FEM model outputs for different quantities of interest (QoI) collected
by the parametric sweep study, a computationally efficient surrogate
model based on GPR theory and PCA is used. The aging parameters

were not optimized at this stage due to the dynamic nature of these
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Fig. 1. Schematic of the coupled electrochemical–thermal-aging model.

parameters, that can only be captured and eventually calibrated over
long aging cycles. However, after calibration of the electrochemical and
thermal parameters, battery aging was implemented into the model.
Prior to the optimization of the electrochemical–thermal parameters,
a plausibility analysis is proposed using the outcome from surrogate-
based sensitivity analysis in order to avoid a complex multi-objective
optimization. The rest of this paper is structured as follows: the coupled
electrochemical–thermal-aging model is described in Section 2; Sec-
tion 3 discusses the proposed method’s framework and methodology;
Section 4 analyzes the findings; and Section 5 concludes this work.

2. Coupled electrochemical–thermal-aging model

LIB behavior is a complex, highly non-linear process that depends
on a number of variables, e.g. operating temperature and charge/
discharge current rate. Like their electrochemical behavior, their aging
rate trajectory is nonlinear and undergoes significant changes over
cycling time. The Doyle–Fuller–Newman (DFN) or pseudo-2D (P2D)
electrochemical model are the most common physics-based models
for studying the behavior of LIBs [10,11]. In this regard, a coupled
electrochemical–thermal aging model for a commercial LG 18650 HE4
2.5 Ah Li-ion cell is constructed which includes the DFN (P2D) elec-
trochemical model, a 2D lumped thermal model, and an aging model
which is based on side reactions [12,13]. A two-way approach is used
for coupling the electrochemical–thermal-aging model, as illustrated
in Fig. 1. The governing PDE equations were solved using the finite
element method in the COMSOL 6.0 software.

2.1. P2D electrochemical model

The P2D model is governed by a set of partial differential equations
(PDEs) that define mass, charge, and energy conservation principles,
as well as electrochemical kinetics. Using the P2D model, the battery
terminal voltage can be computed as a function of the open circuit
potential, the overpotential, the electrolyte potential, and the voltage
drop due to film resistance (see Eqs. (32)–(34)) as:

V(𝑡) = 𝛷𝑠,𝑝(𝑥, 𝑡)|𝑥=𝐿 −𝛷𝑠,𝑛(𝑥, 𝑡)|𝑥=0 − 𝑅𝑓𝑖𝑙𝑚𝑖𝑎𝑝𝑝
= (𝜂𝑝 +𝛷𝑙,𝑝(𝑥, 𝑡) + 𝑈 𝑝

𝑒𝑞) − (𝜂𝑛 +𝛷𝑙,𝑛(𝑥, 𝑡) + 𝑈𝑛
𝑒𝑞) − 𝑅𝑓𝑖𝑙𝑚𝑖𝑎𝑝𝑝

(1)

2.1.1. Electrochemical kinetics at the interface
The local or intercalation current density represents the molar

fluxes of charges moving between the active material in each electrode
and in the electrolyte. The main intercalation reaction occurs at the
particle’s surface, and the associated current density 𝑗𝑖𝑛𝑡 is governed by
a Butler–Volmer type kinetic expression as

𝑗𝑖𝑛𝑡 = 𝑖0

(

exp
(

𝛼𝑎𝐹
𝑅𝑇

𝜂
)

− exp
(

𝛼𝑐𝐹
𝑅𝑇

𝜂
))

(2)

where 𝑖0 represents equilibrium exchange current density and is given
as:

𝑖 = 𝑘 𝐹𝑐𝛼𝑎
(

𝑐 − 𝑐
)𝛼𝑎 𝑐𝛼𝑐 (3)
3

0,𝑖 0 𝑙 𝑠,𝑚𝑎𝑥 𝑠,𝑠𝑢𝑟𝑓 𝑠,𝑠𝑢𝑟𝑓
2.1.2. Charge conservation
There are two types of current densities in LIBs: the electronic

current density in the solid phase 𝑖𝑠 and the ionic current density in
the electrolyte phase 𝑖𝑙. The charge conservation equation governing
these two current sources is:

∇ ⋅ 𝑖𝑠 + ∇ ⋅ 𝑖𝑙 = 0 (4)

∇ ⋅ 𝑖𝑠 = −𝑎𝑠𝑗 (5)

∇ ⋅ 𝑖𝑙 = 𝑎𝑠𝑗 (6)

The electron transport in the solid electrode is governed by Ohm’s law
as

𝑖𝑠 = −𝜎𝑒𝑓𝑓𝑠 ∇𝛷𝑠 (7)

Li ions are transported in the electrolyte phase via diffusion and
electromigration, which are caused by the current flux at the elec-
trode/electrolyte interface. Thus, the ionic current density is governed
as

𝑖𝑙 = −𝜎𝑒𝑓𝑓𝑙 ∇𝛷𝑙 +
2𝑅𝑇𝜎𝑒𝑓𝑓𝑙

𝐹

(

1 +
𝜕𝑙𝑛𝑓±
𝜕𝑙𝑛𝑐𝑙

)

(1 − 𝑡+)∇(𝑙𝑛𝑐𝑙) (8)

2.1.3. Mass conservation
The lithium ion concentration in the active materials particles is

modeled by Ficks’s second law, describing diffusion of Li ions into
spherical electrode particles by relating the time derivative to the
gradient and diffusion constant as
𝜕cs(𝑥, 𝑟, 𝑡)

𝜕𝑡
= 1

𝑟2
𝜕
𝜕𝑟

(

𝐷𝑠𝑟
2 𝜕cs(𝑥, 𝑟, 𝑡)

𝜕𝑟

)

(9)

Because of symmetry, the gradient at the particle center is considered
to be zero, whereas it is set to the molar flux at the particle surface. As
a result, the boundary conditions and initial values become:
𝜕cs(𝑥, 𝑟, 𝑡)

𝜕𝑟
|𝑟=0 = 0, 𝐷𝑠

𝜕cs(𝑥, 𝑟, 𝑡)
𝜕𝑟

|𝑟=𝑅 = −
𝑗
𝐹
, cs(𝑥, 𝑟, 0) = 𝑐𝑠,0 (10)

Li concentration in the electrolyte phase depends on ionic current
density and is expressed as:

𝜀𝑙
𝜕cl(𝑥, 𝑡)

𝜕𝑡
= −∇ ⋅

(

−𝐷𝑒𝑓𝑓
𝑙 ∇cl(𝑥, 𝑡) +

𝑖𝑙𝑡+
𝐹

)

+
𝑎𝑠𝑗
𝐹

(11)

2.2. Thermal model

LIBs generate a significant amount of heat during cycling, causing
the battery temperature to fluctuate. Most electrochemical and aging
parameters are temperature dependent, so accurately estimating bat-
tery temperature is critical in battery behavior modeling. The energy
balance for the battery cell is given as

𝜌𝑐𝑝
𝜕𝑇
𝜕𝑡

− 𝑘∇2𝑇 = 𝑞𝑟𝑒𝑣 + 𝑞𝑖𝑟𝑟𝑒𝑣 + 𝑞𝑜ℎ𝑚 (12)

where the reversible entropic heat (𝑞𝑟𝑒𝑣), the irreversible reactions heat
(𝑞𝑖𝑟𝑟𝑒𝑣), and the ohmic heat (𝑞𝑜ℎ𝑚) are primary heat generation sources,
and are given as

𝑞𝑟𝑒𝑣 = 𝑎𝑠𝑗𝑖𝑛𝑡𝑇
𝜕𝑈𝑒𝑞

𝜕𝑇
(13)

𝑞𝑖𝑟𝑟𝑒𝑣 = 𝑎𝑠𝑗𝑖𝑛𝑡𝜂 (14)

𝑞𝑜ℎ𝑚 = −𝑖𝑠 ⋅ ∇𝛷𝑠 − 𝑖𝑙 ⋅ ∇𝛷𝑙 (15)

The physical properties of the cell stack are taken as lumped variables,
and given as [14]:

𝜌𝑠𝑡𝑎𝑐𝑘 =
𝛴𝑖𝐿𝑖 ⋅ 𝜌𝑖 (16)

𝐿𝑠𝑡𝑎𝑐𝑘
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Fig. 2. Schematic of side reactions happening on a graphite particle.

𝐶𝑝,𝑠𝑡𝑎𝑐𝑘 =
𝛴𝑖𝐿𝑖 ⋅ 𝜌𝑖 ⋅ 𝐶𝑝,𝑖

𝐿𝑠𝑡𝑎𝑐𝑘 ⋅ 𝜌𝑠𝑡𝑎𝑐𝑘
(17)

𝑘𝑇⟂ =
(

1
𝐿𝑠𝑡𝑎𝑐𝑘

⋅ 𝛴𝑖
𝐿𝑖
𝑘𝑇 ,𝑖

)−1
(18)

𝑘𝑇 ∥ =
𝛴𝑖𝐿𝑖 ⋅ 𝑘𝑇 ,𝑖
𝐿𝑠𝑡𝑎𝑐𝑘

(19)

where 𝑘𝑇⟂ denotes the cross-plane thermal conductivity, 𝑘𝑇 ∥ denotes
the in-plane thermal conductivity, and the thickness of the cell stack is
given as 𝐿𝑠𝑡𝑎𝑐𝑘 = 𝐿𝑐𝑐− + 2(𝐿𝑛𝑒𝑔 + 𝐿𝑠𝑒𝑝 + 𝐿𝑝𝑜𝑠) + 𝐿𝑐𝑐+ .

2.3. Aging model

Physical models are critical for understanding the mechanisms of
battery aging and predicting battery aging behavior under unantici-
pated working conditions. This paper considers four major aging mech-
anisms, which are discussed further in this section. It is often considered
that passivisation film formation on the negative electrode is the pri-
mary cause of aging in LIBs, resulting in capacity and power losses.
The electrolyte solvent components are reduced at the anode particles’
surface in a side reaction with Li ions and injected electrons because
the anode operating voltage exceeds the electrolyte component’s sta-
bility window [15]. Despite the fact that multiple reactions have been
known to occur depending on the local voltage and surface chemistry,
most researchers have modeled this primarily as the reaction between
ethylene carbonate (EC) and Li ions [13,16]:

2C2H4CO3 + 2𝑒− + 2Li+ → (CH2OCO2Li)2 + C2H4 (20)

The solid product of the above mentioned side reaction deposits on
the anode particle’s surface, forming the solid electrolyte interphase
(SEI). These deposits build up on the surface of anode particles, causing
the SEI layer to develop constantly during battery operation. SEI layers
are electronic insulators that, when they are completely coated, can
fully isolate certain particles from electronic wiring, resulting in a loss
of active carbon material and, thereby, capacity fading. Furthermore,
side reactions deplete ions and electrolyte solvents, contributing to
additional capacity fade [17]. The other side reactions occurring on
the negative electrode surface are lithium plating and stripping. To
avoid model complexity, Li stripping was not considered in this work.
Li plating occurs when the local anode potential becomes negative vs.
Li/Li+, as described by Eq. (21). Fig. 2 illustrates the formation of the
SEI layer and Li plating on a graphite particle surface.

Li+ + 𝑒− → Li (21)
4

2.3.1. SEI layer growth and Li plating
The total local current density of the negative electrode is deter-

mined by three sources: Li intercalation, SEI formation, and Li plating.

𝑗𝑛 = 𝑗𝑖𝑛𝑡,𝑛 + 𝑗𝑆𝐸𝐼 + 𝑗𝑙𝑝𝑙 (22)

While side-reactions at the positive electrode are often significant
aging factors, we have chosen to neglect them partly for model sim-
plicity, and partly since the side-effects at the anode are generally
more dominating. For example, the solvent may be oxidized at the
positive electrode, similar to how solvent reduction occurs at the
negative electrode, resulting in the formation of the cathode electrolyte
interface (CEI). In the research conducted by Lin et al. [18], a simple
Tafel equation is proposed as a kinetically limited model for this
aging mechanism. Furthermore, this reaction produces H2 which can
result in HF, facilitating the dissolution of Mn from the positive elec-
trode [18]. Some other researchers [19] propose that Mn dissolution
has a secondary effect, such as promoting SEI growth. Therefore, Li
intercalation/deintercalation is presumed to be the only reaction source
contributing to the local current density at the cathode.

𝑗𝑝 = 𝑗𝑖𝑛𝑡,𝑝 (23)

As a result of these assumptions, the overpotentials in the negative and
positive electrodes are governed as

𝜂𝑛 = 𝛷𝑠,𝑛 −𝛷𝑙,𝑛 − 𝑈𝑛
𝑒𝑞 − 𝑅𝑓

𝑗𝑛
𝑎𝑠,𝑛

(24)

𝜂𝑝 = 𝛷𝑠,𝑝 −𝛷𝑙,𝑝 − 𝑈 𝑝
𝑒𝑞 (25)

The formation of new SEI at the anode surface is determined by
both the EC diffusion rate across the surface film [20,21], as well as
the interfacial kinetics [22]. Reniers et al. [13] proposed the following
equation for 𝑗𝑆𝐸𝐼 by assuming a constant bulk concentration of solvent
𝑐𝐸𝐶,𝑏𝑢𝑙𝑘 and a linear diffusion rate across the passivation film that
incorporates both the kinetically limited SEI layer growth term as well
as the limitation term caused by diffusion of electrolyte solvent through
the passivation film:

𝑗𝑆𝐸𝐼 = −
𝑐𝐸𝐶,𝑏𝑢𝑙𝑘

1

𝑛𝑆𝐸𝐼𝐹𝑘0,𝑆𝐸𝐼 exp
(

−
𝛼𝑐,𝑆𝐸𝐼 𝑛𝑆𝐸𝐼 𝐹

𝑅𝑇 𝜂𝑆𝐸𝐼

) + 𝛿𝑓𝑖𝑙𝑚
𝑛𝑆𝐸𝐼𝐹𝐷𝐸𝐶

(26)

where the SEI overpotential is given as:

𝜂𝑆𝐸𝐼 = 𝛷𝑠,𝑛 −𝛷𝑒,𝑛 − 𝑈𝑆𝐸𝐼
𝑒𝑞 − 𝑅𝑓𝑖𝑙𝑚

𝑗𝑛
𝑎𝑠,𝑛

(27)

Similarly, the local current density and overpotential of side reactions
due to Li plating are given as

𝑗𝐿𝑖 = 𝑖0,𝐿𝑖 exp
(

−
𝛼𝑐,𝐿𝑖𝑛𝐿𝑖𝐹

𝑅𝑇
𝜂𝐿𝑖

)

, (28)

𝜂𝐿𝑖 = 𝛷𝑠,𝑛 −𝛷𝑙,𝑛 − 𝑅𝑓𝑖𝑙𝑚
𝑗𝑛
𝑎𝑠,𝑛

(29)

A resistive film is formed on an anode active material at a rate propor-
tional to the side reaction current density as [21]:
𝜕𝑐𝑆𝐸𝐼
𝜕𝑡

= −
𝑗𝑆𝐸𝐼
𝑛𝑆𝐸𝐼𝐹

−
𝑗𝐿𝑖𝛽

𝑛𝑆𝐸𝐼𝐹
(30)

𝜕𝑐𝐿𝑖
𝜕𝑡

= −
𝑗𝐿𝑖
𝑛𝐿𝑖𝐹

(1 − 𝛽) (31)

where 𝑐𝑆𝐸𝐼 and 𝑐𝐿𝑖 denote the molar concentrations of SEI species and
lithium metal per unit volume of the electrode, and the 𝛽 parameter
denote the fraction of plated lithium that is oxidized in contact with
the electrolyte to form new SEI.

As stated above, the surface film coating on the graphite particles is
made up of SEI and Li metal. The fraction of the film that is coating the
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w

𝑅

I
i
t

2

2

𝛥

t
p
a

particle surface, and hence the film thickness, is proportional to 𝑐𝑆𝐸𝐼
and 𝑐𝐿𝑖 as

𝛥𝜀𝑓𝑖𝑙𝑚 = 𝛥𝜀𝑆𝐸𝐼 + 𝛥𝜀𝐿𝑖 =
(

𝑐𝑆𝐸𝐼𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

+
𝑐𝐿𝑖𝑀𝐿𝑖
𝜌𝐿𝑖

)

(32)

𝛥𝛿𝑓𝑖𝑙𝑚 =
𝛥𝜀𝑓𝑖𝑙𝑚
𝑎𝑠

(33)

here the film resistance is given as

𝑓𝑖𝑙𝑚 =
𝛿𝑓𝑖𝑙𝑚
𝜅𝑆𝐸𝐼

=
𝛿0,𝑆𝐸𝐼 + 𝛥𝛿f ilm(𝑡)

𝜅𝑆𝐸𝐼
(34)

n Eq. (34), 𝛿0,𝑆𝐸𝐼 refers to the thickness of the SEI layer formed
nitially during the formation period and 𝛥𝛿𝑓𝑖𝑙𝑚 refers to change in the
hickness of the film caused by the products formed during charging.

.3.2. Electrolyte loss
The electrolyte depletion due to side reactions is modeled as [23,

4]:

𝜀𝑙 = −
𝛼𝑉𝑙(𝑄𝑆𝐸𝐼 + 𝛽𝑄𝐿𝑖)

𝐴𝛿−𝐹
(35)

where 𝛼 is a coefficient denoting the number of moles of electrolyte
consumed per mole of lithium ion consumed and 𝑉𝑒 is the molar volume
of electrolyte. 𝑄𝑆𝐸𝐼 and 𝑄𝐿𝑖 denote ionic losses due to SEI layer growth
and Li plating, respectively, and are given as

QSEI(𝜏) = −∫

𝛿−

𝑥=0

(

∫

𝜏

𝑡=0
jSEI(𝑥, 𝜏)𝑑𝜏

)

𝐴𝑑𝑥 (36)

QLi(𝜏) = −∫

𝛿−

𝑥=0

(

∫

𝜏

𝑡=0
jlp(𝑥, 𝜏)𝑑𝜏

)

𝐴𝑑𝑥 (37)

2.3.3. Insulation of the active material
The passivation film can prevent some graphite particles from par-

ticipating in Li+ intercalation and deintercalation. The loss of active
material as a result of insulation by newly generated products from side
reactions is calculated as follows [24,25]:

𝛥𝜀𝑠 = 𝛥𝜀𝑓𝑖𝑙𝑚𝛼𝑖𝑠𝑜 (38)

2.3.4. Capacity loss
The side reactions discussed in this section have an impact on

battery performance. While loss of Li ions due to SEI layer growth and
Li plating, as well as insulation of active material, result in capacity
loss, passivation layer growth and electrolyte losses result in increased
resistance and consequently power fade [23]. The capacity of a fresh
cell could be stated as

𝑄𝑓𝑟𝑒𝑠ℎ = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)𝜀𝑠,0,𝑝𝛿𝑝𝐴𝑝𝑐𝑠,𝑚𝑎𝑥,𝑝𝐹

= (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)𝜀𝑠,0,𝑛𝛿𝑛𝐴𝑛𝑐𝑠,𝑚𝑎𝑥,𝑛𝐹
(39)

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 correspond to maximum and minimum stoichio-
metric coefficients in the cathode, and 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 correspond to
maximum and minimum stoichiometric coefficients in the anode, re-
spectively. With the cell being cycled, Li ions are lost due to side
reactions on the anode side resulting in capacity fade. Therefore, the
capacity of the aged cell could be estimated as:

𝑄𝑎𝑔𝑒𝑑 = (𝑥 + 𝑥𝑠ℎ𝑖𝑓 𝑡 − 𝑥𝑚𝑖𝑛)(𝜀𝑠,0,𝑛 + 𝛥𝜀𝑠,𝑛)𝛿𝑛𝐴𝑛𝑐𝑠,𝑚𝑎𝑥,𝑛𝐹 (40)

where

𝑥𝑠ℎ𝑖𝑓 𝑡 =
𝑄𝑆𝐸𝐼 +𝑄𝐿𝑖 (41)
5

(𝜀𝑠,0,𝑛 + 𝛥𝜀𝑠,𝑛)𝛿𝑛𝐴𝑛𝑐𝑠,𝑚𝑎𝑥,𝑛𝐹
2.4. Parameter classes

Battery models, which provide information on a system’s predicted
range, safe operation limits, and optimal usage conditions, can describe
a system in different degrees of detail. Traditional BMS operational
models commonly include equivalent circuit models (ECMs) or empiri-
cal models. Because these model parameters often lack electrochemical
significance or rather only roughly capture the electrochemical phe-
nomena, these models can merely predict the behavior of LIB cells
under specific operating conditions for which test data is available. An-
other factor that these models generally fail to consider is degradation.
High-fidelity electrochemical aging models instead have the ability to
accurately predict battery behavior under a wide range of unforeseen
operating conditions. However, the main obstacle to applying high
fidelity models in BMSs, beside the demanding computation capacity,
is model parameterization. On the other hand, the influence of different
parameters in high-fidelity models are not equal, which means that
some have a greater impact on the model’s output. To understand this,
it is critical to investigate the impact of parametric model uncertainties
on the electrochemical, thermal, and aging behavior of the battery
under various operating conditions. For such a study, it is vital to
know the lower and upper boundaries that could be considered for the
model’s various parameters. A literature review has therefore been con-
ducted in this regard in order to obtain a valid parameter window used
for studied NMC cells. Some parameters, such as electrode geometric
parameters and open circuit voltage (OCV) curves, were experimen-
tally measured after cell disassembly. Electrode coating thickness and
active material particle sizes were measured using scanning electron
microscopy (SEM). In this measurement, samples from various parts of
the electrodes were collected (see the supplementary information for
details). The result of that study is listed in Table 1.

Some of the parameters listed in Table 1 are functions of temper-
ature and electrolyte phase concentration, which could be expressed
using the Arrhenius law expressions listed in Table 2.

3. Methodology

The output of the coupled electrochemical–thermal-aging model
may deviate from measurements taken from real-world battery systems
due to, for example, uncertainties in model input parameters and
design specifications. A good understanding of the influence of these
uncertainties is required for the reliable design of high-fidelity models
used for an in-depth understanding of the aging behavior of battery
systems. Uncertainty quantification is a powerful tool to study the
propagation and impact of different model parameters’ fluctuation and
inaccuracy on the model output. In this context, the key challenge is
to get access to a reliable and computationally affordable emulator
(i.e., a surrogate) that can be used for the desired study. Fig. 3 shows
the flowchart for uncertainty quantification analysis performed in this
work (ECT stands for Electrochemical–thermal model). The SmartUQ
software was used in different steps of the analysis as described below.

3.1. Input space and design of experiment

The parameters and corresponding intervals of variation listed in
Table 2 were used to define the input space. The design of experiment
(DOE) and data sampling are the first steps in building surrogate
models. To that end, the training dataset is defined as follows: Let 𝑋
represent the N-dimensional hypercube (i.e., the FEM model’s input
space), and let 𝐱 = (𝑥1,… , 𝑥𝑛) represent a point in 𝑋 where 𝑛 denotes
he number of uncertain input parameters. The Latin hypercube sam-
ling (LHS) [43] method was employed to draw 𝑁 samples from 𝑋,
nd subsequently, the training input data are arranged in the matrix 𝐗,

so-called experimental design, as:
(1) (𝑁) 𝑁×𝑛
𝐗 = (𝐱 ,… , 𝐱 ) ⊂ 𝑅 (42)
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Table 1
A range of electrochemical and aging parameters used in literature for the NMC/graphite cells.

Parameters N_cc Neg Sep Pos P_cc References

Known parameters/constants
𝑉𝑚𝑎𝑥 [V] 4.2

𝑉𝑚𝑖𝑛 [V] 2.5

𝐹 [C mol−1] 96 487

𝑅 [J mol−1 K−1] 8.314

𝑇0 [K] 303.15

𝑇𝑟𝑒𝑓 [K] 298

Geometric parameters

𝐴 [m2] 0.05723 0.05428 0.06195 0.05192 0.05192 Measurement

𝐿 [μm] 11 [48–53] 12 [62–68] 10 SEM

Measurement

𝑅𝑠 [μm] [4.8–30] [4.5–19] SEM

𝜀𝑠,0 [0.4–0.694] [0.35–0.745] [14,17,23–31]

𝜀𝑙,0 [0.21–0.5] [0.4–0.55] [0.17–0.45] [14,17,21,23–31]

Transport parameters

𝑏 [1.3–1.86] [1.3–1.7] [1.3–2.26] [14,17,23,27,28,32]

𝐷𝑠,𝑟𝑒𝑓 [m2 s−1] [1e−14–3e−13] [1e−14–5e−13] [14,24,26,27,30,31,33,34]

𝐸𝐷𝑠
𝑎 [J∕mol] [10 000–45 000] [10 000–45 000] [14,17,26,28,31,32,34,35]

𝐷𝑙,𝑟𝑒𝑓 [m2 s−1] [1e−11–4.5e−10] [1e−11–4.5e−10] [1e−11–4.5e−10] [17,23,24,26,27,32]

𝐸𝐷𝑙
𝑎 [J∕mol] [12 360–15 000] [12 360–15 000] [12 360–15 000] [26,35]

𝑓∓,𝑟𝑒𝑓 1 1 1 COMSOL database

𝐸𝑓∓
𝑎 [J∕mol] 1000 1000 1000 COMSOL database

𝜎𝑠 [S m−1] [5.8e7–6e7] 100 [0.17–10] [3.4e7–3.7e7] [14,17,23,25,27,29–33,36]

𝜎𝑙,𝑟𝑒𝑓 [S m−1] 0.17 0.17 0.17 [26]

𝐸𝜎𝑙
𝑎 [J∕mol] 4.2e4 4.2e4 4.2e4 [26]

𝑡+0 [0.25–0.45] [0.25–0.45] [0.25–0.45] [17,23,24,26–33]

Kinetic parameters

𝛼𝑎 0.5 0.5 [23–25,28,30–32]

𝛼𝑐 0.5 0.5 [23–25,28,30–32]

𝑘0,𝑟𝑒𝑓 [mol−0.5 m2.5 s−1] [4e−12–2e−10] [0.7e−11–1.1e−10] [14,24,26,27,29–31,34]

𝐸𝑘0
𝑎 [J∕mol] [30 000–45 000] [23 000–39 570] [14,26,28,31,32,34]

Concentration parameters

𝑐𝑠,𝑚𝑎𝑥 [mol m−3] [32 000–35 000] [48 000–52 500] [14,24,27–33]
𝑆𝑂𝐶0 [0.76–0.936] [0.39–0.52] [21,29–31,33,35]

𝑐𝑙,0 [mol m−3] [1000–1200] [1000–1200] [1000–1200] [23–28,31,32]

𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦100%𝑆𝑂𝐶 [0.672–0.88] [0.222–0.442] [14,17,23,25]

𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑦0%𝑆𝑂𝐶 [0.002–0.2] [0.936–0.996] [14,17,23,25]

Physical

𝐶𝑝 [J∕(kg K)] 385 [867–1013] [1704–1978] [840–912] 900 [14,28]

ℎ𝑐𝑜𝑛𝑣 [W∕(m K)]

𝑘𝑇 [W∕(m2 K)] 398 [0.37–1.04] [0.14–0.33] [0.43–1.58] 237 [14,28]

𝜌 [kg m−3] 8900 [1768–2240] [1009–1081] [3057–4870] 2700 [14,28,37]

Aging parameters

𝛼 [0.5–1] [23,35]

𝛼𝑖𝑠𝑜 [0.275–0.75] [23–25]

𝛼𝑐,𝑆𝐸𝐼 [0.5–0.75] [21,23,24,35]

𝛿𝑆𝐸𝐼,0 [nm] [2–10] [30,33,34]

𝑘0,𝑆𝐸𝐼,𝑟𝑒𝑓 [m s−1] [1e−12–1.36e−12] [21,34,38,39]

𝐸𝑘0,𝑆𝐸𝐼
𝑎 [J mol−1] [30 000–65 000] [34,35,38]

𝜅𝑆𝐸𝐼 [S m−1] [3.8e−7–5e−4] [21,21,23–25,30,32,33,33–35]

𝑛𝑠𝑒𝑖 2

𝑀𝑆𝐸𝐼 [kg mol] 0.162 [21,24,25,30,32–35]

𝜌𝑆𝐸𝐼 [kg m−3] 1690 [21,24,25,30,32–35]

(continued on next page)
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Table 1 (continued).
Parameters N_cc Neg Sep Pos P_cc References

𝑈𝑆𝐸𝐼
𝑒𝑞 [0.21–0.4] [17,23,23–25,30,33,33–35,38]

𝑉𝑒 [m3 mol] [5.6e−5–3.25e−4] [23–25,35]

𝛼𝑐,𝐿𝑖 0.5 [21,31,31]

𝑖0,𝐿𝑖,𝑟𝑒𝑓 [A m−2] [1e−3–1e−5] [21,38]

𝐸𝑖0,𝐿𝑖
𝑎 [50 000–68 000] [38]

𝑛𝐿𝑖 1

𝑀𝐿𝑖 [kg mol] 6.94e−3 [21,24,25,30,32–35]

𝜌𝐿𝑖 [kg m−3] 534 [21,24,25,30,32–35]

𝑐𝐸𝐶,𝑏𝑢𝑙𝑘 [mol m−3] 4541 [21,34,39]

𝐷𝐸𝐶,𝑟𝑒𝑓 [m2 s−1] [6.8e−21–4.9e−19] [21,34,38,39]

𝐸𝐷𝐸𝐶
𝑎 [20 000–30 000] [38]
Fig. 3. Uncertainty quantification flowchart. ECT stands for Electrochemical–thermal model.
Table 2
Temperature and concentration dependency of parameters.

Parameter Temperature-dependency function Reference

𝐷𝑠,𝑝𝑜𝑠 [m2∕s] 𝐷𝑠,𝑟𝑒𝑓 ,𝑝 exp
(

− 𝐸
𝐷𝑠,𝑝
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[40,41]

𝐷𝑠,𝑛𝑒𝑔 [m2∕s] 𝐷𝑠,𝑟𝑒𝑓 ,𝑛(
𝑐𝑙

1 [mol m−3 ]
) exp

(

− 𝐸𝐷𝑠,𝑛
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[40]

𝐷𝑙 [m2∕s] 𝐷𝑙,𝑟𝑒𝑓 (
𝑐𝑙

1 [mol m−3 ]
) exp

(

− 𝐸𝐷𝑙
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[42]

𝑘0,𝑝 [mol−0.5 m2.5 s−1] 𝑘0,𝑟𝑒𝑓 ,𝑝 exp
(

− 𝐸𝑘0 ,𝑝
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[40,41]

𝑘0,𝑛 [mol−0.5 m2.5 s−1] 𝑘0,𝑟𝑒𝑓 ,𝑛 exp
(

− 𝐸𝑘0 ,𝑛
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[40,41]

𝜎𝑙 [S∕m] 𝜎𝑙,𝑟𝑒𝑓 (
𝑐𝑙

1 [mol m−3 ]
) exp

(

− 𝐸𝜎𝑙
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

COMSOL database

𝑓∓ 𝑓∓,𝑟𝑒𝑓 (
𝑐𝑙

1 [mol m−3 ]
) exp

(

− 𝐸𝑓∓
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

COMSOL database

𝐷𝐸𝐶 [m2∕s] 𝐷𝐸𝐶,𝑟𝑒𝑓 exp
(

− 𝐸𝐷𝐸𝐶
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[42]

𝑘0,𝑆𝐸𝐼 [m∕s] 𝑘0,𝑆𝐸𝐼,𝑟𝑒𝑓 exp
(

− 𝐸
𝑘0,𝑆𝐸𝐼
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[42]

𝑖0,𝐿𝑖 [A∕m2] 𝑖0,𝐿𝑖,𝑟𝑒𝑓 exp
(

− 𝐸
𝑖0,𝐿𝑖
𝑎

𝑅
( 1
𝑇
− 1

𝑇𝑟𝑒𝑓
)
)

[42]
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3.2. FEM model output and training data-sets

For a given experimental design matrix 𝐗, the FEM solves the
coupled electrochemical–thermal-aging model. The FEM model can
be regarded as ‘‘black box’’ function 𝑀 that performs the following
mapping from a vector of input parameters 𝐱 to a vector of quantity
of interest (QoI) 𝐲:

𝑀 ∶ 𝐱 ∈ 𝐗 ⊂ R𝑁×𝑛 ↦ 𝐲 = M(𝐱) ∈ 𝐘 ⊂ R𝑁×𝑡𝑙𝑎𝑠𝑡 (43)

where 𝑡𝑙𝑎𝑠𝑡 denotes the last time step for a corresponding QoI. The QoIs
considered in the FEM model are time-dependent outputs including
battery voltage, temperature elevation, and cyclic aging trajectory per-
formed at ambient temperature of 25 ◦C and discharge rates of 0.5C,
1C, and 2C. The FEM model data are basically input/output values that
are collected in an evaluation group as follows:

𝐷 =
{(

𝐱(𝑖),M(𝐱(𝑖))
)

, 𝑖 = 1,… , 𝑁
}

(44)

3.3. Surrogate models

A functional response emulator (FRE) is used to generate the cor-
responding surrogate models since the QoIs are time-dependent. In
contrast to other emulators, FREs consider a functional input variable,
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like time. In addition, there is only one response for each output
function and functional input variable. The FRE requires three elements
to generate the surrogate model: an input matrix, a response matrix,
and a time vector. For a given input matrix 𝐗 ⊂ R𝑁×𝑛, each row
represents a different set of inputs, while the input parameters of FREs
can each be time dependent vectors. Similarly, for a given output
matrix 𝐘 ⊂ R𝑁×𝑡𝑙𝑎𝑠𝑡 , each row represents the output response from
he same row of the 𝐗 matrix, and each column represents a value
f the QoI, assigned to a time point in the time vector in the same
rder as the time vector. The surrogate model �̃� is a function that
mulates the behavior of the original physical simulator 𝑀 at a very
ow computational cost per run which is given as :

̃ ∶ 𝐱 ∈ 𝐗 ↦ �̃�(𝐱) (45)

s a result of which:

̃ (𝐱) ≈ M(𝑥) (46)

urrogate models may be derived utilizing different approaches, such as
olynomial chaos expansions, law-rank tensor approximations, Kriging,
upport vector machines, artificial neural networks, and so on [44].
riging (also known as Gaussian process modeling, see details in [45])

s used in this work because it is typically the first option in this context
ue to its ease of understanding and potency in estimating nonlinear
ehavior. After collecting data from the FEM model runs on the ex-
erimental design, the next step would be to calibrate the surrogate
odel. Maximum likelihood estimation is used to fit a Gaussian process
odel to the input matrix generated by the data when estimating

he hyperparameters determining the correlation of the underlying
aussian process.

.4. Sensitivity analysis

Sensitivity analysis (SA) is used to determine the significance of
ach input parameter in relation to an output variable. The variance-
ased global SA is used in this work to define input and output
ncertainties as probability distributions. The output variation was
hen decomposed into its component parts. Each component represents
he influence of the input parameter (main effect index) or factors
ombined (total effect index) on the output variable (see [46]). Using
ampling-based sensitivity analysis utilizing corresponding surrogate
odels, the main and total Sobol indexes are estimated as

𝑖 =
Varxi (E𝐱∼𝑖 (𝐲|𝑥𝑖))

Var(𝐲)
(47)

𝑇𝑖 =
E𝐱∼𝑖 (Varxi (𝐲|𝐱∼𝑖))

𝐲
(48)

where 𝑆𝑖, 𝑆𝑇𝑖, 𝐱∼𝑖, E, 𝑉 𝑎𝑟, and 𝐲 denote the main effect Sobol index,
the total effect Sobol index, the (𝑛 − 1)-dimensional parameter space
with all factors but 𝑥𝑖, the expectation operator, the variance, and the
output space, respectively. Since SA is probabilistic and can provide a
wide range of results, the sensitivity analysis results were displayed as
the sample mean of the replications.

4. Results and discussion

Battery models can be applied in a wide range of situations, includ-
ing electrochemical and thermal behavior prediction, battery state-of-
health estimation, charging and discharging procedure optimization,
and safety limits calculation. Accuracy of the output, however, might
be impacted by battery model uncertainties. The high-fidelity coupled
electrochemical–thermal aging model, on the other hand, cannot be
directly applied for uncertainty and sensitivity analysis due to the high
computational cost. As a result, a surrogate-based model is used to
simulate the different quantities of interest from the coupled model.
More specifically, this paper examines the effects of Li-ion battery
8

model uncertainty on battery electrochemical, thermal, and aging es-
timation. To this end, 43 electrochemicial–thermal parameters as well
as 13 aging parameters, with the lower and upper limits as listed in
Table 1, are included in the design of experiment. Some geometric
parameters, such as particle radius and electrode thickness, are mea-
sured experimentally after cell disassembly, while others are imported
from a list of NMC cell parameters reported in the literature. Following
the derivation of the experimental design using the LHD method, a
parametric sweep study in COMSOL was performed at 1C discharge
rate to determine the variation in the QoIs, which included cell voltage,
temperature elevation, and normalized capacity (aging trajectory). The
surrogate models’ accuracy was tested using various sample sizes,
and no discernible differences were discovered. As a result of limited
computational power, sample sizes greater than 200 were not tested.
Fig. 4 depicts the effect of parametric model uncertainties on battery
voltage (Fig. 4(a)), temperature (Fig. 4(c)), and aging (Fig. 4(e)). As
shown by the displayed variations in these figures, uncertainties in
input parameters have a significant impact on voltage time outputs in
terms of range (x-axis) and battery power output (y-axis), temperature
elevations in the 1–9 K range, and normalized capacity (cyclic aging)
in the range from 1 down to 0.94 during the first 50 cycles. Following
the parametric sweep output from the FEM model, surrogate-based
emulators for three different QoIs are trained as voltage-emulator,
temperature-emulator, and normalized capacity emulator. Figs. 4(b),
4(d), and 4(f), which are calculated using the 5%, mean, and 95%
quantiles of the observed data, show the validation results for the
voltage-emulator, temperature-emulator, and cyclic aging-emulator, re-
spectively. The root mean square error (RMSE) for validated emulators
are calculated as 0.094, 0.128, and 0.031 for mean voltage emulator,
mean temperature emulator, and mean normalized capacity emula-
tor, respectively. In short, the small RMSE values highlight a good
validation of the emulated surrogate models for all three QoI.

Sensitivity analysis was carried out following the training of the
surrogate models for different QoIs to determine which input param-
eters have a greater impact on the uncertainty of the model output.
Fig. 5 shows the Sobol indeces for the influential parameters with
regards to the attributed QoI. Parameters with Sobol index less that
0.005 were dropped and classified as non-influential parameters. It
is worth noting that the reported values in the literature for NMC
cells with the defined variation range for each specific parameter
were used to determine the sensitivity of the parameters. This implies
that changing the defined range for each parameter will result in
different SA values. According to the SA analysis, the most influential
parameters influencing cell temperature are (𝑘0,𝑟𝑒𝑓 ,𝑝), (ℎ𝑐𝑜𝑛𝑣), (𝑘0,𝑟𝑒𝑓 ,𝑛),
𝑅𝑠,𝑝), (𝑅𝑠,𝑛), (𝐿𝑛), and (𝐷𝑠,𝑟𝑒𝑓 ,𝑝) with Sobol indexes greater than 0.1.

This is in line with what physical intuition would predict, because
reaction rates in the electrodes, convective heat transfer, geometric
parameters, and the Li+ diffusion rate in the solid phase are all highly
important contributors to heat generation and dissipation in LIBs, and
have been extensively analyzed in various high-fidelity models. The
active material volume fractions in the positive (𝜀𝑠,0,𝑝) and negative
electrode (𝜀𝑠,0,𝑛), solid phase conductivity of positive electrode (𝜎𝑠,𝑝),
initial state of charge of positive electrode 𝑆𝑂𝐶0,𝑝, and reaction rates in
the positive and negative electrodes obviously influence the cell voltage
output significantly. Regarding battery aging, the EC diffusion rate
across the surface film (𝐷𝐸𝐶,0,𝑝), the isolation rate of the passivisation
film (𝛼𝑖𝑠𝑜), and the equilibrium potential of the SEI reaction (𝑈𝑆𝐸𝐼

𝑒𝑞 ) are
the most influential parameters for the normalized capacity variation,
implying that SEI layer growth and isolation of the active material are
the dominant aging mechanisms.

Using the Multiview feature in Smart UQ, as shown in Fig. 6, the
design space of the three most important parameters for each QoI was
visualized by showing linked cross-sections. The cross sections show
how an output variable responds to changes in an input variable when
all other input variables are held constant. Thereby, it can be seen how

these different parameters are influential for the respective QoI.
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Fig. 4. Parametric sweep outputs for the (a) cell voltage, (c) cell temperature elevation, and (e) normalized capacity, and the corresponding emulators (b, d, f).
Furthermore, functional response data matching was performed to
optimize the electrochemical and thermal parameters based on the
algorithm shown in Fig. 7. Briefly, a Sobol index (SI) with a thresh-
old of 0.005 is used to classify the parameters into three groups.
Non-influential parameters are defined as those with SI less than the
threshold for both QoIs. The second class of parameters was influential
with respect to one QoI but not with respect to the other, for which
the respective emulator was used for calibration. The final class of
9

parameters were influential on both QoIs for which the emulator with
a higher SI is used for calibration. The objective was set to minimize
the difference between experimental and simulation results based on
the surrogate model as:

𝛴(𝑦𝑒𝑝𝑥𝑡 − 𝑦𝑠𝑖𝑚)2 (49)

The BOBYQA (bound optimization by quadratic approximation) was
used as an optimization method. Table 3 lists the parameters which
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Fig. 5. Sobol Indexes for the influential parameters with regard to temperature, voltage, and normalized capacity outputs.
Fig. 6. The cross sections of output variables (QoIs) respond to changes in the three most influential input variables.
were optimized using the voltage and temperature surrogate mod-
els (emulators). These parameters are thereby a key output of this
surrogate-based optimization, and those best being able to reproduce
this specific cell chemistry. As can be seen, the advantage of using
this approach is that a large set of parameters can be optimized
in a computationally effective way based on a limited number of
simulations.

Finally, to validate the surrogate assisted optimization, the voltage
and temperature outputs from the coupled FEM model at various
discharge rates were benchmarked towards the experimental measure-
ments on the same cell chemistry, as shown in Fig. 8. The experimental
voltage and temperature measurements were recorded at the same
operating conditions of 25 ◦C and 0.5C, 1C, and 2C discharge rates.
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The results demonstrate a good fit between the measured and simulated
data. The quality of the chosen methodology was assessed by calcu-
lating the mean absolute errors (MAE). For the voltage responses at
0.5C, 1C, and 2C discharge rates, the MAE values were found to be
0.037, 0.024, and 0.048, respectively. Similarly, for the temperature
responses at 0.5C, 1C, and 2C discharge rates, the MAE values were
0.18, 0.12, and 0.27, respectively. The relatively higher MAE values
for the temperature can be attributed to the lack of measured potential
temperature coefficients (dU/dT) at the electrode levels, resulting in
the utilization of the reported values from COMSOL Multiphysics 6.0.
Therefore, further improvement is required to enhance the temper-
ature predictions by incorporating more precise information on the
temperature coefficients.
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Fig. 7. An algorithm for optimizing the electrochemical–thermal model parameters.
Fig. 8. Validation of the experimental (Exp) and simulated (Sim) (a) cell voltage and (b) cell temperature elevation optimized based on the surrogate models.
Table 3
Optimized electrochemical and thermal parameters using the surrogate models.

Optimized by V-Emulator Optimized by T-Emulator

Parameter Value Parameter Value

𝐿𝑝 [m] 6.32e−5 𝐿𝑛 [m] 5.05e−5
𝜀𝑠,0,𝑛 0.528 𝑅𝑠,𝑛 [m] 1.21e−5
𝜀𝑠,0,𝑝 0.352 𝑅𝑠,𝑝 [m] 1.182e−5
𝜎𝑝 [S∕m] 9.5 𝐷𝑠,𝑟𝑒𝑓 ,𝑝 [m2 s−1] 1.286e−13
𝑐𝑠,𝑚𝑎𝑥,𝑛 [mol∕m3] 32 560 𝐷𝑙,𝑟𝑒𝑓 [m2 s−1] 2.232e−10
𝑆𝑂𝐶0,𝑛 0.9004 𝑘0,𝑟𝑒𝑓 ,𝑛 [mol−0.5 m2.5 s−1] 9.69e−11
𝑆𝑂𝐶0,𝑝 0.092 𝑘0,𝑟𝑒𝑓 ,𝑝 [mol−0.5 m2.5 s−1] 6.16e−11
𝑥𝑚𝑖𝑛 0.067 ℎ𝑐𝑜𝑛𝑣 [W m−1 K−1] 12.55
𝑦𝑚𝑎𝑥 0.951 𝜌𝑝 [kg m−3] 3963
𝐶𝑝,𝑛 [J kg−1 K−1] 958.4 𝑡+ 0.35
𝑏𝑟𝑢𝑔𝑛 1.53
𝐸𝐷𝑙

𝑎 [J mol−1] 1460

To evaluate the robustness of the model against parameter vari-
ations, we conducted a comprehensive analysis by introducing con-
trolled 10% variations in two key parameters: 𝑘0,𝑟𝑒𝑓 ,𝑝 and 𝜀𝑠,0,𝑝, known
for their influential effects on the model output. The impact of these
variations on the temperature and voltage response MAE was then
examined. The results clearly demonstrate the model’s ability to main-
tain its performance even in the presence of parameter variations.
When introducing a +10% variation in 𝑘0,𝑟𝑒𝑓 ,𝑝, the observed changes
in the temperature MAE were relatively small, with a minor increase
of 0.0165 units. The voltage MAE showed an even more negligible
11
change of 0.0005 units. Similarly, for a +10% variation in 𝜀𝑠,0,𝑝, the
model exhibited a slight increase of 0.009 units in the temperature
response MAE, while the voltage response MAE changed by 0.006
units. These findings indicate that the model’s predictions remain ro-
bust and accurate, with minimal deviations even when the influential
parameters experience notable variations. The small changes in MAE
imply that the model is capable of adapting to parameter variations
without significantly compromising its overall performance. However,
it is important to note that further investigations and analyses are
necessary to thoroughly assess the model’s robustness across a wider
range of parameter variations and ensure its applicability in diverse
scenarios and applications.

5. Conclusions

A surrogate-assisted uncertainty analysis on a physics-based battery
aging model was performed with the goal of developing a robust
and reliable battery aging model, as well as investigating the impact
of parametric model uncertainties on main battery outputs such as
voltage, temperature, and aging. Due to the high computational cost
of the coupled model, the UQ and SA studies were conducted using
a surrogate-assisted approach based on GPA and PCA theory. The
electrochemical and thermal models were also calibrated using the
surrogate model and experimental measurements. As the aging param-
eters evolve during cycling, the calibration of the aging parameters
can be performed as a continuation of this work in the future in the
form of online learning. The result showed that minor uncertainties in
the physical battery model’s input parameters cause large variations
in battery performance and aging trajectory. However, the impact
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of individual input parameters may differ depending on the type of
quantity of interest. Therefore, sensitivity analysis was performed to
identify the most influential input parameters affecting various QoIs by
computing the Sobol indexes. Based on the results, the active material
volume fractions, reaction rates, diffusion coefficient of EC in SEI film,
heat transfer coefficient, solid phase conductivity, isolation coefficient
of passivisation film, and equilibrium potential of SEI formation are the
most influential parameters affecting battery performance and aging.
This methodology, as a complement to previous studies in the field,
paves the way for the use of robust physics-based models for effective
battery management system design, as well as high-fidelity models
based on surrogates for cloud-based digital twin applications.
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